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than an academic advisor. His guidance, dedication, and unwavering confidence in my work were
fundamental at every stage of this project. I am profoundly grateful for his constant availability,
regardless of the day or time. No matter how many times I asked the same question, he always
responded with patience, kindness, and often with enthusiasm—as if explaining was his way of
celebrating learning. He continuously sought new ways to help me understand, always making
sure the concepts were truly clear. His commitment, generosity, and human warmth have left a
lasting impact on both my academic journey and personal growth.

I am also thankful to Dr. Guillermo Iván Guerro Garcı́a for allowing me to pursue my doc-
toral studies under his supervision. For providing technical resources that were essential to my
development. His willingness to share computational resources greatly accelerated my progress,
and the learning resources he provided significantly contributed to deepening my understanding of
programming.

To Laboratorio Nacional de Ingenierı́a de la Materia Fuera de Equilibrio (LANIMFE), thank
you for granting me a dedicated workspace, which was essential for carrying out my project effec-
tively.

To my mother, with all my love and gratitude—none of this would have been possible without
you. Thank you for your endless sacrifices, your words of encouragement, your unconditional
support, and for believing in me even during the moments when I doubted myself. You are the
reason I never gave up. This achievement is as much yours as it is mine.

Finally, to my wife, thank you for your unwavering support, patience, and love throughout
this journey. Your presence has been a source of strength and balance during this demanding yet
rewarding stage of my life.

5



Resumen

Los lı́quidos iónicos (ILs) a temperatura ambiente son sustancias formadas completamente por
iones, usualmente grandes cationes orgánicos combinados con aniones orgánicos o inorgánicos,
con puntos de fusión por debajo de 100 °C. Desde el primer IL reportado en 1914, estos com-
puestos han sido objeto de amplia investigación debido a sus propiedades fı́sico-quı́micas únicas,
como baja volatilidad, alta conductividad iónica y estabilidad térmica, ası́ como su gran diversidad
estructural. Esta tesis evalúa la validez de un marco teórico basado en la ecuación de Langevin gen-
eralizada auto-consistente (SCGLE) aplicado al modelo primitivo de lı́quidos iónicos, comparando
sus predicciones con simulaciones de dinámica molecular de todos los átomos.

Un aspecto clave es el comportamiento vı́treo que presentan los ILs a temperatura ambiente,
incluyendo la aparición de estados parcialmente arrestados donde un tipo de ion queda inmovi-
lizado mientras el otro permanece móvil, un fenómeno influenciado por la asimetrı́a de tamaño y
carga entre iones. Estos estados son similares a los observados en materiales superiónicos usados
en baterı́as.

Se realizaron simulaciones moleculares en una serie de ILs basados en imidazolium con el
anión tetrafluoroborato, para estudiar cómo la flexibilidad de los cationes afecta sus propiedades
estructurales y dinámicas. En particular, se observa que en el sistema EMI+BF−

4 el anión queda
inmovilizado mientras el catión permanece fluido, validando predicciones del modelo teórico. Este
trabajo busca avanzar en la comprensión fundamental del comportamiento dinámico de lı́quidos
iónicos y su transición vı́trea, con potenciales aplicaciones en materiales conductores a temperatura
ambiente.
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Abstract

Room-temperature ionic liquids (ILs) are substances composed entirely of ions, typically large
organic cations paired with organic or inorganic anions, with melting points below 100 °C. Since
the first reported IL in 1914, they have been extensively studied due to their unique physicochemical
properties such as low volatility, high ionic conductivity, and thermal stability, as well as their
vast structural diversity. This thesis evaluates the validity of a theoretical framework based on the
Self-Consistent Generalized Langevin Equation (SCGLE) applied to the primitive model of ionic
liquids, by comparing its predictions with all-atom molecular dynamics simulations.

A key feature of ILs is their glassy behavior at room temperature, including the presence of
partially arrested states where one ion species becomes immobilized while the other remains mo-
bile, a phenomenon driven by size and charge asymmetry between ions. Such states resemble those
observed in superionic materials used in battery technologies.

Molecular dynamics simulations were performed on a series of imidazolium-based ILs with
the tetrafluoroborate anion to investigate the influence of cation flexibility on their structural and
dynamic properties. In particular, the EMI+BF−

4 system exhibits immobilization of the anion while
the cation remains fluid, confirming theoretical model predictions. This work aims to deepen the
fundamental understanding of ionic liquids’ dynamic behavior and glass transition, with potential
applications in room-temperature conductive materials.
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Chapter 1

Introduction

Room-temperature molten salts, also known as ionic liquids (ILs), are substances composed en-
tirely of ions. They typically consist of large organic cations paired with organic or inorganic an-
ions and have a melting point below 100 °C. The first IL, ethyl ammonium nitrate, was reported by
Paul Walden in 1914 [1]. Since then, ILs have emerged as a significant field of scientific research,
leading to extensive experimental, theoretical, and simulation studies aimed at understanding their
physical and chemical properties [1]. Indeed, several multidisciplinary studies on ILs are emerging,
including chemistry, materials science, chemical engineering, and environmental science, and they
have also become a very active field due to their promising applications in the industry [2, 3].

Some of the physicochemical properties of ILs are non-volatile, non-flammable, thermally sta-
ble and with high ionic conductivity. The vast number of possible cation-anion combinations that
qualify as ILs results in a wide range of behaviors. As a consequence, ILs have been categorized
into various types, including room-temperature ionic liquids (RTILs), task-specific ionic liquids
(TSILs), polyionic liquids (PILs), and supported ionic liquid membranes (SILMs), the latter in-
corporating IL composites supported on metal-organic frameworks (MOFs) [1]. It is important to
note that deep eutectic solvents (DESs) are not discussed in this thematic issue since DESs and
ILs belong to distinct solvent families [1]. However, despite the diversity of ILs, many open ques-
tions remain unanswered in this field. Despite the intense research on the topic, the complexity
of ILs represents a great challenge from the fundamental theoretical point of view since most of
our knowledge of ILs is due to experimental and computational simulation work. Some years
ago, a theoretical framework was developed by Farias-Anguiano and co-workers [4] by combining
the Ornstein-Zernike solution for the primitive model of ionic liquids under the mean-spherical
approximation (MSA) with the Self-Consistent Generalized Langevin Equation (SCGLE) theory
for dynamical properties and dynamic arrest. This thesis aims to probe the validity limits of the
previously mentioned theoretical framework by comparing its predictions with all-atom molecular
dynamics simulations of model ILs.
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An important characteristic of ILs is that they possess a glassy behaviour at room temperatures
[5]. Especially for this feature, the theoretical framework based on the SCGLE theory, let us
refer it as the Primitive model-SCGLE (PM-SCGLE) framework, is useful leading to interesting
predictions about the glassy dynamics and arrested states of ILs [6]. The most important prediction
obtained from PM-SCGLE is [4, 6] the prediction of partially-arrested states, where one of the
ions becomes arrested while the other ions are able to diffuse. These domains of mixed states are
associated with the size and charge asymmetries between ions.

This type of partially arrested state has been observed in materials classified as superionic con-
ductors [9]. Both crystalline and glassy superionic conductors have been extensively used in battery
technology since the 1980s [10]. However, these materials often have highly complex composi-
tions, making direct comparisons with the theoretical framework of SCGLE challenging. Interest-
ingly, ILs exhibit glassy behavior at room temperature, making them more suitable for theoretical
predictions [11, 12].

The glass transition in ionic liquids is a phenomenon of great interest due to its fundamental
and applied implications. Unlike conventional liquids, ionic liquids exhibit a strong correlation be-
tween electrostatic interactions and relaxation dynamics, leading to complex behaviors during their
transition to the glassy state. In this regard, the glass transition in ILs is characterized by the emer-
gence of heterogeneous dynamics, where some ions become trapped in a structurally rigid matrix
while others retain a certain degree of mobility. This mixed behavior is crucial for applications in
energy storage and electronics, as it allows fine-tuning of properties such as ionic conductivity and
thermal stability in advanced devices [13, 14].

From a theoretical perspective, understanding the glass transition in ILs remains a challenge,
as these systems exhibit a unique combination of long-range interactions and structural frustration.
In particular, the presence of asymmetry in size and charge between cations and anions influences
the formation of partially arrested states, a feature that distinguishes them from other conventional
glassy materials. Molecular dynamics simulations have proven to be valuable tools for exploring
these phenomena at a microscopic level, allowing for an analysis of the relationship between local
structure and ion dynamics. By comparing these simulations with theoretical predictions based on
SCGLE, it is possible to assess the extent to which a simplified model can capture the richness of
behaviors observed in highly asymmetric ILs [14].

The interest in the glass transition of ionic liquids is not limited to theoretical research but also
has significant technological implications. In the development of materials for batteries, superca-
pacitors, and electrochemical devices, the ability to modulate ionic mobility through control of the
glass transition is a key factor. In particular, the possibility of designing ILs with partially arrested
states could open new avenues for the development of electrolytes with optimized properties, com-
bining high conductivity with mechanical stability. Thus, a detailed exploration of the relationship
between structure, dynamics, and the glass transition in ILs not only contributes to advancing fun-
damental knowledge but also has the potential to significantly impact the design of novel functional
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materials [15].
In the present work, we present a comprehensive comparison between an imidazolium-based

ILs, 1-Ethyl-3Methyl-Imidazolium tetrafluoroborate (EMI+BF−
4 ), 1-Butyl-3Methyl-Imidazolium

tetrafluoroborate (BMI+BF−
4 ), 1-Hexyl-3Methyl-Imidazolium tetrafluoroborate (HMI+BF−

4 ), 1-
Octyl -3Methyl-Imidazolium tetrafluoroborate (OMI+BF−

4 ) , and 1-Decyl-3Methyl-Imidazolium
tetrafluoroborate (DMI+BF−

4 ). The anion tetrafluoroborate (BF−
4 ) was chosen because we want to

have a very rigid anion which permits to study the influence of the flexibility of the cations. We
have conducted molecular dynamics (MD) simulations to investigate the structural and dynamical
properties of these ILs using an all-atom molecular dynamics approach. Additionally, we analyze
the glassy behavior of the described systems, particularly the EMI+BF−

4 system, where the emer-
gence of partially arrested states has been observed. In this state, the small anion (BF−

4 ) becomes
immobilized while the large cation (EMI+) remains fluid [7]. Therefore, this project aims to ex-
plore the existence of partially arrested states in ILs, which could pave the way for the development
of novel conductive materials operating near room temperature.

The presented work consists of a comprehensive comparison between the most important pre-
dictions of the Self-Consistent Generalized Langevin Equation (SCGLE) theory applied to the
Primitive Model (PM) of ionic liquids and the overall behavior observed using all-atom molecular
dynamics (MD) simulations of highly-asymmetric room temperature ionic liquids (RTILs), based
on imidazolium. We are trying to probe the limits of validity of our simple model based on the
PM, which implies the risky assumption of considering the RTILs as charged hard spheres. Even
though quite important effects were ignored, we consider that the long-range nature of coulombic
interactions should dominate the overall behavior of such systems.

This work is organized as follows: Chapter 2 summarizes the most important methods and pro-
cedures. Chapter 3 discusses the results obtained from all-atom molecular dynamics simulations of
selected ILs. Next, we review the theoretical predictions of the PM-SCGLE framework for systems
that mimic the ILs of interest. The final chapters contain the main perspectives and conclusions for
further research.
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Chapter 2

Scope, objectives, methods, and procedures.

The main aim of this chapter is the description of the thesis’ fundamental objectives, the detailed
description of the strategy necessary to achieve the goals and a brief review of the essential method-
ology aspects. A detailed review of the computational methods can be consulted in appendix A.

2.1 Main purpose and objectives
In 2009, L.E. Sánchez-Dı́az and co-workers [6] presented a study using the self-consistent general-
ized Langevin equation (SCGLE) theory of dynamic arrest to show the ergodic-nonergodic phase
diagram of a classical mixture of charged hard spheres. Later, in 2016, Pedro E. Ramı́rez-González
and co-workers [5], inspired by the work of Sánchez-Dı́az, performed a molecular dynamics study
where the existence of partially arrested states in imidazolium ionic liquids was shown. Recently,
in 2022, Mariana E. Farias et. al., [4] a theoretical framework was incorporated to describe the
structural and dynamical properties of ionic liquids. This framework is based on the SCGLE the-
ory which predicts the dynamically arrested states of several physical systems, to simple models
of charge and size asymmetric ionic liquids. Such a theoretical framework was consistent with
the previous results of Ramı́rez-González and co-workers and with experimental measurements of
superionic conductors based on phosphates. The advantage of this theoretical framework is that it
is not limited to RTILs and can be applied to a wide range of ionic liquids with size and/or charge
asymmetries. Indeed, the main objective of this work is to test in detail the predictions of the SC-
GLE using the framework developed for a larger range of size asymmetries. Hence, our overall
goal is to explore the validity of the theoretical framework (from now on, let us call the Frame-
work developed by Farias-Anguiano as PM-SCGLE) by comparing them with all-atom molecular
dynamics simulations of imidazolium-based ionic liquids.

The specific objectives are:
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• Implement molecular dynamics models for imidazolium-based ionic liquids.

• Studying the glassy behavior of ILs using all-atom molecular dynamics simulations.

• Implement the PM-SCGLE model for the asymmetries of simulated systems.

• Comparing the molecular dynamics results with the theoretical predictions.

• Explore the limits of validity of the PM-SCGLE framework.

2.2 Thesis road-map
In this section, we present the thesis’ overall structure:

• Chapter 3 contains the results obtained from all-atom molecular dynamics simulations of
imidazolium-based ionic liquids.

• In Chapter 4, the results obtained using the PM-SCGLE framework for the same size asym-
metries used in the simulations are shown.

• Chapter 5 details the comparisons between the simulations and the PM-SCGLE framework.

• Chapter 6 the perspectives are discussed.

• Chapter 7 shows the conclusions.

2.3 Methodological aspects

2.3.1 Simulation details
The systems simulated throughout this thesis are those that have an imidazolium base, this means
that they share the imidazolium residue (head) and differ in one of the alkyl chains length (tail). As
shown in Fig. 2.1, the imidazolium residue is the pentagonal arrangement of atoms and the alkyl tail
is the chain formed by CH2 groups. The specific systems studied are the following: Ethyl-Methyl-
Imidazolium (EMI+ BF−

4 ), Bthyl-Methyl-Imidazolium Tetraflourborate (BMI+ BF−
4 ), Exyl-Methyl-

Imidazolium Tetraflourborate (HMI+ BF−
4 ), Octyl-Methyl-Imidazolium Tetraflourborate (OMI+

BF−
4 ), and Decyl-Methyl-Imidazolium Tetraflourborate (DMI+ BF−

4 ).
The force field parameters for EMI+, BMI+, HMI+, OMI+, and DMI+ were obtained from

reference [25], which relies on the AMBER force field [26]. The force field for BF−
4 was developed
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Figure 2.1: Molecular structures of the ions constituting the ILs studied in this work.

by J. de Andrade and collaborators [27]. The AMBER force field was applied to model both bonded
and nonbonded interactions of the ions.

All simulations were conducted using the Gromacs 2022.2 molecular dynamics (MD) simu-
lation package [16, 17]. Periodic boundary conditions (PBC) were imposed in all three spatial
dimensions within a cubic simulation box, and a 1.6 nm cutoff was set for nonbonded interac-
tions. Long-range electrostatic interactions [19, 20] were handled using the particle mesh Ewald
(PME) method [29]. Each of the five systems consisted of 1024 ion pairs. In our study, we se-
lected T = 500K as one of the target temperatures, as experimental results have shown that this
temperature is significantly above the melting point of EMI+BF−

4 [7].

2.3.2 Main elements of PM-SCGLE framework
The PM-SCGLE framework was developed with the aim of consolidating the understanding of the
dynamical properties and arrested states of ionic liquids, using the SCGLE theory. This framework
is used to predict the dynamical properties and arrest diagrams of ionic liquids, including charge
and size asymmetric systems.

The asymptotic solution of the SCGLE theory is employed to compute dynamical arrest dia-
grams. Moreover, a dynamic formulation of the theory for any correlation time t can be imple-
mented within the same system, offering additional insights into the Mean Squared Displacement
behavior of all ionic species. Figure 2.2 presents the flowchart illustrating the theory’s implemen-
tation (for a more detailed explanation, refer to [4]).

13



Figure 2.2: The flowchart provides a summary of the SCGLE theory implementation. An analytical
solution for the structure factor is derived using specified values of reduced temperature, packing
fraction, and charge. These parameters are then input into the SCGLE equations to obtain numerical
solutions. The resulting outputs include various relevant dynamical properties [4].
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Chapter 3

Molecular Dynamics Simulations Results

This chapter presents our main results obtained from all-atom molecular dynamics simulations of
model systems of ILs. As being described previously, the main aim of this thesis is to probe the
reliability and the validity limits of the SCGLE theory predictions.

In order to achieve the goal, we started by reproducing of previous results contained in refer-
ences [5, 4], namely, the existence of partially-arrested states in which only one of the ions (cations
or anions) are dynamically arrested while the others are free to diffuse. Such partially-arrested
states depend on the charge and size asymmetries between ions. For example, size-asymmetry
leads to a pair of partially arrested regions, one at high temperatures and densities, while the other
is found at low temperatures and densities [4]. Such a prediction was proven true after the work
of Ramirez-Gonzalez et. al. [5] where the glassy-behavior of Ethyl-Methyl-Imidazolium tetrafluo-
roborate (EMI-BF4) IL was studied with all-atom MD simulations obtaining qualitative agreement
with the theoretical predictions.

Let us remark that previous results were obtained within homogeneous states. However, during
the development of this work, different routes which lead to homogeneous and inhomogeneous
states were found. Aiming to show a comprehensive picture of the system’s behavior we started
with production runs at NPT conditions in order to ensure homogeneity and being able to reproduce
previous results. On the other hand, we used NVT production runs in order to study inhomogeneous
systems.

3.1 Homogeneous systems

3.1.1 EMI+BF−
4

In this section we are comparing the current simulation results for (EMI+BF−
4 ) at 500°K obtained

with Gromacs 2022.2 with the previous results obtained by Ramı́rez - González and co-workers [7].
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The main aim of doing this comparison is to corroborate that all the parameters have been adapted
correctly, allowing the reproducibility of the simulation results. An schematic representation of the
EMI+BF−

4 is shown in Figure 3.1.

(a) EMI+. (b) BF−
4 .

Figure 3.1: Schematic representations of the sizes of the ions studied by MD simulation. Repro-
duced from [60], with the permission of AIP Publishing.

Structural properties

The Radial Distribution Functions (RDFs) of anions and cations around their center of mass are
calculated to examine the structural correlations between the ions. In Figure 3.2(b) the cation-
cation (black line), the cation-anion (orange line) and anion-anion (red line) RDFs are shown at
500°K. Here, the center of mass of the cation is used and the same for the anion. As shown in
Figure 3.2, our results for RDFs are generally consistent with the structural results obtained by
Ramı́rez-González et. al. [7] since we can see that the peaks are the same. The RDFs exhibit well-
defined features and distinct oscillatory patterns, indicating spatial correlations among the species.
Specifically, the first peak in the cation-cation RDF appears at r = 0.76 nm, while the first peak in
the anion-anion RDF is at r = 0.69 nm, and the first peak in the cation-anion RDF is at r = 0.5
nm. These peaks represent the average positions of the first neighboring ions. From Figure 3.2(b),
we observe that the first peaks occur at r = (σc + σa)/2, where σ denotes the ionic diameter, with
the subscript c referring to cations (positively charged species) and a to anions (negatively charged
species).

The BF−
4 anion has a tetrahedral structure with an average size of approximately 0.20 nm, while

the EMI+BF−
4 cation has an average size (measured from methyl to ethyl) of around 0.69 nm (see

Fig. 3.1). Notably, the first peak of the anion-anion RDF is more than three times the size of σa,
a characteristic feature of a Wigner glass, where the average distance between its components is
significantly large [8]. Our findings suggest that cations exhibit low efficiency in screening the
charge of anions due to the distribution of their charge over a larger surface. As a result, the anion-
anion repulsion is stronger than the cation-cation repulsion.
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Figure 3.2 shows the RDFs for T=300°K (3.2(a)), T=500°K (3.2(b)), and T=700°K (3.2(c)),
where g+−(r) represents EMI+BF−

4 , g++(r) is EMI+EMI+, and g−−(r) is BF−
4 BF−

4 . The primary
peak of g++(r) is observed at r = 0.76 nm, while the first peak of g+−(r) is located around 0.5
nm. Both peaks exhibit minimal dependence on temperature. Conversely, the first peak of g−−(r)
shifts from 0.74 nm to 0.63 nm as the temperature decreases.

To demonstrate that the results are the same, it was decided to digitize the data from the article
by Ramı́rez-González et. al [7]. The following figures present the results of the digitized data
alongside the obtained data.

(a) Current results and results by Ramı́rez
González et. al., at 300°K.

(b) Current results and results by Ramı́rez
González et. al., at 500°K.

(c) Current results and results by Ramı́rez
González et. al., at 700°K.

Figure 3.2: Radial distribution functions for the system EMI+BF−
4 at P = 1 atm and different

temperatures.

With this, it is demonstrated that they are indeed the same, Figures 3.2 present the results we
obtained along with the digitized results. In Figure 3.2(b), the solid lines in black, red, and orange
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(EMI+ EMI+, BF−
4 BF−

4 , and EMI+ BF−
4 , respectively) correspond to the results recently obtained,

along with the digitized data. We have demonstrated that we have obtained the same results, even
though we changed the final production run.

Mean Squared Displacement

The self-diffusion coefficients of the cation and anion are calculated from their Mean Squared
Displacements (MSDs). The cation EMI+, despite being heavier than the anion BF−

4 , diffuses
faster, which is observed by Ramı́rez-González and co-workers [5]. The calculated MSDs at T =
500 °K for the EMI+BF−

4 system are presented in Figure 3.3, and show the results we obtained
with Gromacs 2022.2 and the results from [7]. In this case, Figure 3.3 shows similar data, we did
not obtain the same numerical result, but they are very similar, so we obtain the same behavior in
which it is observed that the BF−

4 anion has a slightly smaller MSD slope than the EMI+ cation.
Once again, we digitized the data and obtained something very similar; however, this time we

did not achieve the exact quantitative result. Nevertheless, we can observe that the behavior remains
the same, where the molecule that diffuses faster is the largest one. An important note is that the
reason we did not obtain the same quantitative value is that Gromacs is constantly being optimized,
which causes slight differences in the results. However, the key point is that we observe the same
behavior.

Figure 3.3: The current results for MSD at 500 K compared with the results from Ramirez et al.,
[7]

In Fig. 3.4 shows the MSD results obtained from the MD simulation. We have chosen three
representative temperatures, i.e., T=700, 500, and 300 K for all systems, to illustrate key concepts.
The solid lines are for cations, and the dashed lines are for anions.

In the diffusive regime (at large times), interactions become dominant, leading to a slower
diffusion of BF4 compared to EMI+. Regardless of temperature, the cation consistently exhibits
faster diffusion.
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In addition, it was also shown that the slope decreases as the temperature decreases.
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Figure 3.4: The MSD of EMI+ BF4 is evaluated at three different temperatures: T = 700, 500, and
300 K. Solid lines represent cations, whereas dashed lines correspond to anions.

As mentioned previously, NPT conditions ensure homogeneous states which are similar to
reference results. Fig. 3.5(a) shows representative configurations obtained by our results, and
Ramirez-Gonzalez [5] Fig. 3.5(b) for EMI-BF4 IL.

In Figures 3.5(a), and 3.5(b) we observe the comparisons of the final structures of the production
run, where we can see that we obtain very similar results to those obtained previously [5]. The
Figure 3.5(a) shows the results we obtained with the gromacs 2022.2 version and the Figure 3.5(b)
shows what was obtained by Ramı́rez-González et al [5].

(a) Current results with Gromacs 2022.2. (b) Results from 2016.

Figure 3.5: Comparisons of the final structure obtained with gromacs 2022.2 on the left side and
final structure of 2016 on the right side.
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Since we obtained the expected results we are ready to carry out the simulations of the other sys-
tems, carrying out the correct procedure, for later analyze the structural and dynamical properties
of the other systems.

It is worth mentioning that for systems EMI+BF−
4 and BMI+BF−

4 the production runs were 10
ns while for the systems HMI+BF−

4 , OMI+BF−
4 , and DMI+BF−

4 the production runs were 100 ns
since the chains are longer and we want to obtain reliable results for dynamical properties.

3.1.2 BMI+BF−
4

In this section we are going to show the results for the system BMI+ BF−
4 . An schematic represen-

tation of this system, and size is shown in Figure 3.6.

(a) BMI+. (b) BF−
4 .

Figure 3.6: Schematic representations of the sizes of the ions studied by MD simulation.

Radial Distribution Function

The RDFs of anions and cations around their center of mass are calculated to examine the structural
correlations between the ions. The figure 3.8 shows the RDFs between the cation-cation, anion-
anion, and cation-anion at 500 °K. The observed well-defined patterns and distinct oscillations
indicate the presence of spatial correlations between these species. The first peak of the cation-
cation is located at r = 0.78 nm, while for anion-anion is at r = 0.74 and cation-anion is at
r = 0.48. As in the system EMI+BF−

4 we can note that the first peak of anion-anion is more than
three times larger than σa, and once again we can see the behavior of a Wigner glass.

Figure 3.8 presents the RDFs for three temperatures: T = 300 K (blue), T = 500 K (green), and
T = 700 K (red). The dashed, dashed-dotted, and solid lines correspond to g+−(r) (BMI+BF−

4 ),
g++(r) (BMI+BMI+), and g−−(r) (BF−

4 BF−
4 ), respectively. The peak of g++(r) remains at r =

0.76 nm, while g+−(r) is positioned around 0.5 nm, both exhibiting weak temperature dependence.
In contrast, the peak of g−−(r) decreases from 0.78 nm to 0.65 nm as temperature decreases. This
behavior closely resembles that of the EMI+BF4 system. Additionally, the cation-anion interaction
is notably stronger than in the EMI+BF4 system.
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Figure 3.7: Radial distribution functions for the system BMI+BF−
4 at P = 1 atm, and T = 500K.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
r (nm)

0

0.5

1

1.5

2

2.5

g
(r

)

Figure 3.8: Radial distribution funtions for BMI+BF−
4 . The dashed, dashed dotted, and solid lines

represent BMI+BF−
4 , BMI+BMI+, and BF−

4 BF−
4 respectively. We have plotted three representative

temperatures, i.e., T=300°K (blue), T=500°K (green), and T=700°K (red).
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Mean Squared Displacement

In the figure 3.10 we can see that the same behavior is still maintained where the cation is the one
that moves faster than the anion, which is what is observed in the EMI+BF−

4 system at 500 °K.
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Figure 3.9: Mean Squared Displacement at 500 °K and 10 ns. The solid line is the cation and the
dashed line is the anion.

In Fig. 3.10 shows the three representative chosen temperatures, and we can observe as in the
EMI+ BF4 system that at large times, the interactions dominate, and the diffusion of BF4 becomes
slower than that of BMI+. And once again, regardless of the temperature, the cation is always the
one that diffuses faster. The solid lines are for cations, and the dashed lines are for anions.
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Figure 3.10: The MSD of BMI+ BF4 is evaluated at three different temperatures: T = 700, 500,
and 300 K. Solid lines represent cations, whereas dashed lines correspond to anions.
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In order to confirm the homogeneity of the system, we show the final structure of the production
in Figure 3.11.

Figure 3.11: Structure of the production at 500 K and 10 ns of the system BMI+BF−
4 .

3.1.3 HMI+BF−
4

In this section we show the results for the system HMI+ BF4. An schematic representation of this
system, and size is shown in Figure 3.12.

(a) HMI+. (b) BF−
4 .

Figure 3.12: Schematic representations of the sizes of the ions studied by MD simulation.

Radial Distribution Function

The RDFs of anions and cations around their center of mass are calculated to examine the struc-
tural correlations between the ions. The figure 3.14 shows the RDFs between the cation-cation,
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anion-anion, and cation-anion at 500 °K. We can see well-defined features and distinct oscilla-
tions, suggesting the presence of spatial correlations between these species. The first peak of the
cation-cation is located at r = 0.81 nm, while for anion-anion is at r = 0.77 and cation-anion is
at r = 0.46. As in the last systems EMI+BF−

4 and BMI+BF−
4 we can note that the first peak of

anion-anion is more than three times larger than σa, and once again we can see the behavior of a
Wigner glass.
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Figure 3.13: Radial distribution functions for the system HMI+BF−
4 at P = 1 atm, and T = 500K.

Figure 3.14 displays the RDFs for T = 300 K (blue), T = 500 K (green), and T = 700
K (red). The dashed, dashed-dotted, and solid lines correspond to g+−(r) (HMI+BF−

4 ), g++(r)
(HMI+HMI+), and g−−(r) (BF−

4 BF−
4 ), respectively. The primary peak of g++(r) appears around

r = 0.9 nm, while g+−(r) is located at approximately 0.5 nm, both remaining largely temperature-
independent. Unlike previous systems, the first peak of g−−(r) is around 0.8 nm, showing no
significant reduction with decreasing temperature. It is evident that in this particular system, the
interaction between cations and anions has decreased in comparison to the two previous systems.
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Figure 3.14: Radial distribution funtions for HMI+BF−
4 . The dashed, dashed dotted, and solid lines

represent HMI+BF−
4 , HMI+HMI+, and BF−

4 BF−
4 respectively. We have plotted three representative

temperatures, i.e., T=300°K (blue), T=500°K (green), and T=700°K (red).

Mean Squared Displacement

As we can see in the figure 3.15 for this system it is no longer true that the cation is the one that
moves faster than the anion, from this system we begin to see the opposite case. Although in the
figure it seems that they are very similar but in reality they are not, the anion moves a little faster
than the cation.
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Figure 3.15: Mean Squared Displacement at 500 K and 100 ns. The solid line is the cation and the
dashed line is the anion.

In Fig. 3.16 shows the three representative chosen temperatures, and we can observe at large
times, the interactions dominate, and the diffusion of HMI+ becomes slower than that of BF−

4 .
What is observed in this plot is that only at low temperatures does the cation diffusion dominate,
and as the temperature increases, the anion becomes the faster diffusing species.
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Figure 3.16: The MSD of HMI+ BF4 is evaluated at three different temperatures: T = 700, 500,
and 300 K. Solid lines represent cations, whereas dashed lines correspond to anions.

Figure 3.17 shows the final configuration of the system after the production run, showing that
the system remains homogeneous.

Figure 3.17: Structure of the production at 500 K and 100 ns of the system HMI+BF−
4 .

3.1.4 OMI+BF−
4

In this section we show the results for the system OMI+BF−
4 . An schematic representation of this

system, and size is shown in Figure 3.18.
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(a) OMI+. (b) BF−
4 .

Figure 3.18: Schematic representations of the sizes of the ions studied by MD simulation.

Radial Distribution Function

The RDFs of anions and cations around their center of mass are calculated to examine the struc-
tural correlations between the ions. The figure 3.19 shows the RDFs between the cation-cation,
anion-anion, and cation-anion at 500 °K. We can see well-defined features and distinct oscilla-
tions, suggesting the presence of spatial correlations between these species. The first peak of the
cation-cation is located at r = 0.97 nm, while for anion-anion is at r = 0.73 and cation-anion is at
r = 0.47. As in the last systems, we continue to observe the same behavior that the first peak of
anion-anion is more than three times larger than σa, and once again we can see the behavior of a
Wigner glass.

In this system, we see that the anions’ interaction grows as the tail grows. However on the other
hand we have that the interactions between cations decrease as the tails grows.

Figure 3.19: Radial distribution functions for the system OMI+BF−
4 at P = 1 atm, and T = 500K.

In Figure 3.20 we show the RDFs for T=300°K (blue), T=500°K (green), and T=700°K (red),
where we are using the same notation as the previous systems. In this system we have that the first

27



peak of g++(r) decreases from 1.43 to 0.91 nm as the temperature increase. For g−−(r) we have
that the peak decreases from 0.78 to 0.64 as the temperature lowers. The primary peak of g+−(r)
is found at approximately 0.5 nm and remains largely unaffected by temperature. As the tail size
increases, cation-anion interactions diminish.
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Figure 3.20: Radial distribution funtions for OMI+BF−
4 . The dashed, dashed dotted, and solid lines

represent OMI+BF−
4 , OMI+OMI+, and BF−

4 BF−
4 respectively. We have plotted three representative

temperatures, i.e., T=300°K (blue), T=500°K (green), and T=700°K (red).
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Mean Squared Displacement

As we can see in the figure 3.21 for this system it is similar as the HMI+BF−
4 system given that the

anion is the one that moves faster than the cation, from this system we begin to see the opposite
case as in EMI+BF−

4 and BMI+BF−
4 . It is more noticeable visually that the anion diffuses faster

than the cation.

Figure 3.21: Mean Squared Displacement at 500 K and 100 ns. The solid line is the cation and the
dashed line is the anion.

In Fig. 3.22 we continue to see that at large times BF−
4 moves faster than OMI+ as we increase

the temperature, we observe that at low temperatures, the cation is the one that diffuses faster.
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Figure 3.22: The MSD of OMI+ BF4 is evaluated at three different temperatures: T = 700, 500,
and 300 K. Solid lines represent cations, whereas dashed lines correspond to anions.
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Figure 3.23 shows the final configuration of the system after the production run, showing that
the system remains homogeneous.

Figure 3.23: Structure of the production at 500 K and 100 ns of the system OMI+BF−
4 .

3.1.5 DMI+BF−
4

In this section we show the results for the system DMI+BF4. An schematic representation of this
system, and size is shown in Figure 3.24.

(a) DMI+. (b) BF−
4 .

Figure 3.24: Schematic representations of the sizes of the ions studied by MD simulation. Repro-
duced from [60], with the permission of AIP Publishing.

Radial Distribution Function

The RDFs of anions and cations around their center of mass are calculated to examine the struc-
tural correlations between the ions. The figure 3.25 shows the RDFs between the cation-cation,
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anion-anion, and cation-anion at 500 °K. We can see well-defined features and distinct oscilla-
tions, suggesting the presence of spatial correlations between these species. The first peak of the
cation-cation is located at r = 1.17 nm, while for anion-anion is at r = 0.71 and cation-anion is
at r = 0.52. As we have been observing in the other systems, we can note that the first peak of
anion-anion is more than three times larger than σa, and once again we can see the behavior of a
Wigner glass, and this is always true regardless of queue size.
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Figure 3.25: Radial distribution functions for the system DMI+BF−
4 at P = 1 atm, and T = 500K.

In Figure 3.26 we show the RDFs for T=300°K (blue), T=500°K (green), and T=700°K (red),
where we are using the same notation as the previous systems. In this system we have that the first
peak of g++(r) decreases from around 1.15 to 0.58 nm as the temperature decrease. For g−−(r)
we have that the peak decreases from around 0.77 to 0.64 as the temperature lowers. On the other
hand, the first peak of g+−(r) is around 0.5 nm and not depend strongly on the temperature. As we
have observed, the longer the chain, the less interaction there is between cations and anions, but the
interaction between anions increases.
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Figure 3.26: Radial distribution funtions for DMI+BF−
4 . The dashed, dashed dotted, and solid lines

represent DMI+BF−
4 , DMI+DMI+, and BF−

4 BF−
4 respectively. We have plotted three representative

temperatures, i.e., T=300°K (blue), T=500°K (green), and T=700°K (red).

Mean Squared Displacement

Once again, as seen in the previous system, it is no longer true that the cation is faster than the
anion, in the figure 3.27 it can already be seen that the anion moves faster than the cation.
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Figure 3.27: Mean Squared Displacement at 500 K and 100 ns. The solid line is the cation and the
dashed line is the anion.

In Fig. 3.28 We observe the same behavior that we have been noticing since the HMI+ system
at a temperature of 300 °K the cation is the one that moves faster as we increase the temperature,
the diffusion becomes slower, with the roles being reversed, so that the anion now diffuses faster.

Figure 3.29 shows the final configuration of the system after the production run, showing that
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Figure 3.28: The MSD of DMI+ BF4 is evaluated at three different temperatures: T = 700, 500,
and 300 K. Solid lines represent cations, whereas dashed lines correspond to anions.

the system remains homogeneous.

Figure 3.29: Structure of the production at 500 K and 100 ns of the system DMI+BF−
4 .
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3.2 Discussion
In this section, we present an analysis of the structural and dynamical properties. Further analysis of
different correlation functions can be done in order to obtain a better understanding of the behavior
of the systems of interest.

First, we analyze the RDFs of each system at three different temperatures 700°K, 500°K, and
300°K. In the figure 3.30, it is shown how we are representing the head of the cations and the CH3

group of the tail, which we will refer to as CH3 to analyze the interactions between them.

Figure 3.30: Representation that will be used in the following RDFs.

The RDFs of the heads and CH3 around their center of mass were calculated to analyze the
structural correlations. In Figs. 3.31(a), 3.31(b), and 3.31(c), we show the RDFs between the
heads of the cations and anions at three different temperatures. As the temperature increases, the
RDF’s main peak decreases. This occurs because electrostatic interactions are stronger at lower
temperatures, where charged particles move more slowly and remain closer. Conversely, at higher
temperatures, particles move faster, increasing their separation and weakening these interactions.

This trend is quantitatively captured in the bar chart 3.32, where the height of the bars represents
the intensity of the main peak in the RDFs. The decreasing bar height with increasing temperature
reflects the weakening head-anion interactions. Additionally, as the tail length increases, the inter-
action between the cation heads and anions becomes stronger, as seen in both the RDFs and the bar
chart, where later systems (OMI+ and DMI+) exhibit higher peak intensities.

Figs. 3.33(a), 3.33(b), and 3.33(c) illustrate the interaction between CH3 (as we show in fig.
3.30) the interaction between the tail and the anions. Here, the interaction is stronger when the
cation tail is shorter, decreasing as the tail length increases. These RDFs show that the intensity of
the first peak in g(r) decreases as the cation’s tail length increases. In other words, the interaction
between CH3 and the anion is stronger for cations with shorter alkyl chains, such as EMI+BF4, and
progressively weakens for BMI+BF4, HMI+BF4, OMI+BF4, and DMI+BF4.

The bar chart 3.34 complements this observation by showing the main peak values of g(r) for
each system and temperature. It confirms the trend that the interaction decreases as the cation’s
chain length increases. Additionally, the peak value decreases with rising temperature, indicating
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reduced structuring in the ionic liquid at higher temperatures.
Figures 3.35(a), 3.35(b), and 3.35(c) illustrate the head-to-head interaction at different temper-

atures (300K, 500K, and 700K). The interaction remains relatively constant across most systems
but shows a noticeable increase in the OMI+ and DMI+ systems. This trend is further confirmed
by the bar chart 3.36, which highlights the rise in the main peak values for these two systems. Ad-
ditionally, as temperature increases, the intensity of the interaction slightly decreases, indicating a
reduction in structural organization at higher temperatures.

Finally, Figures 3.37(a), 3.37(b), and 3.37(c) depict CH3-CH3 interactions. As the tail length
increases, these interactions become stronger, indicating that the tails preferentially aggregate with
other tails while the cation heads interact with each other. This self-segregation into head and tail
regions is consistent with the observed trends in both the RDFs and the bar chart 3.38, reinforcing
the structural organization of ionic liquids across different temperatures and cation chain lengths.

To provide a clearer visualization of the behavior of the peaks in the radial distribution function
at different temperatures, a QR code has been included 3.39. By scanning it, you can access an
interactive representation of the peaks at three distinct temperatures, allowing for a more intuitive
understanding of their variations.

This is due to several factors, and one of the key factors is the size of the tail (alkyl group or
long chain) that is part of the imidazolium base molecule structure. As the size of the tail increases,
the interaction between the head and the anion tends to become stronger due to electrostatic and
structural effects. Hence, summarizing previous results [19,27, 28] and our own observations, let
us break down these factors [22, 30, 31].

3.2.1 Electrostatic shielding and proximity effects
The head of the cation contains a charged group that interacts electrostatically with anions. The
size of the tail (alkyl group) can significantly influence the spatial distribution of the molecule.

• Increase in tail size: As the tail size increases, a larger spatial separation is created between
the charged group at the head of the molecule and the surrounding environment. This can
reduce the electrostatic shielding between the head and the rest of the molecule, allowing the
electrostatic interaction between the head and the anion to be more effective. In other words,
less shielding from the rest of the molecule and other groups causes the charge on the head
to be more strongly felt by the anion.

• Larger tail = stronger interaction: A larger tail can create a ”bubble” around the head, which
partially isolates the charged group, allowing the electrostatic interaction between the head
and the anion to be stronger because the tail is separated and does not compete as directly
with the charge on the head.
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Figure 3.31: Radial distribution functions between heads of the cations and anions at different
temperatures T = 300 K, 500 K, and 700 K.
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Figure 3.32: Bar chart representing the main peak values of the radial distribution functions g(r)
between heads and anions at different temperatures T = 300 K, 500 K, and 700 K. Higher bars
indicate an increased number of head-anion pairs in each system, with arrows highlighting the
trend across the different ionic liquid systems.

3.2.2 Effect of alkyl groups or long chains
When the tail of the imidazolium base molecule is formed by a long alkyl group or a long-chain
group (e.g., a methyl, ethyl, butyl group, etc.), the interaction with an anion is modified as follows:

• Hydrophobic interaction: Long alkyl groups are often hydrophobic, meaning they interact
more weakly with the aqueous medium. These hydrophobic interactions can promote the
aggregation of imidazolium-based molecules in an aqueous environment, forming clusters or
ordered structures that, in turn, can enhance the interaction of the head with anions.

• Greater efficiency in the formation of ionic structures: Longer tail groups can induce a more
stable and ordered arrangement among the imidazolium base molecules in solution, promot-
ing the formation of more stable ionic aggregates, which strengthens the interaction between
the head and the anion.

3.2.3 Effects of solvation
• Longer tails = lower solvation: In solution, the solvation of molecules plays an important role.

Since the tails are long and nonpolar (e.g., hydrocarbon chains), the chains start to associate,
expelling the anions to regions with a polar environment. This can result in the charged
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Figure 3.33: Radial distribution functions between CH3 and anions at different temperatures T =
300 K, 500 K, and 700 K.
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Figure 3.34: Bar chart representing the main peak values of the radial distribution functions g(r)
between CH3 and anions at different temperatures T = 300 K, 500 K, and 700 K. The arrows
indicate the trend across the different ionic liquid systems.

imidazolium head being more exposed to the anions, thereby increasing the electrostatic
interaction.

• More local interactions: The longer the tail, the greater the distance between the head and
other charged groups or solvate molecules, which can lead to more localized and effective
interactions with anions.

3.2.4 Mobility and packing effects
• Lower flexibility and higher packing: Long tails can induce denser packing or greater organi-

zation in the solution, which restricts the mobility of the molecules and promotes more stable
interactions between the heads and the anions.

• Greater interaction capacity: A larger tail size can lead to greater structural stability in ionic
liquid solutions or ionic solvents, where the ordered arrangement of the molecules can pro-
mote stronger and more lasting interactions with anions.

In conclusion, the interaction of the head with an anion tends to be stronger as the tail size of
the molecule increases due to several factors:

• Less electrostatic shielding of the charged head by the rest of the molecule, allowing for a
more effective interaction with the anion.
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Figure 3.35: Radial distribution functions between head and head at different temperatures T = 300
K, 500 K, and 700 K.
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Figure 3.36: Bar chart representing the main peak values of the radial distribution functions g(r)
between head and head at different temperatures T = 300 K, 500 K, and 700 K. The arrows indicate
the trend across the different ionic liquid systems.

• Greater spatial separation between the charged head and the alkyl groups favors the ionic
interaction.

• Hydrophobic effects and structural organization in solutions, increase the efficiency of the
ionic interaction.

• Lower solvation of long tails, which makes the charged head more exposed and, therefore,
able to interact more strongly with the anions.

Together, a larger tail size enhances the effectiveness of the electrostatic interactions between the
head and the anions, resulting in a stronger interaction.
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Figure 3.37: Radial distribution functions between CH3 and CH3 at different temperatures T = 300
K, 500 K, and 700 K.
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Figure 3.38: Bar chart representing the main peak values of the radial distribution functions g(r)
between CH3 and CH3 at different temperatures T = 300 K, 500 K, and 700 K. The arrows indicate
the trend across the different ionic liquid systems.

Figure 3.39: QR code to visualize the behavior of the peaks in the radial distribution functions at
three different temperatures.
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3.3 Diffusion coefficient as function of the temperature
The equilibrated sample underwent temperature variations from 700 K to 300 K in steps of ∆T =
50 K. Simulations lasted 10 ns (10,000 configurations) for short chains (EMI+BF−

4 and BMI+BF−
4 )

and 100 ns (100,000 configurations) for long chains (HMI+BF−
4 and DMI+BF−

4 ). For temperatures
below 350 K, 100 ns simulations ensured reliable results for long-chain systems.

In order to obtain qualitative comparisons between theory and simulations, we need to calcu-
late the diffusion coefficient as a function of temperature. With the aim of standardize the main
state variables, we use definition of dimensionless variables related with thermodynamic quanti-
ties, namely, temperature T ∗ ≡ kBTσbsϵ0/e

2, σbs ≡ (σbig + σsmall)/2, where σα is the diameter
of the corresponding ion, the total volume fraction is given by ϕ ≡ π

6
(nbigσ

3
big + nsmallσ

3
small). In

all definitions, ϵ0 represents the vacuum permittivity, kB the Boltzmann constant, e the electron
charge, and nα denotes the number density of particles of type α, and isobaric trajectories (P = 1
atm) were used. For future calculations, we will be using a size asymmetry δ = σbig/σsmall for
theoretical calculations.

Table 3.1 shows the mean diameters of the ions and their asymmetry, which will be used in the
theoretical calculations. The anion has a tetrahedron structure and a mean size of 0.20 nm, while
the cations EMI+, BMI+, HMI+, OMI+, and DMI+ are essentially planar and with a mean size
(taken from the methyl’s CH3 group to the CH3 group at the end of the longest chain) of 0.69 nm,
0.89 nm, 0.95 nm, 1.19, and 1.46 nm respectively.

System σbig (nm) σsmall (nm) δ
EMI+ BF−

4 0.69 0.20 3.5
BMI+ BF−

4 0.89 0.20 4.5
HMI+ BF−

4 0.95 0.20 4.8
OMI+ BF−

4 1.19 0.20 6.0
DMI+ BF−

4 1.46 0.20 7.3

Table 3.1: Diameters of each ion in each system, and the size asymmetry for each system.

Table 3.2 shows the equivalence of dimensionless variables with common values of state vari-
ables. Such equivalent values were used in Fig. 3.40.

In Fig. 3.40, we can see a continuous decay of the diffusion coefficients with the decreasing
of the temperature, typically observed in glass-forming liquids. Such results are exactly the raw
data that allow the comparison with theoretical predictions of the PM-SCGLE framework about the
glassy behavior of highly asymmetric ionic liquids.
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T (K) T* (EMI+ BF−
4 ) ϕ T* (BMI+ BF−

4 ) ϕ T* (HMI+ BF−
4 ) ϕ T* (OMI+ BF−

4 ) ϕ T* (DMI+ BF−
4 ) ϕ

300 0.0006 0.687 0.0008 1.207 0.0008 1.254 0.0009 2.144 0.0012 3.516
350 0.0007 0.662 0.0009 1.159 0.0010 1.216 0.0012 2.076 0.0014 3.401
400 0.0008 0.641 0.0010 1.123 0.0011 1.177 0.0013 2.008 0.0016 3.285
450 0.0010 0.621 0.0011 1.089 0.0012 1.139 0.0015 1.941 0.0018 3.171
500 0.0011 0.596 0.0013 1.050 0.0014 1.072 0.0017 1.822 0.0020 2.252
550 0.0012 0.584 0.0014 1.022 0.0015 1.066 0.0018 1.814 0.0022 2.956
600 0.0013 0.566 0.0016 0.989 0.0016 1.031 0.0020 1.752 0.0024 2.851
650 0.0014 0.548 0.0017 0.957 0.0018 0.996 0.0022 1.690 0.0026 2.747
700 0.0015 0.531 0.0018 0.926 0.0019 0.961 0.0023 1.629 0.0028 2.643

Table 3.2: Reduced temperatures and volume fraction for each system.
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Figure 3.40: Diffusion coefficient as a function of the temperature of each system. Solid lines are
for the cations, and the dashed lines are for the anions.

45



Chapter 4

The PM-SCGLE framework: Predictions
and validity limits.

A fluid consisting of s species of charged hard spheres with diameters σi and charges qi (i =
1, 2, ..., s), present at concentrations ni, within a uniform dielectric medium of constant ϵ, consti-
tutes the Primitive Model (PM) of ionic liquids [31]. This model effectively captures the behavior
of diverse systems, including electrolytes, macromolecules, micellar solutions, colloidal disper-
sions, molten salts, and classical plasmas. The competition between hard-sphere and Coulomb
interactions results in universal properties, ranging from hard-sphere behavior at high tempera-
tures to purely electrostatic, Debye–Hückel-like behavior under small volume fractions and weak
electrostatic coupling. At high interaction strengths (large volume fractions or low temperatures),
the system exhibits condensed equilibrium phases such as crystalline solids and molten salts [6].
Additionally, non-equilibrium arrested states like ionic glasses and electrostatic gels can emerge.
This study demonstrates that such states arise purely from electrostatic interactions within the PM
framework.

The study of dynamically arrested states is a crucial challenge in modern statistical physics and
materials science [45, 46, 47]. The mode coupling theory (MCT) [47] is a leading theoretical ap-
proach with high predictive power, successfully describing phenomena such as the reentrant glass
transition in colloidal suspensions [48, 49]. Similar behavior has been experimentally observed in
bicomponent colloidal dispersions with non-adsorbing polymers [50]. However, the bicomponent
MCT model failed to predict this reentrant transition [51]. In contrast, the self-consistent general-
ized Langevin equation (SCGLE) theory [52] provides a satisfactory explanation [53], predicting
dynamic arrest scenarios in electroneutral mixtures of charged particles.

Previously, both SCGLE and MCT theories have been applied to the PM of molten salts, en-
abling first-principles descriptions of liquid dynamics and arrest lines, as depicted in Figure 4.1.

Both theories predict partially arrested states with differences in interpretation. MCT identifies
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Figure 4.1: The flowchart provides a summary of the SCGLE theory implementation. An analytical
solution for the structure factor is derived using specified values of reduced temperature, packing
fraction, and charge. These parameters are then input into the SCGLE equations to obtain numerical
solutions. The resulting outputs include various relevant dynamical properties [4].
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these states via the ergodicity of the self-part of the intermediate scattering function, while SCGLE
maintains ergodicity for both collective and self-components of mobile species. Despite these
nuances, SCGLE and MCT provide equivalent theoretical frameworks with similar results [54].
For a comprehensive review of these theories, see Janssen [55].

The SCGLE framework requires the equilibrium structure factor, derived analytically from the
PM. Using this structural input, SCGLE computes key dynamical properties, including MSD, dif-
fusion coefficients, and dynamic-arrest diagrams.

Various theoretical approximations exist for ionic liquid structures, such as Debye–Hückel lim-
iting laws and mean spherical approximations (MSA, GMSA). This study employs the Hiroike
model.

Molecular dynamics simulations have qualitatively confirmed SCGLE predictions for the PM
and dipolar hard sphere systems.

SCGLE has been applied to a broad range of systems, accurately predicting thermodynamic and
dynamic properties, including MSD and diffusion coefficients of complex materials like molten
salts and colloidal Wigner glasses [65, 4, 6].

Systematic theoretical studies of partially arrested states have been made for hard-sphere binary
mixtures. The components in the mixtures may be characterized by the volume fractions ϕS and
ϕL of small and large particles, respectively.

4.1 A brief overview of the SCGLE theory
The asymptotic solution of the SCGLE theory is employed to calculate the dynamical arrest dia-
grams. The dynamic formulation of this theory, applicable to any correlation time t, can be im-
plemented for the same system to provide deeper insights into the Mean Squared Displacement
(MSD) behavior of all ionic species involved. Figure 4.1 presents a flowchart outlining the process
for applying the theory to compute the arrest line and dynamic properties.

The fundamental structure of the SCGLE theory is described in detail in [4], where analytical
expressions are derived for the time-dependent correlation function F (k, t), the self-intermediate
scattering function FS(k, t), and the time-dependent friction function ∆ζ∗α(t).

These three quantities form a system of closed equations, expressed as:

F (k, z) =
{
zI + k2D · [I + λ∆ζ∗(t)]−1 · S−1(k)

}−1 × S(k), (4.1)

FS(k, z) =
{
zI + k2D · [I + λ(k) ·∆ζ∗(t)]−1

}−1
, (4.2)

∆ζ∗α(t) =
Dα

0

3(2π)3
×
∫

d3kk2
[
F (s)(t)

]
αα

[
c ·

√
n · F (t) · S−1 ·

√
n · h

]
αα

, (4.3)
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where F (z) and FS(z) are matrices with elements Fαβ(k, z) and F s
αβ(k, z) (αβ = 1, 2). These

matrix elements correspond to the Laplace transform of the functions F (k, t), and FS(k, t), with z
representing the conjugate variable to t in the Laplace domain. The matrix D has elements given
by Dαβ ≡ δαβD

α
0 where Dα

0 is the short-time diffusion coefficient of species α, assuming hydro-
dynamic interactions are neglected. This coefficient is related to the solvent friction coefficient ζ0
of an isolated particle of species α via the Einstein relation Dα

0 ≡ kBT/ζ
α
0 . A detailed derivation

of Eqs. (4.1)-(4.3) can be found in [4]. As previously mentioned, the SCGLE theory emerges as a
solution to the exact generalized Langevin equation, using a Vineyard-like approximation that links
the self-memory function from the Langevin equation to the collective memory function (first-order
approximation), thus generating a closed set of self-consistent equations that only require a static
property as input.

To analyze the mobility of molecular species within the SCGLE framework, we establish a
correlation between the MSD and the time-dependent correlation functions. The MSD is defined
as:

MSD(τ) ≡
〈
(r(0)− r(τ))2

〉
, (4.4)

where r(τ) denotes the position of a given particle at correlation time τ , and the average is
computed over all possible particle trajectories. This quantity describes the deviation of a particle’s
position from its initial location. The long-time self-diffusion coefficient is then defined as the rate
of change of the MSD with respect to correlation time:

D(τ) ≡ 1

6

d
〈
(r(0)− r(τ))2

〉
dτ

. (4.5)

The SCGLE equations were numerically solved to determine the MSD of both ionic species for
a given total volume fraction.

The long-time self-diffusion coefficient Dα
L represents the limiting case at long diffusion times.

Assuming. τ ≫ τ ′, it is given by:

Dα
L ≡ lim

τ→∞
Dα(τ)

= 1− lim
τ→∞

∫ τ

0

Dα(τ ′)∆ζ∗α(τ − τ ′)dτ ′

= 1−Dα
L lim

τ→∞

∫ τ

0

∆ζ∗α(u)du, (4.6)

which simplifies to:

Dα
L =

1

1 +
∫∞
0

∆ζ∗α(τ
′)dτ ′

. (4.7)
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The quantities Dα
L and Dα are expressed in terms of their respective short-time diffusion coef-

ficients Dα
0 .

The structure factor serves as the key input for the arrest criteria within the SCGLE formalism.
The asymptotic solution, γα ≡ limt→∞ ⟨(r(0)− r(τ)2)⟩, is given by:

1

γα
=

1

3(2π)3

∫
d3kk2

{
λ[λ+ k2γ]−1

}
αα

{
c
√
nλS[λS + k2γ]−1

√
nh
}
αα

, (4.8)

where λ(k) is a diagonal matrix elements λij ≡ δij

[
1 +

(
k
kc

)2]−1

, and kc = 2π 1.305
σα

is an

interpolation parameter used to match results for hard spheres in the Baxter approximation.
The parameter γ in Eq. 4.8 corresponds to a unique value for each combination of thermody-

namic properties (ϕ, T ∗). When γα → ∞, the system remains in an ergodic fluid state. However,
finite values γα < 1 indicate arrested states, where particle mobility is lost. A partially arrested
state implies that one species has become immobile ( 1

γ
̸= 0), while the other remains diffusive

( 1
γ
= 0).
For a precise comparison between simulations and theoretical predictions, we employed non-

dimensional variables. The length unit used is the ionic diameter σp, while the time unit is the
Brownian time, defined as σ2

p

D0
. Other reduced variables are:

σpm ≡ σp + σm

2
, (4.9)

P ∗ ≡ Pϵ0
σ4
pm

e2
reduced pressure, (4.10)

T ∗ ≡ kBT
σpmϵ0
e2

reduced temperature, (4.11)

ϕ ≡ π
npσ

3
p + nmσ

3
m

6
total volume fraction, (4.12)

where the subindex p refers to the positively charged ionic species, or cations, and the subindex m
refers to the negatively charged ionic species, or anions. The ϵ0 represents the vacuum permittivity,
kB is the Boltzmann constant, e is the electron charge, and nα corresponds to the number density
of the α particles. In our theoretical calculations, we have chosen size and charge asymmetries,
represented by δ = σp

σm
and ε = | qp

qm
|, respectively. Due to charge neutrality (npqp + nmqm = 0),

the macroscopic states for a given combination of size δ and charge ε asymmetries of this system
can be defined with only two control parameters (in this work, we focus only on size asymmetry),
for which we choose the total volume fraction ϕ and the reduced temperature T ∗.
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4.1.1 Ionic conductivity
In the theory of glass structure, it is widely recognized that ion transport is a process that depends
on temperature. However, the electrical conductivity of an ionic conducting glass is influenced
by frequency, with the dc conductivity remaining constant as long as the frequency at a given
temperature is below a characteristic threshold: σ̂(ν)(ν → 0) = σdc [4].

The electrical conductivity σ and the self-diffusion coefficient D are related in the frequency
domain through a generalized Nernst-Einstein equation:

σ̂(ν) =
niq

2
i

kBT · ĤR(ν)
D̂(ν), (4.13)

where ni is the number density, qi is the charge of the mobile ions, and ĤR(ν) is the frequency-
dependent complex Haven ratio, typically defined as the ratio of the tracer diffusion coefficient
to the charge diffusion coefficient. The Haven ratio reflects the correlation and collective nature
of the microscopic mechanisms of ionic diffusion. It is important to note that the SCGLE theory
can be used to explore the intricate relationship between the Haven ratio and collective properties.
However, such analysis is complex and can only be simplified through approximations. As demon-
strated by Farias-Anguiano et al. [4], a simple approximation is sufficient for good agreement
with experimental data. Equation 4.13 can be evaluated for any frequency ν, but for macroscopic
systems, the long-time limit when ν → 0 is more significant, i.e., ĤR(ν)(ν → 0) = HR and
D̂(ν)(ν → 0) = D.

Additionally, if the correlations between velocities of different ionic species are ignored, the
Haven ratio becomes frequency-independent and equals one:

σdc =
niq

2
i

kBT
D. (4.14)

It is crucial to emphasize that this relationship is valid only for the glassy states of our system.
However, since these glassy states are within the temperature range of interest, they offer a direct
measure of electrical conductivity, provided the self-diffusion coefficient is known.

We can use our solutions to determine the electrical conductivity, σ ≈ DL for each ionic
species, where DL is the long-time diffusion coefficient [4]. In the following sections, we will
present the results obtained.

4.2 Results
This section presents the main results of the PM-SCGLE framework applied to highly size-asymmetric
PM.
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To calculate the phase diagram of each system, the dynamic-arrest criterion described in the
previous section Eq. 4.8 was used. The parameter γi has a unique value for a given combination
of temperature, density and size-asymmetry. The input parameters for the PM-SCGLE framework,
are the molecular diameters, the total volume fraction, and the reduced temperature. Values of
γ → ∞ correspond to ergodic fluid states, while finite values of γ < 1 define glassy arrested states.
By fixing the value of ϕ (which defines an isochore) and computing γi values for one species within
a range of temperatures, it is possible to map the change in values and delimit regions in the phase
space that exhibits kinetic arrest of one or both species. The results are shown in Figs. 4.2-4.6
where four distinct regions have been found for changes in values of γi for the cation and anion
species. In each “phase”, the kinetic state (fluid F or glass G) of the cation is listed first and that of
the anion is listed second. The lower region corresponds to finite small values of γi in both species
and is a completely arrested phase. At higher temperatures, adhesive interactions between opposite
charges are suppressed, so that in systems that have a low enough volume fraction to avoid jamming
both species have fluid-like mobility. More interesting are the regions at the top right (high volume
fraction, high temperature) where only one of the ionic species is arrested. The partially-arrested
F-G and G-F regions will be the focus of our subsequent analysis.

To collect further insights into the phase transition phenomena being observed, we will select
several points in the arrest diagram, following the isobaric trajectories (p = 1 atm) shown as the
red dashed lines in Figs. 4.2-4.6, and we will calculate the diffusion coefficient of the two ionic
species at each region using the dynamic version of the SCGLE theory these will be shown in the
next section.

We can observe from these plots that as the tail length increases, the regions where the mixed
states are found become larger, and within regions G-F, the hard-sphere interactions dominate lead-
ing to the dynamic arrest of the bigger particles due to caging. If the size difference between
species is enough, small particles can diffuse through the holes left by the big particles. On the
other hand, in regions F-G, the small particles become arrested due to high electrostatic repulsion
between anions, leading to enough space for the diffusion of the cations, a state known as Winger
glass. The red lines shown in each figure represent an isobaric trajectory that mimics the cooling
process performed in the simulated systems.

In Fig. 4.7, we observe that at low temperatures, electrostatic interactions dominate the system’s
dynamics, significantly affecting the differential mobility of the ions. In particular, the BF−

4 anion
experiences dynamic arrest due to the strong repulsion between anionic species, leading to the
formation of low-density regions within the ionic liquid structure. These regions create relatively
open pathways that facilitate the movement of the EMI+ cation.

On the other hand, at high temperatures (Fig. 4.8), the dynamics of the ionic liquid are dom-
inated by hard-sphere interactions, where the excluded volume of each species plays a key role
in ionic mobility. In this regime, larger molecules tend to experience dynamic arrest due to steric
constraints, which limits their effective mobility. As a consequence, the interstitial spaces created
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Figure 4.7: Representation of the system at low temperatures, where electrostatic interactions dom-
inate, leading to dynamic arrest of the BF−

4 anion and the formation of low-density regions that
facilitate the movement of the EMI+ cation. The red line in the image indicates that the particle is
moving, while the others are arrested.
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by the arrangement of these larger species form channels through which smaller ions can diffuse
more easily.

This behavior reflects a shift in the transport mechanism compared to low temperatures, where
electrostatic interactions predominate. As thermal energy increases, the repulsive forces between
anions are reduced in comparison to the geometric and excluded volume effects, leading to a regime
where mobility is governed more by spatial constraints than by electrostatic interactions.

Consequently, the differential mobility of ions in the system is influenced by the competition
between electrostatic and geometric effects, with the latter dominating at higher temperatures. This
shift in the transport regime is a key factor in understanding the viscosity and ionic conductivity of
the system as a function of temperature.

As a result, ionic mobility in the system is governed by a mechanism in which the structure
imposed by anion–anion interactions constrains cation transport. As temperature increases, ther-
mal energy partially disrupts these interactions, reducing viscosity and promoting a more balanced
mobility between both species.

Figure 4.8: Representation of the hard-sphere interaction in ionic liquids at high temperatures.
The large cations impose spatial constraints, creating interstitial voids that allow smaller anions to
diffuse more freely. The red line in the image indicates that the particle is moving, while the others
are arrested.

56



Chapter 5

Theory vs Simulation

In this chapter, we present a comprehensive comparison between theoretical predictions of the PM-
SCGLE framework and the molecular dynamics simulations of model ILs. The main aim is to show
if the theoretical scenario is observed in the simulated systems. Additionally, we want to probe the
validity limits of the theory. It is important to emphasize that the comparisons made below are
qualitative.

The data is interpreted as follows: the main plots display the results from simulations, while the
insets show the corresponding theoretical calculations.

Figures 5.1 and 5.2 clearly illustrate the glassy behavior of both cations and anions at low
reduced temperatures. This behavior is characterized by a significant decrease in diffusivity as T ∗

decreases. At very low temperatures, diffusivity drops to extremely small values (D ∼ 0), ndicating
a dramatic reduction in molecular mobility. This trend is consistent with systems approaching a
glass transition, where molecular motion becomes increasingly restricted, leading to an amorphous
solid-like state. The sharp transition from a diffusive regime at high temperatures to a constrained
regime at lower temperatures is a hallmark of glassy dynamics.

The insets further support this interpretation: diffusivity reaches a plateau at high reduced tem-
peratures but becomes nearly negligible as T ∗ approaches zero. This suggests a well-defined transi-
tion in dynamic properties, aligning with both theoretical and experimental expectations for glass-
forming systems.

Figures 5.3, 5.4, and 5.5 compare the diffusivity of cations and anions, highlighting their similar
qualitative behavior as a function of reduced temperature. Despite minor quantitative differences,
the overall trends and curve shapes remain remarkably consistent. At lower temperatures, both
species exhibit a steep decline in diffusivity, reflecting the slowdown associated with glassy dynam-
ics. As temperature increases, diffusivity rises sharply before gradually approaching a saturation
region at higher temperatures.

This qualitative agreement suggests that both systems share analogous physical mechanisms
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governing their dynamics across the examined temperature range. The inset plots reinforce this
conclusion, showing overlapping trends on a logarithmic scale. While minor deviations may arise
due to differences in molecular interactions or structural properties, the overall behavior remains
robustly similar.
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Figure 5.1: Diffusion coefficient versus reduced temperatures for the system EMI+ BF−
4 . Left panel

shows the results obtained using all-atom simulations of systems. The panel at the right contains the
theoretical results obtained form the SCGLE theory. Reproduced from [60], with the permission of
AIP Publishing.

5.1 Electrical Conductivity and Ion Transport
In addition to diffusivity, we also evaluate the electrical conductivity, which can be approximated
as σ ≈ DL, where DL is the long-time diffusion coefficient. Figures 5.6 to 5.10 present the
logarithm of conductivity multiplied by the reduced temperature as a function of the inverse reduced
temperature for various asymmetries:

• δ = 3.5 (Fig. 5.6),

• δ = 4.5 (Fig. 5.7),

• δ = 4.8 (Fig. 5.8),

• δ = 6.0 (Fig. 5.9),

• δ = 7.3 (Fig. 5.10).
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Figure 5.2: Diffusion coefficient versus reduced temperatures for the system BMI+ BF−
4 . Left panel

shows the results obtained using all-atom simulations of systems. The panel at the right contains
the theoretical results obtained form the SCGLE theory.

Figure 5.3: Diffusion coefficient versus reduced temperatures for the system HMI+ BF−
4 . Left

panel shows the results obtained using all-atom simulations of systems. The panel at the right
contains the theoretical results obtained form the SCGLE theory.
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Figure 5.4: Diffusion coefficient versus reduced temperatures for the system OMI+ BF−
4 . Left

panel shows the results obtained using all-atom simulations of systems. The panel at the right
contains the theoretical results obtained form the SCGLE theory.

Figure 5.5: Diffusion coefficient versus reduced temperatures for the system DMI+ BF−
4 . Left

panel shows the results obtained using all-atom simulations of systems. The panel at the right
contains the theoretical results obtained form the SCGLE theory. Reproduced from [60], with the
permission of AIP Publishing.
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Despite the complexity of the studied ionic liquids, both theory and simulation exhibit the same
general trends, demonstrating the validity of the simplified model for exploring novel phases and
behaviors in complex systems.

Furthermore, our results identify regions where partial arrest occurs, with larger ionic species
diffusing among the smaller ones. This counterintuitive behavior can be explained by inefficient
charge screening of the larger ions due to volume effects. As a result, small-ion electrostatic inter-
actions become stronger than those between oppositely charged species, promoting the formation
of a glass phase for the smaller ions while the larger ones remain fluid.

These findings are consistent with previously reported studies. The emergence of electronic
conductivity can be attributed to the anomalous diffusion of larger ions within a glassy matrix of
smaller ions. From a practical standpoint, we focus on the case where cations become arrested
while anions remain fluid. Since charge exchange in our model does not alter thermodynamic or
dynamic properties, this configuration serves as a representative state for ionic liquid crystals, such
as those described in [66] which involve small lithium cations and bulky TFSI-derived anions.

Our results suggest that bulky cations can be immobilized through steric hindrance or other
molecular interactions, allowing smaller species to move freely through the electrolyte. This pro-
vides an intriguing design strategy for single-ion conductors, where the salt composition is opti-
mized to maximize the glassy behavior of macro-ionic species while maintaining the mobility of
micro-ions.

5.2 Conclusion
The data demonstrates that both cations and anions undergo similar dynamic changes with tem-
perature. At low temperatures, diffusivity approaches negligible values, consistent with glassy
behavior, whereas at higher temperatures, molecular mobility is activated, and diffusivity increases
sharply. The strong qualitative agreement between the two systems suggests that their underlying
dynamic behavior is analogous, despite minor quantitative differences.

This study highlights the universality of glassy dynamics in ionic liquids and underscores the
potential of simplified models to capture key features of these complex systems. The insights
gained provide valuable guidelines for designing ionic materials with tunable transport properties,
particularly in applications involving single-ion conductors and ionic liquid crystals.
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Figure 5.6: The main panel presents results from all-atom simulations, while the inset displays the
corresponding theoretical calculations. The data correspond to the EMIM+-BF−

4 system, alongside
theoretical predictions based on a primitive model with a size asymmetry of δ = σbig/σsmall = 0.69
nm/0.2 nm. A strong qualitative agreement between simulation and theory is observed. Reproduced
from [60], with the permission of AIP Publishing.

Figure 5.7: Results for the DMIM+-BF−
4 system and a primitive model with δ = σbig/σsmall = 0.89

nm/0.2 nm. Notably, the system with the larger asymmetry exhibits a crossover, which is observed
in both simulations and theoretical calculations. Overall, we find a strong qualitative agreement
between simulation and theory.
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Figure 5.8: Results for the DMIM+-BF−
4 system and a primitive model with δ = σbig/σsmall = 1.46

nm/0.2 nm. Notably, the system with the larger asymmetry exhibits a crossover, which is observed
in both simulations and theoretical calculations. Overall, we find a strong qualitative agreement
between simulation and theory.

Figure 5.9: Results for the DMIM+-BF−
4 system and a primitive model with δ = σbig/σsmall = 1.46

nm/0.2 nm. Notably, the system with the larger asymmetry exhibits a crossover, which is observed
in both simulations and theoretical calculations. Overall, we find a strong qualitative agreement
between simulation and theory.
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Figure 5.10: Results for the DMIM+-BF−
4 system and a primitive model with δ = σbig/σsmall =

1.46 nm/0.2 nm. Notably, the system with the larger asymmetry exhibits a crossover, which is
observed in both simulations and theoretical calculations. Overall, we find a strong qualitative
agreement between simulation and theory. Reproduced from [60], with the permission of AIP
Publishing.
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Chapter 6

Perspectives

The main results presented in previous chapters show the reliability of the PM-SCGLE framework
in the fundamental description of the glassy dynamics of a wide spectrum of ionic liquids. Hence,
further routes of future research are suggested. This chapter also outlines several directions for
future research. One such avenue is the exploration of the fully pure primitive model, which could
provide deeper insights into the system’s behavior. Another ongoing effort focuses on developing
a model that enables the study of systems with more than two species, allowing for a broader
understanding of complex mixtures and their phase transitions. These future investigations will
be crucial in advancing our comprehension of inhomogeneous states and their implications for the
study of ionic liquids.

6.1 Heterogenous systems
This section presents an in-depth analysis of the inhomogeneous states observed in our simulations
under NVT conditions. While these conditions generally ensure homogeneity, our results indicate
the presence of large empty spaces during system evolution, a phenomenon that has been only
marginally addressed in the literature. The emergence of these ”holes” raises important questions
regarding the nature of the phase behavior in our system.

To explore the underlying mechanisms behind this observation, we investigate two primary
hypotheses: the possibility of incorrect application of GROMACS methods or parameters, and the
potential occurrence of a true phase transition. Furthermore, our study highlights a consistent trend
in the relationship between temperature and hole size, reinforcing the need for further investigation
into the thermodynamic behavior of the system.

As demonstrated in the previous section, NPT conditions ensure homogeneity within the sys-
tem. However, a striking observation in this study, in contrast to previous results, is the emergence
of inhomogeneous states characterized by the presence of large empty spaces during the system’s
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evolution. It is worth noting that such ”holes” observed in our simulations have been marginally
reported in the existing literature, with only tentative suggestions found thus far. Nonetheless,
several research groups employ NPT conditions for their production runs [32, 33], possibly for rea-
sons similar to those that led us to adopt these conditions. Of course, this assertion regarding other
research groups remains speculative.

It is important to highlight that the emergence of ”holes” occurs exclusively during production
runs conducted at constant volume. Consequently, two primary hypotheses arise to rationalize this
observed behavior: (i) an incorrect application of GROMACS methods or parameters, or (ii) the
observation of a genuine phase transition. The first hypothesis could be attributed to advanced
sampling techniques implemented in the latest GROMACS release or to potential errors in our
input files. Regarding the second hypothesis, theoretical studies on ionic liquids (ILs) predict a
gas-liquid transition, wherein coexistence and instability regions arise at low temperatures and
densities [22, 34, 35]. Both hypotheses have been systematically explored in this study.

A comprehensive analysis of the inhomogeneous systems observed in this thesis is of main
relevance in order to obtain a deep understanding of the phase behavior of ionic liquids. Our
preliminary analysis is shown below starting at a high temperature, namely 700 K (Figure 6.1).
Subsequently, different temperatures were explored to record relevant data. At 800 K (Figure
6.2), the hole size decreases, prompting the decision to further increase the temperature in the
expectation that the hole would disappear. At 900 K (Figure 6.3), although the hole is smaller,
it persists. Consequently, instead of continuing to increase the temperature, we lowered it to 600
K (Figure 6.4), where significantly larger holes were observed. Finally, at 500 K (Figure 6.5), a
seemingly homogeneous structure appeared at first glance (first figure from left to right); however,
upon closer inspection, inhomogeneities persisted.

From the results obtained using the NVT production run, a clear trend emerges: at lower tem-
peratures, the holes are larger, while at higher temperatures, the holes are smaller. Regardless of the
temperature applied, the presence of holes remains a consistent feature of the system. This study is
left for future research.
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Figure 6.1: Structure of the production at 700 K.

Figure 6.2: Structure of the production at 800 K.
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Figure 6.3: Structure of the production at 900 K.

Figure 6.4: Structure of the production at 600 K.

Figure 6.5: Structure of the final production (NVT productioin) at 500 K.

6.2 Brownian dynamics simulations of Primitive Model.
Another avenue for future research is the performing of Brownian dynamics simulations of the
Primitive Model, namely, the direct implementation of simulations of electrically charged hard
spheres with size asymmetry. Exploring this approach could provide further insights into the ob-
served phenomena and contribute to a deeper understanding of the system’s behavior. This aspect
is also left for future investigation.
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6.3 Development of a three-component Model
Work is currently underway on developing a model that allows the study of systems with more
than two species. This approach aims to provide a broader perspective on the behavior of complex
mixtures and their phase transitions. However, this model is still under development and will be
addressed in future research.
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Chapter 7

Conclusions

This thesis employs the Self-Consistent Generalized Langevin Equation (SCGLE) theory to inves-
tigate a theoretical binary mixture of charged hard spheres. This theoretical approach is particu-
larly relevant for understanding the dynamic and structural behavior of complex systems, such as
ionic liquids and charged colloidal suspensions, which have wide-ranging applications in materials
science and energy storage. For each species i , the equilibrium version of SCGLE utilizes the
parameter γi to identify the limit lines where kinetic arrested states exist. These arrested states de-
lineate the boundaries between fluid and amorphous solid phases in the system. A distinct pair of
coordinates, ϕT and T ∗, representing the total volume fraction and the reduced temperature, respec-
tively, describe a specific location within this phase space. Using the dynamic SCGLE theory, it
becomes possible to construct a kinetic arrest diagram that elucidates the interplay between particle
size asymmetry and the dynamic behavior of the system.

The results presented in this thesis are consistent with earlier equilibrium investigations, con-
firming the robustness of the SCGLE framework. Beyond this validation, the study uncovers the
existence of partially arrested regions within the phase space, which exhibit unique charge transport
properties. These regions represent a fascinating combination of arrested and fluid-like states and
are observed in systems with significant size asymmetry between cations and anions, such as the
3.5:1, 4.5:1, 4.8:1, 6.0:1, and 7.3:1 ratios examined here. These findings are especially relevant for
systems like polymerized ionic liquids and ionic liquid crystals, where interstitial conductive do-
mains emerge between arrested cations. Such behavior highlights the potential of these systems for
applications in advanced energy storage technologies and the design of novel conductive materials.

One of the key strengths of this approach lies in the simplicity of the underlying model. By em-
ploying a spherical approximation for ions and an analytical solution for structural properties, the
model provides a coherent and comprehensive perspective on the system’s behavior. Remarkably,
despite its simplicity, the model offers results that are consistent with all-atom molecular dynamics
(MD) simulations, which are computationally more intensive. However, while the current model
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serves as a solid foundation, it also exhibits limitations. For example, the inaccurate mapping of
temperature values in the theoretical framework hinders direct quantitative comparisons with exper-
imental data or MD simulations. To address this, future work should focus on refining the model to
incorporate additional factors, such as the non-spherical shape of cations and other relevant effects,
enabling a more accurate representation of the system’s behavior.

Future refinements to the structural solutions proposed in this thesis could overcome these lim-
itations. By improving the accuracy of the temperature mapping, it would be possible to establish
direct quantitative comparisons with both experimental results and high-resolution MD simula-
tions. Furthermore, the insights gained from such refinements could lead to the development of
more advanced kinetic arrest diagrams, capturing additional nuances of the dynamic behavior in
charged particle systems.

Despite the current model’s constraints, the findings reported in this thesis demonstrate new and
significant behaviors that are highly relevant to the advancement of energy storage devices. The
partially arrested regions identified in this study could inspire the engineering of novel molecular
architectures and materials with enhanced charge transport properties. By leveraging these discov-
eries, future research may pave the way for the development of innovative technologies that exploit
the unique dynamics of charged particle systems.
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Appendix A

A.1 Purpose and Goals of Molecular Dynamics Simulations
Molecular dynamics (MD) simulations are a computational science method that allows the study of
structure and dynamics by solving the equation of motion [21]. These simulations have found appli-
cations in various fields, including biophysics, drug design, and fundamental research in chemistry
and physics. Some of the systems and materials that can be studied include proteins, liquid crystals,
colloidal systems, polymers, and glass-forming liquids.

The goal of a simulation is not necessarily to replicate the real system exactly. Simulations are
often used to explore key aspects of the dynamics and/or structures of a model, and they do not
need to be fully realistic. Therefore, it is essential to understand the limitations of the methods and
assess them based on their intended purpose. As mentioned earlier, MD simulations are capable of
studying dynamics because the equation of motion is solved numerically.

Some of the specific purposes for which MD simulations are useful include:

• They allow for the study of important and widely recognized dynamics and structural aspects,
such as ion diffusion, conduction mechanisms, vitrification capabilities, and mixed alkali
effects.

• Simulations can be used to predict properties of systems that are not known before exper-
imentation. They can provide properties that are difficult to obtain experimentally, such as
spatial information about the wavevector dependence of the intermediate scattering function.

• They are valuable for studying systems under extreme conditions, such as high pressure and
temperature, which may be challenging to achieve experimentally.

• In some cases, real-world experiments may contaminate the environment through heat and
material release, posing safety risks. Simulations provide a way to study systems without the
risk of environmental contamination.
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• Simulations can be employed to investigate various systems for desired properties. In such
cases, the lower resolution of the simulations may not be a disadvantage, especially if the
required computational time is short.

• They can be used to examine how system properties change when factors such as structure,
composition, mass, size, or other parameters are modified.

• Simulations can be systematically applied to design new materials with better performance
for specific applications.

• Of course, simulations can also be used to compare with experimental data and validate the-
oretical predictions. More recently, they have been employed to build and/or refine theories
and models.

In the field of ionics, MD simulations have also been applied to understand the dynamics and
structures of new materials and functional compounds, such as solid-state batteries, actuators, and
nanomachines. This trend is expected to continue in future studies [21].

A.2 Physical Concepts for Molecular Dynamics Simulations
In this study, we will focus exclusively on classical simulations of liquids. One way to test the
classical hypothesis for atomic systems is by evaluating the de Broglie thermal wavelength, Λ,
defined as:

Λ =

(
2πβℏ2

m

) 1
2

, (A.1)

where m is the mass of the atom, and β = 1/KBT . To justify using a classical approach for
static properties, it is essential for Λ to be significantly smaller than a, where a ≈ ρ−1/3 is the mean
nearest-neighbor distance [22].

Using the classical approximation simplifies the problem considerably, as Newton’s second law
is sufficient to describe the dynamics in these simulations.

By applying the classical approximation, we can clearly distinguish the contributions from
thermal motion and particle interactions when considering thermodynamic properties.

We can also approach the issue from a broader perspective, such as considering the system
size. A realistic simulation would require around 1023 particles (Avogadro’s number), but this is
impractical due to the difficulty of analyzing such a large system. Thus, the first approximation
is to simulate a representative sample of molecules. The number of molecules selected should be
large enough to provide statistically averaged results with minimal fluctuations, ensuring accurate
representation of the system’s macroscopic properties.
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For our simulations, we will use approximately 1000 molecules, each containing 10 or 20
atoms. The key challenge then is how to scale up the system while maintaining reliable macroscopic
properties. Additionally, how can we minimize edge effects (surface effects) given the system’s
finite size?

A.2.1 Equations of Motion for Atomic Systems
As previously mentioned, Newton’s equation of motion is appropriate for describing the dynamics
of all molecules in the system, meaning we need to solve:

F = ma for N particles, (A.2)

or

Fi = m[i]d
2x[i]

dt2
for i = 1, . . . , N, (A.3)

where Fi represents the forces acting on particle i, m[i] denotes the particle’s mass, and x[i] are
the particle coordinates. Thus, the problem we need to solve is a differential equation.

Several numerical methods are available for integrating the equations of motion [23]. Most
integration methods can be disregarded because the most computationally expensive task is force
evaluation, and any method that requires more than one force calculation per time step would be in-
efficient unless it can significantly increase the timestep ∆t while maintaining accuracy. However,
due to the strong repulsive forces in typical Lennard-Jones (LJ) potentials at short distances, there
is an upper limit to ∆t, making well-known methods like Runge-Kutta unsuitable beyond this limit.
The same applies to adaptive methods that adjust ∆t to preserve precision, which is ineffective due
to the rapidly changing local environment of each atom.

Only two methods have gained widespread use: the low-order leapfrog technique and the
predictor-corrector approach. These methods come in various forms, but we will focus on the
leapfrog and Verlet methods. For more information on the predictor-corrector approach, see [23].

The Leapfrog and Verlet Methods

The leapfrog and Verlet methods are simple numerical techniques that are widely used in MD
simulations and are mathematically equivalent. In their most basic form, these methods provide
coordinates accurate to third order in ∆t, and when Lennard-Jones potentials are used, they tend to
conserve energy better than higher-order methods. They also require minimal memory.

The Verlet method is derived from the Taylor expansion of the coordinate variable x(t):

x(t+ h) = x(t) + hẋ(t) +
h2

2
ẍ(t) +O(h3), (A.4)
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where t is the current time, and h ≡ ∆t. Here, ẋ(t) is the velocity, and ẍ(t) is the acceleration.
While ẍ is expressed as a function of t, it is actually determined by the force law at time t. By
adding the corresponding expansion for x(t− h) and rearranging, we obtain:

x(t+ h) = 2x(t)− x(t− h) + h2ẍ+O(h4). (A.5)

The truncation error is of order O(h4) because the h3 terms cancel. The velocity is not directly
involved in the solution, but if needed, it can be calculated as:

ẋ(t) =
x(t+ h)− x(t− h)

2h
+O(h2), (A.6)

with higher-order expressions available if necessary, though they are rarely used.
The leapfrog method is derived similarly. Rewriting the Taylor expansion as:

x(t+ h) = x(t) + h

[
ẋ(t) +

h

2
ẍ(t)

]
+O(h3), (A.7)

the term multiplying h is ẋ(t+ h
2
), so equation A.7 becomes:

x(t+ h) = x(t) + hẋ

(
t+

h

2

)
. (A.8)

Subtracting the corresponding expression for ẋ(t− h
2
) from ẋ(t+ h

2
), we get:

ẋ

(
t+

h

2

)
= ẋ

(
t− h

2

)
+ hẍ(t). (A.9)

The leapfrog integration formulas are then equations A.9 and A.8. The fact that the coordinates
and velocities are evaluated at different times does not pose an issue. If an estimate of ẋ(t) is
required, there is a simple connection:

ẋ(t) = ẋ

(
t∓ h

2

)
± h

2
ẍ(t). (A.10)

The initial conditions can be handled similarly, although a minor inaccuracy in the starting state,
namely the distinction between ẋ(0) and ẋ

(
h
2

)
, is often ignored. The method can be implemented

in a more convenient two-step form that avoids having coordinates and velocities at different times,
which corresponds to:

ẋ

(
t+

h

2

)
= ẋ(t) +

h

2
ẍ(t), x(t+ h) = x(t) + hẋ

(
t+

h

2

)
, (A.11)
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followed by:

ẋ(t+ h) = ẋ

(
t+

h

2

)
+

h

2
ẍ(t+ h). (A.12)

A.2.2 Periodic bondary conditions
Computer simulations are typically carried out on a small number of molecules, ranging from 10
to 10, 000. The system’s size is limited by the available memory on the host computer and, more
importantly, by the program’s execution speed [19]. The time required for a double loop that cal-
culates forces or potential energy is proportional to N2. While special techniques can reduce this
dependency to O(N) for extremely large systems, the force/energy loop ultimately determines the
simulation speed. As a result, smaller systems will always be more efficient. The intermolecular
forces may be sufficient to hold the system together during the simulation; otherwise, the molecules
may be confined within a potential that represents a container, preventing them from drifting. How-
ever, these setups are not ideal for simulating bulk liquids. A major challenge in such simulations is
the significant fraction of molecules that lie on the surface of any small sample. For example, in a
system of 1000 molecules arranged in a 10×10×10 cube, at least 488 molecules will be positioned
on the cube’s faces. Whether or not the cube is surrounded by a container wall, the molecules on
the surface experience different forces compared to those in the bulk.

Surface effects can be addressed by using periodic boundary conditions (PBC). In this approach,
the cubic box is repeated throughout space, forming an infinite lattice. As a molecule moves within
the original box, its periodic image in each adjacent box moves identically. Therefore, when a
molecule exits the central box, one of its images enters through the opposite face. The central box
has no walls or surface molecules, providing a convenient reference frame for measuring the coor-
dinates of the N molecules. This system is illustrated in Fig. A.1. The duplicated boxes are labeled
arbitrarily as A, B, C, and so on. As particle 1 moves across a boundary, its images 1A, 1B, etc.
(where the subscript denotes the box containing the image) cross their corresponding boundaries.
The number density in the central box, and throughout the entire system, remains constant. It is not
necessary to store the coordinates of all the images (which would be infinite); instead, it suffices to
store only the coordinates of the molecules in the central box. When a molecule crosses a boundary,
the simulation simply shifts its focus to the image it just entered. One can imagine the simulation
box as being rolled up to form the surface of a three-dimensional torus, even though such a physical
surface doesn’t exist.

This method eliminates the need to consider an infinite number of system replicas or image
particles. This accurately reflects the system’s topology, even if it does not account for its geometry.
A similar analogy exists for a three-dimensional periodic system, although it is harder to visualize.

Due to its geometrical simplicity, the cubic box is almost exclusively used in computer sim-
ulations. If computational resources allow, it is standard practice to increase both the number of
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Figure A.1: A two-dimensional periodic system. Molecules can cross each box’s four edges. In a
three-dimensional system, molecules would be free to cross any of the six faces of a cube [19].

molecules and the box size to maintain a constant density.

Potential Truncation

Next, we must address the calculation of properties for systems subject to periodic boundary condi-
tions. A central aspect of molecular dynamics (MD) simulations involves calculating the potential
energy of a given configuration, specifically the forces acting on all molecules. To compute the
force on molecule 1 or the contribution to its potential energy, we consider pairwise additivity.
Interactions between molecule 1 and every other molecule in the simulation box are included, re-
sulting in a sum of N − 1 terms. However, in principle, it is essential to consider interactions
between molecule 1 and the images iA, iB, and others in the surrounding boxes. This leads to
an infinite number of terms, which is impractical to compute. For a short-range potential energy
function, we can simplify the calculation by using an approximation. We consider molecule 1 to be
at the center of a region with the same size and shape as the simulation box (Fig. A.2). Molecule
1 interacts with all the molecules whose centers lie within this region, i.e., the closest periodic im-
ages of the other N − 1 molecules. This is known as the minimum image convention. For example,
in Fig. A.2, molecule 1 interacts with molecules 2, 3A, 4E , and 5C . This approach is a natural
consequence of the PBC.

In the minimum image convention, the calculation of potential energy due to pairwise-additive
interactions involves N(N − 1) terms. This can still be a large calculation for systems with 1000
particles. A significant improvement is possible by noting that the greatest contribution to the
potential and forces comes from nearby molecules, and for short-range forces, we typically apply a
spherical cutoff. This means the pair potential v(r) → 0 for r ≥ rc, where rc is the cutoff distance.
The dashed circle in Fig. A.2 represents this cutoff, where molecules 2 and 4E contribute to the
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Figure A.2: The minimum image convention in a two-dimensional system. The box centered on
molecule 1 contains five molecules. The dashed circle represents a potential cutoff [19].

force on molecule 1, as their centers lie within the cutoff distance, while molecules 3E and 5E do
not. In a cubic simulation box with side length L, the number of neighbors considered explicitly
is reduced by a factor of approximately 4πr3c

3L3 , leading to substantial computational savings. The
introduction of the spherical cutoff should cause only a small perturbation, provided the cutoff
distance is sufficiently large.

The cutoff distance must not exceed 1
2
L to ensure consistency with the minimum image con-

vention.

A.2.3 Radial Distribution Function (RDF)
The radial distribution function (RDF), denoted as g(r), is a pair distribution function that reveals
the local arrangement of atoms within a system.

The g(r) function is proportional to the likelihood of finding two atoms separated by a distance
of r+∆r. By applying a Fourier transform to g(r), we obtain the structure factor S(k), which can
be measured experimentally through techniques such as x-ray or neutron diffraction. This allows us
to correlate the RDF with the atomic structure and organization determined through experimental
methods [19, 24].

Although g(r) can be derived analytically using methods like the hypernetted chain or the
Percus-Yevick equation, we will focus on the expression used in molecular dynamics (MD) simu-
lations. MD simulations are often simpler for obtaining g(r) since they provide the trajectories of
all atoms over time.

To derive the expression for g(r) used in MD simulations, we begin with its definition from
[24]:
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ρg(r) =
1

N

〈
N∑
i

N∑
j ̸=i

δ[r− rij]

〉
,

where N is the total number of atoms, ρ = N
V

is the number density, rij is the vector between
the centers of atoms i and j, and δ is the Dirac delta function. For homogeneous and uniform
substances, the atomic structure depends only on the distance r between atoms and is independent
of the orientation of the vector r, simplifying the expression to:

ρg(r) =
1

N

〈
N∑
i

N∑
j ̸=i

δ[r − rij]

〉
.

The double sum involves N(N − 1) terms, and since the distance rij is symmetric under the
exchange of indices i and j, only half of the terms are unique. Thus, we can rewrite equation A.2.3
as:

ρg(r) =
2

N

〈
N∑
i

N∑
j<i

δ[r − rij]

〉
.

The normalization of g(r) is achieved by integrating over all possible separations between two
atoms:

ρ

∫
g(r)dr =

2

N

〈
N∑
i

N∑
j<i

δ[r − rij]dr

〉
.

Using the properties of the Dirac delta function:

δ[r − rij] =

{
∞ if the center of atom ij is at rij,
0 if the center of atom ij is not at rij.

The normalization condition of the delta function is:∫
δ[r − rij]dr = 1.

Thus, we obtain:

ρ

∫
g(r)dr = N − 1 ≈ N.
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This equation A.2.3 implies that if we focus on a single atom and count the other atoms in the
system, we find approximately N − 1 other atoms. It also leads to a probabilistic interpretation of
g(r):

ρ

N − 1
g(r)V (r,∆r) =


Probability that an atomic center lies
in a spherical shell of radius r and thickness ∆r

with the shell centered on another atom.

Where V (r,∆r) represents the volume of the spherical shell with thickness ∆r. The RDF
reveals how the presence of one atom influences the positions of neighboring atoms over time. For
atomic separations smaller than the atomic diameter, g(r) = 0, and for large separations in fluids,
g(r) = 1, indicating no influence between atoms and a uniform density.

To calculate g(r) from simulation data, we modify equation A.2.3 by using a small but finite
thickness ∆r for the shell:

ρ
∑
∆r

g(r)V (r,∆r) =
2

N

∑
∆r

〈
N∑
i

N∑
j<i

δ[r − rij]∆r

〉
.

The double sum in equation A.2.3 represents a counting operation, analogous to:

N∑
i

N∑
j<i

δ[r − rij]∆r = N(r,∆r),

where N(r,∆r) is the number of atoms within the spherical shell of radius r and thickness ∆r,
centered on another atom. Substituting this into equation A.2.3 gives:

g(r) =
⟨N(r,∆r)⟩

1
2
NρV (r,∆r)

.

Taking the time average over M time steps:

g(r) =

∑M
k=1Nk(r,∆r)

M
(
1
2
N
)
ρV (r,∆r)

.

Here, Nk is the result of the counting operation at time tk. Physically, equation A.2.3 represents
the ratio of local density ρ(r) to the system’s overall density ρ.

Since the simulation is carried out within a cubic container, the RDF can only be calculated for
distances up to 1

2
L, the radius of the largest sphere that can fit within the cubic container.
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A.2.4 Mean Squared Displacement
The Mean Squared Displacement (MSD) quantifies the deviation of the position of a randomly
moving particle from its initial position over time. It can be interpreted as the extent to which the
particle ”explores” the system.

To derive the MSD, we consider one-dimensional diffusion as governed by Fick’s law [24],

Nẋ = −D
∂N

∂x
, (A.13)

where N = N(x, t) represents the number of atoms per unit volume (i.e., length) at position x
and time t, ẋ is the local velocity at (x, t), and D denotes the diffusion coefficient. Thus, Nẋ
represents the flux. By applying the material balance to a differential fluid element, we obtain the
mass continuity equation

∂N

∂t
+

∂(Nẋ)

∂x
= 0, (A.14)

and combining these two equations results in the diffusion equation:

∂N

∂t
= D

∂2N

∂x2
. (A.15)

The diffusion equation can be solved with initial conditions for the temporal and spatial evolu-
tion of N(x, t). For instance, if N0 atoms are initially located at the origin (x = 0) at time t = 0,
the solution to A.15 is

N(x, t) =
N0

2
√
πDt

exp

[
−x2

4Dt

]
. (A.16)

Thus, at any time t > 0, the atoms are spatially distributed in a Gaussian distribution centered
at the origin. As time progresses, atoms diffuse away from the origin, causing the Gaussian to
broaden.

At any time t > 0, the second moment of the distribution provides the MSD of atoms, expressed
as 〈

[x(t)− x(0)]2
〉
=

1

N0

∫
x2N(x, t)dx. (A.17)

Substituting A.16 into A.17 and performing the integration gives the MSD, which is directly
related to the diffusion coefficient: 〈

[x(t)− x(0)]2
〉
= 2Dt. (A.18)

This result holds when the time t is much greater than the average time between atom collisions.
The three-dimensional counterpart of A.18 is:

lim
t→∞

〈
[r(t)− r(0)]2

〉
6t

= D. (A.19)
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In simulations, the brackets represent time-averaged quantities. Since the diffusion coefficient
is constant at a given state, A.19 implies that the MSD increases linearly with time at large t.

Another method to derive the MSD is through the Green-Kubo relation [24]. This can be
computed using the velocity autocorrelation function, and for a one-dimensional system, we have

lim
t→∞

〈
[x(t)− x(0)]2

〉
2t

=

∫ ∞

0

dτ⟨v(τ)v(0)⟩. (A.20)

The self-diffusion coefficient can be obtained by rewriting the equation A.19 as

D =
1

6N
lim
t→∞

d

dt

〈
N∑
i

[ri(t)− ri(0)]2
〉
, (A.21)

where D is proportional to the slope of the MSD at long times.
The self-diffusion coefficient, using the Green-Kubo relation, is expressed as

D =

∫ ∞

0

dτ⟨v(τ)v(0)⟩. (A.22)

A.2.5 Handling Long-Range Forces
Long-range forces are defined as those whose spatial interaction decays no faster than r−d, where d
is the system’s dimensionality. Examples include charge-charge interactions between ions (vzz(r) ∼
r−1) and dipole-dipole interactions between molecules (vµµ(r) ∼ r−3). These forces present sig-
nificant challenges in simulations due to their long-range nature, particularly in typical simulations
of 500 molecules. A potential solution would be to increase the size of the simulation box L to
several hundred nanometers, thus reducing the effective range of the potentials due to screening
by nearby molecules. However, this approach is not practical even with modern computers, as the
simulation time scales with N2, or L6.

How can we handle such potentials? One approach is using lattice methods like the Ewald sum,
which accounts for interactions of an ion or molecule with all of its periodic images.

The Ewald sum involves converting the slowly converging sum in r−1 into two rapidly converg-
ing series. One series represents the short-range potential in real space and can be truncated, while
the second is a series over reciprocal-lattice vectors.

The Ewald Sum

The Ewald sum is a method for efficiently calculating the interaction between an ion and all its
periodic images. Consider a system of N atoms, each carrying a charge. A periodic array of repli-
cated systems is created, and the total interaction energy includes contributions from all replicas.
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The total interaction energy is given by:

V =
1

2

∑
n

′
N∑
i=1

N∑
j=1

qiqj
|rij + Ln|

, (A.23)

where qi is the charge of atom i, n is the box index vector, and L is the box length. The sum is
over all integer vectors n, with the prime indicating that terms where i = j (self-interaction) are
omitted.

The Ewald sum formula reorganizes the sum into terms over spherical shells, assuming charge
neutrality,

∑
j qj = 0. The formula is:

V =
∑

1≤i<j≤N

qiqj

[∑
n

′erfc (α|rij + Ln|)
|rij + Ln|

+
1

πL

∑
n̸=0

1

n2
exp

(
−π2n2

α2L2
+

2πi

L
n · rij

)]

+
1

2

[∑
n̸=0

(
erfc(αLn)

Ln
+

1

πLn2
exp

(
−π2n2

α2L2

))
− 2α√

π

]
N∑
j=1

q2j

+
2π

3L3

∣∣∣∣∣
N∑
j=1

qjrj

∣∣∣∣∣
2

, (A.24)

The complementary error function is defined as:

erfc(x) =
2√
π

∫ ∞

x

e−t2dt. (A.25)

Various methods can be used to derive A.24, one involving the introduction of a convergence
factor and a Jacobi theta-function transformation.

By choosing an optimal value for the parameter α, the sums in A.24 can be simplified, leading
to the following result:

V =
∑

1≤i<j≤N

qiqjerfc(αrij)
rij

− α√
π

N∑
j=1

q2j

+
1

2πL

∑
n̸=0

 1

n2
exp

(
−π2n2

L2α2

) ∣∣∣∣∣
N∑
j=1

qj exp

(
2πi

L
n · rj

)∣∣∣∣∣
2
 . (A.26)

The real-space terms in A.26 are now short-ranged, allowing for truncation with a spherical
cutoff. The sum over Fourier space can also be truncated after a limited number of terms.
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Particle-Mesh Ewald

Tom Darden introduced the Particle-Mesh Ewald (PME) method to improve the performance of
the reciprocal sum. Instead of summing the wave vectors directly, charges are assigned to a grid
using interpolation. GROMACS implements PME with cardinal B-spline interpolation, known as
smooth PME (SPME). This method significantly improves computational efficiency.

The PME algorithm scales as N log(N), making it much faster than traditional Ewald sum-
mation for medium to large systems. For small systems, however, Ewald summation may still be
preferable due to lower setup costs.

A.3 Molecular model and force field
A schematic diagram of the ions used in this study is presented in Figure A.3.

Figure A.3: Molecular structures of the ions in the ionic liquids studied in this research.

The force field parameters for EMI+, BMI+, HMI+, OMI+, and DMI+ were adopted from [25],
which is based on the AMBER force field [26]. The force field for BF−

4 was developed by J. de
Andrade and his colleagues [27]. The AMBER force field was used to model both bonded and
nonbonded interactions between ions.

In molecular modeling, the potential energy of a system is referred to as the force field, and
the potential form of AMBER 94 can be categorized into bonded interactions (covalent bonds) and
nonbonded interactions (electrostatic long-range and Van der Waals interactions). The functional
form of this force field is as follows:
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V (rN) =
∑
bonds

kb(l − l0)
2 +

∑
angles

ka(θ − θ0)
2 +

∑
torsions

∑
n

1

2
Vn[1 + cos(nω − γ)]

+
∑
j=1

∑
i=j+1

fij

{
ϵij

[(
r0ij
rij

)12

−

(
r0ij
rij

)6]
+

qiqj
4πϵ0rij

}
, (A.27)

The first term in the equation represents the energy between covalently bonded atoms, modeled
as a harmonic force (similar to an ideal spring), as shown in Figure A.4.

Figure A.4: Bonded interactions [28].

The second term accounts for the energy related to the geometry of the electron orbitals forming
the covalent bonds, also modeled as a harmonic force, as shown in Figure A.5.

Figure A.5: Angles [28].

The third term models the energy associated with the twisting of bonds due to bond order, as
illustrated in Figure A.6.

Finally, the last term represents the energy resulting from Van der Waals and electrostatic inter-
actions, which describe the nonbonded energy between all atom pairs, as shown in Figure A.7.
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Figure A.6: Torsion [28].

(a) Electrostatic interaction. (b) Van der Waals interaction.

Figure A.7: Non-covalent interactions [28].
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A.3.1 Preparation of initial states
Cubic simulation boxes of sizes 7 and 15 nm3, each containing 1024 ion pairs, were created by
randomly inserting ions while avoiding overlaps.

To incorporate the AMBER force field within GROMACS, several input files in the current
distribution were modified. A summary of these changes is provided in Appendix A.5.

The steps to prepare the systems are shown in Figure A.8:

Figure A.8: Steps required to prepare the systems.

• First, we prepared the mixtures using ionic pairs and simultaneously created a cubic box.
This was done using a GROMACS tool called ”insert-molecules”, which generates copies
of the molecules and places them randomly in the available space of the selected box size.
The selection of the vacant space is based on the Van der Waals radii of the atoms, and the
insertion positions are randomized based on an initial seed. The nx, ny, and nz refer to the
box’s side lengths, while n indicates the number of ion pairs.
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• Next, the topology of the molecules was created. The topology contains all the information
needed to define the molecule in the simulation, such as bonded and non-bonded parameters.
GROMACS offers a tool called ”pdb2gmx”, which generates the system’s topology from the
molecule’s structure file containing atom positions.

• The structure of the molecules was then minimized using the steepest descent method (Saddle
point theorem), and the minimization process was considered converged when the maximum
force was smaller than a chosen value.

• The mixtures were then equilibrated using NVT and NPT ensembles over several steps.

A.4 Computational details and simulation methods
All simulations were conducted using the GROMACS 2022.2 MD simulation package [16, 17].
Periodic boundary conditions (PBC) were applied in all three dimensions of the cubic simulation
box, and a 1.6 nm cutoff was applied to nonbonded interactions. Long-range electrostatic interac-
tions [19, 20] were handled with the Particle Mesh Ewald (PME) method [29]. The five systems
each contained 1024 ion pairs. For our study, we selected T = 500K as the target simulation
temperature, as experiments have shown that this temperature is well above the melting point of
EMI+BF−

4 [7].
The steps for equilibration and production runs are shown in Figure A.9. The simulation process

for the system EMI+BF−
4 was equilibrated and simulated as illustrated in the schematic Figure A.9,

with two different paths being followed. The steps used in [7] did not yield similar results, as they
were far from the desired outcomes.

The initial random configuration underwent several NPT simulations at a constant pressure of
P = 100 atm and varying temperatures from T = 2000K down to 1500, 1000, 800, 600, and
500K. At each temperature, the system was simulated for 1 ns. The final configuration was then
equilibrated with a 1 ns NPT simulation at P = 1atm and T = 500K to obtain the average
simulation volume V . Afterward, the system underwent another simulated annealing process in the
NVT ensemble, following the same temperature sequence with the determined V .

For analyzing homogeneous systems, NPT production runs were performed. The equilibrated
configuration for the second path went through production runs in the NPT ensemble at T = 500K.
Simulation durations were 10 ns and 100 ns for molecules with longer chains, allowing reliable
results for dynamic properties. The obtained results are presented in Section 3.1.

The equilibrated configuration from the first path went through production runs in the NVT
ensemble at T = 500, 600, 700, 800, and 900K. The simulation duration was 10 ns to obtain the
results in [7].
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Figure A.9: Steps for simulating the systems.
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A.5 Data used for system preparation
In this apendix we show the data that was used in the amber94 force field files. The folders that
need to be modified in gromacs in order to perform the calculations can be found at the following
paths: for resydutypes.dat the path is /usr/local/gromacs/share/gromacs/top, and for the other files
they are in the path /usr/local/gromacs/share/gromacs/top/amber94.ff:

• resyduetypes.dat

EMI Ion
BMI Ion
HMI Ion
DMI Ion
BF4 Ion

• atomtypes.atp

B 10.81000 ; Boron atom added by PedroE f o r BF4−

• aminoacids.rtp

[ BF4 ] ; [ BF4 −] ADDED BY PEDROE FORM J DE ANDRADE JPCB 2002
[ atoms ]

B B 0.827600 1
F1 F −0.456900 2
F2 F −0.456900 3
F3 F −0.456900 4
F4 F −0.456900 5

[ bonds ]
B F1
B F2
B F3
B F4

[ EMI ] ; [EMI+] ADDED BY PEDROE USING YANTING’ S BOOK
[ atoms ]

CR CR 0.005500 1
NA1 NA 0.092400 2
NA2 NA −0.002420 3
CW1 CW −0.163820 4
CW2 CW −0.167520 5
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H41 H4 0.243400 6
H42 H4 0.242100 7
CT1 CT −0.197320 8
H11 H1 0.138800 9
H12 H1 0.138800 10
H13 H1 0.138800 11
CT2 CT 0.062500 12
CT3 CT −0.129720 13
H14 H1 0.085800 14
H15 H1 0.085800 15
HC1 HC 0.068700 16
HC2 HC 0.068700 17
HC3 HC 0.068700 18

H5 H5 0.220800 19
[ bonds ]

CR NA1
NA1 CW1
CW1 CW2
CW2 NA2
NA2 CR
CW1 H41
CW2 H42
NA1 CT1
CT1 H11
CT1 H12
CT1 H13
NA2 CT2
CT2 H14
CT2 H15
CT2 CT3
CT3 HC1
CT3 HC2
CT3 HC3

CR H5
[ i m p r o p e r s ]
NA1 NA2 CR H5

CR CW1 NA1 CT1
CR CW1 NA2 CT2
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NA1 CW2 CW1 H41
NA2 CW1 CW2 H42

[ BMI ] ; [BMI+] ADDED BY PEDROE USING YANTING’ S BOOK
[ atoms ]

CR CR −0.052100 1
NA1 NA 0.054500 2
NA2 NA 0.035500 3
CW1 CW −0.094000 4
CW2 CW −0.157800 5
H41 H4 0.211800 6
H42 H4 0.237300 7
CT1 CT −0.103500 8
H11 H1 0.118200 9
H12 H1 0.118200 10
H13 H1 0.118200 11
CT2 CT −0.028300 12
CT3 CT 0.000300 13
CT4 CT 0.018000 14
CT5 CT −0.086700 15
H14 H1 0.092100 16
H15 H1 0.092100 17
H16 H1 0.029000 18
H17 H1 0.029000 19
H18 H1 0.021000 20
H19 H1 0.021000 21
HC1 HC 0.035700 22
HC2 HC 0.035700 23
HC3 HC 0.035700 24

H5 H5 0.219000 25
[ bonds ]

CR NA1
NA1 CW1
CW1 CW2
CW2 NA2
NA2 CR
CW1 H41
CW2 H42
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NA1 CT1
CT1 H11
CT1 H12
CT1 H13
NA2 CT2
CT2 H14
CT2 H15
CT2 CT3
CT3 H16
CT3 H17
CT3 CT4
CT4 H18
CT4 H19
CT4 CT5
CT5 HC1
CT5 HC2
CT5 HC3

CR H5
[ i m p r o p e r s ]
NA1 NA2 CR H5

CR CW1 NA1 CT1
CR CW1 NA2 CT2

NA1 CW2 CW1 H41
NA2 CW1 CW2 H42

[ HMI ] ; [HMI+] ADDED BY PEDROE AND JCAS USING YANTING’ S BOOK
[ atoms ]

CR CR −0.056000 1
NA1 NA 0.056100 2
NA2 NA 0.031900 3
CW1 CW −0.105500 4
CW2 CW −0.159400 5
H41 H4 0.216100 6
H42 H4 0.242200 7
CT1 CT −0.100800 8
H11 H1 0.118000 9
H12 H1 0.118000 10
H13 H1 0.118000 11
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CT2 CT −0.018100 12
CT3 CT 0.016200 13
CT4 CT −0.006200 14
CT5 CT −0.012500 15
CT6 CT 0.023400 16
CT7 CT −0.095500 17
H14 H1 0.090000 18
H15 H1 0.090000 19
H16 H1 0.022800 20
H17 H1 0.022800 21
H18 H1 0.013200 22
H19 H1 0.013200 23
H1A H1 0.012500 24
H1B H1 0.012500 25
H1C H1 0.011800 26
H1D H1 0.011800 27
HC1 HC 0.030300 28
HC2 HC 0.030300 29
HC3 HC 0.030300 30

H5 H5 0.222400 31
[ bonds ]

CR NA1
NA1 CW1
CW1 CW2
CW2 NA2
NA2 CR
CW1 H41
CW2 H42
NA2 CT1
CT1 H11
CT1 H12
CT1 H13
NA1 CT2
CT2 H14
CT2 H15
CT2 CT3
CT3 H16
CT3 H17
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CT3 CT4
CT4 H18
CT4 H19
CT4 CT5
CT5 H1A
CT5 H1B
CT5 CT6
CT6 H1C
CT6 H1D
CT6 CT7
CT7 HC1
CT7 HC2
CT7 HC3

CR H5
[ i m p r o p e r s ]
NA1 NA2 CR H5

CR CW1 NA1 CT1
CR CW1 NA2 CT2

NA1 CW2 CW1 H41
NA2 CW1 CW2 H42

[ DMI ] ; [DMI+] ADDED BY JCAS USING YANTING’ S BOOK
[ atoms ]

CR CR −0.058700 1
NA1 NA 0.035300 2
NA2 NA 0.059600 3
CW1 CW −0.095600 4
CW2 CW −0.159200 5
H41 H4 0.210100 6
H42 H4 0.239400 7
CT1 CT −0.100100 8
H11 H1 0.116500 9
H12 H1 0.116500 10
H13 H1 0.116500 11
CT2 CT −0.018200 12
CT3 CT 0.005400 13
CT4 CT −0.001100 14
CT5 CT −0.013100 15
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CT6 CT 0.017400 16
CT7 CT −0.003200 17
H14 H1 0.090000 18
H15 H1 0.090000 19
H16 H1 0.025100 20
H17 H1 0.025100 21
H18 H1 0.014400 22
H19 H1 0.014400 23
H1A H1 0.009400 24
H1B H1 0.009400 25
H1C H1 0.003100 26
H1D H1 0.003100 27
HC1 HC 0.025000 28
HC2 HC 0.025000 29
HC3 HC 0.025000 30

H5 H5 0.222100 31
CT8 CT 0.006900 32
CT9 CT −0.005500 33
CTA CT 0.036300 34
CTB CT −0.100600 35
H1E H1 0.005900 36
H1F H1 0.005900 37
H1G H1 0.001900 38
H1H H1 0.001900 39
H1I H1 −0.001500 40
H1J H1 −0.001500 41
H1K H1 0.000800 42
H1L H1 0.000800 43

[ bonds ]
CR NA1

NA1 CW1
CW1 CW2
CW2 NA2
NA2 CR
CW1 H41
CW2 H42
NA2 CT1
CT1 H11
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CT1 H12
CT1 H13
NA1 CT2
CT2 H14
CT2 H15
CT2 CT3
CT3 H16
CT3 H17
CT3 CT4
CT4 H18
CT4 H19
CT4 CT5
CT5 H1A
CT5 H1B
CT5 CT6
CT6 H1C
CT6 H1D
CT6 CT7
CT7 H1K
CT7 H1L
CT7 CT8
CT8 H1I
CT8 H1J
CT8 CT9
CT9 H1E
CT9 H1F
CT9 CTA
CTA H1G
CTA H1H
CTA CTB
CTB HC1
CTB HC2
CTB HC3

CR H5
[ i m p r o p e r s ]
NA1 NA2 CR H5

CR CW1 NA1 CT1
CR CW1 NA2 CT2
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NA1 CW2 CW1 H41
NA2 CW1 CW2 H42

• ffbonded.itp

[ b o n d t y p e s ]
B F 1 0 .13930 242672 .0 ; ADDED BY PEDROE FOR BF4 FORM
J DE ANDRADE JPCB 2002
CT NA 1 0.14750 282001 .6 ; ADDED BY PEDROE FOR EMI
FROM YANTING’ S BOOK
CW CW 1 0.13700 455136 .0 ; ADDED BY PEDROE FOR EMI
FROM YANTING’ S BOOK

[ a n g l e t y p e s ]
F B F 1 109 .500 418 .400 ; ADDED BY PEDROE FOR BF4
FORM J DE ANDRADE JPCB 2002
CR NA CT 1 109 .500 292 .880 ; ADDED BY PEDROE FOR EMI
FORM YANTING’ S BOOK
CW NA CT 1 120 .000 292 .880 ; ADDED BY PEDROE FOR EMI
FORM YANTING’ S BOOK
NA CW CW 1 120 .000 585 .760 ; ADDED BY PEDROE FOR EMI
FORM YANTING’ S BOOK
CW CW H4 1 128 .500 292 .880 ; ADDED BY PEDROE FOR EMI
FORM YANTING’ S BOOK
NA CT H1 1 109 .500 292 .880 ; ADDED BY PEDROE FOR EMI
FORM YANTING’ S BOOK
NA CT CT 1 111 .200 669 .440 ; ADDED BY PEDROE FOR EMI
FORM YANTING’ S BOOK

[ d i h e d r a l t y p e s ] i m p o r t e r s
CR CW NA CT 4 180 .00 4 .69240 2 ; ADDED BY
PEDROE FOR EMI FROM YANTING’ S BOOK

[ d i h e d r a l t y p e s ]
H1 CT NA CR 9 000 .0 0 .00000 2 ; ADDED BY PEDROE
FOR EMI FROM YANTING’ S BOOK
H1 CT NA CW 9 000 .0 0 .00000 2 ; ADDED BY PEDROE
FOR EMI FROM YANTING’ S BOOK
CR NA CT CT 9 000 .0 0 .00000 2 ; ADDED BY PEDROE
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FOR EMI FROM YANTING’ S BOOK
CW NA CT CT 9 000 .0 0 .00000 2 ; ADDED BY PEDROE
FOR EMI FROM YANTING’ S BOOK
NA CW CW NA 9 180 .0 22 .48900 2 ; ADDED BY PEDROE
FOR EMI FROM YANTING’ S BOOK
NA CW CW H4 9 180 .0 22 .48900 2 ; ADDED BY PEDROE
FOR EMI FROM YANTING’ S BOOK
H4 CW CW H4 9 180 .0 22 .48900 2 ; ADDED BY PEDROE
FOR EMI FROM YANTING’ S BOOK

• ffnonbonded.itp

B 5 10 .81 0 .0000 A 3.58140 e −01 3 .97480 e −01

A.6 Units used in Gromacs

Quantity Unit
length nm = 10−9

mass u (unified atomic mass unit) = 1.660538921× 10−27kg
time ps =10−12s
charge e = elementary charge = 1.602176565× 10−19C
temperature K

Table A.1: Basic units used in GROMACS

Quantity Unit
energy kJ mol−1

Force kJ mol−1 nm−1

pressure bar
velocity nm ps−1 = 1000 m s−1

dipole moment e nm
electric potential kJ mol−1 e−1 = 0.01036426919 Volt
electric field kJ mol−1 nm−1 e−1 = 1.036426919× 107 Vm−1

Table A.2: Derived units.
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Symbol Name Value
NAV Avogadro’s number 6.02214129× 1023 mol−1

R gas constant 8.3144621× 10−3 kJ mol−1 K−1

kB Boltzmann’s constant idem
h Planck’s constant 0.399031271 kJ mol−1ps
ℏ Dirac’s constant 0.0635077993 kJ mol−1ps
c velocity of light 299792.458 nm ps−1

Table A.3: Physical constants
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[5] Pedro E. Ramı́rez-González, Luis E. Sanchéz-Dı́az, Magdaleno Medina-Noyola, and Yanting
Wang, Communication: Probing the existence of partially arrested states in ionic liquids,
http://dx.doi.org/10.1063/1.4967518.

[6] L. E. Sanchez-Dı́az, A. Vizcarra-Rendón, and R. Juárez-Maldonado, Phys. Rev. Lett. 103,
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