DSpace Repository

Análisis metabolómico y transcriptómico diferencial de pacientes prediabéticos, diabéticos y con nefropatía diabética para identificar potenciales biomarcadores de daño renal

Show simple item record

dc.contributor Jose Antonio Enciso-Moreno;0000-0002-2793-0473 es_MX
dc.contributor Christian Alberto Garcia-Sepulveda;0000-0002-1169-7857 es_MX
dc.contributor.advisor Ensico Moreno, José Antonio
dc.contributor.advisor García Sepúlveda, Christian Alberto
dc.contributor.author Oropeza Valdez, Juan José
dc.coverage.spatial México.San Luis Potosí. San Luis Potosí. es_MX
dc.creator Juan José Oropeza Valdez;0000-0003-1093-9970 es_MX
dc.date.accessioned 2022-09-05T16:35:03Z
dc.date.available 2022-09-05T16:35:03Z
dc.date.issued 2022-08
dc.identifier.uri https://repositorioinstitucional.uaslp.mx/xmlui/handle/i/7942
dc.description.abstract Background. The early diagnosis of diabetic nephropathy (DN) is essential to improve the prognosis and manage patients affected by this disease. Standard biomarkers, including albuminuria and glomerular filtration rate, are limited to give a precise result. New molecular biomarkers are needed to identify better and predict DN disease evolution. Characteristic DN biomarkers can be identified using transcriptomic analysis. Aim of the study. To evaluate the transcriptomic profile of controls (CTRLs, n = 15), prediabetes (PREDM, n = 15),, type-2 diabetes mellitus (DM-2, n = 15), and DN (n = 15) patients by microarray analysis to find new biomarkers, RT-PCR was used to confirm gene biomarkers specific for DN. Materials and methods. Blood samples were used to isolate RNA for microarray expression microarrays evaluating 26,803 unique gene sequences and 30,606 LncRNA sequences, selected gene biomarkers for DN were validated using qPCR assays. Sensitivity, specificity, and area under the curve (AUC) were calculated as measures of diagnostic accuracy. Results. The DN transcriptome, founding here, were composed by 300 induced genes, compared to CTRLs, PREDM, and DM-2 groups. RT-qPCR assays validated that METLL22, PFKL , CCNB1 and CASP2 genes were induced in the DN group compared to CTRLs, PREDM, and DM-2 groups. The ROC analysis for these four genes showed 0.9719, 0.8853, 0.8533 and 0.7748 AUC values respectively. Conclusion. Among induced genes in the DN group, we found that CASP2, PFKL and CCNB1 can be used as potential biomarkers to diagnose DN, where, METLL22 represents the best with an AUC=0.9719. es_MX
dc.description.sponsorship Proyecto R-2016-785-049, Financiamiento FIS/IMSS/PROT/PRIO/18/070, IMSS es_MX
dc.description.sponsorship CONACYT, Beca 487639 es_MX
dc.description.statementofresponsibility Investigadores es_MX
dc.description.statementofresponsibility Educadores es_MX
dc.language Inglés es_MX
dc.relation.ispartof REPOSITORIO NACIONAL CONACYT es_MX
dc.relation.requires Glycerophospholipid Metabolism Alterations in Patients with Type 2 Diabetes Mellitus and Tuberculosis Comorbidity, 2019, Research article. https://doi.org/10.1016/j.arcmed.2019.05.006 es_MX
dc.relation.requires The Urinary Metabolome of Healthy Newborns, 2020, Research article. https://doi.org/10.3390/metabo10040165 es_MX
dc.relation.requires Targeted metabolomics identifies high performing diagnostic and prognostic biomarkers for COVID-19, 2022, Research article. https://doi.org/10.1038/s41598-021-94171-y es_MX
dc.relation.requires Immunometabolic signatures predict risk of progression to sepsis in COVID-19, 2021, Research article, https://doi.org/10.1371/journal.pone.0256784 es_MX
dc.relation.requires Urinary Metabolomic Profile of Neonates Born to Women with Gestational Diabetes Mellitus, 2021, Research article, https://doi.org/10.3390/metabo11110723 es_MX
dc.relation.requires Kynurenine and Hemoglobin as Sex-Specific Variables in COVID-19 Patients: A Machine Learning and Genetic Algorithms Approach, 2021, Research article, https://doi.org/10.3390/diagnostics11122197 es_MX
dc.rights Acceso Abierto es_MX
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0 es_MX
dc.subject diabetic nephropathy es_MX
dc.subject diabetes es_MX
dc.subject transcriptome es_MX
dc.subject microarray es_MX
dc.subject biomarkers es_MX
dc.subject.other BIOLOGÍA Y QUIMICA es_MX
dc.subject.other MEDICINA Y CIENCIAS DE LA SALUD es_MX
dc.title Análisis metabolómico y transcriptómico diferencial de pacientes prediabéticos, diabéticos y con nefropatía diabética para identificar potenciales biomarcadores de daño renal es_MX
dc.type Tesis de doctorado es_MX
dc.degree.name Doctorado en Ciencias Biomédicas Básicas es_MX
dc.degree.department Facultad de Medicina es_MX


Files in this item

This item appears in the following Collection(s)

Show simple item record

Acceso Abierto Except where otherwise noted, this item's license is described as Acceso Abierto

Search DSpace


Advanced Search

Browse

My Account