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Sinodal
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Abstract I

There is a persistent interest in minimizing the dimensions of portable atomic gravime-
ters. This reduction inevitably results in the truncation of the Gaussian wings of the
excitation laser beams, the implications of which have not yet been fully assessed. The
diffraction pattern generated by this aperture creates ripples in the wavefront, influencing
both the phase and the intensity. We examine the alteration in the measured value of
an atomic gravimeter due to phase fluctuations in the wavefront. Fortunately, this alter-
ation demonstrates a Gaussian decay in relation to the size of the aperture. For larger
clouds, we notice a reduced effect due to averaging across transverse positions that show
different shift values. Interestingly, we found that variations in intensity also provide a
notable correction to the photon recoil, contributing roughly equally to the previously
mentioned shift in the measurement of gravitational acceleration. Our results should aid
in establishing the minimum size of an apparatus necessary to achieve a certain level of
accuracy.

ix



Chapter 1

Uncontrollable Errors in the
Measurements of an Atomic
Gravimeter

1.1 Introduction

Interferometry stands as one of the most beneficial techniques available to scientists, offer-
ing versatile applications across various scientific disciplines that significantly enhance the
accuracy of numerous measurements. An interferometer utilizes the interference patterns
of coherent waves to glean insights about the system under investigation. Historically,
the wave theory of light was bolstered by Thomas Young’s inquisitive nature, as he
demonstrated the wave nature of light through his famous double slit experiment, effec-
tively challenging Isaac Newton’s corpuscular theory. This pivotal moment marked the
beginning of the practical application of coherent wave interference. Among the most no-
table historical applications of interferometry is the Michelson-Morley experiment, which
indirectly established that light does not require a medium for its propagation [1].

In recent years, interferometry has become extensively utilized for measuring the
lengths and shapes of optical components with nanometer precision. One of the most
remarkable achievements of contemporary interferometry was the measurement and de-
tection of gravitational waves coming from the collision between two black holes, further
validating Albert Einstein’s most significant theory.

The technique of interferometry extends beyond the realm of electromagnetic waves.
Following the identification of matter interference at atomic and sub-atomic levels, along
with the advancement of quantum mechanics, matter-wave interferometers have demon-
strated significant efficacy. In recent decades, cold atom interferometers [2, 3] have
emerged as a valuable instrument for inertial sensing [4], capable of measuring various
phenomena such as gravitational acceleration [5, 6, 7], gravity gradients [8, 9], and rota-
tional movements [10, 11, 12]. Furthermore, these interferometers have been employed in
fundamental physics research, including the determination of the fine structure constant
[13, 14], the Newtonian gravitational constant [15, 16], tests of the weak equivalence prin-
ciple [17, 18, 19], and the detection of gravitational waves [20, 21, 22]. Recently, there
have also been proposals to utilize them as detectors for ultralight dark matter [23]. In
the context of their application in the field, these sensors have undergone ongoing minia-
turization to transform them into portable devices capable of measuring, for instance,
the local gravitational acceleration [24, 25, 6, 26, 27, 28, 29, 30, 31, 32, 33, 34].

The accuracy of atomic gravimeters is frequently constrained by the distortions present
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in the wavefront of the Raman beams employed for excitation [35, 36, 37, 38, 39, 40, 23].
These distortions can be mitigated through meticulous design of the Raman pathway,
which begins with spatially filtered beams and incorporates optical components charac-
terized by high surface flatness.

The wavefront can be actively controlled in addition to the aforementioned methods
[41]. Furthermore, an in situ characterization of the beam profile can be achieved through
measurements conducted with the atomic cloud [42, 40]. Additionally, it is possible to
directly characterize and rectify the deformations on the wavefront that have the most
significant impact [43].

A sufficiently uniform laser illumination on atoms minimizes decoherence, which can
be accomplished through the use of flat-top beams [44, 45] or collimated Gaussian beams
with a large waist [46, 37]. The combination of large laser beams and the smaller dimen-
sions necessary for portable devices results in truncated Gaussian beams.

It is evident that there is a significant necessity to assess the impact of an aperture in
atomic gravimetry [26, 9]. Reference [38] discovered that altering the size of an aperture
in the Raman beams results in a notable shift in gravity measurements. The method of
adjusting the diameter of the Raman beams through the implementation of an aperture
has been widely adopted in various studies [47, 48]. However, their analysis overlooks the
diffraction effects, which we demonstrate to be quite significant.

This thesis provides an examination of how an aperture influences the trajectory of
Raman beams. The presence of the aperture alters both the phase and amplitude of the
wavefront, and our findings indicate that these changes result in a significant shift in the
measurement of gravitational acceleration (g) that must be considered.

The structure of the thesis is organized as follows: Chapter 1.2 presents a clear ex-
planation of how to express the phase of the beams in relation to atomic states. Chapter
1.3 investigates the situation without an aperture, establishing a foundational reference
for further analysis. Chapter 1.4 discusses the far field case, which, although not di-
rectly applicable to atomic gravimetry, offers important insights into diffraction effects.
In Chapter 1.5, we delve into the near field scenario, which is more pertinent to practical
applications. Lastly, Chapter 1.6 introduces the correction for photon recoil caused by
the aperture, which we have found to have a significant effect on intensity variations.

1.2 Phase Writing on Atoms

In this chapter we will show how the phase of the interferometric beams are written on
the final states of the atoms. we will consider that the beams are very close to resonance,
meaning that its momentum is not far of from the design trajectory. The equations for
the dynamics of the two states of the atom for the first pulse are

iĊe,1 =
1

2
ΩeiϕΩ,1eiδtei∆t2Cg,1 (a) (1.1)

iĊg,1 =
1

2
Ωe−iϕΩ,1e−iδte−i∆t2Ce,1 (b)

The procedures to obtain these equations are widely available in the literature, and these
equations can be obtained by using time dependent perturbation theory for a two-state
quantum system driven by an external optical field [49, 50]. Here Cl,i is the coefficient
for the excited state e or ground state g of the atom, ϕΩ,1 is the phase related to the
wavefront of the Raman Beam, δt is the phase associated with the detuning due to the
Doppler effect, and ∆t2 is the phase associated with the evolution of the atom in free
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fall and frequency ramp that provides the measurement of the value of g [2]. The atoms
will then experience a series of light pulses characterized as an atomic Mach-Zehnder
interferometer. For the pulses, we will neglect the effect of the ∆t2 phase since the
duration of the pulses is very short compared to the duration of the time between pulses
[2]. With these considerations in mind, the solutions to Eq.1.1 are

Ce,1(t) = −iΩ
Ω̃
eiϕΩ,1ei

δ
2
tSin

(
Ω̃

2
t

)
(a) (1.2)

Cg,1(t) = e−i δ
2
t

(
Cos

(
Ω̃

2
t

)
+ i

δ

Ω̃
Sin

(
Ω̃

2
t

))
(b)

Where Ω̃ =
√

|Ω|2 + δ2. The duration of the first pulse is equal to τ1 =
π

2|Ω| , now taking

in consideration that δ is small, particularly δ
|Ω| ≪ 1, the coefficients for the excited and

ground state after the first pulse are

Ce,1(τ1) = − i√
2
eiϕΩ,1 (a) (1.3)

Cg,1(τ1) =
1√
2

(b)

Now a dark time with a duration of T1 ≫ τ1 happens and the atoms accumulate the
respective phase so for the second pulse the equations for the two states are

iĊe,2 =
1

2
ΩeiϕΩ,2eiδT1ei∆T 2

1 eiδtCg,2 (a) (1.4)

iĊg,2 =
1

2
Ωe−iϕΩ,2e−iδT1e−i∆T 2

1 e−iδtCe,2 (b)

These equations have the following solution

Ce,2(t) = ei
δ
2
t

[[
Cos

(
Ω̃

2
t

)
− i

δ

Ω̃
Sin

(
Ω̃

2
t

)]
Ce,1(τ1)

−iΩ
Ω̃
eiϕΩ,2eiδT1ei∆T 2

1 Sin

(
Ω̃

2
t

)
Cg,1(τ1)

]
(a)

Cg,2(t) = e−i δ
2
t

[[
Cos

(
Ω̃

2
t

)
+ i

δ

Ω̃
Sin

(
Ω̃

2
t

)]
Cg,1(τ1)

−iΩ
Ω̃
e−iϕΩ,2e−iδT1e−i∆T 2

1 Sin

(
Ω̃

2
t

)
Ce,1(τ1)

]
(b) (1.5)

The duration of the second pulse is now τ2 = π
|Ω| and the coefficients for the excited

and ground state after the second pulse are

Ce,2(τ2) = − i√
2
eiϕΩ,2eiδT1ei∆T 2

1 (a) (1.6)

Cg,2(τ2) = −1

2
e−iδT1e−i∆T 2

1 ei(ϕΩ,1−ϕΩ,2) (b)
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Now another dark time occurs and the atom accumulates phase, so the equations for the
third and last pulse are

iĊe,3 =
1

2
ΩeiϕΩ,3eiδT2ei∆T 2

2 eiδtCg,3 (a) (1.7)

iĊg,3 =
1

2
Ωe−iϕΩ,3e−iδT2e−i∆T 2

2 e−iδtCe,3 (b)

Whose solutions are pretty much the same as in Eq.1.5 so we will proceed to write directly
the coefficient of the excited state after the third pulse which has a duration of τ3 =

π
2|Ω|

Ce,3(τ3) =

[
− i

2
eiδT1ei∆T 2

1 eiϕΩ,2 +
i

2
eiδ(T2−T1)ei∆(T 2

2−T 2
1 )ei(ϕΩ,1−ϕΩ,2+ϕΩ,3)

]
(1.8)

And if we factor out some terms we obtain

Ce,3(τ3) =
i

2

[
−1 + eiδ(T2−2T1)ei∆(T 2

2−2T 2
1 )ei(ϕΩ,1−2ϕΩ,2+ϕΩ,3)

]
eiδT1ei∆T 2

1 eiϕΩ,2 (1.9)

Given that T2 = 2T1 we can appreciate that the phase due to the Doppler effect, arising
from momentum components different than from the design trajectory, cancels out and
we can rewrite the coefficient as

Ce,3(τ3) =
1

2
eiϕGlobal

[
−1 + ei(2∆T 2

1+ϕΩ,Total)
]

(1.10)

Where ϕGlobal = δT1 +∆T 2
1 + ϕΩ,2 +

π
2
and ϕΩ,T otal = ϕΩ,1 − 2ϕΩ,2 + ϕΩ,3. Given that we

are measuring the probability that the atom is on the excited state, the signal that we
will detect is proportional to |Ce,3(τ3)|2

S(∆) = |Ce,3(τ3)|2 =
1

2

(
1− Cos

(
2∆T 2

1 + ϕΩ,T otal

))
(1.11)

And here we can clearly see that the phase due to the wavefront is written directly onto
the signal.

1.3 The Case With No Aperture

We first examine just a pure Gaussian beam without distortions

E(x, y, z) =
iA

zo

W0

W (z)
ε̂ exp

(
− ρ2

W 2(z)

)
exp

(
ikz +

ik

2R(z)
ρ2 − iζ(z)

)
, (1.12)

with A a constant proportional to the amplitude, W (z) the beam width (1/e) that de-
pends on the axial coordinate with respect to the waist position (zW ), W0 the waist
radius, ρ2 = x2+y2, k the magnitude of the wave vector, z0 the Rayleigh range, R(z) the
radius of curvature of the wavefront, ε̂ the polarization and ζ(z) the Gouy phase, with

W (z) = W0

√
1 +

(
z

z0

)2

, R(z) = z

[
1 +

(z0
z

)2]
ζ(z) = arctan

(
z

z0

)
, W0 =

√
2z0
k
. (1.13)
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In atomic gravimetry, the Raman beams typically originate from a single mode fiber and
are reflected back by a mirror to create counter-propagating beams [28]. The Rabi fre-
quency becomes proportional to E1 ×E∗

2 [51] with E1 the field evaluated at za, the axial
position of the atoms, and E2 evaluated at za +∆z that includes the additional distance
for retro-reflection. Previous analyses have examined how changes in the amplitude and
phase of Raman beams influence atomic interferometry [52, 37, 46, 36, 41, 38, 44]. These
variations impact the detuning of Rabi oscillations, along with the size and phase of
the Rabi frequency. As a consequence, there is a decrease in sensitivity due to dimin-
ished fringe visibility and systematic effects arising from shifts in the interference fringes.
Nowadays, the distortions in the Raman beams pose a significant challenge to the pre-
cision of atomic gravimetry [39, 38, 6], and understanding these distortions is complex
[53, 42, 40, 36, 41, 54]. The phase of the Rabi frequency in the Raman transition is
influenced by the phase difference between the two fields (E1 and E2) at the desired
location.

Even when dealing with a Gaussian beam that has no distortions (Eq. 1.12), there is
still a phase shift in the gravimetric measurement. Imagine an atomic cloud where all the
atoms are aligned along the axis (ρ1 =

√
x2 + y2 = 0), and the beam waist is sufficiently

large that we can ignore any variations in amplitude.
In the duration of the free fall time (T ) within the gravimetric sequence, an atom

possessing a transverse velocity v experiences displacements of ρ2 = vT and ρ3 = 2vT at
the second and third interferometric pulses, respectively, in a π/2-π-π/2 Mach Zehnder
interferometric sequence. If we consider the pulses to be extremely brief, the resulting
phase shift of the interference fringes can be described by the following expression [38, 46].

ϕ = θ1 − 2θ2 + θ3, (1.14)

with θi = αρ2i (v) the phase of the Rabi frequency at pulse i, and

α =
k

2

(
1

R(za)
− 1

R(za +∆z)

)
. (1.15)

The atomic cloud at temperature Tb exhibits a velocity distribution characterized by
a width of σv =

√
kBTb/m. By averaging all the atoms and assuming perfect visibility,

the resulting interference patterns are

S =

∞∫
−∞

P (v)
1

2
(1− cos[Φ + ϕ(v)]) dv, (1.16)

where Φ is the gravitational phase including the frequency sweep [6]. For small phase
shifts, we can keep only terms linear in ϕ so that

cos[Φ + ϕ] = cos(Φ) cos(ϕ)− sin(Φ) sin(ϕ) ≃ cos(Φ)− ϕ sin(Φ), (1.17)

then

S ≃
∞∫

−∞

P (v)
1

2
(1− (cos [Φ]− ϕ(v) sin [Φ])) dv

=
1

2
(1− (cos [Φ]− ⟨ϕ⟩ sin [Φ])) ≃ 1

2
(1− cos [Φ + ⟨ϕ⟩]) , (1.18)
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this means that when you average the fringe signals from all the atoms, the result creates
a shift that is roughly equal to the average fringe shifts of the individual atoms.

Assuming θi = αnρ
2n in Eq. 1.14, the average shift gives

⟨ϕ⟩ = αn(2
3n − 2n+1)T 2nσ2n

v n!, (1.19)

where we write the shift in terms of the velocity width. The shift depends on the tem-
perature as T n

b , which in particular is linear for n = 1 [42, 46]. To quickly approximate
the shift caused by the curvature of the wavefront, one can use a polynomial expansion
in terms of ρ2 along with Eq.1.19. The wavefront of the Gaussian beam (Eq. 1.12) has a
quadratic transverse dependence (n = 1). The amount of correction varies based on the
locations of the atoms in relation to the waist and the distance of retro-reflection, and it
can be determined through calculations, taking αn = α from Eq. 1.15 [46]. Taking for
example in Eq. 1.19 rubidium atoms at Tb = 1 µK and a beam with za = 0, W0 = 1.5
cm, ∆z = 1 m and T = 0.1 s gives a ⟨ϕ⟩ = −2× 10−5 rad.

1.4 Far Field Diffraction

Introducing an aperture alters the wavefront of the Gaussian beam, leading to changes
in the transverse amplitude and phase profile (we will disregard polarization from this
point onward). The variations in phase are particularly significant because they directly
translate into a shift in the interferometer phase (as indicated in Eq. 1.14), so we will
concentrate on these first. It is instructive to analyze the far field case first. In the
Fraunhofer diffraction, the field at a distant screen is obtained from

E(x, y, z) =

(
−ik
2πz

)
exp

(
ikz +

ik

2z
ρ2
)
×

×
∞∫

−∞

∞∫
−∞

E ′(x′, y′, 0)p(x′, y′) exp

(
−ik
z
(xx′ + yy′)

)
dx′dy′,

(1.20)

where E ′(x′, y′, z′) is the electric field right at the aperture and p(x′, y′) is the aperture
function.

We concentrate on circular apertures with a radius of a and square apertures with
a side length of 2a, both of which restrict light outside the aperture situated at z′ = 0.
By illuminating the aperture with a Gaussian beam (Eq. 1.12) that has its waist at
z′ = −zW , we derive a result for the square aperture.

E(x, y, z) =

(
Ak

2πzz0

)
W0

W (−zW )
exp

(
ik(z − zW ) +

ik

2z
ρ2 − iζ(−zW )

)
×

× π

Q(−zW )
exp

(
− k2

4z2Q(−zW )
ρ2
)
fE(x)fE(y), (1.21)

with
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fE(x) =
1

2
erf

[
a
√
Q(−zW ) + i

kx

2z

1√
Q(−zW )

]

− 1

2
erf

[
−a
√
Q(−zW ) + i

kx

2z

1√
Q(−zW )

]
, (1.22)

and similarly for fE(y), and with

Q(z) =
1

W 2(−zW )
− i

k

2R(−zW )
. (1.23)

The methods used to achieve the earlier results are explained in Appendix A. Next,
for a circular opening, we have

E(ρ, z) =

(
−ik
2πz

)
exp

(
ikz +

ik

2z
ρ2
)
2π

∞∫
0

E ′(ρ′, 0)p(ρ′)J0

(
kρρ′

z

)
dρ′, (1.24)

with J0 the zero order Bessel function. The equation can be written as an expansion in
Bessel functions (Jn) [55]

E(ρ, z) =

(
Ak

2πzz0

)
W0

W (−zW )
exp

(
ik(z − zW ) + i

kρ2

2z
− iζ(−zW )

)
×

× π

Q(−zW )

(
exp

(
− k2ρ2

4z2Q(−zW )

)
−e−Q(−zW )a2

∞∑
n=0

(
− kρ

2zaQ(−zW )

)n

Jn

(
kρa

z

))
. (1.25)

Equation 1.19 illustrates that the phase shift of the interferometric fringes can be
determined if the value of αn is known, which can be derived from a Taylor expansion
in the transverse variable ρ of the previously mentioned equations for the electric field
(Eqs. 1.21 and 1.25).

In the case of a square aperture (Eq. 1.21), there are three factors that influence the
transverse phase dependence.

ΨT =
k

2z
ρ2
(
1− k

2z
Im

[
1

Q(−zW )

])
+ ΞE, (1.26)

with ΞE any contributions coming from fE(x)fE(y) (Eq. 1.22).
The effect of the aperture depends on its size compared to the width of the beam and

the curvature of the beam’s wavefront where the aperture is located.
We will begin by examining the scenario that features a beam characterized by a flat

wavefront, that is, with |zW | ≪ z0. When the aperture is significantly larger than the
beam size (a≫ W0), it behaves much like there is no aperture at all.

In Appendix B, it is demonstrated that only the initial term in Equation 1.26 has a
significant contribution (ΨT = (k/2z)ρ2). Consequently, the curvature of the beam on a
distant screen mirrors that of a Gaussian beam alone, as expressed in Equation 1.12. As
stated in Equation 1.13, the radius of curvature of the wavefront at considerable distances
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is determined by the distance from the beam waist to the screen, which in this scenario
is approximately z, given that the waist is situated very near to the aperture.

The same outcome persists as the aperture size decreases, as in this scenario fE(x)
and fE(y) are real numbers (Eq. B.3 of Appendix B) and ΞE = 0. Consequently, the
curvature of the wavefront corresponds solely to that of a spherical wave emanating from
the aperture.

The alternative limit involves examining a waist that is significantly distant from the
aperture, specifically when |zW | ≫ z0 (but still with |zW | ≪ z to be in the far field).
In cases where the aperture is large (a ≫ W (−zW )), it exerts no influence, resulting in
ΞE = 0. Consequently, the contributions from the remaining two terms in Eq. 1.26 yield
the following (refer to Appendix B)

ΨT =
k

2z
ρ2
(
1 +

zW
z

)
≃ k

2(z − zW )
ρ2, (1.27)

This relates to a radius of curvature R = z − zW , which indicates the distance from
the waist to the screen, as would be anticipated when there is no aperture. When the
aperture size is decreased, it adds a term from ΞE ≃ kzW

2z2
ρ2, resulting in the overall

transverse phase described in Appendix B,

ΨT ≃ k

2z
ρ2 − kzW

2z2
ρ2 +

kzW
2z2

ρ2 =
k

2z
ρ2, (1.28)

In other words, when the aperture is quite small, it produces nearly uniform illumi-
nation and acts as the source of a spherical wave in the far field. Here, the radius of
curvature of the wavefront (R = z) is determined by the distance from the aperture to
the screen, regardless of the beam waist’s location. In this final scenario, the aperture
alters the curvature of the wavefront in the far field from R = z− zW to R = z. This ad-
justment leads to a minor change in the value of α (refer to Eq. 1.15), which subsequently
affects the phase shift of the interferometric fringes (see Eq. 1.19).

1.5 Near Field Diffraction

The previous chapter provided us with some understanding of how an aperture influences
the far field, but the majority of interferometry experiments utilize beams in the near
field. In fact, for interferometry, it is preferable to have a highly collimated beam with a
large waist in order to achieve consistent illumination of the atomic cloud [46, 44, 37].

The diffraction in the near field is described by [56]

E(x, y, z) =

(
−ik
2πz

)
eikz×

×
∞∫

−∞

∞∫
−∞

E ′(x′, y′, 0)p(x′, y′) exp

(
i
k

2z
((x− x′)2 + (y − y′)2)

)
dx′dy′. (1.29)

In the case of a square aperture we obtain the same as Eq. 1.21 but with

Q(−zW ) =
1

W 2(−zW )
− i

k

2R(−zW )
− i

k

2z
(1.30)

=
1

W 2(−zW )
− i

k

2R′
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Figure 1.1: The depiction of the experimental configuration in the numerical simulation
illustrates the Raman beam, the atomic cloud, and the aperture. The Raman beam con-
sists of a non-diffracted Gaussian beam alongside a diffracted and retro-reflected Gaussian
beam, with the atomic cloud interacting with both beams.

where for the last expression we defineR′ = R(−zW )z/(R(−zW )+z). TypicallyR(−zW ) ≫
z so that R′ ≃ z. For the circular aperture we obtain the same result as Eq. 1.25 with
Q(−zW ) given by Eq. 1.30.

We investigate how beam diffraction influences the interference fringes. We continue
to assume that the pulses are extremely short, allowing us to describe the phase shift
using Eq. 1.14. As the atomic cloud expands, each atom interacts with the Raman pairs,
experiencing a phase change due to diffraction. This altered phase is reflected in the Rabi
frequency at each pulse and position. The overall signal represents the average of the
signals of all atoms within the expanding atomic cloud.

We carry out a Monte Carlo average on atoms that have randomly assigned positions
and velocities [46]. The sample follows a two-dimensional (x, y) Gaussian distribution for
the positions, centered at the origin with a width of σA. We omit the axial position (z)
as diffraction effects are minimal in that direction within a distance of σA.

Additionally, there is a Gaussian distribution of transverse velocities (vx, vy) that
is centered around zero, with a width σv that varies based on the temperature. We
determine the phase of the diffracted beam for each atom during each pulse in order to
ascertain the phase of the Rabi frequency associated with the Raman transition, which
subsequently allows us to calculate the shift in the interference fringes for that particular
atom.

We calculate the average signal of all the atoms and adjust the resulting interfer-
ence patterns to find their displacement. For minor shifts, this method yields results
comparable to averaging the shifts of each individual atom, as demonstrated in Eq. 1.18.

The diffracted beam exhibits changes in both amplitude and phase across its width.
To comprehend how these variations influence the interference patterns, we will examine
them individually. Phase changes are directly transformed into shifts in the fringes (see
Eq. 1.14), so we will first evaluate their impact, overlooking the changes in intensity.

We incorporate the phase (ϕΩ) of the diffracted beam (see Eq. 1.29) into the Rabi
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Figure 1.2: The phase shift is examined as a function of the aperture size (a) normalized
to the beam waist (W0). In this case, z = 2 m, W0 = 1.5 cm, and λ = 780 nm, with
all atoms initially located at the origin, displaying a ”transverse” temperature of Tb = 1
µK and a duration of T = 20 ms. a) The findings are shown for a circular aperture (in
blue) and a square aperture (in green). The inset offers a zoomed-in view to highlight the
oscillations. b) The raw data and the envelope of the phase shift for the circular aperture
(blue) follow the function e−a2/W 2

0 (indicated by the solid red line, see Eq. 1.32), while
the square aperture (green) aligns with a similar function (1/20)e−1.15a2/W 2

0 (represented
by the dashed orange line).

frequency, while keeping the magnitude of the Rabi frequency (Ω0) uniform across the
entire atomic cloud (thus, Ω = Ω0e

iϕΩ). We’ll address the intensity dependence at a later
time.

We consider the aperture to be located directly at the atoms’ position, ensuring that
the input beam is an ideal Gaussian beam (as described in Equation 1.12). In contrast,
the retro-reflected beam is subjected to diffraction and has traveled a distance (z) on its
return path to the atoms, as depicted in Figure 1.1.

Initially, we examine the scenario of a highly restricted velocity distribution in the
axial (vz) direction, which would occur when employing the suitable selection pulse [46].
This allows us to concentrate on the influence of the beam’s transverse profile, effectively
assuming that there is no Doppler shift at this stage.

Figure 1.2a illustrates the phase shift of the interference fringes in relation to the
aperture size, normalized to the Raman beam waist. Notably, a significant phase shift
occurs for apertures that are comparable in size to the beam waist. Furthermore, this
phase shift exhibits a sensitive oscillation with changes in aperture size, as depicted in the
inset, complicating the prediction of the anticipated phase shift in specific experimental
configurations.

Fortunately, larger apertures lead to a reduction in phase shift, allowing for the estab-
lishment of limits on the necessary correction. The envelope of the phase shift exhibits a
Gaussian relationship with the size of the aperture (Figure 1.2b), as we will demonstrate
in the following calculations.

The phase shift observed in the interference fringes is attributed to the diffraction
occurring at the aperture. In Figure 1.3, the transverse variation of the phase of the
diffracted beam is illustrated, as described by Eqs. 1.25 and 1.30, for a circular aperture.
The plot reveals a prominent peak at the center, accompanied by radial oscillations.

The central peak plays a crucial role in the displacement of the interference fringes.
In the simulation, we initialize all atoms at the origin (σA = 0), ensuring that during the
first pulse, every atom experiences the phase shift associated with the central feature.
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Figure 1.3: The transverse phase of the beam that has been diffracted through a circular
aperture is described by Equations 1.25 and 1.30. In our analysis, we set the parameters
as follows: z0 = 103 m, λ = 780 nm, zW = 0, z = 2 m, and a = W0 ≃ 1.5 cm. For the
sake of clarity in visualization, a phase offset of −π/2 was incorporated into the plot.

During the second and third pulses, the atomic cloud experiences an increase in size,
causing the atoms to interact with the oscillating phase, which results in a significantly
reduced contribution. Consequently, the first pulse is responsible for the shift. In fact,
if we exclude the diffraction effects from the second and third pulses in our calculations
while retaining them for the first pulse, the outcome remains largely unchanged (Fig.
1.4).

To evaluate the fringe shift, we examine the electric field along the axis directly (Eq.
1.24 with ρ = 0 and Q given by Eq. 1.30), and we get

E(ρ = 0, z) =

(
AkW0

zz0W (−zW )

)
J0(0) exp [ik(z − zW )− iζ(−zW )]

a∫
0

e−Q(−zW )ρ′2ρ′dρ′

=

(
AkW0

zz0W (−zW )

)
J0(0) exp [ik(z − zW )− iζ(−zW )]

1− e−Q(−zW )a2

2Q(−zW )
.(1.31)

Our focus lies in examining how the phase of the field is influenced by the aperture
size a, as described by the subsequent expression.

Ψa = Arg
(
1− e−Qa2

)
= ArcTan

[
−e−a2/W 2(−zW ) sin (ka2/2R′(−zW ))

1−e−a2/W2(−zW ) cos (ka2/2R′(−zW ))

]
≃ −e−a2/W 2(−zW ) sin (ka2/2R′)

1−e−a2/W2(−zW ) cos (ka2/2R′(−zW ))
, (1.32)
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Figure 1.4: The phase shift of the interference fringes is analyzed as a function of the
aperture size, incorporating the diffraction effect across all pulses (represented in blue) or
solely on the initial pulse (depicted in red). The oscillations correspond to the phase shift
of the diffracted beam’s field (as indicated in Eq. 1.32, shown in green dashed lines). The
parameters utilized include z = 2 m, zW = 0 m, z0 = 103 m, λ = 780 nm, and σA = 10−7

m.

where we have used ArcTan[x] ≃ x for small x.

Figure 1.4 illustrates that Eq. 1.32 accounts for the phase shift detected in the in-
terference fringes. The envelope of these shifts is influenced by the amount of light
obstructed by the aperture and adheres to the Gaussian distribution characteristic of
transverse beams. An integer count of oscillations is achieved when the argument of the
trigonometric function equals 2πn, where n is an integer. The aperture values

an =
√
4πnR′/k ≃

√
2nλz, (1.33)

fulfil such condition and correspond to the Fresnel Zones [57].

The first pulse largely influences the phase shift since the cloud is significantly smaller
than the central peak illustrated in Fig. 1.3. To illustrate this, we computed the ampli-
tude of the oscillations in the phase shift based on the initial atomic cloud width, σA, as
shown in Fig. 1.5.

The envelope of the phase shift remains the same until the width of the atomic cloud
is similar to the width of the central feature shown in Fig. 1.3. Beyond that point,
the atoms obtain various phase values that average to create a diminished effect. This
acts like a low-pass filter, with a cutoff frequency determined by the width of the central
feature in the diffracted phase front.

The width is derived from Equation 1.25, with Q provided by Equation 1.30. For a
small radial distance (ρ ≪ 2z/kW0), the exponential in Equation 1.25 can be approxi-
mated to 1, allowing us to retain only the first term in the sum to achieve

E(ρ, z) ≃
(

Ak

2πzz0

)
W0

W (−zW )
exp

(
ik(z − zW ) +

ik

2z
ρ2 − iζ(−zW )

)
× (1.34)

× 1

2Q

[
1− J0

(
kρa

z

)
e−Qa2

]
.
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Figure 1.5: The envelope of the oscillations in the phase shift of the interference fringes is
illustrated as a function of the initial width (σA) of the atomic cloud (shown in blue). This
behavior is explained by Equation 1.38 (represented by the dashed red line). The effect
significantly decreases when the cloud size surpasses the cutoff value σΨ (marked by the
vertical line, Equation 1.36). The parameters used in this analysis include z0 = 1000 m,
λ = 780 nm, z = 2 m, W0 = 1.5 cm, a ≃ 2W0, Tb = 1µK, T = 20 ms, and Ω0 = 2π× 103

rad/s.

The dependence of the phase on the aperture values (for a small angle) is expressed as
follows

Ψa = Arg

[
1− J0

(
kρa

z

)
e−Qa2

]
≃

− e−a2/W 2(−zW ) J0 (kρa/z) sin (ka
2/2R′(−zW ))

1− e−a2/W 2(−zW )J0 (kρa/z) cos (ka2/2R′(−zW ))
. (1.35)

If a > W 2(−zW ), the radial dependence is primarily captured in J0(kρa/z), and the
width of the central feature is roughly at the point where the argument of the zero-order
Bessel function equals zero (j0,1 = 2.4), which means that

σΨ =
j0,1z

ka
. (1.36)

This value genuinely aligns with the cloud size at which averaging begins to occur,
resulting in a significant reduction in the amplitude of the phase shift oscillations (see
Fig. 1.5).

A basic estimation summarizes the core idea of phase averaging across the sample.
Previously, we demonstrated that the overall average shift of the fringes among all the
atoms can be approximated by the average of the individual shifts (Eq. 1.18). We
calculate the average phase, as described in Eq. 1.35, over the Gaussian atomic cloud.

We consider the scenario where a > W (−zW ) to facilitate the simplification of the
integral by setting the denominator to 1, resulting in an average shift of
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⟨Ψa⟩ ≃
2π∫
0

∞∫
0

1

2πσ2
A

e−ρ2/2σ2
Ae−a2/W 2(−zW )J0

(
kρa

z

)
sin

(
ka2

2R′(−zW )

)
ρdρdθ. (1.37)

By employing a summation analogous to that utilized in [55], we derive

⟨Ψa⟩ ≃ e−a2/W 2(−zW ) sin

(
ka2

2R′(−zW )

)
exp

(
−
j20,1
2

[
σA
σΨ

]2)
. (1.38)

The analytical expression represented by the red dashed line in Fig. 1.5 illustrates the
decrease in the phase shift of the fringes resulting from the averaging effect of the atoms
within an extended cloud. This phenomenon accounts for the predominance of the first
pulse’s influence, as the size of the cloud significantly increases for the later pulses in the
gravimetric sequence due to thermal expansion.

When the value of σA is significantly large, a residual effect arises due to the incomplete
cancellation of the contributions from the wave front ripples during the averaging process.
This effect is approximately two orders of magnitude smaller compared to that observed
with a small cloud.

The relationship between σΨ (Eq. 1.36) and the experimental parameters can be
explained by examining the field generated by a ring of emitters at the location of the
aperture.

The distance to an axial point P is equivalent to the distance the diffracted beam
covers during retro-reflection (z). Since all the points on the ring travel the same distance,
they all contribute to the electric field at point P in phase.

As we expand the radius of the ring, the phase of the field produced at point P
varies similarly to the Fresnel Zones (as described in Eq. 1.33). A lens with a radius of
a that forms an image at a distance z (where the numerical aperture is approximately
NA ≃ a/z) would achieve a certain resolution [57]

r =
0.61λ

NA
≃ 2π(0.61)

z

ka
, (1.39)

that has an equivalent dependence as the width of the central diffraction feature (Eq.
1.36).

When the emitters are arranged in a square configuration, as would occur with a
square aperture, their contributions to the field at point P will not be synchronized in
phase as is illustrated in Figure 1.6.

This elucidates the reason for the more pronounced phase shift of the interference
fringes observed with a circular aperture in comparison to a square aperture (Fig. 1.2).

By selecting values of a = 2 cm, z = 50 cm, and λ = 780 nm, one finds that σΨ ≈ 7
µm, this value is less than the usual dimensions of atomic clouds, resulting in a significant
reduction in the shift of the interference fringes due to the averaging effect. Furthermore,
decreasing the distance from the aperture to the atoms (z) enhances the averaging process
and diminishes the shift.

The earlier findings were derived solely by taking into account the phase of wavefront
aberrations. An aperture of adequate dimensions contributes insignificantly to the fluctu-
ations in fringe contrast. When employing apertures with a size a greater than the beam
waist W , which is anticipated in atomic interferometry, a minor intensity modulation is
observed superimposed on the Gaussian beam as a result of the aperture’s presence.
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Figure 1.6: A ring of emitters is positioned at the aperture for a) a circular aperture in
contrast to b) a square aperture. The point P is located on the axis at a distance z from
the aperture.

The inclusion of this intensity modulation results in a minimal alteration to the previ-
ously mentioned outcomes. Prior analyses have examined the impact of the axial velocity
distribution [46, 54], and incorporating these factors into the Monte Carlo simulations
yields an insignificant effect on the aperture phenomena discussed earlier. Additionally,
the low average velocity of the atomic cloud contributes negligibly. Consequently, the
primary influence arises from the phase variations in the beams caused by the aperture.

The maximum shift occurs at the origin; however, in practical experimental scenarios
that generate atomic clouds with minor discrepancies in their initial positions, a reduction
will be observed due to the averaging of the associated phase shift (as indicated in Eq.
1.35 when evaluated with ρ ̸= 0).

1.6 Photon Recoil Correction

In the preceding chapters, we have demonstrated that the aperture causes aberrations
in the beams, resulting in a shift in the measured interferometric phase. Additionally,
there exists a lesser-known correction that warrants consideration, which pertains to a
modification of the momentum transferred in relation to h̄k. By expressing the axial
momentum transfer as pz = h̄k(1+ [δk/k]), the fractional photon recoil correction can be
articulated as follows [58]

δk

k
= −1

2

∣∣∣∣∇TΨ

k

∣∣∣∣2 + 1

2k2
∇2

TAE

AE

, (1.40)

with Ψ and AE the phase and magnitude of the electric field of the beam, and ∇T acting
only on the transverse variables.

The initial term of Eq. 1.40 is quite recognizable, as a transverse gradient in the phase
corresponds to the presence of transverse momentum components (px and py) that would
diminish the axial (pz) component to maintain a constant momentum magnitude. One
might assume that this correction has already been accounted for in the discussions of
earlier chapters, which focus on transverse phase variations. However, this assumption is
incorrect, as demonstrated by examining a beam exhibiting identical curvature at both
the input and during retro-reflection. In this scenario, the prior analysis indicates that
there is no phase shift in the interferometric fringes whatsoever; nevertheless, both beams
experience a reduction in axial momentum transfer by the same amount, which does not
result in cancellation.
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Figure 1.7: The depiction of a Gaussian beam emphasizes three regions where the prop-
agation vector exhibits a transverse component. The red arrows indicate the direction
of the propagation vector, while the black dashed lines illustrate the curvature of the
wavefront. In zones a) and c), the transverse component of the propagation vector can
be intuitively inferred from the curvature of the wavefront. Conversely, in zone b), the
emergence of the transverse component of the propagation vector is attributed to the en-
hanced spatial confinement of the beam, as this region corresponds to the beam’s waist.

The second term in Equation 1.40 is less familiar and pertains to fluctuations in
intensity; it has been associated, for instance, with phenomena such as the Gouy phase
[59]. This term contributes significantly to the photon recoil correction, as demonstrated
in the following sections. In the absence of an aperture, the Gaussian beam described in
Equation 1.12 results in a correction of

δk

k
= −1

2

∣∣∣∣ ρ

R(z − zW )

∣∣∣∣2 + 2

k2

(
ρ2

W 4(z − zW )
− 1

W 2(z − zW )

)
. (1.41)

It is important to recognize that a correction exists even when the beam exhibits a
plane wavefront, due to its transverse intensity profile, this previous statement is illus-
trated in Figure 1.7.

The aperture introduces further variations in both the phase and intensity, which are
significant to Eq. 1.40. When examining a large aperture (a > W0) and small distances
from the beam axis (ρ < 2z/kW0), we retain only the first term in Eq. 1.25 to derive

E(ρ, z) =
kA

2zz0Q
exp

(
ik(z − zW ) + i

kρ2

2z
− iζ(−zW )

)
∗ (1.42)

∗
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)
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(
kρa
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.

We are considering the case when z0 ≫ z and z0 ≫ |zW |, then Q ≃ 1/W 2
0 − ik/2z, and

the term in the exponent becomes

− k2ρ2

22z2Q
= − z20

z2 + z20

ρ2

W 2
0

− i
z20

z2 + z20

kρ2

2z
,

and the electric field of Eq. 1.42 gives
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E(ρ, z) =
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The amplitude of the field (for ρ < 2z/ka) is

AE ≃ kA
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and the phase

Ψ ≃ k(z − zW ) +
kρ2

2R(z)
− ζ(zW )− exp

(
− a2

W 2
0

)
sin

(
ka2

2z

)
J0

(
kρa

z

)
+

arctan

(
−kW

2
0

2z

)
. (1.45)

The Laplacian for the amplitude dependent term of Eq. 1.40 gives
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and the gradient for the phase dependent term
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. (1.47)

The same Monte Carlo method employed previously is utilized to compute the photon
recoil correction (Eq. 1.40) across an atomic cloud, varying with the size of the aperture
(Fig. 1.8). Given that the gravitational phase exhibits a linear dependence on both g
and kz, the fractional adjustment in the measured value of g is expressed as δk/k.

The influence of the phase gradient (represented in blue in Fig. 1.8) is less significant
than that of the amplitude (depicted in red) [58]. The corrections exhibit rapid oscillations
in relation to the aperture size (as shown in Eqs. 1.46 and 1.47), akin to the observations
made in earlier chapters. Therefore, our focus is on determining the envelope of these
oscillations to establish a limit on their contributions. The derived envelope for the phase
gradient contribution (as per Eq. 1.47) yields

1

2

∣∣∣∣∇TΨ

k

∣∣∣∣2 ≤ 1

2

∣∣∣∣ σAR(z)
+

(
kσAa

2

2z2

)
e−a2/W 2

0

∣∣∣∣2 , (1.48)

and the one for the amplitude (Eqs. 1.44 and 1.46) is
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Figure 1.8: The absolute value of the photon recoil correction is presented as a function
of aperture size for both the phase gradient term (depicted in blue) and the amplitude-
dependent term (illustrated in red), corresponding to the first and second terms in Equa-
tion 1.40. In this analysis, we have excluded the oscillating component and retained
only the envelope. The parameters utilized include z0 = 103 m, λ = 780 nm, z = 2 m,
W0 = 1.5 cm, zW = 0, and σA = 1.4× 10−5 m.

1
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≤ − 2
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0 . (1.49)

In both expressions, the first term signifies the asymptotic value linked to a Gaussian
beam without an aperture (see Eq. 1.41). The effect of the aperture is captured by the
following term, which decreases in a Gaussian fashion. However, the phase contribution
(refer to Eq. 1.48) has an exponent that is twice that of the amplitude (as shown in Eq.
1.49), making it negligible for larger aperture sizes.

We investigate the relationship between the photon recoil correction δk/k (as defined
in Eq. 1.40) and the size of the atomic cloud (illustrated in Fig. 1.9). Our findings
reveal a pattern that closely resembles that depicted in Fig. 1.5 for the amplitude con-
tribution (represented by the red line), indicating a decrease in the correction for cloud
sizes exceeding a certain threshold. The Laplacian of the amplitude diffracted through
the aperture (as expressed in Eq. 1.46) reaches its peak value precisely at the origin and
tends to average out to a lower value as the cloud size increases.

The cutoff size is once more aligned with the central feature of the diffracted beam,
as represented by the vertical green dashed line (Eq. 1.36). The contribution from the
phase gradient, depicted by the blue line, attains its peak near the cutoff cloud size and
remains less than the contribution from the amplitude. Maintaining a small cloud while
altering the initial position of the atomic cloud also results in an enhancement of this
contribution, which can be assessed using Eq. 1.47.

In order to evaluate the contributions arising from the phase variations discussed in
chapter 1.5 alongside those resulting from the photon recoil correction presented in this
chapter, we express both as fractional corrections to the measurement of g

δg

g
= − ⟨Ψa⟩

2gkT 2
+
δkT
k
, (1.50)
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Figure 1.9: The absolute value of the photon recoil correction is presented as a function
of the atomic cloud size, distinguishing between the amplitude term (depicted in red) and
the phase gradient term (illustrated in blue). For the amplitude term, a similar averaging
effect is observed as shown in Fig. 1.5, with a comparable cutoff size indicated by Eq.
1.36 (represented by the green dashed vertical line). In contrast, the phase gradient term
achieves its maximum value near the cutoff size but remains lower than the contribution
from the amplitude term. The parameters utilized include z0 = 1000 m, λ = 780 nm,
z = 2 m, W0 = 1.5 cm, zW = 0, and a ≃ 2W0.

here, ⟨Ψa⟩ denotes the total phase attributed to the wavefront aberration caused by
the aperture (as indicated in Eq. 1.38), while δkT/k = (δki + δkd)/k is defined by Eq.
1.40, which encompasses the contributions from both the incident beam (δki) and the
diffracted beam (δkd).

Given that g is directly proportional to k, any fractional change in k results in an
equivalent fractional change in g. Figure 1.10 illustrates the fractional correction in
gravimetry, represented as δg/g, arising from the wavefront contributions discussed in
chapter 1.5 (indicated by blue points) and those attributed to the photon recoil correction
presented in this chapter (denoted by red points). These correspond to the first and
second terms of Eq. 1.50, respectively. For a small atomic cloud, the envelope for both
terms can be approximated by (Eqs. 1.38 and 1.49)

δg/g ≃
(
− 1

2gkT 2
+

a2

2z2

)
e−a2/W 2

0 . (1.51)

Both contributions, namely the wavefront aberration term (-e−a/W 2
0 /2gkT 2) and the

photon recoil term (a2e−a2/W 2
0 /2z2), demonstrate a Gaussian decay in relation to the size

of the aperture. However, they are distinguished by different factors that determine the
importance of each contribution. Over extended durations, the photon recoil correction
emerges as the dominant factor, as the wavefront aberration contribution is quantified as
a phase that accumulates during the dark intervals of the interferometric sequence. The
two contributions are equal at a specific time determined by

T =
z

a
√
gk
, (1.52)
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Figure 1.10: The absolute value of the fractional correction in gravimetry, represented as
δg/g, is due to wavefront aberrations (shown in blue) and the photon recoil correction
(shown in red), which correspond to the first and second terms of Equation 1.50. The
parameters used are z0 = 1000 m, λ = 780 nm, z = 2 m, W0 = 1.5 cm, zW = 0, and
σA = 10−7 m.

the relationship is influenced by both the aperture size and the diffraction distance.
Under the specified parameters, they contribute equally at a time of T = 7 ms for an
aperture size of a = 2W0.

In conclusion, the findings from chapters 1.5 and 1.6 indicate that the presence of
an aperture in the Raman beams contributes significantly and must be considered or
mitigated. Analyzing traps with a size of σA and an initial position that fluctuates within
a range of σi is effectively the same as examining a trap with a fixed initial position but
with an adjusted size of σt =

√
σ2
A + σ2

i . In typical experimental setups, the size (σt)
exceeds the cutoff value σΨ (as defined in Eq. 1.36), resulting in a correction reduction
of approximately two orders of magnitude when compared to a smaller atomic cloud.

1.7 Conclusion

With the miniaturization of atomic sensors, a significant truncation of the excitation
beams occurs. We assess the impact of this aperture on the trajectory of the Raman
beams in atomic gravimetry. The truncation of the Gaussian wings results in the forma-
tion of a diffraction pattern. The ripples in the wavefront cause a displacement of the
interference fringes, consequently affecting the measured gravitational acceleration. It is
the phase variations, rather than amplitude variations, in the wavefront that primarily
influence this effect.

A significant shift in the interference fringes occurs for atoms positioned directly along
the optical axis of the beam, exhibiting rapid oscillations in relation to the aperture size.
Accounting for this shift in a practical experimental setting would be quite complex;
therefore, we instead established an upper limit for its impact on the gravimetric phase,
which exhibits a Gaussian decay as the aperture size increases. Additionally, this shift
demonstrates an oscillating transverse dependence. In the case of atomic clouds with
widths exceeding the width of the central ripple of the wavefront, an averaging effect
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is observed, which diminishes the contribution from diffraction caused by the aperture.
Notably, all points along the edge of a circular aperture contribute coherently, resulting
in a more pronounced effect compared to that of a rectangular aperture.

Although the transverse intensity variations may have an insignificant impact on the
aforementioned effect, they provide a significant correction to the photon recoil, which in
turn alters the measurement of gravitational acceleration. Similarly to previous observa-
tions, this correction diminishes in its contribution when averaged over extensive atomic
samples.

The shift in the interference fringes, along with the photon recoil correction, leads
to a change in the measurement of a comparable magnitude over a duration of approx-
imately 7 ms for the specified parameters. Notably, the intensity fluctuations emerge
as the primary correction factor during extended measurement periods. We recommend
to experimentalists that if an aperture is located in the path of the Raman beams, the
radius of the aperture should exceed three times the beam’s waist at the point of entry
(a > 3W (z)). Alternatively, if feasible, the aperture should be designed in a square geom-
etry to decrease further more the error contribution due to distortions. These findings will
be instrumental in determining the minimum size of an apparatus that can still ensure
a specific level of accuracy. The prior research has been formally completed, resulting in
the publication of a research article [60].
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Abstract II

We expand on a new approach for determining whether two molecules interact to create
a compound molecule. This method involves exciting the sample using two distinct laser
frequencies and assessing the relative phase shift of the transmitted light. The proposed
design stimulates the sample within the optical range where a significant response oc-
curs and utilizes a hybrid microwave interferometer to measure the phase. The method
has advantageous scaling with the experimental parameters. This approach is highly
resilient to external phase variations, including those caused by temperature changes,
which typically pose the greatest challenge in interferometric measurements.
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Chapter 2

A Novel Hybrid Microwave
Interferometer for Detection of
Molecular Interactions

2.1 Introduction

This section of my thesis builds on previous research conducted by a colleague [61]. In
their study, they successfully achieved a comprehensive characterization of the signals
produced by atomic transitions both in resonance (absorption and fluorescence) and off-
resonance (phase change). As part of this characterization, they took into account various
noise sources, including dark current, shot noise, and technical noise, aiming to establish
a detection threshold for the number of particles associated with each method. They
focused on the characterization of signals and noise sources in relation to the experi-
mental parameters to enhance the signal-to-noise ratio for each approach. Additionally,
they introduced a hybrid interferometer featuring one arm with two laser frequencies in
the optical domain interacting with a sample, and a second arm functioning in the mi-
crowave domain. Their efforts were directed towards deriving an analytical expression
for the signal of the hybrid interferometer to characterize it using multiple experimental
parameters, while also incorporating various noise sources to optimize the signal-to-noise
ratio. Nevertheless, the characterization of the proposed design was incomplete in their
research; however, they achieved a significant result that serves as the basis for my work
and builds on the previous findings.

In recent decades, there has been a significant rise in interest in the detection of
molecules and their interactions at the single-particle level. Today, there are numerous
methods for the detection and characterization of these molecules [62, 63]. Our focus here
is on methods that use radiation, which represent a substantial portion of the available
methods [64, 65, 66, 67, 68, 69, 70, 71]. Generally speaking, with respect to the interaction
of light with the sample, one could classify them as resonant or non-resonant methods.
Resonant techniques usually involve prior knowledge of the sample in question, and the
radiation is absorbed in the medium and re-emitted as fluorescence. Resonant methods
are usually preferred because they give a stronger signal. Sometimes, the molecules have
a weak response to radiation or their concentration is so low that the signal is buried in
the noise. One solution is the use of fluorophores that attach to the particle of interest
and enhance fluorescence [72]. When using this technique, it is called labeling and it
is important to ensure that the molecular interaction is not modified compared to the
label-free case.
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In non-resonant methods, the absorption of the radiation is so low that the effect
of the medium is detected by measuring the changes to the transmitted light. Usually
non-resonant methods do not require prior knowledge of the sample in order to detect
it; therefore, they open the possibility to detect a plethora of samples without changing
the experimental setup, and since they do not rely on the resonant interaction with light
there is no need for a labeling technique. These methods have been of great interest in
recent years [73, 74], and there have been great advances in their detection capabilities
[75, 76, 77]. Some of the current methods that produce remarkable results are whispering
gallery modes [78, 79, 80] and surface plasmon resonance [81] as well as methods that
use the enhancement properties of optical cavities for label-free detection [82]. There has
also been great advances in microscopy, in combination with scattering interference, that
allow us to visualize nanoparticles beyond the diffraction limit [83] and even able to image
a single atom [84]. Standard interferometric techniques can be classified as non-resonant
label-free methods of detection, and they have been shown to be a reliable bio-sensor
[85]. Aiding both resonant and non-resonant methods, there are some techniques that
increase the sensitivity for detection, such as functionalization of a surface, which will
fix particles to the surface instead of drifting in the solution by Brownian motion, or by
focusing light onto the sample which will increase the light-matter interaction, both of
these techniques increase the average particle density perceived by the detector, which
will directly result into a larger signal and it will provide a lower concentration limit.

Besides classifying the methods as resonant or non-resonant, one could also consider
an extra classification by taking into account the number of light beams used in the
detection, for example a modern resonant two-beam method would be Surface-Enhanced
Raman Spectrocscopy, which has been shown to be able to reach the single-molecule
detection regime [86, 87] and one can also use a combination of resonant and non-resonant
methods in order to enhance the detection properties [88, 89]. With these classifications
in mind we can note that while on the resonant methods there are those involving one
or two light beams, on the non-resonant methods only exist those with one light beam.
What we propose here is an entirely new type of method, a non-resonant two-beam
method involving a hybrid microwave-optical interferometer capable of detecting Raman
dynamics without the dispersion of light.

Here I introduce a detection method that utilizes a two-photon transition measured
outside of resonance. Non-resonant detection can be achieved by exciting with two fre-
quencies and observing phase changes in the two transmitted beams. This approach has
not been fully exploited thus far, likely due to its reliance on a nonlinear effect that is
diminished by being out of resonance. The second frequency is not generated from flu-
orescence; rather, it is already incorporated into the excitation process. Consider, for
instance, two relatively new molecules about which we have limited knowledge, yet we
still wish to determine if they can form a compound molecule. The combination of these
two molecules modifies their vibrational and rotational spectrum. In this case, usually
one could use Raman spectroscopy; however, because of our limited knowledge of the
molecules, identifying the significant peaks in the molecular spectrum will likely prove
challenging. When we excite the molecules using two different frequencies, it is proba-
ble that we will not be in resonance with any two-photon transition, which means that
we are dealing with a non-resonant excitation. However, as we will demonstrate later
on, there exists a signal that can be extracted to determine the formation or absence
of the compound molecule. Although the method may not provide extensive details re-
garding the interaction between the two molecules, it should be capable of determining
whether an arbitrary pair of molecules forms a compound. The proposed method involves
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non-resonant (relative phase) detection utilizing two excitation frequencies.

2.2 Traditional methods

In this section, I will take on a few traditional detection methods, resonant and non-
resonant, which are absorption, fluorescence, and a one-beam phase change in the form
of a Mach-Zehnder interferometer, as illustrated in Fig. 2.1. I will obtain an analytical
expression for the signal in the form of an electric current that they might produce
when detecting a sample. For all methods, the detected light will be measured using a
photodiode, which provides a current ipd proportional to the incident light power P on
its surface ipd = RP , where R is the photodiode responsivity, an intrinsic property of
each type of photodiode.

2.2.1 Fluorescence and Absorption

Beginning with fluorescence spectroscopy, where a beam of light passes through a sample
and with a lens, we collect the re-emitted light (Fig. 2.1a). I model the sample as a
two-level system with a spontaneous decay rate γ from the excited state, see Fig. 2.1d.
The system is subject to an external oscillating electric field of the form

E⃗ = Eξ⃗ cos (kz − ωlt+ ϕE) , (2.1)

The specifics of the dynamics of such a system is quite well known in literature [49], so
I will skip the full procedure and only focus on the task at hand. Due to spontaneous
emission, most of the sample population remains in the ground state |b⟩, but because
of the presence of the external field, the excited |a⟩ state begins to be populated. As
population is driven from the ground |b⟩ to the excited |a⟩ state the sample then radiates
photons in all directions with a rate of emission γp = γρaa where ρaa is the population in
the excited |a⟩ state. Because of the spontaneous emission, the radiated power per unit
volume of the sample is h̄ωabγρaaN , where h̄ωab is the energy of the radiated photons,
ωab = ωa − ωb is the frequency of transition, and N is the density of particles. The total
volume of the sample that actively emits photons is V = lA where l is the length of the
sample, and A is the transverse beam area, to simplify things, I choose that the beam
area is equal to the sample area. The total radiated power is then h̄ωabγρaaNlA, which
we collect only a fraction η of this power with the aid of a lens, η is called the collection
efficiency. The total power arriving at the photodiode is then

P = ηh̄ωabγρaaNlA, (2.2)

and the current that the photodiode emits for the fluorescence method is

if = Rηh̄ωabγρaaNlA. (2.3)

Now, by slightly changing the setup, we can perform absorption spectroscopy (Fig. 2.1
b). Without the sample the photodiode receives the full power of the light beam P which
makes it emit a current of magnitude il = RP . But with the sample, the transmitted
power is decreased by the dispersed amount, so the transmitted power arriving at the
photodiode is then

Psample = P − h̄ωabγρaaNlA, (2.4)
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Figure 2.1: Illustration of several common detection methods, a) fluorescence spec-
troscopy, b) absorption spectroscopy, c) Mach-Zehnder interferometer for phase change
measurements. In this figure D is a photodiode detector, B.S. stands for Beam Splitter
and M for Mirror. Figure d) show a diagram of a two-level quantum system with decay
rate γ being driven by an external electric field of frequency ωl and detuning δab.

and the current is
isample = RP −Rh̄ωabγρaaNlA, (2.5)

and by taking the difference between the current with no sample and the current with
the sample I obtain

ia = Rh̄ωabγρaaNlA. (2.6)

We can appreciate that the expressions for the currents for fluorescence and absorption
are very similar, albeit except for the collection efficiency, this is because it is the same
phenomenon just different detection procedures. Both expressions depend on the excited-
state population, which for a two-level system in the steady state is [49]

ρaa =
|Ωab|2

γ2 + 2 |Ωab|2 + 4δ2ab
, (2.7)

where Ωab = −eξ⃗ · ⟨a|r⃗|b⟩(E/h̄)eiϕE is the Rabi frequency and δab = ωl−ωab the detuning.
By using the definition of the on-resonance saturation parameter s0 = 2|Ωab|2/γ2 = I/Is
where Is = γπhc/3λ3ab is the saturation intensity [49]; I can rewrite the expression for the
excited state population for the steady-state case as

ρaa =
s0/2

1 + s0 + (2δab/γ)2
, (2.8)

for low intensities (s0 < 1) I can approximate it by

ρaa ≈
s0/2

1 + (2δab/γ)2
, (2.9)
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where we can see that it depends on δ−2, this means that unless we are very close to
resonance (|δab| < γ) the current is very suppressed and it would be difficult to detect
any particles. One way to circumvent this is by increasing the intensity of the light beam,
which will broaden the dispersion curve, as its show in Fig. 2.2, and also increase the
decay rate γ −→

√
γ2 + 2|Ωab|2 [49]. However, this will also increase the noise in the

detection [61], so there is a counterpoint to increasing the light intensity to obtain a
stronger signal if the detuning is high.

An important factor to consider as well is the Doppler effect, since the particles in the
sample have a velocity distribution due to the thermal energy, even if the light is right on
resonance ωl = ωab, there still exist a detuning due to the Doppler effect δab = −ωabvz/c,
then averaging the excited state population over the distribution of velocities for a laser
set on resonance with the static atoms we have

ρ̄aa =

∫ ∞

−∞

s0/2

1 + s0 +
4ω2

abv
2
z

γ2c2

√
m

2πkBT
exp

(
− mv2z
2kBT

)
dvz, (2.10)

with a change of variables in the form of u2 = ω2
abv

2
z/γ

2c2 I obtain

ρ̄aa =
s0
2
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2πkBT
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−∞

1
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2ω2
abkBT
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γc

ωab

du, (2.11)

and by defining σv =
√
kBT/m, which is the width of the velocity distribution, I can

now define a width of detunings due to the Doppler effect as σD = ωabσv/c, using these
definitions I rewrite ρ̄aa as

ρ̄aa =
s0
2

γ

σD

1√
2π
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−∞

1

1 + s0 + 4u2
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−γ

2u2

2σ2
D

)
du, (2.12)

approximating for low intensities s0 < 1, we can obtain an analytical expression for the
integral and the result is

ρ̄aa =
s0
2

[√
π

8

γ

σD
exp

(
γ2

8σ2
D

)
Erfc

(√
γ2

8σ2
D

)]
, (2.13)

and since the expression in the square parentheses does not depend on intensity I can
write it as a coefficient of Doppler correction CD

CD =

√
πγ2

8σ2
D

exp

(
γ2

8σ2
D

)
Erfc

(√
γ2

8σ2
D

)
. (2.14)

For example, using Rubidium with γ = 2π × 6 × 106Hz, ωeg = 384.23 × 1014Hz, and
T = 300K I obtain CD ≈ 0.1, which means that we only work with around 10% of the
atoms. If we consider a Doppler width greater than the natural width σD > γ then we

can make the following approximations, exp (γ2/8σ2
D) ≈ 1 and Erfc

(√
γ2/8σ2

D

)
≈ 1,

with those in mind then the coefficient CD is now

CD ≈
√
π

8

γ

σD
, (2.15)

this shows that the factor CD ends up being the ratio of the natural width (γ) and the
Doppler width (σD), meaning that off all the atoms in the sample we only excite the
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fraction that is approximately within the natural width. The expression of ρ̄aa can now
be rewritten as ρ̄aa = s0CD/2. In the case when the temperature is zero, the integral in
Eq. 2.10 becomes the integral of the coefficient of population of the excited state and
a Dirac delta distribution, which by its properties evaluates any function of vz into the
center of the distribution which in this case is 0, so in the case for zero temperature
we obtain ρ̄aa = (s0/2)/(1 + s0) and for low intensities we obtain the approximation
ρ̄aa ≈ s0/2. This means that the coefficient for Doppler correction CD is equal to 1
meaning that we excite all the atoms in the sample, this is reasonable because we are
in resonance with all the atoms. Now substituting this result into the expression for the
current in the fluorescence scheme (Eq. 2.3) I obtain

if = Rηh̄ωabγ
s0
2
CDNlA, (2.16)

and replacing the definition of s0 and regrouping I obtain

if = RNlη

(
h̄ωabγ

2Is

)
(IA)CD, (2.17)

where IA = P , where P is the power of the incident light beam, and h̄ωabγ/2Is =
3λ2ab/2π = σ is the cross section of light-matter interaction [49]; with this relations I can
rewrite the previous expression as

if = RP (Nlσ)ηCD, (2.18)

similarly, for absorption I obtain

ia = RP (Nlσ)CD, (2.19)

now, without explicitly working out the dependence of ρaa I can obtain similar expressions,
for fluorescence I obtain

if = RP (Nlσ)ηγ2
ρaa

|Ωab|2
, (2.20)

and for absorption

ia = RP (Nlσ)γ2
ρaa

|Ωab|2
. (2.21)

Although the last expressions do not consider the Doppler effect, since that involves
working explicitly with the expression for ρaa, they are helpful for further comparisons,
mainly we can observe that these resonant methods involve the population in the excited
state, because the method for detection involves measuring the emitted or absorbed
photons; also we can see that the two methods depend on the density of particles N with
units 1/m3, the length of the sample l with units m, and the cross section of interaction
σ with units m2, where the product of the three is a number that I interpret to be the
effective number of interacting particles Nlσ.

2.2.2 Phase Change

Moving forward, now I analyze the phase change detection method, we have a light beam
that is split, sent through different paths, where in one path the beams goes through the
sample, recombined, and then measured with a photodiode (Fig. 2.1 c). In this case the
frequency of the beam is so far off from any transition of the sample that there is no
absorption or fluorescence even if I increase the intensity (|δ| ≫ γ, |Ωab|). The magnitude
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Figure 2.2: Graph of the coefficient of population ρaa for the excited state |a⟩ as a function
of the detuning δab. For b) I have plotted the ratio ρaa/|Ωab|2 as it appears in Eqs. 2.20
and 2.21. For both graphs I have plotted several values for the Rabi frequency, for the
solid blue line |Ω| = 1γ, for the red dashed line |Ω| = 2γ, and for the green dot-dashed
line |Ω| = 5γ.

of the optical field when going through the sample remains unchanged, but not its phase,
since the sample has a refractive index n. First consider a scenario without the sample
but with a path difference of ∆z between the arms, in this case the intensity arriving at
the detector is

I = I0
1

2
(1 + cos k∆z) , (2.22)

with I0 = 1
2
ϵ0cE

2. To be more susceptible to phase changes in the interferometer, it is
common to choose k∆z = π/2 to be in the linear response of the interference fringes.
With this selection, the intensity arriving at the photodiode is just I = I0/2 and the
current that emmits is

in.s. = RP/2, (2.23)

with P = AI0. Now with a sample of length l and index of refraction n in one of the
beams, there will be a phase difference in the arm with the sample given by ϕ = kl(n−1),
the intensity arriving at the photodiode is

Iw.s. = I0
1

2
(1 + sin (ϕ)) , (2.24)

still considering that k∆z = π/2, the current is then

iw.s. = RP
1

2
(1 + sin (ϕ)) . (2.25)

By taking the difference between the current with the sample Eq. 2.25 and the current
with no sample Eq. 2.23, we are able to isolate just the effect of the phase change
introduced by the sample, and I obtain the following expression

iphase =
1

2
RP sin (ϕ) . (2.26)

Considering a small phase ϕ < 1 and substituting the expression for the phase ϕ I obtain

iphase ≈
1

2
RPϕ =

1

2
RPkl(n− 1), (2.27)

where now, I have to work on an expression for the index of refraction that relates to the
quantum properties of the sample. First, let us recall that we can write the polarization
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density of a homogeneous dielectric isotropic material in two different ways, one being
proportional to the external electric field [90]

P =
1

2
χ̃ϵ0Ẽ + c.c., (2.28)

where χ̃ is the complex electric susceptibility of the medium. I can rewrite it as follows

P = ϵ0E (χre cosϕE − χim sinϕE) . (2.29)

The other way to write the polarization density is that we consider the medium as a
homogeneous density of dipole moments

P = N⟨µ⟩, (2.30)

where ⟨µ⟩ is the average dipole moment. Modeling our sample as a distribution of two-
level quantum systems, we can follow the formalism of the density matrix to write

N⟨µ⟩ = NTr [ρµ] = Nµab (ρab + ρba) = Nµab2Re [ρab] , (2.31)

where in this previous equation µab = µba since it’s a real measurable quantity defined as
µab = ξ⃗ · ⟨a|er⃗|b⟩, and ρab is the coherence term between the ground |b⟩ and excited |a⟩
levels. Now, lets multiply ρab by a factor of 1 to obtain

P = 2NµabRe
[
Ωabρ

′

ab

]
, (2.32)

with ρ
′

ab = ρab/Ωab, and Ωab = −(µabE/h̄)e
iϕE , I then expand the previous expression to

obtain
P = 2Nµab

(
Re [Ωab] Re

[
ρ

′

ab

]
− Im [Ωab] Im

[
ρ

′

ab

])
, (2.33)

and by explicitly replacing the expression for Ωab I obtain

P =
2Nµ2

abE

h̄

(
− cos [ϕE] Re

[
ρ

′

ab

]
+ sin [ϕE] Im

[
ρ

′

ab

])
. (2.34)

By equating both expressions for the polarization density (Eq.2.29 and 2.34) I obtain the
following expressions for the real and imaginary parts of the electric susceptibility

χre = −2Nµ2
ab

h̄ϵ0
Re

[
ρab
Ωab

]
, (2.35)

χim = −2Nµ2
ab

h̄ϵ0
Im

[
ρab
Ωab

]
.

Now, recalling that the refractive index of a medium depends on the relative permittivity
and relative permeability of the medium n =

√
ϵrµr with ϵr = 1 + χ̃ and µr = 1 since I

do not consider any magnetic effects in the medium, we obtain for the refractive index
then n =

√
1 + χ̃, approximating for small values of the electric susceptibility I obtain

ñ ≈ 1 +
1

2
χre + i

1

2
χim, (2.36)

where the imaginary part is proportional to the absorption of the medium and the real
part is the traditional refractive index, by replacing the expression for the real part of
the electric susceptibility I obtain the following expression for the refractive index

n = 1− Nµ2
ab

h̄ϵ0
Re

[
ρab
Ωab

]
. (2.37)
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Substituting this expression into the current for the interferometer Eq. 2.27 I obtain

iphase =
1

2
RPkl

Nµ2
ab

h̄ϵ0
Re

[
− ρab
Ωab

]
, (2.38)

and using the relation for a two level system γ = ω3
abµ

2
ab/3πϵ0h̄c

3 [49] and rearranging
some terms I obtain

iphase =
1

2
RP (Nl)

(
3πk

k3ab

)
γRe

[
− ρab
Ωab

]
. (2.39)

Now, k is the wavevector of the field and kab is the wavevector of the a↔ b transition. I
can write k/k3ab in terms of their angular frequencies to obtain

k

k3ab
=
c2ωl

ω3
ab

, (2.40)

and use the definition of the detuning δ = ωl − ωab to obtain

k

k3ab
=

c2

ω2
ab

+
c2δab
ω3
ab

=
1

k2ab

(
1 +

δab
ωab

)
. (2.41)

Although we are highly detuned from the transition (|δab| ≫ γ, |Ωab|) I consider that
the detuning δab will be small compared to ωab and therefore δab/ωab ≪ 1. With this
approximation, I can write the expression for the current as

iphase ≈
1

2
RP (Nlσ)γRe

[
− ρab
Ωab

]
. (2.42)

I can compare this expression with the currents for fluorescence and absorption (Eq. 2.20
and Eq. 2.21), all three expressions have in common the following quantities, incident
beam power P , particle density N , sample length l, and cross section of interaction σ,
which highlights the common phenomenon in all three methods, the light-matter inter-
action. However, here the signal current depends on the coherence between the quantum
levels, in this way one can consider the interferometric scheme of detection as a mea-
surement of coherence in a system, if it were a pure ensemble, meaning that there is no
coherence between levels, this current will be zero.

By working out explicitly the expression for ρab in the steady-sate case I obtain [49]

ρab =
(iγ − 2δab) Ωab

γ2 + 2|Ωab|2 + 4δ2ab
. (2.43)

I have plotted the real part of the coherence in Fig. 2.3, I only choose the real part
since it is proportional to the signal of the interfeometer. The shape of the real part of ρab
shows a dispersive form that widens as the intensity, or in this case the Rabi frequency,
increases. Approximating for a large detuning |δab| ≫ γ, |Ωab| and substituting into the
expression for the current I obtain

iphase ≈
1

2
RP (Nlσ)

γ

2δab
, (2.44)

where we can observe a scaling with the detuning as δ−1, this is quite helpful as a method
of detection, compared with resonant methods. In a resonant method, one requires
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Figure 2.3: Graph of the coefficient of coherence ρab between the excited |a⟩ and ground
levels |b⟩ as a function of the detuning δab/γ. For b) I have plotted the real part of the
ratio ρab/Ωab as it appears in Eq. 2.38. For both graphs I have plotted several values of
the Rabi frequency, for the solid blue line |Ω| = 1γ, for the red dashed line |Ω| = 2γ, and
for the green dot-dashed line |Ω| = 5γ.

prior knowledge, like the resonant transition frequency, to be able to strongly detect the
particle of interest. Here, with a non-resonant detection, one might not need to know
such information because the current signal is not as suppressed if one is out of resonance
with the transition. However, one of the biggest limitations of this type of detectors is the
fluctuations due to temperature, a change in temperature introduces a change in sample
length ∆l as well as a change in the refractive index ∆n which translate into a change in
the measured phase

ϕ+∆ϕ = k(l +∆l)(n+∆n− 1) (2.45)

= kl(n− 1) + k∆l(n− 1) + kl∆n+ k∆l∆n,

and the change in phase due to temperature fluctuations is

∆ϕ = k (∆l(n− 1) + l∆n+∆l∆n) . (2.46)

Since k is in the optical range, this change in phase can be considerable. I have then
obtained expressions for the current for the three methods, to end this chapter, let us
present the equations of the currents for the different methods, in their two versions, that
I have obtained so far

Fluorescence : if = RP (Nlσ)ηCDγ
2 ρaa
|Ωab|2

; if = RP (Nlσ)ηCD. (2.47)

Absorption : ia = RP (Nlσ)CDγ
2 ρaa
|Ωab|2

; ia = RP (Nlσ)CD. (2.48)

Phase change : iphase =
1

2
RP (Nlσ)γRe

[
− ρab
Ωab

]
; iphase =

1

2
RP (Nlσ)

γ

2δab
. (2.49)

Note that the factor RP by itself has dimensions of current, then all of the other factors
must amount to an adimensional factor, and so rightfully do so.

2.3 Hybrid Microwave-Optical Interferometer

Here I introduce a Mach-Zehnder type hybrid microwave-optical interferometer. The
main incentive behind the design of the interferometer was to measure phase changes of
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Figure 2.4: a) Schematic for the hybrid microwave-optical interferometer, in this figure
ωl is the laser frequency, ωm is the modulation frequency, D is the detector (photodiode),
MW stands for microwave, X is a current mixer and LPF stands for low-pass filter. b)
Energy diagram of the three-level system, Ωab and Ωac are the Rabi frequencies of the
system, γab and γac are the decay rates from the excited state |a⟩, δab and δac are the
one-photon detunings, δcb is the two-photon detunig. See appendix C for their definitions.

the lasers due to a coherent Raman process, considering our interest in the alteration of
the vibrational or rotational spectra resulting from the combination of the two molecules,
it is reasonable to contemplate a measurement that encompasses two frequencies. Stan-
dard Raman methods [91] make use of a resonant excitation and a spontaneous process
which eliminates any coherence in the system. The set-up consists of a laser that goes
through a modulator and filter to block one of the side bands in order to emit two beams
at frequencies ω1 and ω2 with ω1 = ω2 +ωm, where ωm is the frequency of an RF genera-
tor. Both beams pass through the sample, where the sample properties change the phase
and the amplitude of the beams, and then arrive at the photo-diode sensor which will
produce a current S1 that depends on the light that arrives on it. The current is combined
through a mixer with a second current S2 originating from the microwave oscillator with
a known phase, the signal is then sent to a low-pass filter (LPF) and is then measured.
A schematic of the proposed design is illustrated in Fig. 2.4 a).

2.3.1 Signal Current for the hybrid microwave-optical interfer-
ometer

I begin by deriving the expression for the final current in the hybrid microwave-optical
interferometer, the electric fields of the beams right as they arrive at the photo-diode are

Ẽ1 = E1 exp [i (ϕ1 − ω1t)] , (2.50)

Ẽ2 = E2 exp [i (ϕ2 − ω2t)] ,

where ϕ1, ϕ2 are the phases of each of the beams,these phases have contributions of the
initial phase, propagation, modulation, and sample effect. The current produced by the
photo-diode from the arriving light intensity is then

ipd =
1

2
RAϵ0c

∣∣∣Ẽ1 + Ẽ2

∣∣∣2 , (2.51)
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and by expanding this expression I obtain

ipd =
1

2
RAϵ0c

(
E2

1 + E2
2 + 2E1E2 cos [ϕ1 − ϕ2 − ωmt]

)
(2.52)

this current is then mixed with a second current im coming from the RF generator that
is feeding the modulator,

im = β cos [ωmt− ϕm] (2.53)

the mixed current is then

imix =
1

2
βRAϵ0c

(
E2

1 cos [ωmt− ϕm] + E2
2cos [ωmt− ϕm] (2.54)

+E1E2 cos [2ωmt− ϕm − (ϕ1 − ϕ2)] + E1E2 cos [(ϕ1 − ϕ2)− ϕm]) ,

this current will then be filtered in frequency, allowing only the non-oscillating terms to
come through, so I obtain

ilpf =
1

2
βRAϵ0cE1E2 cos [(ϕ1 − ϕ2)− ϕm] (2.55)

with an appropriate selection for the value of the phase of the modulation current ϕm =
π/2 and by approximating for small phase values of (ϕ1 − ϕ2) < 1 I obtain

ihybrid ≈ RP
′
β (ϕ1 − ϕ2) (2.56)

were I introduced the term P
′
= 1

2
ϵ0cE1E2A which has units of power however is not

the total power arriving at the photo-diode, in order to simplify the equations I have
made that the cross sectional beam and sample area to be equal. Now let us write the
expressions for the propagation phases of the beams, they are

ϕ1 = k1(L− l) + k1n1l + ϕE1 (2.57)

ϕ2 = k2(L− l) + k2n2l + ϕE2

where n1, n2 are the refraction indexes for beams 1, 2 in the sample, and ϕE1 , ϕE2 are the
initial phase of the each of the beams, so the expression for ϕ1 − ϕ2 is

ϕ1 − ϕ2 = km(L− l) + (k1n1 − k2n2)l + (ϕE1 − ϕE2) (2.58)

We can see then that the signal will be proportional to the phase difference (ϕ1 − ϕ2) of
the two beams; this makes it really robust against effects that have common changes in
the phase of both beams such as temperature variations, which are the dominant error
when measuring phase changes [85]. A deviation in temperature changes the length of
the sample by a factor ∆l likewise the refractive index is changed by a factor ∆n, both
of these factors contribute to a drift in the phase measurement. Now, since the two
frequencies are very similar I take the same ∆n for both, and the drift in the phase
measurement is given by

∆ (ϕ1 − ϕ2) = km ((n− 1)∆l +∆nl +∆n∆l) (2.59)

where km = k1 − k2, is the wavenumber of the modulation frequency. The drift is
strongly suppressed in the hybrid microwave-optical interferometer because it scales with
the wavenumber of the modulation, which is in the range of microwaves, in contrast to
more standard interferometers whose drift scales with an optical wavenumber, which is
orders-of-magnitude greater. Similarly as before, I need to make a connection between
the quantum properties of the medium and the index of refraction.
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2.3.2 Index of refraction for the hybrid microwave-optical in-
terferometer

The procedure that I will take will be similar as before for the two-level system and the
Mach-Zehnder interferometer. However, since I am modeling our sample as a three-level
quantum system, being driven by two electric fields, the expressions for the polarization
density are

P =
1

2
ϵ0χ̃1Ẽ1 +

1

2
ϵ0χ̃2Ẽ2 + c.c., (2.60)

and

P = 2N (µabRe [ρab] + µacRe [ρac] + µcbRe [ρcb]) , (2.61)

but since the levels b and c are very close to each other, I am considering that they
are rotational or vibrational levels of a molecule, I can approximate the dipole moment
µcb = eξ⃗ · ⟨c |r⃗| b⟩ to zero. I then proceed in a similar fashion as before, equating both
expressions for the polarization density, and I obtain the following expressions

χre,1 = −2Nµ2
ab

h̄ϵ0
Re

[
ρab
Ωab

]
, (2.62)

χim,1 = −2Nµ2
ab

h̄ϵ0
Im

[
ρab
Ωab

]
,

χre,2 = −2Nµ2
ac

h̄ϵ0
Re

[
ρac
Ωac

]
,

χim,2 = −2Nµ2
ac

h̄ϵ0
Im

[
ρac
Ωac

]
,

and the expressions for the refraction indexes for each beam are

n1 = 1− Nµ2
ab

h̄ϵ0
Re

[
ρab
Ωab

]
, (2.63)

n2 = 1− Nµ2
ac

h̄ϵ0
Re

[
ρac
Ωac

]
, (2.64)

by substituting the expressions for the refractive indexes into the expression for the phase
difference that the hybrid microwave-optical interferometer reads (Eq. 2.56), I obtain the
following

ϕ1 − ϕ2 = kmL− Nl

h̄ϵ0

(
k1µ

2
abRe

[
ρab
Ωab

]
− k2µ

2
acRe

[
ρac
Ωac

])
+ (ϕE1 − ϕE2) , (2.65)

now by making use of the following relationships µ2
nm = 3πϵ0h̄γnm/k

3
nm and σnm = 6π/k2nm

were γ is the decay rate and σ is the cross section of interaction, I can rewrite the previous
expression as

ϕ1 − ϕ2 = kmL− Nl

2

(
k1
kab

σabγabRe

[
ρab
Ωab

]
− k2
kac

σacγacRe

[
ρac
Ωac

])
+ (ϕE1 − ϕE2) , (2.66)

I will now make the following approximations, k1 is the wavenumber of the electric field
E1 , while kab denotes the wavenumber of the a ↔ b transition, and similarly for k2 and
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kac, I can write k1 as k1 = kab + kδab , where kδab is the wavenumber of the detuning from
the transition, and therefore the ratio k1/kab is equal to 1+ kδab/kab, similarly for k2/kac,
the first approximation I make is k1/kab ≈ 1 and k2/kac ≈ 1 since the detuning I am
considering it will be much smaller that an optical wavenumber. The next approximation
I will make is to consider σab ≈ σac, which is equivalent to making σab/σac ≈ 1, if I write
explicitly this ratio I obtain σab/σac = k2ac/k

2
ab, I can write kac as kac = kab + kcb, where

kcb is the wavenumber of the rotational/vibrational transition between levels b and c,
therefore σab/σac = k2ac/k

2
ab ≈ 1 + 2kcb/kab ≈ 1 where again kcb would be very small

compared to kab, with these approximations in mind I rewrite the expression for the
differential phase

ϕ1 − ϕ2 = kmL− Nlσ

2

(
γabRe

[
ρab
Ωab

]
− γacRe

[
ρac
Ωac

])
+ (ϕE1 − ϕE2) , (2.67)

the kmL term will be just normal oscillations in the signal but the second term contains
the information about the system that I am looking for, so our focus will be on this
second term. Substituting this expression for ϕ1 − ϕ2 into the expression for the hybrid
microwave-optical interferometer current Eq. 2.56 and considering only the term that we
are interested in we obtain the following expression for the hybrid interferometer current

ihybrid = −1

2
RP

′
βNlσ

(
γabRe

[
ρab
Ωab

]
− γacRe

[
ρac
Ωac

])
. (2.68)

2.3.3 Analytical approximations for the hybrid microwave-optical
interferometer signal

In this section, I present some analytical approximations for the expression of the signal of
the hybrid microwave-optical interferometer to better understand how the signal scales
with the experimental parameters. The system is characterized by its optical Bloch
equations that are derived in Appendix C and I present the complete solutions and some
approximations of interest for the steady state in Appendix D. Figure 2.5 shows several
graphs of the coherence terms normalized by the Rabi frequency as a function of the
detuning of one of the beams (δab), the other beam is detuned by a fixed amount (δac). We
can observe two distinct features happening simultaneously, one is the optical pumping,
which is the wider curve centered around δab = 0, this curve is much wider than γ because
it depends on a competition of the pumping coming from the two detuned beams and
ends up having a width proportional to the detuning that I am keeping fixed (see Eq.
D.5). The other is a much narrower feature that appears in resonance with a two-photon
transition (δcb = δab − δac = 0). This specific point is associated with Electromagnetic-
Induced Transparency (EIT) and is frequently represented as a dip in the excited-state
population (ρaa) [92, 90].

Here, instead, I graph the coherence terms since these are the parameters that will be
measured in the proposed experimental configuration. Both terms exhibit a characteristic
dispersive profile as they become zero precisely at the two-photon resonance point (Eq.
D.2). I am interested in this specific dispersive behavior, because its presence is due to
the formation of a compound molecule. I can obtain just the optical pumping behavior by
considering an equilibrium between decay and excitation rates of two two-level systems
that both share the same excited level |a⟩, this condition can be expressed as

Sbaρbb = Sabρaa + γabρaa, (2.69)

Scaρcc = Sacρaa + γacρaa,
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Where Si,a, i = b, c is the rate of induced absorption from the i level to the a level,
Sa,i, i = b, c is the rate of induced emission from the a level to the i level, the rates
of induced absorption and emission for each of the transitions are equal, a fact that
is well known from the Einstein coefficients for induced emission and absorption [93].
Considering the conservation of population between the three levels ρaa + ρbb + ρcc = 1
as well as Eq. 2.69 we can obtain solutions for the populations of each level

ρaa =
SbaSca

3SbaSca + γacSba + γabSca

, (2.70)

ρbb =
SbaSca + γabSca

3SbaSca + γacSba + γabSca

,

ρcc =
SbaSca + γacSba

3SbaSca + γacSba + γabSca

,

The excitation rate Si,a can be considered as the rate of photon dispersion, for each of
the transitions, in a low-intensity approximation. This is because in the stationary state
the rate of dispersion of light must also equal the rate of induced absorption, so the
expression for each of the induced absorption rates is [49]

Si,a ≈ γaiρ
(i)
aa ≈ γai |Ωai|2

γ2ai + 4δ2ai
. (2.71)

Since I am considering a low-intensity case (Ω < γ), the excitation rate is pretty small
compared to the decay rate (S < γ) this allows me to disregarding any term of the
form S2, since it will be the less dominant one, and considering a high-detuning scenario
(δ > γ) we obtain approximations for the expressions of the populations

ρaa ≈
|Ωab|2 |Ωac|2

4
(
|Ωab|2 δ2ac + |Ωac|2 δ2ab

) , (2.72)

ρbb ≈
|Ωac|2 δ2ab

|Ωab|2 δ2ac + |Ωac|2 δ2ab
,

ρcc ≈
|Ωab|2 δ2ac

|Ωab|2 δ2ac + |Ωac|2 δ2ab
,

We can then approximate the expression for the coherence ρab ≈ √
ρaaρbb and ρac ≈√

ρaaρcc to obtain

ρab/Ωab ≈
|Ωac|2δab

2 (|Ωab|2δ2ac + |Ωac|2δ2ab)
, (2.73)

ρac/Ωac ≈
|Ωab|2δac

2 (|Ωab|2δ2ac + |Ωac|2δ2ab)
,

which, except for a sign that might be missing, are the same expression we obtained for
the approximations of the complete solution Eq. D.4 with γab = γac.

Figure 2.6 shows a comparison of the coherences ρab and ρac for a three-level system
for two cases, one is the complete description given by Eq. D.1 and the other one is only
the optical pumping phenomena given by Eq. 2.73. The figure shows that both terms
have the same optical-pumping curve, which means that these are similar for detunings
far away from the two-photon dispersion zone, that is the narrow feature (|δcb| > 0).
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Figure 2.5: Plot of the real components of the coherence’s ρab/Ωab, in solid blue, and
ρac/Ωac, in dasehd red, as a function of the detuning of one of the beams (δab/γ) given
by Eq. D.1. For all plots γab = γac = γ and Ωab = Ωac = Ω. For a), Ω = 30γ and
δac = −100γ. For b) Ω = 60γ and δac = −100γ. For c), Ω = 30γ and δac = −200γ. For
d), Ω = 60γ and δac = −200γ.
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Figure 2.6: Plot of the real components of the coherence’s ρab/Ωab and ρac/Ωac as a
function of the detuning of one of the beams (δab). Solid lines are given by Eq. D.1,
dashed lines are given by Eq. 2.73. For all plots γab = γac = γ and Ωab = Ωac = Ω. For
a, Ω = 30γ and δac = −100γ. For b, Ω = 60γ and δac = −100γ. For c, Ω = 30γ and
δac = −200γ. For d, Ω = 60γ and δac = −200γ

Figure 2.7: Plot of the real components of the coherence’s ρab/Ωab (blue) and ρac/Ωac

(red) as a function of the detuning of one of the beams (δab/γ). Solid lines are the full
solution (Eq. D.1), in blue ρab and in red ρac, dashed lines are the approximation detuned
from the two-photon resonance (Eq. D.6) and dotted lines are the linear approximation at
the two-photon resonance (Eq. D.2). At higher detunings both curves follow the envelope
given by Eq. D.4. For both plots γab = γac = γ, Ωab = Ωac = Ω and δac = −200γ. For a)
|Ω| = 40γ and for b) |Ω| = 100γ.
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I will focus on the non-resonant case, once the particles have bonded and formed
a compound molecule, there will be present the two-photon resonance, I express the
solutions for the coherence terms (ρab and ρac) under the assumption of a small decay
rate (γ) in comparison to the other parameters (Ω, δ).

By approximating the solutions for the coherence’s (Eq. D.1) around the two-photon
resonance (δcb < Ω) I obtain (Eq. D.3)

Re

[
ρab
Ωab

− ρac
Ωac

]
=

2δcb
|Ωab|2 + |Ωac|2

, (2.74)

with this approximation, the current detected in the hybrid microwave-optical interfer-
ometer becomes

ihybrid = −RP ′
(Nlσ) βγ

δcb
|Ωab|2 + |Ωac|2

. (2.75)

A comparison of the approximation and the full solution is depicted in Fig. 2.7 and
Fig. 2.8a) which is basically the signal output from the hybrid interferometer except for
a scaling factor, as it can be seen by Eq. 2.75. The width of the two-photon feature
increases with the Rabi frequency, this is well known in the context of EIT [94]. Taking
two beams that possess the same Rabi frequency (Ω), the width is proportional to |Ω|2.
More details on the magnitude of the two-photon dispersion feature can be found in
Appendix D (see also Fig. 2.9). As we deviate from the two-photon resonance (|δcb| > 0),
the observed phase undergoes changes due to optical pumping between the energy levels
(which corresponds to the broad dependence illustrated in Fig. 2.7), as well as the
influence of the two-photon transition (depicted as a narrow feature in Fig. 2.7). Our
main focus is on the latter effect. We came up with a way that allows us to isolate this
effect by comparing measurements taken at two distinct power levels. In this scenario,
the optical pumping remains constant, as it can be seen comparing Fig. 2.5 c) and Fig.
2.5 d); while the two-photon resonance increases in width, again see Figs. 2.5 c) and
2.5 d), becoming detectable at greater detunings from the two-photon resonance. By
calculating the difference between the signals at high (denoted as subindex H, while still
maintaining Ω < δcb) and low (denoted as subindex L) powers, we derive (Eq. D.11)

Re

[
ρab
Ωab

− ρac
Ωac

]∣∣∣∣H
L

=
(|Ωab,H |2 + |Ωac,H |2)2

8δcb (|Ωab,H |2δ2ac + |Ωac,H |2δ2ab)
, (2.76)

and the current difference of the hybrid microwave-optical interferometer is

∆

(
ihybrid
P ′

)
=
ihybrid,H
P

′
H

− ihybrid,L
P

′
L

(2.77)

∆

(
ihybrid
P ′

)
= −R (Nlσ) β

(
γ

16δcb

)
(|Ωab,H |2 + |Ωac,H |2)2

(|Ωab,H |2δ2ac + |Ωac,H |2δ2ab)
.

A plot comparing the full solution and this approximation is presented in Fig.2.8b). The
expression shows that we obtain a dependence as a function of the detuning with the
two-photon transition proportional to δ−1

cb , which is the same dependence as in a single
beam Mach-Zehnder interferometer with the optical detuning Eq. 2.44 [85, 61]. For
comparison, take the case of a phase change measurement using a single beam in a Mach-
Zehnder interferometer and two transitions, so that the detuning (δab) is greater than
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Figure 2.8: Plot of the real components of the differential normalized coherence’s
(ρab/Ωab − ρac/Ωac) as a function of the two-photon detuning δcb/γ. Solid blue lines
are the full solution (Eq.D.1) and red dashed lines are the analytical approximations.
In both graphs γab = γac = γ and Ωab = Ωac = Ω. For a) in red Eq.D.3 Ω = 20γ,
δab ≈ δac = 1000γ. For b) in red Eq.D.11 ΩH = 30γ and δab ≈ δac = 1000γ.

the separation between the two transitions (ωbc). The current difference between the two
transitions using Eq. 2.44 is

iMZ = (NRlσ)P
γ

8

(
1

δab
− 1

δab + ωbc

)
≃ (NRlσ)P

γωbc

8δ2ab
, (2.78)

which scales as δ−2
ab . So, the process of taking the difference of the non-resonant two-

photon signal at different powers recovers a favorable dependence of δ−1
cb . Have I con-

sidered the case where the sample did not form a compound molecule, there will be no
coherence between levels b and c, this will remove the two-photon feature in the signal,
and with the difference between high and low power the resulting signal will be zero.

Usually, molecular resonances typically fall within the frequency domain of 10 to
100 THz for vibrational modes and from 100 GHz to 10 THz for rotational modes, and
frequency modulators are effective up to 10 GHz, although there are specific exceptions
that can achieve frequencies of up to 100 GHz [95]. This means that contemporary
modulators struggle to reach the two-photon resonance, relying instead on a detuned
two-photon detection method. This detuned detection yields a signal that represents the
sum contributions of all resonances, each weighted according to their respective detuning,
which is advantageous when there is no prior knowledge regarding the position of a specific
resonance. This approach is in contrast to resonant detection, which responds primarily
to the nearest resonance.

Consider a sample without Doppler broadening; it has an optical density (absorption
cross section) given by OD = Nlσ [49]. We can calibrate this number by performing
a standard absorption measurement (Eq. 2.21). By taking the difference between the
maximum and minimum values of the signal current around the two-photon resonance
(see Fig. 2.9), we obtain the maximum size of the phase difference measured in the
hybrid microwave-optical interferometer, and by working on an analytical approximation
we obtain(Eq. D.18)

(ϕ1 − ϕ2)|
δcb,max

δcb,min
≃ OD

γ

2 |δ|
, (2.79)

which scales as |δ|−1 with the one-photon detuning. In a more realistic scenario, the
experimentalists have two possible parameters that they can change in order to obtain a
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Figure 2.9: Plot of the real part of the difference of coherences normalized by their
corresponding Rabi frequency as a function of the one-photon detuning δab/γ. The graph
is centered around the two-photon resonance δcb = 0 = δab − δac. For both graphs
Ωab = Ωac = Ω and γab = γac = γ. For a) δac = 100γ, in blue |Ω| = 10γ and in red
|Ω| = 20γ. For b) δac = 200γ, in blue |Ω| = 10γ and in red |Ω| = 20γ.

measurement, those are the laser frequency ωl and the modulation frequency ωm. Figure
2.10 is the graph for the phase difference (ϕ1 − ϕ2) for these two parameters, the size of
the phase difference is represented as a color level in a two-dimensional plane. I have also
included several regions delimited by red dashed lines and blue dot-dashed lines. The
area inside the red dashed lines represents values for the parameters that are less than
the decay rate γ, the points inside this zone must be avoided since they are parameters
where there is a strong resonant response of the system and the proposed design does
not operate in resonance. The points inside the dot-dashed blue lines are values of the
parameters that are less than the Rabi frequency, these zones do not particularly have to
be excluded; however, they represent areas where the best suited analytical approximation
for the signal is the one close to resonance (Eq. 2.75 for example) these zone still may
be out of reach for the experimentalist, unless in a high-intensity case. Lastly, the area
outside the dot-dashed blue lines represents the values of the parameters that are greater
than the Rabi frequency and the decay rate, this is where the hybrid interferometer is
most likely to operate, and this graph may be helpful in obtaining a set of parameters in
order to optimize the signal of the hybrid interferometer, as one can see from the graph,
there is a zone of large signal around δac = 10γ and ωcb = 10γ just outside the region
delimited by the dot-dashed blue lines. There is a similar zone, but with reverse sign,
mirrored at higher modulation frequencies, but this zone involves being able to modulate
above the two-photon transition, I have previously discussed that this would be almost
impossible to reach due to technical limitations of the modulators. Although Fig. 2.10
might seem a little dense in information, one can obtain a similar curve to that of Fig.
2.9 by keeping one parameter fixed, say δac, and scanning the other one (ωm), doing so
means moving vertically in Fig. 2.10 at a particular value for δac.

To end this chapter, I gather all of the expressions that I have obtained so far for all
of the methods we have previously discussed. For each of the listed methods, the first ex-
pression that appears is the most general one, without explicitly working the dependence
with external parameters or choosing a specific scenario, however this first expression
shows weather the method measures population of a state or coherence between states,
the second expression that appears is for an explicit case, and it shows the dependence
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Figure 2.10: Phase difference (ϕ1−ϕ2), with an OD = 1, as a function of two parameters,
δac, which is the detuninig of the non-modulated laser with respect to the a↔ c transition,
and modulation frequency ωm. For this graph γab = γac = γ, Ωac = Ωab = Ω = 5γ, and
the two-photon transition frequency ωcb = 25γ.
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of the signal current with experimental parameters.

Fluorescence : if = RP (Nlσ)ηγ2
ρaa

|Ωab|2
; if = RP (Nlσ)ηCD. (2.80)

Absorption : ia = RP (Nlσ)γ2
ρaa

|Ωab|2
; ia = RP (Nlσ)CD. (2.81)

Phase change : iphase =
1

2
RP (Nlσ)γRe

[
− ρab
Ωab

]
; iphase =

1

2
RP (Nlσ)

γ

2δ
. (2.82)

Hybrid Int. : ihybrid = −RP ′
β
(Nlσ)

2

(
γabRe

[
ρab
Ωab

]
− γacRe

[
ρac
Ωac

])
; (2.83)

∆

(
ihybrid
P ′

)
= −R (Nlσ) β

(
γ

16δcb

)
(|Ωab,H |2 + |Ωac,H |2)2

(|Ωab,H |2δ2ac + |Ωac,H |2δ2ab)
. (2.84)

We can observe that in all expressions the factorNlσ = OD is common among them. This
is an indication that the main phenomenon behind the detection is the interaction with
light. However, in great contrast to the traditional methods, the signal current for the
hybrid microwave-optical scales with the detuning in the microwave domain (δcb) while
the traditional methods scale with an optical detuning. This shows that the proposed
interferometer clearly is ’hybrid’ in its nature because of the strong response with an
optical phenomena but a scaling with a microwave parameter.

2.4 Conclusions

This part of my thesis expands on a previous work in which they analyzed several com-
mon detection methods for atoms or molecules, and introduced a new detection method
for molecular interactions. This method employs coherent excitation using two lasers
and measures the relative phase shift of the beams after passing through a sample using
a hybrid microwave-optical interferometer. The hybrid interferometer features one arm
operating in the optical regime, which facilitates a strong response in the sample via
two-photon excitation, while also benefiting from the interferometric stability found op-
erating in the microwave domain. The proposed method utilizes two distinct frequencies
and performs a non-resonant detection, a category that currently has very few existing
methods. This hybrid microwave-optical interferometer is notably resistant to external
phase fluctuations, such as those caused by temperature changes, which is often a sig-
nificant challenge in interferometric measurements. To compare this method with more
traditional ones, I managed to obtain expressions for the signal current for all methods
and unify their dependence under the common experimental parameters, this enhances
the similarities and differences between them. The signal current of all methods is pro-
portional to the cross section of the light-matter interaction, the sample length, molecular
density, detector responsivity, and incident beam power. In addition, the hybrid interfer-
ometer depends on the one- and two-photon detunings. We demonstrate that our method
exhibits advantageous scaling with experimental parameters such as the two-photon de-
tuning and power, making it a suitable choice for detecting molecular interactions.
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Appendix A

Diffraction of a Gaussian beam by a
square aperture

The diffraction for a Gaussian beam in the is given by the expression 1.20 where if we
input our actual Gaussian beam given by expression 1.12 the final expression for the
diffraction integral is

E(r⃗) =

(
Ak

2πzz0

)
W0

W (−zW )
exp

[
ik(z − zW ) + i

kρ2

2z
− iζ(−zW )

]
× (A.1)

×
∫ a

−a

∫ a

−a

exp

[
− ρ′2

W 2(−zW )
+ i

kρ′2

2R(zW )
− i

k

z
(xx′ + yy′)

]
dx′dy′,

where zW refers to the beam waist location on the z axis. The integral can be divided
into two similar integrals, so practically we only need to solve one, the integral that we
need to solve is

Ix =

∫ a

−a

exp

[
− x′2

W 2(−zW )
+ i

kx′2

2R(zW )
− i

kxx′

z

]
dx′. (A.2)

In order to solve this integral we complete the squared binomial in the argument of the
exponential of the integral, but first we group the terms in the following order

Ix =

∫ a

−a

exp

[
−
(
Qx′2 + i

kxx′

z

)]
dx′, (A.3)

where Q = 1/W 2(−zW )− ik/(2R(−zW )), completing the squared binomial in the argu-
ment of the exponential we obtain

Ix =

∫ a

−a

exp

[
−

((√
Qx′ + i

kx

2z
√
Q

)2

+
k2x2

4z2Q

)]
dx′. (A.4)

We can factor out any term that remains constant for the integration process and we also
proceed to do the following change of variables u =

√
Qx′ + ikx/2z

√
Q, so with these

additional steps our integral is

Ix =
1√
Q

exp

[
− k2x2

4z2Q

] ∫ a
√
Q+i kx

2z
√
Q

−a
√
Q+i kx

2z
√
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exp
[
−u2

]
du. (A.5)

Lastly we use the definition for the error function [96] as a last step in order to obtain
the final expression of the integral
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π
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. (A.6)
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The same steps can be done on the remaining integral and it will produce a similar result

Iy =

∫ a

−a

exp
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so the total diffracted field is

E(r⃗) =
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2πzz0
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which is the same as expression 1.21.
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Appendix B

Contributions to the wavefront
curvature from a square aperture in
the far field.

The electric field in the Fraunhofer approximation for a square aperture is represented
by Equation 1.21. This equation encompasses three components contributing to the
transverse phase, as detailed in Equation 1.26. Initially, we examine the scenario where
the beam waist is situated near the aperture, specifically when |zW | ≪ z0. Under these
conditions, R(−zW ) −→ ∞ indicates the presence of a plane wavefront, while W (−zW ) ≃
W0 and Q(−zW ) ≃ 1/W 2

0 yield no imaginary component, thus having no effect on the
transverse phase in Equation 1.26. The third contribution is as follows

fE(x) ≃
1

2

(
Erf

[
a

W0

+ i
kxW0

2z

]
+ Erf

[
a

W0

− i
kxW0

2z

])
, (B.1)

and similarly for fE(y), where the argument of one error functions is the conjugate of the
other. Using the Mclaurin expansion of the error function [97]

Erf[η] =
2√
π

∞∑
n=0

(−1)nη2n+1

n!(2n+ 1)
, (B.2)

gives

Erf[η] + Erf[η∗] =
4|η|√
π

(
Cos(ϕη)−

|η|2

3
Cos(3ϕη) +

|η|4

10
Cos(5ϕη) + . . .

)
, (B.3)

which is a real number and gives no contribution to the phase (ΞE = 0). In this scenario,
it is solely the initial term that affects the transverse phase (as indicated in Eq. 1.26),
resulting in ΨT = (k/2z)ρ2. To put it differently, in the far field approximation, where
the waist aligns with the aperture, the radius of curvature at the screen is merely the
distance from the aperture to the screen.

When the waist is significantly distant from the aperture, specifically when |zW | ≫ z0,
the beam exhibits curvature at the aperture location, approximated as R(−zW ) ≃ zW .
Additionally, the beam width increases to W (−zW ) ≃ W0zW/z0, leading to the phase
term Q(−zW ) ≃ −ik/2zW . In the case of a large aperture, the phase contribution
from fE(x)fE(y) is negligible, resulting in ΞE = 0. Consequently, the transverse phase
contribution, as described in Eq. 1.26, is represented by Eq. 1.27.
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When we decrease the aperture, the phase will be influenced by the error function,
which we express as follows.

fE(x) ≃
1

2

(
Erf

[√
Q(−zW )

(
a− zWx

z

)]
+ Erf

[√
Q(−zW )

(
a+

zWx

z

)])
, (B.4)

and similarly for fE(y). Expanding the error function (Eq. B.2) and rearranging terms
we obtain

fE(x) ≃ 2a

√
Q

π

(
1− (Qa2)

3

[
1 + 3x2ξ2

]
+

(Qa2)2

10

[
1 + 10x2ξ2 + 5x4ξ4

]
−

(Qa2)3

42

[
1 + 21x2ξ2 + 35x4ξ4 + 7x6ξ6

]
+ . . .

)
, (B.5)

where ξ = zW/az. By decreasing the aperture size (a), we ensure that xξ ≫ 1, leading to
the dominance of the final term within each square bracket, which results in the following
expression.

fE(x) ≃ 2a

√
Q(−zW )

π
exp

(
−Q(−zW )

z2Wx
2

z2

)
≃ 2a

√
−ik
2πzW

exp

(
i
kzW
2z2

x2
)
, (B.6)

and ΞE ≃ (kzW/2z
2)ρ2. Including this in Eq. 1.26 gives the transverse phase contribution

of Eq. 1.28.
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Appendix C

Derivation of the optical Bloch
equations for the three-Level Λ
System

Here I will work out the quantum system regarding our sample, which I model as a three-
level Λ system, driven by two external electrical fields; see Fig. 2.4 b). The Hamiltonian
of the system is

Ĥ = Ĥ0 + V̂ (r⃗, t) , (C.1)

were
Ĥ0 = h̄ωa|a⟩⟨a|+ h̄ωb|b⟩⟨b|+ h̄ωc|c⟩⟨c|, (C.2)

and the interaction term V̂ (r⃗, t) defined as

V̂ (r⃗, t) = −er⃗ · E⃗1(r⃗, t)− er⃗ · E⃗2(r⃗, t), (C.3)

which is the dipole interaction with two distinct fields E1 and E2, that are defined as

E⃗i(r⃗, t) = Eiξ⃗i cos (kiz − ωit+ ϕEi
) , (C.4)

where ξ⃗i is the polarization vector, for the moment I will not mind any effect related to
polarization. Without the interaction Hamiltonian the eigenstates of the system are just
|a⟩, |b⟩, |c⟩. I am interested in finding a state |Ψ(t)⟩ that fulfills the Schrödinger equation

ih̄
d

dt
|Ψ(t)⟩ = Ĥ|Ψ(t)⟩. (C.5)

By a standard procedure, let us propose that the state |Ψ(t)⟩ can be written as

|Ψ(t)⟩ =
∑
m

cm(t)e
−iωmt|m⟩, (C.6)

where the states |m⟩ are the eigenstates of Ĥ0 which are |a⟩, |b⟩ or |c⟩. Now the task is
to find equations for the coefficients cm(t), to do so, I substitute the previous equation
into the complete Schrödinger equation to obtain∑

m

ih̄ċm(t)e
−iωmt|m⟩+

∑
m

h̄ωmcm(t)e
−iωmt|m⟩ = (C.7)∑

m

h̄ωmcm(t)e
−iωmt|m⟩+

∑
m

cm(t)e
−iωmtV̂ (r⃗, t)|m⟩,
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which simplifies to ∑
m

ih̄ċm(t)e
−iωmt|m⟩ =

∑
m

cm(t)e
−iωmtV̂ (r⃗, t)|m⟩, (C.8)

taking the inner product with the basis state |n⟩ I obtain an expression for ċn(t)

ċn(t) = − i

h̄

∑
m

cm(t)e
−i(ωm−ωn)t⟨n|V̂ (r⃗, t)|m⟩. (C.9)

Let us analyze the ⟨n|V̂ (r⃗, t)|m⟩ terms; by rewriting them I obtain the following

⟨n|V̂ (r⃗, t)|m⟩ = −e
2∑

i=1

⟨n|r⃗ · E⃗i(r⃗, t)|m⟩. (C.10)

Now, let me explicitly write the terms on the right side of the equation to obtain

−e⟨n|r⃗ · E⃗i(r⃗, t)|m⟩ = −eEiξ⃗i · ⟨n|r⃗ cos (kiz − ωit+ ϕEi
) |m⟩. (C.11)

I will consider the standard dipolar approximation where kiz << 1 due to the wavelength
of the E.M. field being much larger than the size of the quantum system, so I approximate
the terms as

−e⟨n|r⃗ · E⃗i(r⃗, t)|m⟩ ≈ −eEi cos (−ωit+ ϕEi
) ξ⃗i · ⟨n|r⃗|m⟩. (C.12)

Now writing explicitly the term ⟨n|r⃗|m⟩

⟨n|r⃗|m⟩ =
∫
ψ∗
n(r⃗)r⃗ψm(r⃗)d

3r, (C.13)

if n = m then I have the product of an even square-integrable function with an odd
function, which is integrated in a symmetric interval, this set of conditions allows us to
obtain the result that such integral is zero; therefore, the only terms that contribute are
those that n ̸= m then the terms for the interaction Hamiltonian are approximately

−e⟨n|r⃗ · E⃗i(r⃗, t)|m⟩ ≈ −Ei cos (−ωit+ ϕEi
) ⟨n|eξ⃗i · r⃗|m⟩ (1− δnm) (C.14)

= −µnm,iEi cos (−ωit+ ϕEi
) (1− δnm),

where I introduced the dipole matrix element µnm,i = ⟨n|eξ⃗i · r⃗|m⟩. Having worked out
these expressions, I can write the differential equations for the coefficients cm(t)

ċa(t) = − i

h̄
cb(t)e

−i(ωb−ωa)t

(
2∑

i=1

−µab,iEi cos (−ωit+ ϕEi
)

)
(C.15)

− i

h̄
cc(t)e

−i(ωc−ωa)t

(
2∑

i=1

−µac,iEi cos (−ωit+ ϕEi
)

)
.

I can rewrite the previous expression as

ċa(t) = − i

2
cb(t)

(
Ω∗

ab,1e
i(ωab+ω1)t + Ωab,1e

i(ωab−ω1)t (C.16)

+Ω∗
ab,2e

i(ωab+ω2)t + Ωab,2e
i(ωab−ω2)t

)
− i

2
cc(t)

(
Ω∗

ac,1e
i(ωac+ω1)t + Ωac,1e

i(ωac−ω1)t

+Ω∗
ac,2e
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i(ωac−ω2)t

)
,
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where I have used the following definitions ωnm = ωn − ωm and the Rabi frequency
Ω∗

nm,i = −µnm,iEi

h̄
e−iϕEi . Using the rotating-wave approximation, meaning that the fast

oscillating terms average to zero, which are the exponentials whose argument is of the
form ωnm + ωi, I obtain the following

ċa(t) = − i

2
cb(t)

(
Ωab,1e

−iδab,1t + Ωab,2e
−iδab,2t

)
(C.17)

− i

2
cc(t)

(
Ωac,1e

−iδac,1t + Ωac,2e
−iδac,2t

)
where δnm,i = ωi − ωnm is the detuning of the field Ei with respect to the transition
between levels n,m. This is the differential equation for ċa(t) and we can observe that
both fields couple the levels a and b as well as the levels a and c. Using a similar procedure,
I can write the differential equation for ċb(t)

ċb(t) = − i

2
ca(t)

(
Ω∗
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i(ω1−ωab)t + Ωab,1e

−i(ω1+ωab)t (C.18)

+Ω∗
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− i

2
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−i(ω1+ωcb)t

Ω∗
bc,2e

i(ω2−ωcb)t + Ωbc,2e
−i(ω2+ωcb)t

)
,

and by using the rotating-wave approximation I obtain

ċb(t) = − i

2
ca(t)

(
Ω∗

ab,1e
i(ω1−ωab)t + Ω∗

ab,2e
i(ω2−ωab)t

)
(C.19)

− i

2
cc(t)

(
Ω∗

bc,1e
i(ω1−ωcb)t + Ω∗

bc,2e
i(ω2−ωcb)t

)
.

Now, let us analyze the terms that are factored with the coefficient cc(t), since I am
modeling a Λ system, the frequency difference ωcb = ωc − ωb (with ωc > ωb) is much
smaller than ωab or ωac (ωcb ≪ ωab, ωac), also, the frequency ω1 and ω2 of the fields E1

and E2 are of the order of magnitude of ωab and ωac, which makes the frequency difference
ωi − ωcb much greater than ωi − ωab or ωi − ωac (i = 1, 2) this means that the terms with
ωi−ωcb will oscillate much quicker which allows us vanish them by using the rotating wave
approximation. In addition, by analyzing the Rabi frequencies Ωcb,i = µcb,iEie

−iϕEi/h̄ and

explicitly writing the dipole matrix element µcb,i = ⟨c|eξ⃗i · r⃗|b⟩ since c and b are modeled
as hyperfine levels in atomic systems or rotational/vibrational in molecular systems, the
dipole matrix element will probably be very small when compared against the dipole
element µam,i. With all of these considerations I can then vanish the terms factored with
cc(t), doing so I obtain

ċb(t) = − i

2
ca(t)

(
Ω∗

ab,1e
iδab,1t + Ω∗

ab,2e
iδab,2t

)
, (C.20)

this basically means that the electric fields can not strongly drive a transition between
levels b and c, with similar arguments I can obtain then the differential equation for ċc(t)

ċc(t) = − i

2
ca(t)

(
Ω∗

ac,1e
iδac,1t + Ω∗

ac,2e
iδac,2t

)
. (C.21)

I have the differential equations for all of the coefficients; however, both fields can drive
the same transition, I would like that only the E1 field drives the a ↔ b transition and
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the E2 field drives the a ↔ c transition, in order to do so I can use the rotating-wave
approximation, therefore I impose that |δab,1| << |δab,2| so that even though the E2 field
can drive the a↔ b transition it is heavily suppressed by a fast oscillating term. Likewise,
I impose |δac,2| ≪ |δac,1|. If both of these conditions are satisfied, then I have the following
set of coupled differential equations

ċa(t) = − i

2
cb(t)Ωabe

−iδabt − i

2
cc(t)Ωace

−iδact, (C.22)

ċb(t) = − i

2
ca(t)Ω

∗
abe

iδabt,

ċc(t) = − i

2
ca(t)Ω

∗
ace

iδact,

with

Ωab = −µabE1

h̄
eiϕE1 , (C.23)

µab = ⟨a|eξ⃗1 · r⃗|b⟩,
δab = ω1 − ωab,

Ωac = −µacE2

h̄
eiϕE2 ,

µac = ⟨a|eξ⃗2 · r⃗|c⟩,
δac = ω2 − ωac.

Proceeding forward, I am not interested in solving exactly this set of equations, rather,
our focus will be then on obtaining the optical Bloch equations for this system, in order
to do so I have to calculate the density matrix for this system, by definition

ρ̂(t) = |Ψ(t)⟩⟨Ψ(t)|, (C.24)

and writing it in matrix form I obtain

ρmatrix =

cac∗a cac
∗
b cac

∗
c

cbc
∗
a cbc

∗
b cbc

∗
c

ccc
∗
a ccc

∗
b ccc

∗
c

 , (C.25)

whereby construction of the ρ matrix, the elements ρnm satisfy ρnm = ρ∗mn. To obtain
the optical Bloch equations, I must find the time evolution of these elements

d

dt
ρnm =

dcn
dt
c∗m + cn

dc∗m
dt

, (C.26)

beginning with elements ρaa, ρbb, and ρcc

d

dt
ρaa =

(
− i

2
cb(t)Ωabe

−iδabt − i

2
cc(t)Ωace

−iδact − 1

2
(γab + γac) ca

)
c∗a (C.27)

+ca

(
i

2
c∗b(t)Ω

∗
abe

iδabt +
i

2
c∗c(t)Ω

∗
ace

iδact − 1

2
(γab + γac) c

∗
a

)
,

where I have added extra terms as 1
2
(γab + γac) ca that represent spontaneous emission

from the a level considering two different decay rates γab and γac, the spontaneous emission
follows the equation

dca
dt

= −1

2
(γab + γac)ca, (C.28)
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with γnm = ω3
nmµ

2
nm/3πϵ0h̄c

3. A more in-depth explanation for spontaneous emission can
be found in the literature [49]. Rearranging the equation for dρaa/dt I obtain

dρaa
dt

= −(γab + γac)ρaa +
i

2
(ρ̃abΩ

∗
ab − ρ̃baΩab) +

i

2
(ρ̃acΩ

∗
ac − ρ̃caΩac) , (C.29)

with ρ̃ab = ρabe
iδabt and Ωba = Ω∗

ab. Now for the other elements

dρbb
dt

= γabρaa +
i

2
(ρ̃baΩab − ρ̃abΩ

∗
ab) , (C.30)

dρcc
dt

= γacρaa +
i

2
(ρ̃caΩac − ρ̃acΩ

∗
ac) , (C.31)

where again, due to spontaneous emission, I introduced the terms γabρaa and γacρaa to
conserve the population of the energy levels. Now for the coherece terms ρnm with n ̸= m

dρab
dt

=
dca(t)

dt
c∗b(t) + ca(t)

dc∗b(t)

dt
, (C.32)

dρab(t)

dt
=

(
− i

2
cb(t)Ωabe

−iδabt − i

2
cc(t)Ωace

−iδact − 1

2
(γab + γac) ca(t)

)
c∗b(t)

+ca(t)

(
i

2
c∗a(t)Ωabe

−iδabt

)
.

Simplifying this equation I obtain

dρab
dt

= −1

2
(γab + γac) ρab +

i

2
e−iδabt ((ρaa − ρbb) Ωab − ρ̃cbΩac) , (C.33)

where ρ̃cb = ρcbe
iδcbt and I have defined δcb = δab− δac. However, I would like to write this

equation as a function of ρ̃ab = ρabe
iδabt to simplify the time dependence, to do so let us

do the following

dρ̃ab
dt

=
d

dt

(
ρabe

iδabt
)
=
dρab
dt

eiδabt + iδabρabe
iδabt, (C.34)

and now I can substitute the expression for dρab/dt to obtain

dρ̃ab
dt

=

(
iδab −

1

2
(γab + γac)

)
ρ̃ab +

i

2
((ρaa − ρbb) Ωab − ρ̃cbΩac) . (C.35)

Likewise with a similar treatment, I obtain for dρ̃ac/dt

dρ̃ac
dt

=

(
iδac −

1

2
(γab + γac)

)
ρ̃ac +

i

2
((ρaa − ρcc) Ωac − ρ̃bcΩab) , (C.36)

and for dρ̃cb/dt I obtain

dρ̃cb
dt

= iδcbρ̃cb +
i

2
(ρ̃caΩab − ρ̃abΩ

∗
ac) . (C.37)

I have then obtained all of the optical Bloch equations for the system, I have for the
populations

dρaa
dt

= −(γab + γac)ρaa +
i

2
(ρ̃abΩ

∗
ab − ρ̃baΩab) +

i

2
(ρ̃acΩ

∗
ac − ρ̃caΩac) , (C.38)

dρbb
dt

= γabρaa +
i

2
(ρ̃baΩab − ρ̃abΩ

∗
ab) ,

dρcc
dt

= γacρaa +
i

2
(ρ̃caΩac − ρ̃acΩ

∗
ac) ,
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and for the coherences

dρ̃ab
dt

=

(
iδab −

1

2
(γab + γac)

)
ρ̃ab +

i

2
((ρaa − ρbb) Ωab − ρ̃cbΩac) , (C.39)

dρ̃ac
dt

=

(
iδac −

1

2
(γab + γac)

)
ρ̃ac +

i

2
((ρaa − ρcc) Ωac − ρ̃bcΩab) ,

dρ̃cb
dt

= iδcbρ̃cb +
i

2
(ρ̃caΩab − ρ̃abΩ

∗
ac) ,

where the complex conjugates of the time evolution of the coherences have to be consid-
ered to obtain all nine equations for each one of the elements of the density matrix.
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Appendix D

Approximations for the steady-state
of the optical Bloch equations of the
three-Level λ system.

We modeled the response of a three-level system driven with two lasers with frequencies
ω1 and ω2 as depicted in Fig. 2.4b). Each transition has a Rabi frequency Ωab and Ωac,
a resonant frequency ωab and ωac, a de-tuning δab = ω1 − ωab and δac = ω2 − ωac, a decay
rate γab and γac respectively, and a two-photon resonant frequency ωcb and detuning
δcb = δab − δac. The optical Bloch equations of this system are given by Eqs. C.38,
C.39. I obtained the steady-state solutions (ρ̇nm = 0) by entering them into Wolfram
Mathematica software along with the conservation of population ρaa + ρbb + ρcc = 1, and
then using the Solve command; next, I simplified the result of the command and obtained
the following expressions for the coherences.

ρab = −2δcbΩab|Ωac|2 (−2iγ2abδcb − 2iγabγacδcb (D.1)

+4γabδabδcb − γab|Ωac|2 − γac|Ωab|2) /D,
ρac = −2δcbΩac|Ωab|2 (−2iγ2acδcb − 2iγacγabδcb

+4γacδacδcb + γab|Ωac|2 + γac|Ωab|2) /D,
D = 4γab|Ωac|2δ2cb (4δ2ab + (γab + γac)

2) + 4γac|Ωab|2δ2cb (4δ2ac + (γab + γac)
2)

+8δcb (γacδac|Ωab|4 − γabδab|Ωac|4 + (γab + γac)|Ωab|2|Ωac|2δcb)
+|Ωab|2|Ωac|2 (|Ωab|2(γab + 2γac) + |Ωac|2(2γab + γac)) + γac|Ωab|6 + γab|Ωac|6.

The first approximation that I will consider for these solutions is around the two-
photon resonance, for that I will take the following relations, first the Rabi frequencies
are greater than the one- and two-photon detunings (|Ωnm| > δab, δab, δcb) as well as greater
than the decay rates (|Ωnm| > γnm), at the same time the one- and two-photon detunings
are greater than the decay rates (δab, δac, δcb > γnm) lastly the one-photon detunings are
of similar magnitude to the two-photon detunings (|δab|, |δac| ≈ |δcb|), with this relations
the terms of the form γ|Ω|2 of the term in parentheses on the numerator on Eq. D.1 are
the dominant ones and the terms of the form γ|Ω|6 on the denominator (D factor in Eq.
D.1) are the dominant ones, we discard then the other terms, and with this we obtain
the following approximation for the real part of the coherences around the two-photon
resonance.
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Re [ρab] ≃ 2δcbΩab|Ωac|2 (γac|Ωab|2 + γab|Ωac|2) /Dr, (D.2)

Re [ρac] ≃ −2δcbΩac|Ωab|2 (γac|Ωab|2 + γab|Ωac|2) /Dr,

Dr = |Ωab|2|Ωac|2(|Ωab|2 (γab + 2γac)

+|Ωac|2(2γab + γac)) + γac|Ωab|6 + γab|Ωac|6,

taking the difference of these expressions as shown in Eq.2.67 we obtain

Re

[
γab

ρab
Ωab

− γac
ρac
Ωac

]
=

2δcb (γac|Ωab|2 + γab|Ωac|2)
(|Ωab|2 + |Ωac|2)2

, (D.3)

which taking γab = γac = γ leads to Eq. 2.74. The next approximation that we are
interested in is far away from the two-photon resonance, for that I will consider that
the one- and two-photon detuning are of the same magnitude |δab|, |δac| ≈ |δcb| as well
as consider that the detuning is greater than the Rabi frequencies which themselves are
greater than the decay rates |δnm| > |Ωkl| > γpq, with these relations the terms of the
form γ|Ω|2δ2nmδ2cb on the denominator in Eq. D.1 (D term) are the dominant ones so
I will discard the other terms, as for the numerator in Eq. D.1 the terms of the form
γδnmδcb inside the parentheses are the dominant ones, so I will discard the other terms,
with these considerations in mind, I obtain the following approximation far away from
the two-photon resonance

Re [ρab] ≃ − γabΩab|Ωac|2δab
2 (γab|Ωac|2δ2ab + γac|Ωab|2δ2ac)

, (D.4)

Re [ρac] ≃ − γacΩac|Ωab|2δac
2 (γab|Ωac|2δ2ab + γac|Ωab|2δ2ac)

.

As shown in Fig.2.7, we observe that by keeping fixed one of the detunings (δac) and
varying the other one (δab) the width of the envelope of the coherences is proportional
to the fixed detuning instead of the Rabi frequecy Ω. By taking γab = γac = γ and
|Ωab|2 = |Ωac|2 = |Ω|2 in Eq. D.4 we obtain

Re

[
ρab
Ωab

]
≃ − δab

2 (δ2ab + δ2ac)
,

Re

[
ρac
Ωac

]
≃ − δac

2 (δ2ab + δ2ac)
, (D.5)

where we can see from the expression for ρac/Ωac that the FWHM happens when δab = δac
as it can be seen in Fig. 2.5.

These two limit cases give some insight into the dependence of the signal with external
experimental parameters, however none of them can be used in order to extract informa-
tion about a change of the two bottom levels, particularly the detuning δcb, one might
be tempted to use the near-two-photon resonance approximation (Eq. D.3) but there are
technical limits to it, so using it is not a viable option. One way we solve this problem is
by making two measurements at different powers (high H and low L powers) and taking
the difference of the normalized signals with respect to the power, so in this way the sig-
nal amplitude is independent of the power. I require a different approximation of the full
solution for this measurement procedure; this approximation is still off-resonance with
the two-photon transition but close enough so that some of the information about it is
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still present in the expressión. For this approximation I will consider that the one- and
two-photon detunings are of similar magnitude |δab|, |δac| ≈ |δcb|, the Rabi frequencies
are also of similar magnitude to the detunings |Ωnm| ≈ δkl, and the detunings and Rabi
frequencies are greater than the decay rates |δkl|, |Ωnm| > γpq, with these relations the
only terms that I discard of Eq. D.1 are those of the form γ3|Ω|2δ2cb in the denominator
(D factor) and in the numerator the terms of the form γ2δcb inside the parentheses, which
will vanish anyway since we are taking the real part. The expressions for the coherences
under these approximations are

Re [ρab] ≃ −2δcbΩab|Ωac|2 (4γabδabδcb − γac|Ωab|2 − γab|Ωac|2) /Dd, (D.6)

Re [ρac] ≃ −2δcbΩac|Ωab|2 (4γacδacδcb + γac|Ωab|2 + γab|Ωac|2) /Dd,

Dd = 16γac|Ωab|2δ2acδ2cb + 16γab|Ωac|2δ2abδ2cb
+8δcb (γacδac|Ωab|4 − γabδab|Ωac|4 + (γab + γac)δcb|Ωab|2|Ωac|2)

+|Ωab|2|Ωac|2 (|Ωab|2(γab + 2γac) + |Ωac|2(2γab + γac)) + γac|Ωab|6 + γab|Ωac|6.

Now for these expressions, I will take the difference between the normalized coherences
with respect to the Rabi frequency (Re (ρab/Ωab − ρac/Ωac)) and introduce a new factor
of the form |Ω|2/δ2cb = x. Writing the difference of the normalized coherences of Eq. D.6
using this new factor and only keeping the linear terms of it, I obtain

Re

[
ρab
Ωab

− ρac
Ωac

]
≈ 4(bδac − cδab) + xδcb(1 + c)(b+ c)

4 (2(bδ2ac + cδ2ab) + xδcb(bδac − c2δab + (1 + b)cδcb))
, (D.7)

where c = |Ωac|2/|Ωab|2 and b = γac/γab, I can rewrite and approximate this previous
expression as

Re

[
ρab
Ωab

− ρac
Ωac

]
≈ 1

4

a+ bx

c+ dx
≈ 1

4

(
a

c
+
x(bc− ad)

c2

)
, (D.8)

with

a = 4(bδac − cδab),

b = δcb(1 + c)(b+ c),

c = 2(bδ2ac + cδ2ab),

d = δcb(bδac − c2δab + (1 + b)cδcb).

Considering that x ≪ 1 I can discard the linear term in x on Eq. D.8, and by rewriting
the remaining term I obtain

Re

[
ρab
Ωab

− ρac
Ωac

]
≈ a

4c
=

γac|Ωab|2δac − γab|Ωac|2δab
2 (γac|Ωab|2δ2ac + γab|Ωac|2δ2ab)

, (D.9)

which is the same as taking the difference of the normalized coherences from Eq. D.4.
This previous expression is the signal for low power L, for high power H we need to take
the next linear term in x which is approximately

Re

[
ρab
Ωab

− ρac
Ωac

]
≈ a

4c
+
x(bx− ad)

c2
≈ γac|Ωab|2δac − γab|Ωac|2δab

2 (γac|Ωab|2δ2ac + γab|Ωac|2δ2ab)
(D.10)

+
(|Ωab|2 + |Ωac|2) (γac|Ωab|2 + γab|Ωac|2)

8δcb (γac|Ωab|2δ2ac + γab|Ωac|2δ2ab)
,

Taking the difference between the signal at high H and low L power, but still with
δcb > Ω we obtain

65



Re
[
γab

ρab
Ωab

− γac
ρac
Ωac

]∣∣∣H
L
=

(γac|Ωab,H|2+γab|Ωac,H|2)
2

8δcb(γac|Ωab,H|2δ2ac+γab|Ωac,H|2δ2ab)
, (D.11)

The constant term vanishes because I considered a proportional increase in power, mean-
ing that the Rabi frequencies for high power can be expressed as the Rabi frequencies
for low power multiplied by a scaling factor (|ΩH| = α|ΩL|). This expression ends up
depending only on the high power Rabi frequency (Ωnm,H). Taking γab = γac = γ gives
Eq. 2.76. I would like to find now the width and amplitude of the two-photon feature as
it would appear in the signal Eq. 2.68 which can be visualized in Fig. 2.9. One can infer
from the graph that the two-photon feature increases in width as the Rabi frequency
increases. To estimate the width dependence, I look for the maximum and minimum
points around the two-photon resonance, this means searching for the values of δcb that
fulfill the following equation

d

dδcb
Re

[
γab

ρab
Ωab

− γac
ρac
Ωac

]
= 0. (D.12)

Using the same approximation that leads to Eq. D.6 I can write the difference of the
coherences as

Re

[
γab

ρab
Ωab

− γac
ρac
Ωac

]
≈ (D.13)

2γ2|Ω|2δcb (|Ω|2(b+ c)2 − 4δcb((c− b2)δac + cδcb))

16γ|Ω|2δ2cb(bδ2ac + cδ2ab) + 8γ|Ω|2δcb((b− c2)δac + δcbc(1 + b− c)) + γ|Ω|6(c+ 1)2(b+ c)
,

with b = γac/γab, c = |Ωac|2/|Ωab|2 and γab = γ, |Ωab| = |Ω|. Next, I consider that
c− b2 ≈ 0 and c2 − b ≈ 0 meaning that the Rabi frequencies are of similar value as well
as the decay rates. I will also consider that the one-photon detunings are larger than
the Rabi frequency (δ2 > |Ω|2), with these considerations I can approximate the previous
expression by

Re

[
γab

ρab
Ωab

− γac
ρac
Ωac

]
≈ 2γδcb (|Ω|2(b+ c)2 − 4δ2cb)

16δ2cb(bδ
2
ac + cδ2ab) + |Ω|4(c+ 1)2(b+ c)

,

Then by deriving this expression and finding the maximum and minimum I obtain the
following values for δcb,max and δcb,min

δcb,max =
1

4
(|Ωab|2 + |Ωac|2)

√
γac|Ωab|2 + γab|Ωac|2

γac|Ωab|2δ2ac + γab|Ωac|2δ2ab
, (D.14)

δcb,min = −1

4
(|Ωab|2 + |Ωac|2)

√
γac|Ωab|2 + γab|Ωac|2

γac|Ωab|2δ2ac + γab|Ωac|2δ2ab
. (D.15)

Now I can calculate the width of the two-photon feature, which gives

σδ = δcb,max − δcb,min ≃ 1

2

(
|Ωab|2 + |Ωac|2

)√ γac|Ωab|2 + γab|Ωac|2
γac|Ωab|2δ2ac + γab|Ωac|2δ2ab

. (D.16)

Taking γac = γab, |Ωab| = |Ωac| and similar one photon detunings δab ≃ δac the signal
difference between the two points of the width is
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Re

[
γab

ρab
Ωab

− γac
ρac
Ωac

]∣∣∣∣δcb,max

δcb,min

≃ γ

2
√
δ2

− 3γ|Ω|2

16
√
δ2

3 , (D.17)

and the phase difference change between the maximum and minimum is approximately
given by

(ϕ1 − ϕ2)|
δcb,max

δcb,min
= OD× Re

[
γab

ρab
Ωab

− γac
ρac
Ωac

]∣∣∣δcb,max

δcb,min

≃ OD γ
2|δ| , (D.18)

with OD = Nσl the optical density.
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