DSpace Repository

Microacarreadores híbridos de Silicio Poroso/Quitosano para la terapia dual de Dolor - Inflamación

Show simple item record

dc.contributor ALMA GABRIELA PALESTINO ESCOBEDO;95304 es_MX
dc.contributor CANDIDA ANAHY CISNEROS COVARRUBIAS;634929 es_MX
dc.contributor.advisor Palestino Escobedo, Alma Gabriela es_MX
dc.contributor.advisor Cisneros Covarrubias, Cándida Anahy es_MX
dc.contributor.author Báez Fernández, Fidela Xochitlquetzal es_MX
dc.coverage.spatial México. San Luis Potosí. San Luis Potosí es_MX
dc.creator Fidela Xochitlquetzal Báez Fernández;CA1369317 es_MX
dc.date.accessioned 2024-01-22T14:37:51Z
dc.date.available 2024-01-22T14:37:51Z
dc.date.issued 2024-01-01
dc.identifier.uri https://repositorioinstitucional.uaslp.mx/xmlui/handle/i/8476
dc.description.abstract En este trabajo de investigación se diseñaron microacarreadores a base de micropartículas de silicio poroso (mPSi) y quitosano (Q) recubiertos con una capa entérica de gelatina (Gel) y se evaluó su potencial aplicación como vehículos para la administración sostenida de diclofenaco (DCF) y resveratrol (RSV). Las mPSi se caracterizaron por ser un material nanoestructurado con tamaño promedio de 1 ± 0.31 μm, espesor de 0.5 ± 0.08 μm y tamaño medio de poro de 67 ± 17 nm. Las nanoestructuras de PSi se funcionalizaron superficialmente mediante la incorporación de grupos amino-aldehídos, con la finalidad de utilizarlos como puentes de acoplamiento del biopolímero quitosano, la conjugación química, así como la morfología y cargas superficiales de las mPSi antes y posterior a su conjugación fueron evaluadas mediante espectroscopia de infrarrojo con transformada de Fourier, microscopia electrónica de barrido, microscopía electrónica de transmisión, análisis termogravimétrico y potencial ζ. Se llevó a cabo la carga simultánea de ambos fármacos mediamente inmersión, la conjugación química del Q y el recubrimiento con la capa entérica de Gel, variando las concentraciones de Gel y GTA se evaluó mediante un diseño central compuesto para obtener el material óptimo que permitiera una liberación sostenida. La capacidad de carga de DCF y RSV en los compositos se cuantificó mediante UV-Vis, obteniendo una carga total de 0.92 mg de DCF y 1.07 de RSV por mg de partícula. Adicionalmente se realizaron liberaciones in vitro de ambos fármacos en fluido gástrico (pH 1.2) y en fluido intestinal (pH 6.8) simulado, los cuales mostraron mayor velocidad de liberación en pH 6.8 debido a la baja solubilidad de la gelatina en pH ácidos. Las cinéticas de liberación mostraron un ajuste al modelo cinético Korsmeyer – Peppas, el cual es utilizado principalmente para describir materiales poliméricos. Finalmente, se realizó una evaluación antiinflamatoria y antinociceptiva in vivo, utilizando como biomodelo ratas Wistar de sexo indistinto con un modelo de edema inducido por carragenina, encontrando que las [mPSi – Q]Gel presentan un efecto antiinflamatorio en comparación con los fármacos individuales encapsulados únicamente en gelatina y con el grupo control; de igual manera se observa un efecto analgésico tardío aunque en menor proporción comparado con los grupos mencionados anteriormente. es_MX
dc.description.abstract En este trabajo de investigación se diseñaron microacarreadores a base de micropartículas de silicio poroso (mPSi) y quitosano (Q) recubiertos con una capa entérica de gelatina (Gel) y se evaluó su potencial aplicación como vehículos para la administración sostenida de diclofenaco (DCF) y resveratrol (RSV). Las mPSi se caracterizaron por ser un material nanoestructurado con tamaño promedio de 1 ± 0.31 μm, espesor de 0.5 ± 0.08 μm y tamaño medio de poro de 67 ± 17 nm. Las nanoestructuras de PSi se funcionalizaron superficialmente mediante la incorporación de grupos amino-aldehídos, con la finalidad de utilizarlos como puentes de acoplamiento del biopolímero quitosano, la conjugación química, así como la morfología y cargas superficiales de las mPSi antes y posterior a su conjugación fueron evaluadas mediante espectroscopia de infrarrojo con transformada de Fourier, microscopia electrónica de barrido, microscopía electrónica de transmisión, análisis termogravimétrico y potencial ζ. Se llevó a cabo la carga simultánea de ambos fármacos mediamente inmersión, la conjugación química del Q y el recubrimiento con la capa entérica de Gel, variando las concentraciones de Gel y GTA se evaluó mediante un diseño central compuesto para obtener el material óptimo que permitiera una liberación sostenida. La capacidad de carga de DCF y RSV en los compositos se cuantificó mediante UV-Vis, obteniendo una carga total de 0.92 mg de DCF y 1.07 de RSV por mg de partícula. Adicionalmente se realizaron liberaciones in vitro de ambos fármacos en fluido gástrico (pH 1.2) y en fluido intestinal (pH 6.8) simulado, los cuales mostraron mayor velocidad de liberación en pH 6.8 debido a la baja solubilidad de la gelatina en pH ácidos. Las cinéticas de liberación mostraron un ajuste al modelo cinético Korsmeyer – Peppas, el cual es utilizado principalmente para describir materiales poliméricos. Finalmente, se realizó una evaluación antiinflamatoria y antinociceptiva in vivo, utilizando como biomodelo ratas Wistar de sexo indistinto con un modelo de edema inducido por carragenina, encontrando que las [mPSi – Q]Gel presentan un efecto antiinflamatorio en comparación con los fármacos individuales encapsulados únicamente en gelatina y con el grupo control; de igual manera se observa un efecto analgésico tardío aunque en menor proporción comparado con los grupos mencionados anteriormente. es_MX
dc.description.sponsorship Beca, 998140, Consejo Nacional de Ciencia y Tecnología. es_MX
dc.description.sponsorship Proyecto de ciencia básica, CB 2017-2018, A1-S-31287, Consejo Nacional de Ciencia y Tecnología. es_MX
dc.description.statementofresponsibility Investigadores es_MX
dc.description.statementofresponsibility Estudiantes es_MX
dc.language Español es_MX
dc.publisher Facultad de Ciencias Químicas es_MX
dc.relation.ispartof REPOSITORIO NACIONAL CONACYT es_MX
dc.rights Acceso Embargado es_MX
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0 es_MX
dc.subject Silicio poroso (CSIC) es_MX
dc.subject Quitosano (mesh) es_MX
dc.subject Resveratrol (mesh) es_MX
dc.subject Gelatina porcina es_MX
dc.subject Diclofenaco es_MX
dc.subject Terapia dual es_MX
dc.subject Inflamación es_MX
dc.subject Capa entérica es_MX
dc.subject Liberación sostenida es_MX
dc.subject Porous silicon es_MX
dc.subject Chitosan es_MX
dc.subject Gelatin es_MX
dc.subject Diclofenac es_MX
dc.subject Dual therapy es_MX
dc.subject Inflammation Enteric coating es_MX
dc.subject Sustained es_MX
dc.subject.other BIOLOGÍA Y QUIMICA es_MX
dc.title Microacarreadores híbridos de Silicio Poroso/Quitosano para la terapia dual de Dolor - Inflamación es_MX
dc.type Tesis de maestría es_MX
dc.degree.name Maestro en Ciencias en Ingeniería Química es_MX
dc.degree.department Facultad de Ciencias Químicas es_MX


Files in this item

This item appears in the following Collection(s)

Show simple item record

Acceso Embargado Except where otherwise noted, this item's license is described as Acceso Embargado

Search DSpace


Advanced Search

Browse

My Account