dc.contributor |
RAÚL OCAMPO PÉREZ;160109 |
|
dc.contributor.author |
García Hernández, Elias
|
|
dc.coverage.temporal |
México.San Luis Potosí.San Luis Potosí. |
es_MX |
dc.creator |
ELIAS GARCIA HERNANDEZ;895641 |
es_MX |
dc.date.accessioned |
2021-03-03T17:32:06Z |
|
dc.date.available |
2021-03-03T17:32:06Z |
|
dc.date.issued |
2020-06-30 |
|
dc.identifier.issn |
https://catalogo.uaslp.mx/uhtbin/cgisirsi/?ps=CeQHxONtfH/SISBIB/X/123 |
es_MX |
dc.identifier.uri |
https://repositorioinstitucional.uaslp.mx/xmlui/handle/i/7193 |
|
dc.description |
The objective of this work was to implement a mathematical model for the study of phenol adsorption kinetics in activated carbon cloth. A strong approach was made to the study of hydrodynamics at different agitation speeds of a rotating basket reactor between 30 and 200 RPM. This was studied in 2D and 3D geometries at COMSOL Multiphysics. Because the radial velocity is the one that dominates the hydrodynamic effects in the reactor, multiphysical coupling was performed in 2D geometry. The study of the adsorption rate was carried out using four models to make a comparison between them. The Pseudo-First Order kinetic model had a good fit to the experimental data, presenting R2 values close to unity. The External Mass Transport Model only adjusts the data at stirring speeds above 100 RPM, while at lower speeds the data mismatch is evident. Through the Pore Volume Diffusion Model it is evident in the Phenol-Activated Carbon system there are no diffusional effects at 100 RPM. Finally, the Convective-Diffusive Model developed in this work, satisfactorily interpreted the experimental data at different stirring speeds. The exact results make the perfect blend assumption reasonable for 100 RPM and above. The greatest mass flows occur in the areas close to adsorption. |
es_MX |
dc.description.abstract |
El presente trabajo tuvo por objeto la implementación de un modelo matemático para el estudio de la cinética de adsorción fenol en tela de carbón activado. Un fuerte enfoque se realizó al estudio de la hidrodinámica a diferentes velocidades de agitación de un reactor de canastillas giratorias entre 30 y 200 RPM. Esto se estudió en geometrías 2D y 3D en COMSOL Multiphysics. Debido a que la velocidad radial es la que domina los efectos hidrodinámicos en el reactor, se realizó el acoplamiento multifisico en la geometría 2D. El estudio de la velocidad de adsorción se realizó mediante cuatro modelos para hacer una comparación entre estos. El modelo cinético de Pseudo-Primero Orden tuvo un buen ajuste a los datos experimentales presentando valores de R2 cercanos a la unidad. El Modelo de Transporte Externo de Masa ajustó sólo los datos obtenidos a velocidades de agitación superiores a las 100 RPM, mientras que a velocidades inferiores el desajuste de los datos fue evidente. Mediante el Modelo de Difusión en el Volumen de Poro se evidenció que en el sistema Fenol-Carbón Activado no existen efectos difusionales a 100 RPM. Finalmente, el Modelo Convectivo-Difusivo desarrollado en este trabajo, interpretó satisfactoriamente los datos experimentales a diferentes velocidades de agitación. Los resultados demuestran que la suposición de mezcla perfecta es razonable para 100 RPM y superiores. Los fluxes mayores de masa se dan en las zonas cercanas a la adsorción. |
es_MX |
dc.description.abstract |
The objective of this work was to implement a mathematical model for the study of phenol
adsorption kinetics in activated carbon cloth. A strong approach was made to the study of
hydrodynamics at different agitation speeds of a rotating basket reactor between 30 and 200
RPM. This was studied in 2D and 3D geometries at COMSOL Multiphysics. Because the
radial velocity is the one that dominates the hydrodynamic effects in the reactor,
multiphysical coupling was performed in 2D geometry. The study of the adsorption rate was
carried out using four models to make a comparison between them. The Pseudo-First Order
kinetic model had a good fit to the experimental data, presenting R2 values close to unity.
The External Mass Transport Model only adjusts the data at stirring speeds above 100 RPM,
while at lower speeds the data mismatch is evident. Through the Pore Volume Diffusion
Model it is evident in the Phenol-Activated Carbon system there are no diffusional effects at
100 RPM. Finally, the Convective-Diffusive Model developed in this work, satisfactorily
interpreted the experimental data at different stirring speeds. The exact results make the
perfect blend assumption reasonable for 100 RPM and above. The greatest mass flows occur
in the areas close to adsorption. |
es_MX |
dc.language |
Español |
es_MX |
dc.relation |
Versión aceptada |
es_MX |
dc.relation |
Estudiantes |
|
dc.relation |
Investigadores |
|
dc.relation.ispartof |
REPOSITORIO NACIONAL CONACYT |
es_MX |
dc.relation.ispartofseries |
Maestría en Ciencias en Ingeniería Química. Facultad de Ciencias Químicas. Universidad Autónoma de San Luis Potosí. |
es_MX |
dc.relation.haspart |
Proyecto No. CB-2013-01 (221757) |
es_MX |
dc.relation.haspart |
Proyecto No. PN-625-2016 |
es_MX |
dc.rights |
Acceso Abierto |
es_MX |
dc.rights.uri |
http://creativecommons.org/licenses/by-nc-nd/4.0 |
es_MX |
dc.subject |
Adsorción |
es_MX |
dc.subject |
Difusión |
es_MX |
dc.subject |
Convección |
es_MX |
dc.subject |
Hidrodinámica |
es_MX |
dc.subject |
Adsorption |
es_MX |
dc.subject |
Diffusion |
es_MX |
dc.subject |
Convection |
es_MX |
dc.subject |
Hydrodinamics |
es_MX |
dc.subject.other |
2 BIOLOGÍA Y QUIMICA |
|
dc.title |
Efecto de la hidrodinámica sobre la predicción de la velocidad global de adsorción de fenol sobre tela de carbón activado |
es_MX |
dc.type |
Tesis de maestría |
es_MX |