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INTRODUCTION

This book is the result of several years of teaching of the Faculty of Science in 
physical engineering and optoelectronics at the Autonomous University of San 
Luis Potosi (UASLP). It is devoted to the essential, in my opinion, area of 
material science and technology: thermodynamics related to various phase 
diagrams. I realized that there was a lack of appropriate literature that would 
clearly and thoroughly explain the necessary topics for students. I have tried 
to present the material simple, and accessible to students of different levels 
of education. Thus, to understand it, you only need to be familiar with the 
concepts of differential and integral calculus.

The book consists of six chapters. The first and second chapters are concerned 
with the basic concepts of thermodynamics, that are used in the construction 
and analysis of various phase diagrams: the first law of thermodynamics, the 
equation and function of state, thermodynamic work, properties of the ideal gas 
and the Carnot cycle. The second law of thermodynamics is outlined on the 
basis of these essentials and the concept of entropy is introduced. These two 
chapters, although they review basic concepts in classical thermodynamics, 
have been included in the text after some hesitation to make the subsequent 
sections of the book clearer and to produce a more complete and self-
contained work. An attentive reader familiar with the basic concepts of 
thermodynamics will be able to skip this part, aimed especially for beginning 
students, without compromising their understanding.

In the third chapter, thermodynamic functions such as internal energy, 
enthalpy or heat, Gibbs and Helmholtz energies are studied. The 
fundamental Gibbs equation and the general conditions for thermodynamic 
equilibrium in any complex system are also discussed here. On the basis of 
these conditions, in chapters four, five, and six the phase diagrams of various 
systems are discussed, starting with the one-component system and continuing 
with the two-component, three-component, and multicomponent systems. Here I 
discuss in detail the state diagram for A3B5 systems and solid solutions on their 
basis. These materials are used widely today to fabricate various optoelectronic 
devices such as laser diodes, LEDs, detectors, and photovoltaic converters. I 
analyze in detail the conditions of the solution decomposition in the regular model,
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as well as the state diagram of multicomponent systems and methods of 
experimental and theoretical study of these diagrams.

Of course, a text like this could be continued and expanded. Subsequent editions 
may be supplemented by a presentation of nucleation theories and models, and 
details of crystal growth theory (Czochralski, Bridgman, fusion zone), as well as 
descriptions of such technologies as liquid, gas, and molecular epitaxy.
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CHAPTER 1

FUNDAMENTAL PRINCIPLES OF
THERMODYNAMICS

1.1 General Concepts

Generally speaking, the bulk of problems in mechanics are solved by using the 
idealization that any system composed of several bodies is considered as a set 
of material dots located in their own center of gravity. In the frame of this 
idealization, the state of the mechanical system can be determined at any 
moment, if the coordinates of speed, and acceleration in terms of time are 
known. The coordinates, the speed and the acceleration of the material dots 
are determined from the time radio-vector r(t) function, which fixes the 
position of each one of dots and its first and second derivatives, respectively. 
When, in addition to all this, the forces acting upon the system are also 
determined, Newton’s second law applies, and a system of differential 
equations can be written relating these forces with the acceleration of the 
bodies of the system. In order to solve the system of equations, it is necessary 
to know the initial conditions, that is, the position and speed of all the 
system’s dots at a given point in time. The solution of this problem, allows 
the calculation of the trajectory of the movement of the bodies, which 
completely describes the dynamic behavior of the mechanical system under 
consideration.

In contrast to mechanics, thermodynamics studies the physical processes that 
occurr in macroscopic bodies or systems, which contain an enormous amount 
of particles (atoms, molecules, electrons, etc.). It is impossible to determine 
the values of each of the variables needed to describe the system of the 
macroscopic bodies. However, for many technical and scientific purposes this is 
not necessary, because many phenomena in thermodynamic systems can be 
described using generalized properties of the system. This means that there is no 
need to determine the coordinates, velocity, or acceleration of each particle. In 
other words, many of the properties observed in macroscopic bodies are 
investigated through a set of average parameters that describe the behavior of the 
system as a whole. It is not necessary to consider the intricacies of their atomic
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or molecular structure or the precise values of the position and velocity of each 
individual particle.

The objectives of thermodynamic studies are to understand the behavior of 
different thermodynamic or physical-chemical systems, which involve a specific 
region of space containing the substances under investigation in given quantities. 
The space outside the system's location is referred to as external environment. 
Examples of simple thermodynamic systems unclude a crystal, an alloy, gas 
within a container, a salt solution, and so on.

Likewise, thermodynamics also studies more complex systems composed 
of single substance in different physical states. These systems are referred to 
heterogeneous systems. An example of one heterogeneous system is one 
composed of ice, water, and vapor contained in a closed container.

A system is considered open if it allows for an exchange or transfer of substance 
with the environment. On the other hand, a closed system does not permit any 
exchange of substances with the environment. An isolated system is 
characterized by the absence of both energy and material interchange with the 
environment. 

The principles of thermodynamics were established in the 19th 
century through the analysis of thermal energy efficiency indicators 
and its conversion into work by the first steam machines. A common 
example of a thermodynamic system is a cylinder in which vapor is 
compressed and expands in another phase of thermodynamics. In the 
system, the pressure (P) and temperature (T) of the vapor in the cylinder 
are essential parameters to describe the processes that occur. Let us call 
these physical magnitudes parameters or thermodynamic variables. Another 
important parameter is the volume, that is determined by the position of the 
piston inside the cylinder. In analyzing the work produced by the 
cylinder in an internal combustion machine, additional parameters such as 
the chemical composition of the fuel and the mixture of air and gasoline vapor 
at the moment of entry into the cylinder should be considered. For 
a complete description of a thermodynamic system, a number of 
microscopic parameters must be taken into account. These parameters can 
include the chemical composition, the pressure, temperature, volume, and the 
concentration of a substance dissolved in another substance.
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A wide variety of physical and chemical phenomena can occur in any given 
thermodynamic system. These include different chemical reactions and substance 
transformations from one physical state to another, such as the melting of a metal 
or evaporation of water. If different temperatures exist in different parts of the 
system, heat conduction will occur between the parts, leading to an exchange of 
heat. Similarly, if the pressure is not equal at different regions of the system, 
there will be currents or microscopic flows of the substance in liquids and gases 
within the system. Concentration gradients can also lead to the dissemination of 
substances from regions of high concentration to regions of low concentration 
within the system. As a result of the above-mentioned processes, the system can 
become unstable, causing the thermodynamic parameters of the system to change 
over time.

Nevertheless, numerous experiments show that if external conditions remain 
constant, the system eventually reaches an equilibrium state if sufficient time is 
allowed. In such state phase transitions, chemical reactions, the substance 
concentration redistribution in solutions and other processes have already 
occured. The temperature throughout the system is uniform, the concentrations in 
different regions of the system becomes equal, i.e. all parts of the system are 
uniformly mixed, and therefore the pressure in the system are equal. 
Consequently, if the external conditions do not change over a given period of 
time, then the thermodynamic parameters characterizing the system over the 
same time do not change either. Thus, the concept of thermodynamic equilibrium 
is conceived as the state of a system in “thermodynamic idleness”, which is 
maintained by the absence of external influences on the system.

A homogeneous system, i.e. a system in which the macroscopic properties of any of its 
parts are equal in any portion of it, is in a thermodynamic state of equilibrium called a 
phase. Thermodynamic systems can be composed of one or more phases. For 
instance, a quartz crystal is a one phase system; a salt crystal in contact with a 
saturated aqueous salt solution forms a two-phase system; water, ice and vapor that 
are in equilibrium inside a closed container represent a three coexisting phase system.

Any thermodynamic system can be found in different states of equilibrium. Let 
us consider, for example, a hermetic container with water as a 
thermodynamic system, which is heated to 90°C. Let us suppose that the 
container initially has room temperature and is not insulated, allowing heat exchange
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with the environment. In this situation, the system is not in 
equilibrium since the room temperature is around 20°C and the system is 
subjected to progressively higher temperatures for the container and, 
simultaneously, lower for the water. As a consequence, heat conduction and 
convection processes occur. By approaching the container with a hand, heat can 
be perceived (radiation in the infra-red region of the spectrum). However, as 
the water continues to cool down, there will be a moment where the 
temperature becomes the same at all points within the system, reaching  room 
temperature, and so, the processes of heat conduction, convection and net heat 
radiation emission come to an end. If, on the other hand, the container is placed 
in a refrigerator at a temperature of 2°C, then the heat conduction, convection, 
and radiation processes will continue until the system reaches a new state of 
equilibrium, adopting the new room temperature of 2°C. The key difference 
between the two experiments lies in the difference between the thermodynamic 
parameters of temperature, volume, and final resulting density acquired by the 
water.

The parameters of  a thermodynamic state are macroscopic characteristics 
that describe the state of one system as a whole. They can be measured 
relatively easily, but their ability to fully describe the system is limited. For a 
thermodynamic system with multiple components and phases, the number of 
parameters needed for a complete characterization will be discussed in 
detail later. For simple homogeneous systems, however, it is sufficient to 
know three parameters of the state: volume (V), pressure (P), and 
temperature (T). In this case, the equilibrium of the state of a system can be 
characterized by a point in a three-dimensional diagram known as the T–P–V 
diagram. In practice, this three-dimensional diagram can be simplified by 
representing the state of the system through plane cuts of two parameters, 
such as P and V, with the third parameter (in this case, the temperature T) 
indicated alongside.

Let us suppose that some changes occur in the system that affect the 
magnitudes of the thermodynamic parameter. In this case, let us assume that 
the system responds rapidly to these changes, such that within any given time 
interval, the values of the thermodynamic parameters reach equilibrium, i.e., 
the rate at which the internal processes responsible for the “homogenization” 
of the system occur is considerably lower than the rate of relaxation. Using a 
sufficiently slow process, we can transfer the system from an initial state i to a final
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state f. In the PV diagram, the process of the system from i to f can be 
represented by means of a curve that connects these points.  Obviously, all 
points of the curve represent a set of equilibrium states infinitely close to each 
other, and this process is called equilibrium. Processes in equilibrium are also 
known as reversible processes, because when external conditions change 
backwards, the system can be reversed back from the final state to the initial 
one by passing through all the states originally reached, although this time in 
the opposite direction. It is clear that equilibrium states are an idealization of 
actual states. 

Now assume that the system is not subject to the action of any internal or 
external forces. Under such conditions, the system is said to be in a state of 
mechanical equilibrium. If in a system in a mechanical state no spontaneous 
changes occur in its internal structure, i.e., no chemical reaction or phase change 
occurs, the system is in chemical equilibrium. Finally, thermal equilibrium is 
reached in a system in mechanical and chemical equilibrium when the 
temperature is equal at any point and there is no heat interchange with the 
environment. When conditions of all three forms of equilibrium are satisfied, the 
state of the system is defined as a thermodynamic system in equilibrium in which 
no changes occur. For this reason, the thermodynamic state in equilibrium can be 
described using thermodynamic parameters that are independent of time. If one 
of the above equilibrium variables, mechanical, chemical or thermal, is not 
satisfied, the system will be in an unstable thermodynamic state.

Imagine now that, for example, destabilizing internal and external forces are 
applied. As a result of such impact on the system, macroscopic flows, 
turbulence, wave effects, acceleration of some parts in relation to others, etc. 
may occur. As these processes proceed, the thermodynamic system will pass 
through a series of unstable states.

If the pressure varies in different parts of the system, it cannot be used to 
characterize or describe the whole system. If there are chemical reactions or 
phase transformations in the system, it becomes clear that the concentration of 
components involved in these processes depends on the time and position in 
space of these components. Lastly, if there is temperature difference between the 
system and the environment, there will be temperature gradients within the 
system. In view of the above, temperature in this case will not be considered as a 
thermodynamic parameter.
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Thus, if the conditions of mechanical, chemical and thermal equilibrium are not 
met, the system cannot be described in the language of thermodynamic 
coordinate, which describes the system as a whole.

Any thermodynamic system is made of components. The name "component" is 
given to individual substances that, in their smallest ammount, are sufficient to 
construct the whole system. Likewise, the system is assumed to be in a state of 
equilibrium. In other words, components can be defined as the independent parts 
forming the system. To illustrate this, consider the following examples:

1.- The system water–ice–vapor. In this system there is but one component and that 
is water, which is a chemical homogeneous substance. It would be incorrect to 
consider Hydrogen as a component of the system, since its quantity in water is 
conditioned by the Oxygen content, and therefore they are not independent.  
Similarly, the same can be said with regards to Oxygen. Based on the 
above, in this example we have three phases and one single system.

2.- The mixture of Nitrogen, Oxygen, Argon, Carbon Dioxide, and Water Vapor 
gases that compose the air at ambient temperature. The system has five 
components, since the amount of each gas in the mixture is independent of 
the amounts of the other gases. This is an example of a system with five 
multiple components and one single phase.

3.- The aqueous solution of sodium chloride. This is a system of two components, 
NaCl and H2O. Although the molecules of NaCl dissociate in the 
water into Na+  and  Cl– ions, their amounts are interrelated, which by 
definition, NaCl is represented in the system as one component, while 
the system is treated as two components with one phase.

4.- A system composed of chemical substances for instance: CaCO3⟷CaO   +CO2.

The arrows show that a disassociation occurs in the system, as well as the 
formation of Calcium Carbonate.  In this case, there are three fundamental 
parts: Calcium Oxide CaO, Carbon Dioxide CO2 and Calcium Carbonate 
CaCO3. However, only two components, such as CaO and CO2, are 
really needed to form the whole system, as in this case, and so only two of 
the three parts that compose this system will be considered as components. 
Which two should we choose in this case? – It really does not matter. For 
instance, if we build the system of CaO and CO2, a chemical reaction 
will produce CaCO3. On the other hand, we can consider CaCO3 and CaO 
as components of the same system, and the dissociation of CaCO3 will result 
in formation of CO2.
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From the previous examples, it is clear that the number of components in a 
system may be equal or less than the number of its parts or elements.

1.2 The Equation and Function of State

Let us imagine a closed system containing a given amount of gas. Assume 
that volume (V), temperature (T) and pressure (P) of the gas can be 
measured. It is established experimentally that if the temperature and volume 
of gas are constant, the pressure of the gas also remains constant. Hence, the 
system is in a state of equilibrium.  If V and P are the magnitudes that 
remain constant, then the temperature of the gas will correspond to a unique 
value of T. Similarly, when P and T have certain fixed values, the volume of 
the gas cannot change. Thus, the system under consideration will be 
described by three thermodynamic parameters T, P and V, and, 
characteristically, only two of these parameters can be independent. 
Consequently, for a gas in a state of equilibrium, there is a certain 
dependence between these three parameters, which analytically relates their 
magnitudes. Such dependence is called the equation of state of the system in 
equilibrium or simply the equation of state. 

For any thermodynamic system there exists its own equation of state, but this 
equation cannot always be written by simple mathematical functions. In the case 
of a gas with a relatively low pressure, the equation of state can be described in a 
simple manner PV =RT, where R is known as “the constant of gases (8.314 J·K
−1mol–1)”. This equation is already known from the general physics course and is
called the ideal gas equation of state. The properties of this equation will be
analyzed next. Let us suppose that the equation of state of the ideal gas is solved
with respect to V, i.e., the volume is represented as a function of T and P.

(1.1)

If infinitesimal changes occur in the system during the transition of the
equilibrium state from one point to another, then, logically, these changes are 
accompanied by infinitesimal changes in temperature, volume and pressure 
which are described by dT, dP and dB.  In this case, from (1.1) we deduce that

(1.2)

V=V(T,P)

P T

V VdV dT dP
T P
¶ ¶

= +
¶ ¶
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   where the partial derivative    means an infinitesimal change in volume due to 

an infinitesimal change in temperature at a constant pressure. Analogically, the 

partial derivative        shows how the volume changes due to a change in pressure, 

while maintaining a constant temperature.  It can be observed that each partial 

derivative in the equation (1.2) can be a function of T and P.

If the equation is solved with regards to P, then P=P(T,V), and correspondingly

(1.3)

The temperature can also be expressed as a function of P and V

(1.4)

Let us now suppose a general case in which the function F depends on the 
thermodynamic state parameters, which we shall call x, y, z. By definition, this 
function will be called a state function if its value depends only on the state 
parameters and not on the processes that precede the establishment of such a state. 
Consequently, the difference between the value of F1 of this function for state 
1 and F2 for state 2, is due only to the values of x1, y1, z1 and x2, y2, z2, and is 
independent on  the  process  or  trajectory  of transition from state 1 to state 2. 
As an example, we consider potential energy. For a body with a mass (m), 
located at height h1, the potential energy is E1=mgh1 and for height h2 
respectively E2=mgh2. Since the difference  E2 – E1=mg(h2 – h1) between the 
first and second state does not depend on which trajectory the body traveled, 
then according to the definition, given above, the potential energy is a function 
of state.

One more example of a state function is the product PV. Suppose that a gas in 
the state of initial equilibrium is characterized by the values of P1 and V1 which 
are the state parameters of  P and V. Let us assume that after a series of 
transformations, this gas reaches its final state of equilibrium, in which the 
values of  the  pressure  and  volume  are  equal  to P2 and V2.  Thus, the function PV

dP= ∂P dT+  ∂P   dV.        ∂T V          ∂V T

dT= ∂T dP+  ∂T   dV.       ∂P V         ∂V  P

∂V
∂T  p

∂V
∂T  T
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acquires values of P1V1 until P2V2, which depends only on the values of the state 
parameters P and V in states 1 and 2, which are completely independent of the 
transition trajectory from 1 to 2.  

Suppose there is a functional dependence between the three parameters x, y, z, 
that is, there is a relation f(x, y, z)=0.

In principle, this relation can be rewritten for z as a function of x and y

z=F(x, y). (1.5)

Let F(x, y) be a state function.  If infinitesimal transformations occur in the
system, the change of F(x, y) com be written as 

(1.6)

The differential is called the total or exact differential, where

(1.7)

F1(x1, y1) and F2(x2, y2) are, respectively, values of the function F in the 
initial state 1 and in the final state 2. It is clear that one of the mathematical 
properties of the state function is that its closed contour integral is zero. Such 
integral  represents  the evolution of the system, that  starts  in  some  initial 
state 1, transforms,  but  returns  to  the  same  state  from  which  it  departed, 
i.e., 1.

dF(x,y)=0

Once this condition is met, the opposite is also valid, i.e. if the closed contour 
integral of the function F(x, y) is equal to 0, then it is a function that, if we refer it to 
the properties of matter, can be considered as a state function. Let us suppose that

dF(x,y)=M(x,y)dx + N(x,y)dy, (1.8)
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where M(x, y) y N(x, y) are functions with independent variables x and y. It is 
easy to show that, if the condition known as the Euler relation

(1.9)

there exists a function F(x, y) whose total differential is expressed by 
reference (1.8). To understand this, let us assume that function F(x,y) exists, 
then, by definition, its total differential can be written as

(1.10)

If (1.8) y (1.10) are compared, it can be seen that

(1.11)

If in the expression (1.11) we differentiate M(x, y) in relation to y, and N(x, y) 
in relation to x, then we obtain

(1.12)

Since in (1.12) the part on the right-hand sides of both equations are the 
same, the left-hand sides are exactly the same, that corresponds to the Euler 
relation (1.9). If the Euler relation is not met, that is, if

(1.13)

Then, in this case there is no function for which the expression (1.10) would 
be a total differential. This statement is simple to demonstrate. Suppose that 
function F(x,y) exists. If we repeat the previous reasoning, we obtain the 
condition (1.9), which contradicts inequality (1.13). This means that if the Euler 
relation is not satisfied, then the state function F(x,y) does not exist, and 
dF(x,y) cannot be a total differential, but simply represents an infinitesimal 
change in some variable F.
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1.3 Work

Suppose a force field is applied to a given thermodynamic system. Under the 
influence of such field, work can be performed. In this situation, the system is
able to perform external work, for example, the work to replace a load due to the
expansion of the piston inside the cylinder. Likewise, work can be done by 
compression of the gas inside the cylinder. In the first case, we will
conventionally say that the work done by the system over external bodies is 
positive work, and in the second case, it is negative work. In the general case, 
the amount of work is determined by the force under the action of which it is 
performed, and the total displacement that the force produces. In principle, one 
part of a system can produce work on another part of it. This kind of work is 
called internal work and can be produced, for example, by the interaction of 
molecules, atoms, or electrons within the system. In thermodynamics, only the 
external work done by the interaction of the system with surrounding bodies is 
analyzed, received or produced, and the internal work is disregarded.

As discussed earlier, the system in thermodynamic equilibrium must satisfy 
the following conditions:

1.- Mechanical equilibrium. For this, it is necessary that external and internal 
forces compensate each other within the system.

2.- Chemical equilibrium. The structure and chemical properties do not change 
in time.

3.- Thermal equilibrium. The temperature of the system is constant and coincides 
with the surrounding temperature.

Let us consider that the thermodynamic system is in equilibrium and the environment 
remains unchanged. In such circumstances, no displacement occurs, neither inside 
nor outside the system, therefore no work is performed. Nevertheless, if 
unbalanced forces interact with the system, the state of mechanical equilibrium 
is lost and, as a consequence of this:

– Effects such as the acceleration of some particles in relation to others,
macroscopic currents, turbulences, etc. may occur in the system.

– As a result of the above-mentioned phenomena, temperature differences
between the system and the environment may surge; likewise, inside the
system temperature gradients may appear.

– The chemical equilibrium condition is lost and chemical reactions with a
finite speed will begin to occur, as well as concentration of constituent
elements of the system and phase transformations.
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Thus, the interaction of external forces causes a transition of the 
thermodynamic system, that is in equilibrium, into a series of nonequilibrium 
states. If the forces applied to the system are sufficiently dynamic, the 
thermodynamic parameters characterizing the whole system (pressure, 
temperature, concentration, volume and others), can no longer be used to 
analyze its behavior. That is why equilibrium thermodynamics uses a certain 
idealization, in which the forces acting on the system are considered 
infinitesimal and change very slowly. In the frame of this idealization, the 
processes occuring in the system can be characterized as quasi-static or quasi-
equilibrium. In a quasi-static process, the system is always infinitely close to 
thermodynamic equilibrium, and therefore, all the states through which  the 
system passes can be described by their thermodynamic parameters.  For this 
reason, the equation (if known) can also be used to analyze the behavior of 
the system.

As a result, the quasi-static processes are idealizations used in the study of various 
thermodynamic systems, and the conditions for the realization of these processes 
can never be fully satisfied experimentally.

Fig. 1.1. To a definition of work in thermodynamic.

Let us imagine a cylinder with a piston (Fig. 1.1). Where we denote the pressure 
of the gas inside the cylinder as P and the area of the cylinder is S. As a result, 
the force applied to the cylinder is equal to PS. If under the action of this force 
the piston travels a distance dx, then the system performs an infinitesimal work 
on the environment, and the magnitude of this work is  đW = PSdx.  But  Sdx = 
dV, dV represents an infinitesimal change of volume.  Finally,

đW = PdV. (1.14)
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The reason why a horizontal line is used on the symbol đW  to illustrate work 
performed by the system will be explained at the end of this section.

Now suppose that under the action of force PS the piston travels a certain 
distance, and the volume inside the cylinder changes from Vi to Vf. Thus, the 
amount of work performed by the system is equal to

(1.15) 

If the pressure inside the cylinder is constant, this integral can be easily calculated.  
In the case when the piston moves with acceleration, P and V become functions
of time and the analytical integration of equation (1.15) gets complicated, 
although we must remember that all integrals of a continuous function that 
does not diverge can always be calculated numerically. Suppose that the gas
expansion process inside the cylinder is quasi-static. In that case, the pressure 
inside the system can be considered as a thermodynamic parameter, and 
therefore, utilizing the equation of state of the system, the pressure can be 
described as a function of T and V. If the laws of temperature change are
already known (for example, in the case of an isothermal process the
temperature is constant), the pressure can be expressed as function of the 
volume. This way, the integral in (1.15) would be determined.

Fig. 1.2. a) Work W1 done by the gas during expansion from volume Vi to
volume Vf (positive); b) Work W2 done by the gas during compression from 

volume Vf to volume Vi (negative); c) The looped cycle W1-W2 
when the gas returns ti the original state.  
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The system performs work by moving the piston due to expansion of gas inside 
the cylinder. This process is schematically shown in Fig. 1.2.a, the change in 
pressure and gas volume is characterized by curve I, with intial and final points i 
and f, respectively. The amount of work W1 produced by the system can be 
determined by integrating (1.15), corresponding to the shaded area under curve I. 
Fig. 1.2.b shows the process of gas compression in a cylinder under the action of 
external forces. The work W2 expended during this process corresponds to the 
shaded area under curve II, along which the compression process occurs. In Fig. 
1.2.a, the work is positive, and in Fig. 1.2.b, it is negative. Curves I and II drawn 
together in Fig. 1.2.c illustrate the situation when the gas in the cylinder returns to 
the initial state, and the initial and final positions in the system in the first and 
second processes are equal. The closed process represented in Fig. 1.2.c is called 
a cycle, and the shaded area between curves I and II corresponds to the difference 
between W1  and W2, i.e., the work produced by the system in this cycle. The 
direction of the processes is marked by arrows in Fig. 1.2.c indicating that the 
work is positive. If the processes were realized in the opposite direction, the sum 
of the works would be negative.

The P-V diagram in Fig. 1.3 shows initial and final positions of the stationary 
states relative to a certain thermodynamic system characterized by the parameters 
Pi, Vi, Ti and Pf, Vf, Tf. There are many different trajectories along which a system 
can move from one state i to another state f. For instance, first the system at 
constant pressure can be delivered from one point i to another (this is the isobaric 
process), then at constant volume it moves from point a to point f (isochoric 
process). In this case, the work performed is equal to the area limited at the top by 
the horizontal line i–a. Another variable may be the trajectory i–b–f, to which 
corresponds the work under the area below the line b–f. The series of isobaric and 
isochoric short lines connecting points i and f, as well as the continuous curve 
between these two points, illustrate two more possible trajectories of system 
transition from the initial state to the final state. It is clear that the work produced 
by a thermodynamic system depends not only on the initial and final states of the 
system, determined by the positions of points i and f, but also on the intermediate 
states taken by the system before reaching the final state f. In other words, the 
trajectory along which the system  moves affects the amount of work, and so the 
work cannot be a function of the thermodynamic system, since a given state 
determines a fixed value for the physical or thermodynamic variables that define 
it. As a consequence, the infinitesimal value đW in expression (1.9) is not a total
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differential. In order to underline this situation, the horizontal line in the symbol 
đ denotes an infinitesimal work produced by the thermodynamic system and 
exerted on it.

Fig. 1.3. Variable ways of transition of the thermodynamic system from state i to state f.

1.4 The First Principle of Thermodynamics and the 
Simplest Thermodynamic Processes

One of the main concepts of thermodynamics is the internal energy U of the 
system, that represents all forms of motion of the particles that compose the 
system, energy storage at the electronic level, as well as interactive energy 
between them. Internal energy consists of rotational energy, motion energy, 
undulatory motion of particles, internal energy of molecules, as well as 
interactions between them, intra- and interatomic, nuclear etc. The reserve of 
internal energy depends only on the state of the system and, therefore, can be 
considered as one of the characteristics of the state. In other words, the internal 
energy is a function of the state of the thermodynamic system.

There are different methods to modify the internal energy of the system.  As an 
example, let us analyze a thermodynamic system such as a container with a 
certain amount of water.  If the container is heated, after a period of time, the 
water will increase its initial temperature T1 to a final T2. Let us assume that 
inside the container we place a cylinder with blades (paddle wheel). The cylinder is 
then coiled with a cable electrically charged on one end. As the charge goes 
down, the paddle wheel starts to rotate. Consequently, the water temperature 
raises  from  an initial  T1  to  a  final  temperature  which  can  reach  T2.  So,  this 
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temperature increase is only due to the work being produced on the system. 
Thus, the internal energy of the system increases due to the heat interchange 
with the environment, and in the second case, mechanical energy is 
trasmitted to the system, which the system absorbs. Since the initial and final 
states of the system and the increase of its internal energy coincide in both 
cases. We can conclud that heat and mechanical work are equivalent. Heat is 
measured in the same units as energy, viz: Joules, ergs, etc. The mechanical 
equivalent of heat, or energy is called Calorie, that is equal to 4.180 Joules. 
Historically, the Calorie has been defined as the amount of heat energy needed 
to be applied to one gram of water to increase its temperature by one degree, 
and by international convention, an interval between 14.5 and 15.5 °C is 
chosen to standardize this unit of calorie. It should be clarified that neither heat 
nor work is a form of energy, rather they are forms of energy transmission.

We point that thermodynamic quantities whose values are proportional to 
the number of particles in the mass of a body are called extensive 
quantities, in contrast to intensive quantities, that in general case do not 
depend on the mass. Therefore, the internal energy of a body is an 
extensive quantity, since it proportional to the number of particles 
(mass). Examples of intensive quantities are temperature of a body, pressure 
of a gas inside a balloon, various types of fields (gravitational, electric, 
magnetic, etc.).

Suppose that as a result of some process a thermodynamic system receives a 
certain amount of heat 𝛥𝛥Q from the environment. This  heat can be consumed 
by possible phase transitions, such as fusion, sublimation, or evaporation, and 
partially or completely by heating the system. In this case, the energy state of 
the system changes regardless of how the heat transmitted to the system was 
expanded: phase transitions change the interaction or bonding energy of atoms 
or molecules, while heating increases the kinetic energy of the system. 
Therefore, part of the heat received by the system is spent on changing its 
internal energy.

Likewise, some of the absorbed heat can be used to perform external 
work. Let us heat the gas contained in a cylinder with a piston, and assume 
that there is a load on the external surface of this piston. Since the volume of 
gas increases with the temperature, useful work is produced, because as 
the piston is displaced upward, it lifts the load.



25

fundamental principles of thermodynamics

25

fundamental principles of thermodynamics

So, the heat absorbed by a thermodynamic system can be expended either by 
changing the internal energy of the system or by the external work produced. 
When this happens, the law of conservation of energy is always met and the 
equation of the balance of energy can be written in the following form

𝛥𝛥Q = 𝛥𝛥U + 𝛥𝛥W (1.16)

This expression is known as the first law or the first principle of 
thermodynamics, ∆Q is the heat received by the system, 𝛥𝛥U is the sum of all 
internal energy, and 𝛥𝛥W is the total amount of external work performed. Since 
the internal energy U of the system is a function of state, then, its infinitesimal 
change 𝛥𝛥U=dU is the total differential. As shown in section 1.3, the work 
depends on the trajectory along which the system moves from the initial state 
to the final state, and consequently, W is not a function of state and đW cannot 
be a total differential. Likewise, the infinitesimal change of  temperature is also 
not a total differential of the function, which can be shown mathematically in 
general terms. This leads to the demonstration that the infinitesimal change in 
𝛥𝛥Q , which is Euler condition (1.9), is not met. Similarly, one can show that 
∆Q is not a function of state by simple reasoning. Equation (1.16) represents 
𝛥𝛥Q as the sum of infinitesimal quantities. As pointed out earlier, one of these 
quantities, namely U is a function of state and consequently dU is a total 
differential, at the same time, since W is not a function of state and hence 
𝛥𝛥W=đW is simply  an  arbitrary infinitesimal quantity that does not correspond 
to a state differential. In view of this, the sum of these two quantities, that is, 
their linear combination, also cannot be a total differential either and 
consequently, Q is not a function of state. In other words, the sum of the total 
differential (dU) and the infinitesimal magnitude đW cannot be a total 
differential according to Euler linear condition. On the other hand, the 
algebraic difference  of the two infinitesimal quantities (𝛥𝛥Q=đ Q and 𝛥𝛥W=đW) 
can be the total differential, as is inferred from the first principle, when 
purifying and expressing the internal energy of the system in the form dU=đQ–
đW. Therefore, the first law of thermodynamics can be written in its differential 
form as

đQ = dU + đW (1.17)

In this expression, the sign đ represents infinitesimal changes of heat and work, 
according to the adopted terminology, reflecting the fact that neither Q, nor W is the 
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functions of state. Properly speaking, đQ and đW cannot be total differentials for 
the simple reason that they characterize two different processes by which the 
thermodynamic system can interchange energy with the environment. Therefore, 
the quantities đQ and đW do not reflect the behavior of the system in any way, 
but simply characterize its energy interaction with the environment. That means 
that the internal energy of the system can be changed by heat introduced or 
extracted from the system, or by external work received or produced. At the 
same time, dU is a total differential of the internal energy of the system, which is 
a function of state and describes the properties of the system as a whole. Let us 
analyze with the help of the first law of thermodynamics the simplest case where 
a system interchanges, in various ways, heat and work with the environment. Let 
us assume that the work produced on the system or system is due only to the 
change in volume, then  đW=PdV and therefore the first law of thermodynamic 
can be 

đQ = dU + PdV (1.18)

Let us now consider the following processes:

1. Isochoric process.
These describe the processes in which the volume V is maintained constant, and
the system can interchange heat with the environment. Since in the isochoric
dV=0, the expression of the first law of thermodynamics takes the form

đQ = dU (1.19)

this means that all heat is used to change the internal energy. If, as a result of the 
absorption Q of heat units, the temperature of the system changes from Ti to Tf, 
then the calorific capacity for V = const is determined by

(1.20)

2. Isobaric process.
In this process the pressure remains constant and the system can exchange heat
with the environment. When a certain amount of heat is absorbed, the internal
energy of the system will increase and the system will now be able to perform
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an external work. Suppose that in an isobaric process, when heat is absorbed Q, 
the internal energy increases from U1 to U2, and the volume from V1 a V2.  Then, 
based on the first law of thermodynamics, we can write

Q = U2 – U1 + P ∫ dV = U2 – U1 + P(V2 – V1) (1.21)

For these isobaric processes it is relevant to introduce a new variable or 
thermodynamic parameter which is very useful to analyze them, combining the 
following energies

H = U+ PV (1.22)

The new function is called enthalpy or heat function.  It is also a function of state, 
since it is represented as a linear combination of two functions of state U and PV. 
In this specific case of isobaric processes, in which P=const, the magnitude dQ 
turns out to be a total differential

đQp = dH (1.23)

The heating capacity at a constant pressure can be now expressed in terms of the 
enthalpy H

(1.24)

This way, in the processes that occur at a constant pressure the enthalpy H has 
analogous properties to those of the internal U in processes with constant volume.

3. Isothermal process.
To maintain a constant temperature during this process, the system is placed in a
thermostat. Let us see the dependence of the internal energy on temperature and
volume (since only two of the three parameters P, T y V are independent, then,
for example, pressure can be represented in relation to T and V). So, let us express
the new state function U in terms of these two variables that completely define
the system, T and V, to show U=U(T,V). In this case, we get

(1.25)
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In the isothermal process dT=0

(1.26)

Let us substitute (1.26) in (1.18)

(1.27)   

Therefore, from (1.27) in an isothermal process, heat partly contributes to an 
increase of the internal energy of the system, and partly to the performance of 
external work.

4. Adiabatic process.
In this process, the system is necessarily wrapped with a membrane that blocksor 
prevents the passage of heat from or into it, and is called an insulating or adiabatic 
wall, which completely excludes the heat exchange with the environment. Since 
dQ=0, we can conclude from the first thermodynamic principle that dU=-dW. 
Consequently in an adiabatic process, if the system performs useful work on the 
external environment, it is only due to a decrease of internal energy. If work is 
realized on the system, then the internal energy of the system will increase. Work 
is thus now equal to the change in internal energy, which is a function of state. 
Work is consequently independent now from the trajectory along which the system 
moves from the initial to the final state.

1.5 The Ideal Gas

The ideal gas is a gas whose state is determined by the well-known equation 
PV=nRT. Here n is the number of moles in the constituting substance of the gas, 
and R is the gas constant, that represents the amount of work performed by one 
mol of gas (n=1) in an isobaric process when its temperature is raised by one 
degree.

Let us examine a process in order to determine the internal energy of an ideal 
gas. For this purpose, let us consider the experiment carried out by Joule, which 
demonstrates that a gas temperature does not increase when it is expanded in the 
vacuum. Joule’s experiment is schematically presented in Fig. 1.4.
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Fig. 1.4. Diagram of the Joule experiment.

This drawing shows two containers 1 and 3 connected by a tube and a valve 2 
located inside a calorimeter. Container 1 is filled with gas at a given pressure (P) 
and temperature (T), while in the container 3 there is vacuum. After thermal 
equilibrium is established, according to the readings of the thermometer, valve 2 
is opened and the gas flows from container 1 to container 3 until the pressured 
equalizes. As a result of this experiment, Joule observed that when the volume 
occupied by the gas is doubled, the temperature variations recorded by the 
thermometer were negligible, meaning no heat was transferred between the 
containers, and the calorimeter lecture was zero for all practical purposes. Small 
changes in temperature observed in the thermometer, were associated with the use 
of a real gas in the experiment. If an ideal gas were used, the temperature 
variations would be zero. For this reason, 𝛥𝛥Q=0  for an ideal gas. In addition, 
since the system did not perform external work during the experiment, then 𝛥𝛥W is 
also zero. Thus, from the first law of thermodynamics we conclude that 𝛥𝛥U = 0, 
which means that the internal energy of a gas does not change during free 
expansion. If T and V are chosen as independent variables, then in the experiment 
shown in Fig. 1.4 we have

(1.28)

Since during the experiment 𝛥𝛥T=dT=0, then, since dU turned out to be zero

(1.29)
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To satisfy the condition that dU is zero. This indicates that the internal energy 
of an ideal gas is independent with regards to the volume. If we consider U as a 
function of T and P, we get that

(1.30)

For dT = 0 and dU = 0, as in the previous case, it is inferred from this equation 
that

(1.31)

Thus, if in a process of free expansion of a real gas its temperature barely changes, 
this indicates that internal energy U does not depend on either V or P, but is only 
a function of T. Consequently, we postulate that for a real gas, this 
applies rigorously:

(1.32)

Since dW=PdV, then

đQ = dU + đW (1.33)

In this case đQ=dU. Thus, the calorific capacity at constant volume can be 
written as

(1.34) 

Since the internal energy of an ideal gas depends only on temperature, the 

partial derivative  coincides with the total derivative. 

(1.35)
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Now the first law of thermodynamics can be written as

đQ = cVdT + PdV (1.36)

Let us review the simplest processes that occur in an ideal gas.

1. Isochoric process.
Since in an isochoric process V = const, then the gas does not perform any external
work. Correspondingly, all heat transmitted to the gas is consumed by the increase
of its internal energy and of (1.36)

đQ = dU = cVdT (1.37)

If the temperature increased from T1 to T2, then (1.37) is integrated within these 
limits and we find the heat received by the ga

𝛥𝛥Q = 𝛥𝛥U = cV(T2 – T1) (1.38)

2. Isobaric process.
In this process P = const.

đQ = dU + PdV = cVdT + PdV (1.39)

(1.40)

From the equation of state PV = RT for one mole of gas we have

(1.41)

(1.42)

PdV+VdP=RdT

For constant pressure, 

đQ = cVdT + PdV = cVdT + RdT = (cV+R)dT = cPdT 

After that, the so-called Mayer formula can be obtained

cP = cV + R (1.43)
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From this we can observe that

Q = cP(T2 – T1) = H2 – H1   and   W = P(V2 – V1) (1.44)

3. Isothermal process.
At T = const and  đQ = CVdT + PdV, we fin

đQ = PdV = đW (1.45)

Therefore, in this case, all the heat received is converted into work and ∆Q=∆W. 
From the ideal gas equation, we have

(1.46)

(1.47)

(1.48)

4. Adiabatic process.
In this case đQ=0, and hence the equation of the first principle has the form

cVdT + PdV = 0 (1.49)
From the equation (1.41) we get

(1.50)

Considering Mayer’s formula cp =cv +R, from (1.49) we have

(1.51)

cPPdV – RPdV + cVdP + RPdV = 0 (1.52)

or
–cPPdV = cVVdP (1.53)



33

fundamental principles of thermodynamics

33

fundamental principles of thermodynamics

Designating

(1.54)

Then

(1.55)

Integrating within the limits of V1 to V2 and P1 to P2, we have

(1.56)

or
P1V1

x = P2V2
x (1.57)

and, in a general form

PVx = Const (1.58)

This is the Poisson’s equation, which is graphically represented by a scalene 
hyperbola, called in this case adiabatic. The mathematical ratio of 𝜒𝜒 (Poisson's
ratio) is always greater than one, and therefore the adiabatic curve is more 
pronounced than the isothermal curve. Since

P1V1
x = P2V2

x (1.59)

and
(1.60)

then
RT1V1

x–1 = RT2V2
x–1 (1.61)

or  

(1.62)
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Since the exponent (c -1) in (1.62) is a positive one, it is obvious that 
thetemperature of the gas decreases in an adiabatic expansion, and increases 
during compression. The adiabatic curve is more pronounced than the isothermal 
one, therefore, in the adiabatic process, the pressure of the expanding gas 
decreases due to an increase in its volume and it is associated cooling. From the 
equation dV=cV dT, we can conclude that the positive external work in the process 
is equal to cV (T1-T2) and is performed by reducing the internal energy of the gas. 

Fig. 1.5 shows all possible idea gas functions such as isochoric, isobaric, 
isothermal and adiabatic in various coordinates: P-V, P-T and T-V.

Fig. 1.5. Isothermal (1), adiabatic (2), isochoric (3) and isobaric (4) functions of an ideal gas 
are shown in the planes of different coordinates: P-V, P-T and T-V.
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CHAPTER 2. 

SECOND LAW OF THERMODYNAMICS

2.1 Reversible and Irreversible Processes and the Carnot Cycle

Imagine a thermodynamic system tied to some balance with blocks and ropes in 
such way that the system itself can exercise external work on its environment. 
Suppose the system is in contact with some thermal reservoirs with which it can 
interchange heat. We shall call masses and heat reservoirs “the system’s 
immediate surroundings” since between them and the system there exists a direct 
relationship. As a result of a certain process due to interaction with its immediate 
surroundings, the system goes from the initial thermodynamic state i to the final 
state f. At the same time, due to the work performed therein, some of the weights 
that are hanging increase their potential energy (they are raised), and some other 
part diminishes their potential energy (they are lowered). Furthermore, some heat 
reservoirs transferred a certain amount of heat to the system, while others 
received heat from it. If, at the end of the process, this thermodynamic system, as 
well as the weights and heat reservoirs return to the initial state without any 
changes in their immediate surroundings, then the process will be called 
reversible. If, on the other hand, these conditions cannot be achieved, then the 
process is called irreversible.

In real processes, dissipative phenomena always occur, leading to energy 
dispersion. The effects of this type include thermal conductivity, viscosity, 
electric resistance, magnetic hysteresis, friction, etc. By definition, for a process 
in a thermodynamic system to be reversible, it is necessary that the work done by 
the system is given back to it when the process is performed in the reverse order. 
Theoretically, this is possible only if in the process under consideration there is no 
dissipative phenomena. Since such a condition cannot be satisfied: reversible 
processes in thermodynamics are an abstract idealization. It is worth noting that 
classical mechanics also uses similar idealizations, for instance: material points 
(particles), bodies moving without friction, weightless ropes, etc. 

Suppose, that it is necessary to carry out a process that involves the transformation 
of  heat  into  work.  Let us analyze one of these processes consisting of  isothermal
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expansion of a gas. In such case, the gas temperature remains constant and the 
internal energy does not change. Nevertheless, as the gas expands, the pressure in 
the system decreases, and as soon as it becomes equivalent to the atmospheric 
pressure, the process ends. Therefore, in order to continue with the production of 
work using the same gas, it is necessary to return the system back to the starting 
point, that is, to run what is called a cycle, using some additional 
complementary processes. When we reviewed the properties of an ideal gas, 
it was shown that the isothermal curve and the adiabatic curve are different. 
As shown in Fig. 2.1.a, the isothermal curve 1 is called equilateral 
hyperbola, and the adiabatic curve 2 is called scalene hyperbola. From this it can 
be concluded that a combination of two isothermal and two adiabatic curves can 
be used to form a cycle as seen in Fig. 2.1.b, which is called the Carnot cycle. 
Analyzing this cycle in detail, we assume that the isothermal and adiabatic 
processes that correspond to it are reversible. As this is done, we realize that 
these processes are most convenient to perform work, because in the first case all 
transferred heat is converted into work, and in the second case all work is done 
due to the internal reduction of the heat of the gas. 

The Carnot Cycle is represented by 2 adiabatic and two isothermal curves in Fig. 
2.1.b in the coordinate plane P–V. These four curves intersect at points 1, 2, 3, and 
4. Curves 1–2 and 3–4 are isothermal with their corresponding temperatures T1 and
T2, where T1>T2.  Curves 2–3 and 4–1 are adiabatic curves.

Fig. 2.1. a) Isothermal (1) and adiabatic (2) curves in the coordinate plane P-V; 
b) The Carnot cycle.

During the cycle, the following four processes occur:
1.- The reversible isothermal expansion of a gas along the isothermal curve 1–2, 

showing the corresponding changes in pressure and volume. During this 
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process, the heat Q1 that is transmitted to the heater gas at temperature T1, is 
totally transformed into work W1

Its magnitude is equal to the area under the curve which goes from point 1 to 
2 (1, V1, V2, 2).

2.-  The reversible adiabatic expansion of a gas from point 2 to 3. When this 
happens, the gas temperature decreases from T1 to T2, and the positive work 
generated by it is equal to 

W2 = cV(T1 – T2)

This is represented in the diagram by the area (2, V2, V3, 3).

3.- The reversible isothermal compression of the gas from 3 to 4. This process 
takes place while performing external work on the gas, and it is equals 
to the amount of heat transferred from the gas to the refrigerant, which 
has a temperature T2. In the isothermal process, the internal energy of an 
ideal gas does not change. The work performed on the gas in this 
process is negative and equal to 

Fig. 2.2. a) The heater and the refrigerator (1-2), (3-4): isothermal processes; b) An ideal 
thermo-insulator (2-3), (4-1): adiabatic processes. 

4.- The reversible adiabatic compression of the gas from point 4 to 1, produced 
by the external work. The work performed by the gas in this process is
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W4 = cV(T1 – T2)

The idealized Carnot cycle we have just analyzed can be represented with the 
diagram in Fig. 2.2. This figure shows a cylinder filled with an ideal gas. The 
piston slides on the walls of the cylinder without friction, and both components 
are made of thermally insulating material, while the bottom of the cylinder is 
made of a material ideal for thermal conductivity. Let us assume that at the 
beginning the gas has temperature T1, volume V1, and pressure P1. We place the 
cylinder on a huge grate having a temperature T1, which we shall call “heater” 
or “heat source”, now we gradually remove the load from the piston, allowing the 
gas to reversibly expand to volume 2 at temperature T1, carrying out the 
isothermal process 1, 2 (Figs. 2.1 and 2.2). 

Having reached state 2, we pull the heat source, place the cylinder on the heat 
insulating template,  and further reduce the load on the piston, causing an adiabatic 
expansion of the gas (process 2–3). When the volume V3 is reached, the gas 
temperature will decrease due to its expansion to T2 (Fig. 2.2.b). After that,the heat 
insulating template is removed from the base of the cylinder and placed on the 
surface having a temperature T2 equal the gas temperature at that moment. This 
cooler body we shall call “refrigerator”. Now, let us now reversibly and 
isothermally compress the gas to T2, reducing the volume from V3 to V4, the value of 
which we shall determine later. Having reached volume V4, we take out the 
refrigerator and place the base of the cylinder back on the insulating template. We 
continue to compress the gas, now performing an reverse adiabatic compression. In 
this case, the temperature will rise as the gas is compressed by the external work 
done on it to achieve compression, a process that yields energy as a result of work 
performed. The compression stops when the temperature reaches T1 again.

The algebraic sum of all performed work in a cycle is equal to

(2.1)

In the P–V diagram (Fig. 6b), this work is represented by the area of a curvilinear figure 
(1, 2, 3, 4). In this sketch, the volumes V1, V2, y V3 can be arbitrary, while  V4 must have a 
determined and unique value as a condition for the system to return to the initial state. 

Let us determine volume V4. For the adiabatic curve (2–3)
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For the adiabatic curve (4–1)

where

(2.2)

If the volumes V1, V2 y V3, which, as we mentioned earlier, can be determined 
arbitrarily, then the value of V4, can be found and cannot be arbitrary, but is given 
by the equation (2.2), which allows the gas to return to the initial state, thus closing 
the cycle. Using (2.2), the total work of the gas (2.1) produced by the reversible 
Carnot machine can be written as

(2.3)

At this moment, we define that the work relationship with regards to the heat 
absorbed from the heat source we named “heater” in this process, Fig. 2.1.b, the 
isothermal at T1 in this cycle, determines the efficiency of the machine to execute 
the Carnot cycle we are examining

(2.4)

The total amount of heat Q1 received from the heater is

Therefore,

(2.5)
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From the equation (2.5), it can be seen that the efficiency of a reversible and 
ideal Carnot machine can never be equal to 100% when operating between two 
thermal reservoirs having the temperatures T1 and T2, at which the colder 
(isothermal T2) is a real temperature, which is always higher than the temperature 
absolute zero. Also in this machine, both isothermal and adiabatic processes are 
used, which are the most convenient for obtaining high efficiency. For this reason, 
in any real machine operating between the same temperatures T1 and T2, that is, 
between the reservoir or heat source from which heat is taken to perform work at 
temperature T1, and the one to which it gives heat T2, the efficiency will always be 
lower than in (2.5), mainly because any cycle other than the Carnot cycle will, by 
definition, involve processes other than isothermal and adiabatic. In addition, due 
to the always present dissipative effects, all real processes are irreversible and 
always require the loss of useful work, and, consequently, a decrease in 
efficiency. Thus, the efficiency of a reversible Carnot machine is a limit or a 
maximum superior value that can never actually reached for any real thermal 
machine operating between the temperature of the heater T1 and the temperatures 
of the cooler T2, respectively.

Obviously, the efficiency of a Carnot machine can be determined in a different 
way using the following reasoning: in a heater’s cycle a certain amount of heat 
is removed or absorbed Q1. In the same cycle a certain amount of heat is 
transmitted to the refrigerator Q2, being Q2<Q1. It is clear that the difference Q1 
– Q2 becomes useful work, so the efficiency of the Carnot machine is expressed
by the relation

(2.6)

The expression (2.6) is more general than (2.5), which is valid only for 
reversible Carnot machines, that means only for the following ἡ=𝜂𝜂𝜂  From 
which we obtain

(2.7)

Let us analyze the results of the processes occuring in the Carnot machine in one 
cycle:

1.- The source of high temperature called “heater” loses an amount of heat Q1.
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2.- Q2 is the amount of heat transmitted to the cold source we have called 
“refrigerator”.

3.-  The difference Q1 – Q2 is the net heat transformed into useful work W.

After the cycle is finished, the gas returns to its original state at the beginning and, 
therefore, its internal energy does not change.

Fig. 2.3. The inverse Carnot cycle.

The machine under consideration, that performs mechanical work in a given 
cycle, is called the direct Carnot machine. If the direction of the cycle is 
reversed, as shown in Fig. 2.3, then this will be the inverse Carnot machine. In 
this machine, the cycle consists of the following reversible processes:

1.- The expansion of the gas from volume V1 to volume V2 occurs simultaneously 
with the cooling from T1 to T2 along adiabatic 1–4. In this process, the 
system performs an external work and its quantity is proportional to the 
area 1, 4, V2, V1, and the work is positive.

2.- The gas expansion from volume V2 to volume V3 maintaining T2 constant 
along isothermal 4 – 3. In this process, the system also performs an external 
work which is proportional to the area 4, 3, V3, V2.

3.- The gas compression from volume V3 to volume V4 as it is heated from 
temperature T1 to temperature T2 along adiabatic 3–2. This work is 
performed when consuming an external work (this is negative) determined 
by the area 3, 2, V4, V3.

4.- The gas compression of volume V4 up to the initial volume V1 at a constant 
temperature T1 and along isothermal 2–1 which is also due to an external 
work, which is proportional to the area 1, 2, V4, V1.

It follows that the amount of mechanical work performed by the machine during 
the cycle is negative.  In other words, for the inverse Carnot machine to work, it is
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necessary to consume external work proportional to the area 1, 2, 3, 4 and equal 
to Q1 – Q2. During the cycle of the inverse Carnot machine, the following 
changes take place:

1.- A compression work is performed on the gas that equals to Q1 – Q2.
2.- Q2 is the amount of heat removed from the refrigerator.
3.- Q1 is the amount of heat transferred to the heater.

Thus, the inverse Carnot machine allows heat to be removed from the cold body 
and transferred to a hotter one, that is, it operates as a refrigerator or refrigeration 
machine. The efficiency of the inverse Carnot machine can be found the same way 
as the direct one, using the formula (2.5). That is why, if the direct Carnot machine 
is converted into a inverse one or into a refrigerating machine, then its efficiency 
will not change.

The Carnot machine is an idealization, useful in other physics disciplines as well, 
such as material points or particles, frictionless pulleys, electric circuits, 
resistanceless cables, and many more.

2.2 Clausius Postulate and the Second Principle of Thermodynamics

Clausius postulate, also known as one of the variants of the second principle 
of thermodynamics, was formulated on the basis of a generalization of a large 
number of experimental observations. According to this postulate, heat cannot 
itself transfer from a cold body to a hot one. The expression “itself” implies 
that the processes of heat transfer from a cold body to a hot one cannot occure 
spontaneously, since they require the participation of some other agent or 
physical process. In other words, the transfer of heat from a cold body to a hot 
body requires an additional process that makes the first possible, that is, 
taking heat from the cold body and transferring it to one that has a higher 
temperature or is “hotter”. This situation, in which an auxiliary process is 
required to take heat away from a cold body and deliver it to a hot one, we 
describe as a process that requires “compensation”. Clausius defines these 
processes requiring compensation as negative processes. On the contrary, 
processes that occur by themselves in an isolated system and, by definition, do 
not require additional processes, are considered as positive processes. An 
example is the transfer of heat from a cold body to a hot one and the 
conversation of heat into work.
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Using the above definitions, one can elaborate a way to formulate the 
second principle of thermodynamics:

“In an isolated system, positive processes are unique and occur 
by themselves, that means they do not need compensation, while 
negative processes can only take place with compensation processes 
which must occur simultaneously to make it possible”.

Let us illustrate this formulation of the second principle of thermodynamics with 
the examples analyzed in Section 2.1, that take place in the direct and 
reverse Carnot machines.

1.- Let us suppose that the reversible direct Carnot machine works in an 
isolated system. Therefore, in a Carnot machine cycle, a negative process of 
transformation of heat into mechanical work takes place, compensated by a 
positive process of heat transmission from the heater to the refrigerator. See 
Figs. 2.1.b and 2.2.a.

2.- Now, let us consider the work utilized by the Carnot inverse reversible 
machine in an isolated system. In this case, during the cycle two processes 
also occur. During the first one, heat is removed from the refrigerator 
(which is the source of heat that corresponds to the isothermal with the lower 
temperature) and it is transmitted to the heater (the source corresponding to 
the isothermal with the highest temperature in the cycle), during the second, 
work is transformed into heat. The first process (negative), is completely 
compensated by the second positive process.

2.3 The Carnot Theorem for Reversible and Irreversible Cycles and the 
Absolute Temperature

The efficiency of any reversible Carnot machine operating between the same heat 
source “hot” and another source “cold” (with a lower temperature of former) are 
the same and do not depend on the type or phase state of the substances used to 
produce a thermodynamic cycle between these heat sources in these machines.

This principle is called Carnot's theorem. To demonstrate this theorem, suppose 
that the system is connected to a hot heat source and another, which we have called 
"cold", the two machines having in common the fact of being connected to those 
same sources. Also, suppose they function as two inversible Carnot machines.  
Assume,  that  the  first  machine  uses  an  ideal  gas,  while in the second,  any real 
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substance is used. Let us consider that the temperatures of the hot heat source and 
the cold heat source are T1 y T2, respectively, and let us make the arrangements so 
that work W that these machines produce are equal. 

1.- The hot source yields a heat amount Q1.
    2.- Work is produced W.
    3.- The cold source receives a heat amount Q2=Q1–W which is “surplus” heat.

4.- The cycle’s efficiency is therefore: 𝜂𝜂1 =   WQ1 
Considering now a cycle of work W by the second machine, that operates 
between the same heat sources, but this time working with a substance, we have 
accordingly:

1.- The hot source yields a heat amount Q1.
2.- Work is produced W.
3.- The cold source receives a heat amount Q1–W.

Now assume for a moment that the efficiency of the second machine 𝜂𝜂2 is higher 
than the first. If

then it must be that  Q1–Q2   in order to satisfy this inequality.

Now let us start machine I in the opposite direction, maintaining its efficiency 
unchanged. The gas is compressed at the expense of the useful work produced by 
the second machine. In such case, both machines together form a device that 
works by itself and independently, as all work produced by machine II is spent 
for compression of gas in machine I. In this machine, the heat balance of the 
refrigerator is determined by the ratio

(Q1 – W) – (Q2 – W) = Q1 – Q2  (2.8)

Since the difference between Q1 and Q2 is positive, the expression (2.8) determines 
the heat amount lost by the heat source, called refrigerator, during the working cycle 
of such device. During this cycle, the “hot” heat source or heater receives the 
amount of heat, also defined by the difference Q1–Q2. Consequantly, during the 
operation of an insulated device, Q1–Q2 is the amount of heat transferred from the 
cold body to the hot one. Incidentally, it is important to mention here that this transition 
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(negative process) is not accompanied by any compensation by a positive process, 
which contradicts the Clausius postulate. This contradiction arises as a consequence 
of the initial assumption that η2 > η1.  As a result, this assumption is not true and

η2 ≤ η1

If we convert the machine II backwards and convert the machine I to a direct one, 
then, by analogy with the previous reasoning we have the following

η1 ≤ η2

from this, we conclude that these expressions can only be simultaneously true if 
the equality η1=η2, is assumed.

Fundamental independence of efficiency of a reversible Carnot machine on 
the type and phase state of the substance is a consequence of expression (2.5), in 
which the factors haracterizing the properties of the ideal gas are simply not 
demanded, but are expressed only in terms of temperature of the substances 
“hot” or “cold”.  For this reason, the Carnot cycle is valid not only for a gas, but 
also for any liquid or solid substance.

We are now going to demonstrate that between two heat reservoirs, the heater and 
the refrigerator, no machine can be more than efficient than the Carnot machine.

First, we shall demonstrate that the efficiency of any reversible cycle at 
temperatures T1 and T2 (T1>T2) is always lower then the efficiency of a Carnot 
machine operating in the same range of temperatures of the heater and the 
refrigerator,  T1 y T2, respectively.

Fig. 2.4. Division of the Carnot cycle into two.
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Let us divide Carnot cycle into two cycles, as shown in Fig. 2.4, using the adiabatic 
ab. Thus, both adiabatic processes occurring along ab in the two new cycles are 
mutually compensated, since they are directed in opposite directions. That is why 
the initial cycle is equivalent to the two new cycles. It becomes clear that it 
cannot only be divided, but also arranged with adiabats from different Carnot 
cycles.  In this case, if in these cycles use heaters and refrigerators with different 
temperatures, the resulting cycle will be, for example, as shown in Fig. 2.5.

Fig. 2.5. 2 different Carnot cycles with different refrigerators and heaters.

Let us analyze the arbitrary reversible cycle represented in Fig. 2.6.  In this cycle, the 
temperature changes continuously from T1 to T2. Regarding this arbitrary cycle, let 
us describe the Carnot cycle that operates between the same temperatures, in which 
we draw a series of adiabatic cycles spaced at infinitesimal intervals.

Fig. 2.6. Presentation of the Carnot cycles as a sum of elementary cycles.

After this operation, the Carnot cycle ends up divided into a series of elementary 
cycles.  From the points of intersection of the adiabatics with the arbitrary inversible 
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Fig. 2.5. 2 different Carnot cycles with different refrigerators and heaters.

Let us analyze the arbitrary reversible cycle represented in Fig. 2.6. In this cycle 
the temperature changes continuously from T1 to T2. Regarding this arbitrary cycle let us 
describe the Carnot cycle that operates between the same temperatures, in which we will 
draw a series of adiabatics separated from each other by infinitesimally small distances.

Fig. 2.6. Presentation of the Carnot cycles as a sum of elementary cycles.

After this operation, the Carnot cycle ends up divided into a series of elementary cycles.  
From the points of intersection of the adiabatics with the arbitrary reversible cycle, we 
will draw segments of the isotherm as indicated in Fig. 2.6. Now, we can see that this 
reversible arbitrary cycle can be presented as a series of elementary Carnot cycles with 
different temperatures within the interval between T1 and T2. The efficiency of the 
elementary cycles is equal to: 

.             (2.10)

The efficiency of the elementary cycles into which the Carnot cycle is divided is 
described around an arbitrary reversible cycle equal to:

(2.11)

From Fig. 2.6 it can be seen that and, therefore,
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cycle, we will draw segments of the isotherm as indicated in Fig. 2.6.  Now, we can 
see that this reversible arbitrary cycle can be presented as a series of elementary 
Carnot cycles with different temperatures within the interval between T1 and T2. 
The efficiency of the elementary cycles is equal to:

(2.10)

The efficiency of the elementary cycles into which the Carnot cycle, described around 
an arbitrary inversible cycle, is equal to:

(2.11)

From Fig. 2.6 it can be seen that and, therefore,

(2.12)

where

(2.13)

which means that of all reversible cycles we can conceive of that operate between 
T1 and T2, the most convenient one for obtaining useful work from, that is to say 
the most efficient one, is the Carnot cycle.

Now analyze any irreversible machine. In such a machine certain irreversible 
processes occur, which reduce the useful work produced by the cycle. In other 
words, the efficiency is reduced. For example, the processes in irreversible 
machine are always accompanied by some friction. This means that part of the 
heat induced to the system will be spent in work to overcome the force of 
friction. It is also clear that if heat conduction occurs in certain parts of the 
machine, some of the heat that comes from the heater will be consumed in 
warming up those parts and it will dissipate uselessly. In this fashion, when 
irreversible processes exist, a part of the work produced will be lost to friction so 
that it will not be taken advantage of by turning it into useful work. In view of this,
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draw a series of adiabatics separated from each other by infinitesimally small distances.
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will draw segments of the isotherm as indicated in Fig. 2.6. Now, we can see that this 
reversible arbitrary cycle can be presented as a series of elementary Carnot cycles with 
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Fig. 2.5. 2 different Carnot cycles with different refrigerators and heaters.

Let us analyze the arbitrary reversible cycle represented in Fig. 2.6. In this cycle 
the temperature changes continuously from T1 to T2. Regarding this arbitrary cycle let us 
describe the Carnot cycle that operates between the same temperatures, in which we will 
draw a series of adiabatics separated from each other by infinitesimally small distances.

Fig. 2.6. Presentation of the Carnot cycles as a sum of elementary cycles.

After this operation, the Carnot cycle ends up divided into a series of elementary cycles.  
From the points of intersection of the adiabatics with the arbitrary reversible cycle, we 
will draw segments of the isotherm as indicated in Fig. 2.6. Now, we can see that this 
reversible arbitrary cycle can be presented as a series of elementary Carnot cycles with 
different temperatures within the interval between T1 and T2. The efficiency of the 
elementary cycles is equal to: 
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The efficiency of the elementary cycles into which the Carnot cycle is divided is 
described around an arbitrary reversible cycle equal to:
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(2.12)

, where

(2.13)

which means that of all reversible cycles we can conceive of that operate between T1 and
T2, the most convenient one for obtaining useful work from, that is to say the most 
efficient one, is the Carnot cycle.

Now analyze any irreversible machine. It is obvious that in such a machine certain 
irreversible processes occur, then this will bring about a reduction of useful work 
produced by the cycle, or in other words, the efficiency is reduced. In reality, for example, 
the processes in such a machine are always accompanied by some friction. This means 
that part of the heat induced to the system will be spent in overcoming the force of friction.  
It is also clear that if heat conduction occurs in certain parts of the machine, some of the 
heat that comes from the heater will be consumed in warming up those parts and it will 
dissipate uselessly. In this fashion, when irreversible processes exist, a part of the work 
produced will be lost to friction so that it will not be taken advantage of by turning it into 
useful work. In view of this, the efficiency of the irreversible machine (I) will always be 
lower than that of the reversible Carnot machine (II), and the inequality (2.11) will always 
be true:

- Due to the losses linked to the irreversible processes of machine (I);
- Due to the differences of the processes taking place in machine (I) vs. the 

isothermal and adiabatic processes taking place in machine (II).

For the reversible Carnot machine where:

or         (2.14)

From a vast number of experiments, we know that when measuring the temperature 
of one given body, the different types of thermometers may show different readings. In 
other words, the value of experimental measurements of temperature depend on the type 
of thermometer being used or on the material of said given body. This way, one definition 
of the Kelvin scale can be formulated like this: “The reason for two temperatures in the 
Kelvin Scale is equal to the reason for the heat shed by the heat source or heater and the 
heat transferred to the cold source or refrigerator, in a cycle in which the reversible Carnot 
machine functions between two heat sources at these temperatures”.

2.4. Entropy

Like in the previous paragraph, we are going to divide the Carnot cycle into two 
cycles with the help of an intermediate adiabatic ab (Fig. 9), which, as mentioned before, 
are equivalent to the initial cycle.  Heats Q1 and Q2 can be represented as the sum
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the efficiency of the irreversible machine (I) will always be lower than that of the 
reversible Carnot machine (II), and the inequality (2.11) will always be true:

- Due to the losses associated with the irreversible processes in machine (I);
Due to the difference between the processes occurring in machine (I) vs. the 
isothermal and adiabatic processes taking place in machine (II).

-

For the reversible Carnot machine          where:

(2.14)

From a vast number of experiments, we know that when measuring the 
temperature of one given body, different types of thermometers may show 
different readings. In other words, the value of experimental measurements of 
temperature depend on the type of thermometer being used or the material of 
given body. One definition of the Kelvin scale can be formulated like this: “The 
reason of two temperatures in the Kelvin scale is equal to the reason of the heat 
shed by the heat source or heater and the heat transferred to the cold source or 
refrigerator, in a cycle in which the reversible Carnot machine operates between 
two heat sources at these temperatures”.

2.4 Entropy

Like in the previous paragraph, we are going to divide the Carnot cycle into two cycles 
with the help of an intermediate adiabatic ab (Fig. 9), which, as mentioned before, are 
equivalent to the initial cycle.  Heats Q1 and Q2 can be represented as the sum
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which means that of all reversible cycles we can conceive of that operate between T1 and
T2, the most convenient one for obtaining useful work from, that is to say the most 
efficient one, is the Carnot cycle.

Now analyze any irreversible machine. It is obvious that in such a machine certain 
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produced by the cycle, or in other words, the efficiency is reduced. In reality, for example, 
the processes in such a machine are always accompanied by some friction. This means 
that part of the heat induced to the system will be spent in overcoming the force of friction.  
It is also clear that if heat conduction occurs in certain parts of the machine, some of the 
heat that comes from the heater will be consumed in warming up those parts and it will 
dissipate uselessly. In this fashion, when irreversible processes exist, a part of the work 
produced will be lost to friction so that it will not be taken advantage of by turning it into 
useful work. In view of this, the efficiency of the irreversible machine (I) will always be 
lower than that of the reversible Carnot machine (II), and the inequality (2.11) will always 
be true:

- Due to the losses linked to the irreversible processes of machine (I);
- Due to the differences of the processes taking place in machine (I) vs. the 

isothermal and adiabatic processes taking place in machine (II).

For the reversible Carnot machine where:

      or         (2.14)

From a vast number of experiments, we know that when measuring the temperature 
of one given body, the different types of thermometers may show different readings. In 
other words, the value of experimental measurements of temperature depend on the type 
of thermometer being used or on the material of said given body. This way, one definition 
of the Kelvin scale can be formulated like this: “The reason for two temperatures in the 
Kelvin Scale is equal to the reason for the heat shed by the heat source or heater and the 
heat transferred to the cold source or refrigerator, in a cycle in which the reversible Carnot 
machine functions between two heat sources at these temperatures”.

2.4. Entropy

Like in the previous paragraph, we are going to divide the Carnot cycle into two 
cycles with the help of an intermediate adiabatic ab (Fig. 9), which, as mentioned before, 
are equivalent to the initial cycle.  Heats Q1 and Q2 can be represented as the sum

and           

( )

( )
T
T

T
T

i

i
2

1

2

1
>

( )h hi <

1 2 1 2

1 1

Q Q T T
Q T
- -

=

2 2

1 1

T Q
T Q
= 1 2

1 2

Q Q
T T

=

' "
1 1 1Q Q Q= - ' "

2 2 2Q Q Q= -

(2.12)

, where

(2.13)

which means that of all reversible cycles we can conceive of that operate between T1 and
T2, the most convenient one for obtaining useful work from, that is to say the most 
efficient one, is the Carnot cycle.

Now analyze any irreversible machine. It is obvious that in such a machine certain 
irreversible processes occur, then this will bring about a reduction of useful work 
produced by the cycle, or in other words, the efficiency is reduced. In reality, for example, 
the processes in such a machine are always accompanied by some friction. This means 
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It is also clear that if heat conduction occurs in certain parts of the machine, some of the 
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dissipate uselessly. In this fashion, when irreversible processes exist, a part of the work 
produced will be lost to friction so that it will not be taken advantage of by turning it into 
useful work. In view of this, the efficiency of the irreversible machine (I) will always be 
lower than that of the reversible Carnot machine (II), and the inequality (2.11) will always 
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- Due to the losses linked to the irreversible processes of machine (I);
- Due to the differences of the processes taking place in machine (I) vs. the 
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heat transferred to the cold source or refrigerator, in a cycle in which the reversible Carnot 
machine functions between two heat sources at these temperatures”.

2.4. Entropy

Like in the previous paragraph, we are going to divide the Carnot cycle into two 
cycles with the help of an intermediate adiabatic ab (Fig. 9), which, as mentioned before, 
are equivalent to the initial cycle.  Heats Q1 and Q2 can be represented as the sum
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, where

(2.13)

which means that of all reversible cycles we can conceive of that operate between T1 and
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efficient one, is the Carnot cycle.
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Adding (2.15) and (2.16), we obtain

(2.17) 

It is obvious that if the initial cycle is divided in several segments with the help of
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(2.22) 

Fig. 2.7. To the definition of entropy. 

Since Q1 is transmitted from the heater to the object, and Q2 in turn from the object 
to the refrigerator, the heat has different signs: đQ1 can be considered as positive
and đQ2 as negative. Therefore equation (2.22) represents an algebraic sum of 
the heat divided by the temperature            along the contour, since the contour is 

closed, its closed curve integral is equal to zero

(2.23)

from (2.23) we see that the integrand is a function of state and therefore, if a
reversible thermodynamic system moves from state A to state B, then the magnitude 

of the i gra       endnte l    does not dep  on the trajectory  along which  the  transition 

takes place.  In other words, the integral         within the limits of A–B along an 

arbitrary trajectory I, is always equal to the integral of      within the limits of 

A–B but calculated along another arbitrary trajectory II. See Fig. 2.7.

(2.24)

A

B

I

II

đQ
 T

(2.22) 

Fig. 2.7. To the definition of entropy.

Since Q1 is transmitted from the heater to the object, and Q2 in turn from the object 
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the temperature along the contour, since the contour is closed, its circular integral 

equals zero
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From (2.23) we see that the integrand is a function of state and therefore, if a 
reversible thermodynamic system moves from state A to state B, then the magnitude of 

the integral does not depend on the trajectory through which the transition takes 

place. In other words, the integral within the limits of A – B through an arbitrary 

trajectory I, is always equal to the integral of within the limits of A – B that takes 

place following another arbitrary trajectory II. See Fig. 2.7.

(2.24)

Let us demonstrate this expression. Assume that the system can be taken from state 
A to state B, as show on Fig. 12, with the help of two reversible processes through 
trajectories I and II. Since each one of these processes is reversible, then the whole 
contour A-I-B-II-A is reversible as well, thus for this contour, the Clausius integral 
applies, i.e.
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place following another arbitrary trajectory II. See Fig. 2.7.
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Let us demonstrate this expression. Assume that the system can be taken from 
state A to state B, as show in Fig. 2.7, using two reversible processes along 
trajectories I and II. Since each one of these processes is reversible, then the whole 
contour A-I-B-II-A is also reversible, for this contour, the Clausius integral is
aplicable, i.e.

Dividing the contour of this integral in two, we have

positive to negative, we obtain
where the reversing the limits of the second integral, which changes sign from  

which, in the end, needed to be demonstrated.

In view of the above, the infinitesimal magnitude           is                                                                                        a total differential of 
the state function of the parameters. This function was first introduced by 
Clausius, who denoted it with the letter S and called it entropy, and the integral 
(2.23) was called the Clausius integral for any reversible cycle.

In this manner, the second law of thermodynamics can be written as

(2.25)

If the state parameters are known, entropy can always be calculated as a 
function of these parameters. Similarly, in solving a number of problems, 
it is often convenient to use entropy as a state-independent parameter with 
the same hierarchy in regards to temperature, pressure and volume, which
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If the state parameters are known, then the entropy, as a function of these 
parameters, can always be calculated. Likewise, when solving a series of problems, it is 
often convenient to utilize the entropy as an independent parameter from the state, with 
the same hierarchy in regards to temperature, pressure and volume; which are the state 
parameters of the thermodynamic system, but, if necessary, these can be considered as a 
function of state. 

The entropy of a system can increase or decrease, depending only on whether
is positive or negative, since the absolute temperature T is always positive. Obviously, if 
the system is receiving heat, then the entropy grows, otherwise the entropy of the system 
diminishes when the system yields heat. Since in the adiabatic processes then in 
such cases the entropy of the system remains unchanged, and therefore, the adiabat is 
called a constant entropy curve or isentrope and then process is called isentropic.  

The entropy can be added. This means that the entropy of a system composed of 
several bodies is equal to the sum of the entropies of these bodies. For this reason, the 
entropy is an extensive magnitude. The physical units of entropy as seen in (2.25) 
coincide with those of a specific heat.
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parameters, can always be calculated. Likewise, when solving a series of problems, it is 
often convenient to utilize the entropy as an independent parameter from the state, with 
the same hierarchy in regards to temperature, pressure and volume; which are the state 
parameters of the thermodynamic system, but, if necessary, these can be considered as a 
function of state. 

The entropy of a system can increase or decrease, depending only on whether
is positive or negative, since the absolute temperature T is always positive. Obviously, if 
the system is receiving heat, then the entropy grows, otherwise the entropy of the system 
diminishes when the system yields heat. Since in the adiabatic processes then in 
such cases the entropy of the system remains unchanged, and therefore, the adiabat is 
called a constant entropy curve or isentrope and then process is called isentropic.  

The entropy can be added. This means that the entropy of a system composed of 
several bodies is equal to the sum of the entropies of these bodies. For this reason, the 
entropy is an extensive magnitude. The physical units of entropy as seen in (2.25) 
coincide with those of a specific heat.

Most problems in thermodynamics are formulated through the establishment of a 
dependency among different variable parameters of state which can be functionally 
related.
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are state parameters of a thermodynamic system, but if necessary they can be 
considered as a function of state. 

The entropy of a system can increase or decrease, depending on whether đQ is 
positive or negative, since the absolute temperature T is always positive. 
Obviously, if the system receives heat, then the entropy increases, otherwise the 
entropy of the system decreases when the system yields heat. Since in adiabatic 
processes đQ=0, in such cases the entropy of the system remains unchanged, 
and therefore the adiabat is called the curve of constant entropy or isentrope, 
and then process is called isentropic.

The entropy can be added. This means that the entropy of a system composed of 
several bodies is equal to the sum of the entropies of these bodies.  For this 
reason, the entropy is an extensive magnitude. The physical units of 
entropy, as can be seen from (2.25) coincide with the units of specific heat 
capacity.

Most problems in thermodynamics are formulated by establishing 
relationships between different variable parameters of state that can be 
functionally related.

Next, we consider some of the mathematical properties that we need 
in thermodynamics, which follow from the methods and theory of the 
partial differential equations. The linear and quasi-linear differential equations, 
that have the following general form, are widely used in several disciplines of 
science and engineering:

dF = U1du1 + U2du2 + U3du3 + ... +Undun , (2.26)

where u1, u2, u3 are independent variables, and U1, U2, U3, … are functions of these 
variables.

In the theory of differential equations, it is shown that when the Euler condition 
(1.9) is satisfied, there is a so-called integration 𝜓𝜓 = 𝜓𝜓 (U1,U2,U3,...), which, by 
multiplying the left part of equation (2.26), turns it into a total differential of the 
function. Note that if there are only two independent variables in (2.26), or, in 
other words, if the differential equation has the form

dF(x,y) = M(x,y)dx + N(x,y)dy . (2.27)
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then, as the theory of differential equations prescribes, integration for it 
always exists.

As thoroughly discussed in previous sections, heat itself is not a function of state, 
since it only characterizes one of the possible ways in which a thermodynamic 
system can interchange energy with its environment, which means that đQ is not 
a total differential, but only an infinitesimal amount. Multiplying đQ by the 
reciprocal of the temperature allows us to convert this magnitude to the total 
differential of a function we have called the entropy S, so for đQ the reciprocal of 
the temperature is the integration factor.

2.5. The General formulation of the Second Law of Thermodynamics.

By definition, the efficiency of any thermal machine is the ratio that exists 
between the difference in heat Q1–Q2, that is transformed into useful work, and 
the heat Q1 transferred to the system. Therefore, for an irreversible thermal 
machine, the efficiency is given by the expression

Q1

As shown earlier, for an irreversible Carnot machine, it also holds

where 𝜂𝜂𝜂𝜂𝜂𝜂𝜂 It means that

or

so that 

and

This way, if in an irreversible Carnot machine the ratio of heat to its 

temperature        is  equal  to the corresponding  ratio of  the heat extracted from
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the refrigerator above its temperature       , then, in an irreversible machine,       is

less than          and therefore

(2.28)

In the following we shall adopt again the convention previously mentioned in 
section 2.4, where we eliminate the negative sign in Q2 remembering that this is 
heat delivered to the refrigerator.

If we do again what we did before, sum up various Carnot cycles, then for the new 
Carnot composition we can rewrite the following 

(2.29)

Or, if we proceed with the integration, we obtain

(2.30)

For the whole contour, if we take into account that Q2 is negative

(2.31)

Fig. 2.8. To the definition of entropy.
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Let us analyze the thermodynamic system for which, in two given states 1 and 2, 
the entropy has values S1 y S2, respectively. With the help of an irreversible process, 
we will transfer the system from the initial state 1 to the final state 2, along a jagged 
highly irreversible trajectory ABC, as shown in Fig. 2.8. After this, we return to 
the initial state of the system, but with the help of a reversible process along the CDA 
trajectory. Since the whole process in Fig. 2.8 is an irreversible process, then 

(2.32)

For the second process (reversible) transition from 2 to 1 we have

(2.33) 

Substituting (2.33) in (2.32) we obtain

(2.34)

It follows from formula (2.34) that if an infinitesimal change of state
occurs in the thermodynamic system, then

o (2.35)

Therefore, for the general form we have 

TdS ≥ đQ (2.36)

As a result, any process in an isolated system always occurs in such a way and in 
such a direction that the net sum of the entropy in the system does not decrease. 
When the processes in the system are completed, the entropy reaches its maximum 
value. After that, the entropy can no longer increase, i.e., not a single process in the 
system will occur arbitrarily. At the same time, this means that the system has 
reached the point of thermodynamic equilibrium. For this reason, the second 
principle of thermodynamics, according to Clausius, can be formulated as follows: 
"The entropy of any isolated system always tends to its maximum". 
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In statistical mechanics, the second thermodynamic principle first 
received a clear interpretation in the classical works of Boltzmann. Without 
going into the detail of statistical mechanics, let us analyze its postulates, 
whichshow that the entropy of an isolated system does not decrease. To do this, 
we define the macro- and microstates of the system: a macroscopic state 
is understood as any state specified by the values of a limited set of thermodynamic 
parameters, such as energy, density, temperature, pressure, etc. On the contrary, a 
microscopic state is considered certain if the positions and velocities of all 
particles in a system are known. In view of this, the same values of the 
thermodynamic parameters of the system can be obtained from different 
positions and velocities of particles in the system. Therefore, any 
macroscopic state usually corresponds to a large number of microscopic state. 
Each of this microscopic states is depicted as a set of points - a six-dimensional 
space known as phase space and defined by three coordinate axes x, y, and z 
and by three axes for the velocity components Vx, Vy y Vz. If a number of 
mathematical operations are performed, then it is more convenient to use the 
motion or impulse components instead of velocity components

px = mVx , py = mVy , pz = mVz

Suppose that the phase space is divided into an infinite series of elementary six-
dimensional cells with sides dx, dy, dz, dpx, dpy, and dpz. Therefore, the volume 
dW of one of these elementary cells of the phase space is defined as

dW =dx • dy • dz • dpx • dpy • dpz

Obviously, some particle in the system can be localized in a cell if its coordinates 
lie within the limits from x to x+dx, from y to y+dy and from z to z+dz, and for 
the velocity components Vx to Vx+dVx, Vy to Vy+dVy and Vz to Vz+dVz. It is 
assumed that the movement of a particle inside a cell does not lead to any 
general or macroscopic change in the state of the system. Just as the 
macroscopic state of the system remains unchanged if certain particles inside 
the cell change their position. The position of the particles inside a cell in the 
phase space may change as a result of the interaction between them or when a 
force is applied due to fields interacting with the system.

That way, each macroscopic state can be formed by a series or set of microstates 
w, which is called thermodynamic probability for a given macrostate. The 
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probability of occurence of a macrostate in a system grows with the number of 
microstates that compose it. For instance, the probability of a state forming is 
smaller when all the particles are concentrated in an infinitesimal volume of the 
system and have velocities equal in magnitude and direction, since this state 
is formed by only one combination. In statistical physics it is shown that 
entropy increases with the number of microstates forming it. At the same time, 
this indicates a certain parallelism between the entropy S of the system and 
the thermodynamic probability w. In other words, there is a functional 
interdependence between them. Such dependence was first established by 
Boltzmann who showed it on the base of statistical considerations

S = k ln(w) (2.39)

where k is Boltzman constant, equal to the gas constant rate R and Avogadro 
number N.
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CHAPTER 3.

THERMODYNAMIC FUNCTIONS AND THE GENERAL 
CONDITION OF EQUILIBRIUM OF A 

THERMODYNAMIC SYSTEM

3.1 Thermodynamic Functions

Below is the combined expression of the first (1.18) and second (2.25) laws 
of thermodynamics for a system in equilibrium.

TdS = dU + PdV o dU = TdS – PdV (3.1)

In (3.1), we are going to analyze the internal energy U as a function of the
parameters S and V. In this case, the partial derivatives of U for these 
parameters are respectively T and –P, respectively. In fact, if U is a function of S 
and V, then, by definition, its total differential is 

(3.2)

Equalizing (3.1) and (3.2) we obtain

(3.3)

Let us introduce the definition of the characteristic function. A characteristic 
function is a function whose partial derivatives for some of its state 
parameters are, in turn, equal to other state parameters. Therefore, by definition, 
U is a characteristic function, if it is considered as a characteristic function of the 
V and S    parameters.                                                   Let us write (3.1) in general form

dU1 = Xdx + Ydy (3.4)

where 

X = ⨍1(x,y) and Y = ⨍2(x,y).
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Let us solve the problem of changing variables in expression (3.4) so that the
roles variables in one or both terms are reversed. In other words, we transform 
(3.4) into three total differentials of new functions

dU2 = xdX + Ydy
dU3 = Xdx + ydY
dU4 = xdX + ydY

This transformation is known in mathematics as the Legendre transformation, it is 
performed by sequential subtraction from dU1 of the differentials of the product of 
the corresponding conjugate variables d(xX), d(yY) and d(xX+yY).

1.-We subtract from (3.1) the differential d(TS). Then on the left part of the new 
expression we get

dU – d(TS) = d(U –TS)

On the right part we get

TdS –PdV – TdS – SdT = –Sdt – PdV

Finally

d(U – TS) = dF = –SdT – PdV, (3.5)

where (U – TS)=F. The function F is called the Helmholtz function. If we 
consider F as a function of T and V then its complete differential is

(3.6)

From (3.5) and (3.6) it is inferred that

Thus, the Helmholtz energy is a characteristic function for variables T and V, 
and their partial derivatives with respect to these variables are entropy and  
pressure.
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2.- Considering that the second term in (3.1) is preceded by minus sign,
we subtract the differential –d(VP) from this equality. On the right side we get

dU + d(PV) = d(U + PV)

Correspondingly, on the left side of the new function we have:

TdS + PdV + VdP – PdV= TdS + VdP

We indicate that 

H = U + PV (3.7)

The function just obtained and introduced in paragraph 1.4 is called enthalpy 
and its total differential is equal to 

dH = TdS + VdP (3.8)

It is clear that 

and  

It follows that the enthalpy is a function of the variables S and P.

3.- Subtracting differential d(TS – PV) from (3.1) , on the left side of the equation 
we have 

dU – d(TS – PV) = d(U – TS + PV),

and correspondingly on the right side we have

TdS – PdV – TdS – SdT + PdV + VdP = –SdT + VdP 

In other words  

 d(U – TS + PV) = –SdT + VdP
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Denoting U – TS + P as G. This function is called the Gibbs energy, so

dG = –SdT + VdP, (3.9)
and

Therefore, the Gibbs energy is a characteristic function of the variables T and P. 
Expressions (3.1), (3.5), (3.8) and (3.9) for the differentials of thermodynamic 
functions are also called the fundamental thermodynamic identities. All four 
characteristic functions, often referred to as thermodynamic potentials, have been 
obtained. These functions are shown in the following table:

Function
Characteristic Parameters

Relationship  
in the Internal 

Energy

Partial Differential 
Equations

Internal Energy U
(Isochoric-Isoentropic 
Potenetial)

V

S
U

Entalpy H
(Isobaric-Isoentropic Potential) P

S
U + PV

Helmholtz Energy F
(Isochoric-Isothermal Potential) T

V
U – TS

Gibbs Energy   G
(Isobaric-Isothermal Potential) T

P 
U–TS+PV=H–TS

Table 1. Thermodynamic potentials
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3.2 Equilibrium in Thermodynamic Systems 
with different External Conditions

Using the expression

TdS ≥ dU + PdV (3.11)

obtained on the basis of the first and second thermodynamic principles, the 
thermodynamic equilibrium conditions can be formulated for a system 
under different external conditions. We mean that the equality in (3.11) 
corresponds to the state of equilibrium of the system, and the inequality 
corresponds to the state of non-equilibrium, when certain processes occur in 
the system.

Based on several external conditions, we shall analyze the five most important 
particular cases.

1.- Fully isolated constant volume system. 
The internal energy of an isolated system remains unchanged. That is why, 
when U=const and V=const, then dU=0 and dV=0. From (3.11) it derives that

TdS ≥ 0

Since T>0, then  dS>0. This means that as certain processes occur under non-
equilibrium conditions, the entropy of a system under extreme conditions 
increases (dS>0). Immediately after the completion of non-equilibrium process, 
the system comes to a state of equilibrium, and the entropy reaches its 
maximum value (dS=0). Thus, in the state of equilibrium S=Smax and d2S< 0.  

2.- The system is located in a thermostat whose function is to maintain a constant 
temperature and, in addition, to maintain a constant volume.

In the case of T=const and V=const, from (3.11) it derives that

TdS ≥ dU   or   dU – TdS = d(U – TS) ≤ 0

Considering that U–TS=F, we have dF≤0. Therefore, during the time needed for the 
system to approach equilibrium, the Helmholtz energy decreases (dF<0). In view of
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this, under these external conditions, all irreversible processes in the system take 
place in such direction that the Helmholtz energy continuously diminishes  until, 
finally, it reaches equilibrium at   

dF = 0, F = Fmin   and   d2F > 0

3.- The system is again located in a thermostat, but this time under constant 
pressure. Under these conditions T=const and P=const. Then, it follows
from (3.11) that

dU – TdS + PdV ≤ 0

or

dU – TdS + PdV = d(U – TS + PV) = dG ≤ 0

If the system is in thermostat at constant pressure, then the Gibbs energy 
gradually decreases as the system approaches equilibrium. Just before the 
equlibrium dG<0, in the equilibrium dG=0. Thus, when T=const, the equilibrium 
condition is to reach the minimum of the Gibbs energy.

dG = 0, G = Gmin   and   d2G > 0

4.- The system occupies a constant volume and the entropy remains unchanged, 
i.e.,  V=const and S=const.

From the inequality dU–TdS+PdV≤0 we derive that dU≤0. As a consequence, 
under such conditions, the internal energy of the system decreases and, 
when equilibrium is reached, has a minimum value (dU=0). This result is 
illustrative if we consider that in order to maintain the entropy unchanged, it is 
necessary to deprive the system of energy all the time and to deliver it to the 
environment or to external bodies. Otherwise, under irreversible processes, the 
entropy must increase.  

5.- The system is under constant external pressure and the entropy remains 
unchanged.  In this case P=const, and S=const. 

From dU – TdS + PdV ≤ 0 we infer that 
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dU + PdV = d(U + PV) = dH ≤ 0.

This means that the enthalpy and heat contained in the system continuously 
decrease in time (dH<0), and when equilibrium is reached, dH=0.

Table 2 summarizes the equilibrium conditions.

External constant
 parameters

Certain processes that occur 
in the system Equilibrium conditions

U,V dS > 0,  S - increases dS = 0,  d2S<0,  S=Smax

V,T dF < 0,  F - decreases dF = 0,  d2F>0,  F=Fmin

P,T dG < 0,  G - decreases dG=0,  d2G>0,  G=Gmin

V,S dU < 0,  U - decreases dU=0,  d2U>0,  U=Umin

P,S dH < 0,  H - decreases dH=0,  d2H>0,  H=Hmin

Table 2. Equilibrium conditions.

3.3 Gibbs Fundamental Equation

In any heterogeneous system, along with the most simple thermodynamic 
processes like, for example, heat absorption or external work, phase 
transformations such as evaporation, fusion, crystallization can occur. In 
addition, chemical reactions may take place between the various components 
of the system. As a result of these processes, the number of particles in the composit 
states will change in time. These changes themselves imply changes in the 
thermodynamic functions or potentials we have just reviewed in sections 
3.1 and 3.2. In other words, the thermodynamic functions in their general form 
must depend not only on the corresponding state parameters, such as, for 
example, P, T, or V, but also on the number of particles of the various 
components of the system n1, n2, n3,…nk, (or concentrations), which, as we have 
already mentioned, are also thermodynamic parameters. That is why, for the 
thermodynamic functions in their general form it is necessary to take into 
consideration their dependence on the number of particles of the components, i.e.,  

U = U(S, V, n1, n2, n3,...,nk)
H = H(S, P, n1, n2, n3,...,nk)
F = F(T, V, n1, n2, n3,...,nk)
G = G(T, P, n1, n2, n3,...,nk)
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Let us analyze the internal energy, for which it was previously shown that 

dU = TdS – PdV (3.12)

On the right side (3.12), the first term is related to the influence of temperature 
and entropy on dU, and the second term describes the dependence of the internal 
energy differential on the work performed on the system or the system itself. It is 
natural to assume that, as before, the internal energy corresponding to the equal 
particles, but being in different phases, can be in general different. For this 
reason, the total sum of the internal energy of the system must also be associated 
with the energy consumption due to different chemical transformations or phase 
transitions from some part of the system to another. If, for example, we assume 
that the first component goes from one phase to another, than as a result of this 
transition the change in the number of particles of this component is equal to a 
negative value dn1 (negative for one phase and positive for the other). Obviously, 
the change in internal energy 𝛥𝛥U1 associated with this transition is proportional to 
the number of particles involved in the transition and can be written as 𝜇𝜇1dn1 

𝛥𝛥U1 = 𝜇𝜇1dn1

In this expression, 𝜇𝜇1 is a proportionality coefficient. Since dn1  is dimensionsless, 
𝜇𝜇1 represents the value of the internal energy that corresponds to a particle in 
phase 1, component 1. In other words, for a multicomponent system, the 
proportionality coefficient 𝜇𝜇1 must be equal to the partial differential equation of 
the internal energy of the system with regards to n1

Similarly, if chemical reactions or phase transformations result in changes in 
concentrations of other components, these changes will affect dU and can be 
annotated as:

𝜇𝜇2dn2, 𝜇𝜇3dn3,..., 𝜇𝜇kdnk 

The total sum of the internal energy conditioned by the concentration changes of 
all system components is written as 
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Let us show that in the presence of varibles S, V, n1, n2, n3, …, nk in a multi-
component system the corresponding expression has the form

(3.13)

which is known as Gibbs Fundamental Equation. Therefore, if the internal 
energy of a thermodynamic system is a function of S, V, n1, n2, n3, …, nk, then, by 
definition, the differential of this function is

(3.14)

In (3.14), the derivatives of the internal energy in entropy and volume are 
evaluated with a constant ni, i.e., for a system with a fixed composition. In this 
connection, the values of the derivatives must coincide with the corresponding 
known derivatives of the system in which there are no phase transitions, chemical 
reactions, or mass interchange, etc., i.e.,

Thus, the relationship (3.13) is demonstrated. Analogously, considering the 
functions

H = H(S, P, n1,n2,n3,...,nk)
F = F(T, V, n1,n2,n3,...,nk)
G = G(T, P, n1,n2,n3,...,nk)

The following variants can be obtained from the Gibbs Fundamental Equation

(3.15)

dU = dS +
V,ni S,ni

∑
i=1

k

dV +   dni
S,V, nj
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(3.15)

The enthalpy has been previously defined as

H = U + PV.

Differentiating this equation, we obtain 

(3.16)dH = dU + PdV + VdP 

Substituting (3.13) in (3.16), we have

(3.17)

Likewise, differentiating F = U – TS and G = U – TS + PV and substituting 
the expressions obtained from (3.13), we denote

(3.18)

(3.19)

Comparing of the Gibbs fundamental equations (3.13), (3.17), (3.18) and 
(3.19) it is seen that to the sum of the partial differential equations of U, H, F 
and G corresponds to the equal number of particles. In principle, it can be 
shown that the same partial differential equations of the thermodynamic 
(potential) functions have the same value with regard to the number of 
particles, i.e.,
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(3.20)

Nonetheless, we shall limit ourselves to the demonstration of this equality for 
the Gibbs energy, since for the other functions it can be demonstrated exactly 
the same way. This demonstration will be presented in the next section. For 
now, we note only that the equality (3.20) defines the chemical potential of 
the system that corresponds to one specific magnitude, i.e., equal to one particle 
of one of the characteristic functions. The Gibbs fundamental equations can be
represented in the following forms

In all the formulas of this section (this and in the following ones) the number of 
particles ni,...,n1,n2,n3,...,ni,...,nk can be replaced by their corresponding 
concentrations x1,x2,x3,... xi,...,xk, when dealing with multiple component systems.

3.4 Thermodynamic Equilibrium Conditions in a 
Multi-Component System 

The equilibrium conditions in various thermodynamic systems can be studied 
based on the analysis of any of the previously considered functions, U, H, F, or G. 
As it was shown earlier, the system is in equilibrium when each of these functions 
has a minimum value. For this reason, the study of the equilibrium states of a 
thermodynamic system is practically reduced to the determination of those 
conditions under which the differential of any these functions is zero. Thus, from 
the mathematical point of view, the functions U, H, F, or G turn out to be 
equivalent. Likewise, one of the thermodynamic parameters for the internal 
energy and enthalpy is the entropy S, that can be calculated but cannot be measured 
or changed. In this relation, from a practical and physical point of view, the most 
convenient are the Gibbs and Helmholtz energies, that depend on T, P, and V, i.e., 
depend on parameters that can be easily measured and changed. Therefore, in the
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literature devoted to the study of equilibrium conditions of any thermodynamic 
system, it is these functions that are most often used. Later, when studying the 
construction of equilibrium phase diagrams, we will analyze in detail how the 
Gibbs energy behaves.

The general differential form of the Gibbs energy is written as

Assuming that we have an isolated system with k components and 𝜑𝜑 number of 
phases, the necessary condition for the equilibrium of the system is the 
invariance of temperature and pressure in all phases, so T’ = T’’ = T’’’ =...= T𝜑𝜑 and  
P’ = P’’ = P’’’ =...= P𝜑𝜑. In this case, dT and dP are zero. Thus,

or

The general equilibrium condition is dG∣T,P = 0. If we substitute P and T into all 
phases, then possible changes in the system lead to a transition of components 
from one phase to another. Although such a transition is possible even for only 
some of these components, the system will not be in a state of 
equilibrium. As a result, one of the essential conditions of equilibrium is that 
such transitions are impossible  because they have already been completed. If 
dG’, dG’’, dG’’’... etc., are the Gibbs free energies of phase transitions, then 

dG∣T,P = dG’∣T,P + dG’’∣T,P +...+,dG 𝜑𝜑 =0 (3.21)

or

(3.22)
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If the system is isolated, the change in the number of particles of different 
components take place only internally due to phase changes, i.e. there is  
no exchange of matter (or number of atoms or molecules) with the 
environment, then

(3.23)

Suppose now that the number of particles of all phases, except the first one, do 
not change. In other words, transitions between different phases occur only 
in the case of particles of the first component. Then (3.23) has the 
following form

(3.24)

The top line in (3.24) can be written as

(3.25)

Substituting (3.25) in (3.22)

Thus,

(3.26) 

since according to the previous assumption, only particles from the first
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component of the system are interchanged between phases, n1, n1, n1,...,n1 are 
independent variables. As a consequence, dn1, dn1,  dn1   ,..., dn1,  ,dn1  are not 
equal to zero. That is why, the expression (3.26) is possible only if all coefficients 
of differentials are equal to zero, i.e.,

or

Thus, if two or more phases are in equilibrium, the chemical potentials of the 
components of these phases must be equal to each other. As a result, the 
equilibrium condition is as follows

(3.27)

This conclusion is quite obvious if we consider that, in an isolated system in 
thermodynamic equilibrium, the Gibbs energy is minimal.  Let us imagine that 
the system is in equilibrium, but the chemical potentials (the Gibbs energy 
corresponding to a particle) of one component i in different phases are different. 
For clarity, assume that 𝜇𝜇i > 𝜇𝜇i. When component i transitions from the first phase 
to the second phase, the Gibbs energy of the whole system decreases, 
which contradicts our initial assumption or the fact that a minimum is 
reached only when the system is in equilibrium. In other words, any 
transition of components between phases is caused by an increase in energy 
which is possible only at unequal chemical potentials. If there are no such 
transactions in the system, the system is in equilibrium, that corresponds to 
the minimum of its energy, and hence to the equality of the chemical 
potentials in different phases of similar components.     

An important conclusion can be derived from this: If the chemical potentials of 
the components of a multiphase system are different, then among all the phases, 
the one with the lowest value of 𝜇𝜇 is the stable one.
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3.5 The Gibbs phase rules

Suppose that a thermodynamic system contains k components. The chemical 
composition of this system is determined by the concentrations, that can be 
represented, for example, by weight, atomic, molar and volume parts. Thus,

(3.28)

, where m1. m2. m3, …, mk are the masses of the component, and ∑mi is the sum of 
the masses of all components. If we speak about atomic concentrations, then the 
numerator of (3.28) will contain respectively the number of atoms of each 
component, and the denominator the total number of atoms. Obviously, in this 
case, the number of atoms of any atom i can be determined by dividing the 
mass of the component by its atomic mass.

Consider a heterogeneous equilibrium system composed of two phases, one of 
which is an aqueous solution saturated with salt (NaCl) and the other is a crystal 
of this salt. In this system, the concentration of NaCl in the solid phase is equal to 
1 or 100%, and in its liquid phase the salt concentration is naturally less than 1. 
Note that at different temperatures the concentration of the salt in the water will 
be different, while in the solid phase it will remain unchanged. From the 
previous example, we can observe that in the general case when the number of 
components is greater than 1, the chemical composition of the phases in 
equilibrium can be differentiated, and therefore each phase must be categorized by 
its concentrations. From (3.28) it derives that for each phase

x1 + x2 + x3 + ... +xk = 1 (3.29)

And so, for example, if three independent variables x, y, and z are linked by a 
system that contains three equations, then the three variables will have a fixed 
value; if there are only two linked variables then two variables will have a fixed 
values and the third can have arbitrary values. If there is only one equation for 
the three variables, then only one of the variable values is defined and the 
others are arbitrary.

The number of parameters that can take arbitrary values in thermodynamics is 
called: degrees of freedom in a thermodynamic system. This way, in the above 
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examples, the first case corresponds to zero degrees of freedom, the second to 
one degree of freedom, and to the third case to two degrees of freedom. 
Obviously, to find the number of degrees of freedom of any thermodynamic 
system of general form, it is necessary to have the number of variable 
parameters of the system, and then find the number of equations linking these 
parameters. The difference between these numbers determines the number of 
degrees of freedom of the thermodynamic system under consideration.

Assume that there are k components and 𝜑𝜑 phases in the system. The chemical 
composition of the system is determined by the concentrations x1, x2, x3,… xk and 
the sum of these concentrations is equal to one. It follows from (3.29) that k-1 
concentrations can be independently varied in one phase, but the last remaining 
concentration is predetermined when they are chosen. Hence, we have k-1 
variable concentration in one phase, and a total of (k-1) independent variable 
concentrations in the 𝜑𝜑 phases, respectively. The variables are pressure and 
temperature, and for this reason in the 𝜑𝜑 phases we get    

2 + (k-1) 𝜑𝜑   (3.30)

independent variable values.

The equilibrium condition in a phase and multicomponent system is given by the 
equality of the chemical potentials of each component in all phases.  As we have 
done so far, denoting the components by the lower index and the phase the upper 
index, so we write the equilibrium condition in the form of a system of equations

(3.31)

Each row in (3.31) contains 𝜑𝜑–1 equations, and the number of rows is equal to  k.  
Thus, the total number of equations in (3.31) is equal to

k(𝜑𝜑 –1) (3.32)

When the number of variables in (3.30) is equal to the number of equations 
(3.32),  then, as stated  earlier, the system has a singular solution and their
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variables have fixed values. If the number of variables is larger, the difference 
between this number and the number of equations determines the number of 
parameters that can be assigned completely arbitrary values. In other words, this 
difference will determine the number of degrees of freedom f of the 
thermodynamic system in equilibrium     

f = [2 + (k – 1) 𝜑𝜑] – [k (𝜑𝜑 – 1)] = k – 𝜑𝜑 + 2 (3.33)

Expression (3.33) is called the Gibbs Phase Rule. Naturally, if any of the 
parameters is constant, for example, pressure, the number of degrees of freedom of 
the system diminishes by one

f = k – ∅ + 1
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CHAPTER 4. 

ONE COMPONENT SYSTEMS

4.1 Thermodynamic Equilibrium in a One Component System

The Gibbs phase rule for a one component system (k=1) is written as

f = 3 – 𝜑𝜑

the possible number of degrees of freedom k=1 can be equal to 2, 1, or 0, 
which corresponds to the equilibrium of one phase (vapor, liquid or 
solid), two phases (vapor-liquid, vapor-solid and liquid-solid), or three phases 
(vapor-liquid-solid). We are going to consider the equilibrium in a one 
component system, analyzing the behavior of the Gibbs energy, since, as 
pointed out before, this thermodynamic function is characteristic when 
temperature and pressure are chosen as parameters.

We first consider a simple case. Assume that ice, water, and vapor are in 
equilibrium. If we add more ice or water in the same state as the equilibrium 
phases, i.e. at T=0°C and P=1 atm, the system will remain in equilibrium. 
Likewise, the total Gibbs energy of the whole system will also increase because 
the total number of particles in the system has increased.  So, the Gibbs energy is 
extensive or dependent on the number of particles in the system. Therefore, 
when  studying  the equilibrium of phases, it is necessary to consider its specific 

value   . Furthermore, in order to simplify, we shall eliminate the horizontal 

line over G, remembering that the Gibbs energy, like all other thermodynamic 
functions, is an extensive function. There is no need to keep this sign when 
analyzing the chemical potentials determined by other corresponding 
partial differential equations in regards to the number of particles, for 
example, from the Gibbs energy itself.
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1. Suppose that the system is one phase, and therefore, has two degrees of
freedom.

Since the Gibbs energy is a function of temperature and pressure, then

G=G(T,P). (4.1)

For the case of phase equilibrium in the coordinate system G, T, P, 
equation (4.1) represents a certain area shown in Fig. 4.1. Each state in 
the single-phase system, at which all three coordinates (G, T, P) are 
assigned certain values, is characterized by one point in this area. 

Thus, the area or the field of the points in the space of three coordinates G, T, P 
is a geometric image of a system with two degrees of freedom.  
Such system, with f=2, is called divariante system. In a bivariant 
equilibrium, i.e., in the presence of one phase, T and P can vary within 
certain limits, which corresponds to two degrees of freedom.

2. In the case of a one-component system, when there are two phases
and, respectivly,  f=1, then equation (4.1) is applied for each of these phases

G

G

P

T

Fig. 4.1. Representation of the energy Gibbs in dependence on temperature T 
and pressure P for a one-component system of one phase.

It should be kept in mind that the condition dG<0 means that at constant 
temperature and pressure only the changes possible in the system are those for 
which the Gibbs free energy decreases. The state of equilibrium in the system 
occurs when dG=0 and the Gibbs energy reaches its minimum value. Let us 
consider the possible cases of phase equilibrium in a one component system.   
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G’ = G’(T,P) 
(4.2)G” = G” (T,P)

Let us define the relation in which the values G’ and  G’’ are in the case when 
the analyzed two-phase system is in equilibrium. Assume, that G’ and G’’ are 
different values, and for definiteness we will consider G’ > G’’. Then a 
transition of a certain amount of substance from the first phase to the second 
phase decreases the value of the Gibbs energy in the whole system decreases. 
Since any system tends to minimize the Gibbs energy, such a transition will 
proceed until the first phase is completely transformed into the second phase. 
In the opposite case, i.e, when G’ < G’’, the entire second phase will turn into 
the first phase. Hence, if G’ ≠ G’’, an irreversible phase transition occurs in 
the system, starting with a large value of Gibbs energy and evolving towards 
a phase with a smaller value Gibbs energy.

Thus, the thermodynamic system under consideration turns out to 
be nonequilibrium, since there is an arbitrary transformation from one 
phase to another. Consequently, the assumption of inequality of the 
Gibbs energy for both analyzed phases leads us to a contradiction with 
the initial affirmation about equilibrium of the system.

Consequently, the equilibrium condition of both phases consists in the 
equivalence of G’ and G’’. The equililbrium state of a two-phase system 
is described simultaneously by two equations (4.2) with three variables G, 
T, and P, of which only one is independent. Equations (4.2) define in the 
space of three coordinates G, T, P two areas intersecting each other along the 
line a’ b’  (Fig. 4.2), which meets the equilibrium condition of  phases  G’ = G’’.

G

G” G’

P

T

a

a’

b

b’

 Fig. 4.2. Representation of the energy Gibbs in dependence on temperature T 
and pressure P for a one-component system of two phases.
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Therefore, a’ b’ is a geometric image or place of the points of the system 
with one degree of freedom, since the line is a one-dimension geometric 
object. When the thermodynamic system is characterized by one point 
located on the line of any of the two variables parameters, it can be 
arbitrarily changed, but provided that the parameter left must have a 
definite, well defined and unique value.

So, if the temperature is specified, the vapor pressure or vice versa can be 
determined, which exactly corresponds to a system of degrees of freedom. 
A system having one degree of freedom is called singular or monovariant. 

3. In conclusion, let us analyze the case of coexistence of three phases in a one- 
component system. An example of such system we can consider the case of
three phases in equilibrium: gas, liquid and solid.  For each one of these
phases, as it was shown earlier, the equation (4.1) is fulfilled in such a way
that the state is now determined by a system of three equations

G’ = G’ (T,P)
G’’ = G’’ (T,P) (4.3)
G’’’ = G’’’ (T,P)

According to the previous reasoning about both phases, the whole 
system will be in equilibrium only if G’=G’’=G’’’. In this case, if, for 
example, the Gibbs energy of the first and second phases is greater than 
G’’’, then both phases will transform into the third one. From this, we can 
draw a simple but extremely important conclusion: of the three analyzed 
phases, the one with the lowest Gibbs energy will be stable.  

Fig. 4.3. Representation of the energy Gibbs in dependence on temperature T 
and pressure P for a one-component system of three phases.

G” G”’

G’

a

a’

b

c
o

b’

c’o’

G

P

T
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The three equations (4.3) with the three variables G, T and P define the three-
phase state of a one-component thermodynamic system. None of these three 
components is independent, since the system has one single solution. Such a 
solution in the spatial system of three coordinates G, T, P is represented by a 
single point. This point is located at the intersection of the three areas (Fig. 4.3), 
that define the state of each of the three phases of the system and that are 
described by equations (4.3). The coexistence in equilibrium of the three 
phases of a one-component system is possible only in a particular state, under 
quite specific conditions, or, in other words, when the temperature and pressure 
have unique values. If one single parameter changes, there will be at least 
one phase change. This is why a system that does not have a single degree of 
freedom is called an invariant system. One example of such system is: ice, 
water and vapor, which exist in equilibrium only at T=0 °C and P=1 atm. 
Note that the invariability of this one-component three phase system has 
long been used to determine the reference point or point of zero in the 
Celsius temperature scale (there is a slight shift relative to zero in the Celsius 
scale of the temperature of coexistence in thermodynamic equilibrium of the 
three phases: ice, liquid and vapor, a state of coexistence known as the 
“triple temperature point of water” that occurs at a temperature of 0.01°C.

It is important to note that in a one-component system several solid phases can 
be formed (polymorphism). Each variant of the solid phase has its own 
crystal structure. The physical and chemical properties of the phases are also 
different and they will be located in different regions on the state diagram.  
Two well-known forms of carbon can be considered as an example: 
diamond and graphite.

4.2 The Clausius Equation – Clapeyron and the Thermodynamics of Phase 
Transformations in a One Component System

Let it be a case of two phases of a one-component system in equilibrium. 
Using the concept of the Gibbs energy, we derive a thermodynamic equation 
known as the Clausius–Clapeyron equation, that describes the equilibrium between 
the two phases. When P and T are equal, both phases are in equilibrium, then 

G1 = G2.
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As a consequence
d (G1 – G2) = 0

On the basis of this definition of the G differential, we 

write

Hence

we have

By definition

Q=TS  y  𝛥𝛥Q = 𝛥𝛥H  when P = constant, 

From this we obtain

𝛥𝛥H = H1 – H2 = T(S1 – S2)

Thus

Finally,

(4.4)

Equation (4.4) is called the Clausius–Clapeyron equation. Let us analyze, using 
this equation, some particularities of the phase transformations or transitions that 
can occur in a one-component system.
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Two types of phase transition are distinguished: first and second order 
transitions. The first order transitions are accompanied by discrete changes in 
internal energy and density. The first order transitions are always associated with 
the emission or absorption of heat, which is called a phase transition of latent 
heat. Examples of first order transitions are evaporation, fusion, crystallization, 
sublimation and distillation, transitions of a solid from one crystalline 
modification, and others.

Second orger phase transitions are transitions in which no discrete changes in 
internal energy and density occure. The heat of the second order phase transitions 
is zero, however, discrete changes in heat capacity and dilation and compression 
coefficients occure during these transitions. Examples of the second order phase 
transitions are the transition of liquid helium into a superfluid state, the transition 
at the Curie point (Curie temperature) of a ferromagnetic substance into a 
paramagnetic substance.

Let us consider the phase transitions of the first order. At the absolute 
temperature T=0 the entropy of the solid phase is also zero. At a higher 
temperature and constant pressure, entropy can be calculated using the expression  

Fig. 4.4. Projection of the energy Gibbs of a one-component 
system of three phases on the P-T plane.

Just like the heat capacity of a solid cP varies slightly with  temperature, it can be 
argued that the entropy of a solid is practically a function of temperature alone. 
Thus 
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(4.5)

A phase diagram of a single phase thermodynamic system is shown in Fig. 4.4. 
This diagram was obtained by projecting the dependences of the three phases of 
the Gibbs energy – solid, liquid and gas relative to temperature and pressure 
(Fig. 4.3) onto the horizontal plane P–T. The solid phase is located on the left 
area of this diagram marked with the letter s, and the liquid and gas phases are in 
the area marked with the letters l and g. In the three coordinate space G, T, P, as 
seen in Fig. 4.3, for each one of these Gibbs energy dominions, the area 
corresponding to the phase is located (smaller) under the Gibbs energy regions 
of the two remaining phases (Fig. 4.3). In other words, the phase located in the 
s, l or g dominion will be stable compared to the other two, since their Gibbs 
energy is lower inside such dominions.  

Suppose, as shown in Fig. 4.4 that the pressure P1 is less than the pressure P0 at 
point O. Then horizontal line drawn through point P1 in the region 0<T<T1 is 
located on the area of the solid phase, and the region T>T1 is in the area of the 
gas phase. Being in the region of the solid phase, that is, at relatively low 
temperatures, we will increase the temperature of the system. If the pressure is 
maintained constant as the temperature rises, then when temperature T1 is reached 
(the entry point of the horizontal P1 into the ao curve), the solid phase will begin 
to sublimate, i.e., the number of phases will become  𝜑𝜑=2.

In this case, the system has a degree of freedom equal to zero, since P is 
constant, the process will continue and finish without changing the temperature 
T1. At the end of the sublimation process, the solid phase disappears and the 
system acquires an additional degree of freedom. After the system reaches a 
certain temperature T and begins to cool, then when the horizontal P1 is 
introduced again with the ao curve, the gas phase will crystallize into a solid 
one. Therefore, the ao curve is called the sublimation-crystallization curve.

Passing along the ao curve from left to right, there is a discrete change in entropy 
equal to the heat absorption by the body (or enthalpy, since the pressure is 
constant) divided by the sublimation temperature

(4.6)
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The magnitude 𝛥𝛥Hsub= 𝛥𝛥Qsub in expression (4.6) is called the latent enthalpy or 
heat of sublimation. This heat is consumed on breaking the interatomic bonds 
of the solid. Adding this magnitude, referred to the sublimation temperature, to 
the entropy of the solid (4.5) that corresponds to the region to the left of the 
transition line ao and to the entropy of vapor at T>T1=Tsub, we obtain the entropy 
of vapor at any temperature T 

(4.7)

If the pressure P2 is higher than the pressure corresponding to the point P0, 
then the solid melts and then evaporates as the temperature rises. The fusion 
occurs at the point of intersection of the horizontal line at pressure P2 with the 
curve co. If this curve is crossed from right to left, then at temperature T2 the 
liquid phase or the molten material crystallizes into a solid. Therefore, the line co 
is called the fusion-crystallization curve. Melt evaporation occurs at temperature 
T3 at the point of intersection of the horizontal line with the bo curve, that 
corresponds to the equilibrium of two phases (liquid–gas). When crossing 
this line from right to left, the gas phase condenses. As a result, the bo line is 
an evaporation–condensation line.

Let us determine the change in the entropy of the system that occures in the process 
of increasing the temperature with a change in pressure P2. During a fusion, the 
entropy rises by a magnitude which is then called the fusion entropy  

The entropy of the liquid at T > Tmel 

As the temperature rises, the liquid evaporates, and the entropy increases discretely 
in the direction of the evaporation entropy. The entropy of the vapor at T > Tevap 

(4.8)
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Imagine that P1 and P2 are approaching P0. In this case, from equations (4.7) and 
(4.8), we derive that at the triple point the equality 𝛥𝛥Hsub =  𝛥𝛥Hmel  + 𝛥𝛥Hevap takes 
place, since P1, P2 tend to P0, therefore, Sliq tends to zero.

Let us compare the curves of evaporation–condensation (bo) and 
sublimation–crystallization (ao). For evaporation from the Clausius–Clapeyron 
equation, we have

For sublimation we have

During evaporation 𝛥𝛥Vevap=Vvap–Vliq, and during sublimation 𝛥𝛥Vsub=Vvap–Vsol. Since 
Vliq and Vsol among them are almost equal and, accordingly, 𝛥𝛥Vevap≈Vsub, then at 
the same temperature     is larger, the numerator is higher. Since 𝛥𝛥Hsub=𝛥𝛥Hmel 

+𝛥𝛥Hevap, then  𝛥𝛥Hsub>𝛥𝛥Hevap  and

(4.9)

In the expression (4.9)  are the slopes of the sublimation and evaporation 

curves, respectively. From this expression we derive that the sublimation curve ao 
is steeper than the evaporation curve bo. The sublimation and evaporation 
curves intersect at the point of the fusion, since at this point the vapor pressure of 
the liquid must be equal to the vapor pressure of the solid. In reality, at this 
temperature, the liquid and solid phases are in equilibrium, and if the phases of 
a given substance are in equilibrium, then they must have the same vapor 
pressure. To demonstrate this, we shall mentally separate these two phases 
from one another and place them in a vacuum that will eventually be filled with 
the vapor of the substance in question. If both phases did not have the same 
vapor pressure, then the phase having a higher pressure would begin to 
evaporate until the corresponding vapor became saturated, but then it would be 
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supersaturated with respect to the other phase would therefore condense. 
When this happens, the vapor pressure tends to diminish and so, the 
first phase will continue to evaporate. This process will end only when the 
first phase has evaporated, and then we will have a system consisting of the 
second phase and saturated vapor in relation to it. However, we will not be 
able to talk about two phases in equilibrium, since one of them, arbitrarily 
(without external influence), turns into the other. On the other hand, if 
two phases of a given substance are in equilibrium, they must certainly 
have the same vapor pressure. From this, we conclude that the most stable 
phase has a lower vapor pressure.
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CHAPTER 5. 

TWO COMPONENT SYSTEMS

5.1 The Component Chemical Potential in the 
Mixture of an Ideal Gas and no Ideal System.

The chemical potential of a pure substance is the specific Gibbs energy μ=Ḡ. It is known 
that at a constant temperature the volume can be expressed as the partial derivative of the 
Gibbs energy with respect to pressure           =V. Using the equation of state for one mole 
of the ideal gas is PV=RT, where R is the universal gas constant, we derive

V     RT
      P

and

(5.1)

Integrating the equation (5.1) within one atmosphere to a given pressure P, we 
have

μ0–μΘ  = Ḡ0 – Ḡ Θ = RT ln P,

where μΘ is the chemical potential of an ideal gas at the pressure equal to one, 
defined as the corresponding pressure of one atmosphere, and  GΘ is the specific 
Gibbs energy at P=1. As a result

μ0 = μΘ + RT ln P (5.2)

Equation (5.2) is the chemical potential of an ideal gas. To apply this equation to 
mixtures of ideal gases, we use Dalton’s law, that states that if two or more 
gases are mixed at equal temperature and pressure, then in the absence of 
chemical reactions, the volume of the mixture is equal to the sum of the volumes 
of  its  constituent  gases,  and  the temperature of the mixture remains unchanged.   
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This means that the pressure of an ideal mixture of gases is the sum of the partial 
pressures of its components, i.e., it is the pressure that each component would exert in 
the absence of the others. Thus, the partial pressure Pi, of the i–th gas in a mixture is 
the pressure that this gas would encounter if the remaining gases were withdrawn 
from the mixture while maintaining a constant volume and temperature. Thus,

Pcom = P1 + P2 + ⋯ = ∑Pi

In other words, the components of an ideal gas mixture behave independently 
of each other, without interaction. The partial pressure of one component is 
determined by the total pressure of the mixture Pcom and the concentration of the 
component

(5.3)

where ni is the number of the particles of the considered component, xi 
denotes the concentration and we take Pcom=P.

Due to the absence of interaction between the components of the mixture and their 
independent behavior, for the mixture of ideal gases (by analogy with the 
chemical potentials of the ideal gas)

μi = μi
Θ + RT ln Pi

Ḡi = Ḡi
Θ + RT ln Pi 

(5.4)

Substituting equation (5.3) into (5.4), we have

μi = μi
Θ + RT ln Pi  =  μi

Θ + RT ln P  + RT ln xi

Ḡi = Ḡi
Θ + RT ln Pi = Ḡi

Θ + RT ln P + RT ln xi

, where μi
Θ + RT ln P is the chemical potential of the pure substance at temperature

T and pressure P. Let us denote μi
Θ + RT ln P =μi

0. Then

μi = μi
0 + RT ln xi (5.5)

is the chemical potential of the i–th component of the mixture of ideal gases. 
Let’s analize one simple case when the chemical potentials of any of the system 
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components have the form (5.5), where μi
0(T,P) depends only on T and P.

Systems, in which the chemical potential is described using the above expression, 
have simple properties and are called the ideal systems. 

In thermodynamics, it is often found that certain thermodynamic magnitudes with 
intensity J in a homogeneous system are represented as a sum of two functions, 
one of which depends only on T and P, and the second also on the concentration

J = J0 (T,P) + JM  (T,P,x1,x2,…,xk)

The first term  J0(T,P) in the first part of this expression is known as the standart 
function, and the second JM (T,P,x1,x2,…,xk ) reflecting the influence of the 
composition is known as the mixture function (for example: the heat of the 
mixture, entropy of the mixture). As a consequence, in (5.5) μi

0 is the standard 
chemical potential of i-th component of an ideal gas mixture, and RTln(xi) is the 
function of the mixture showing how the chemical potential μ is affected by the 
fact that the component i is in mixture with other gases, not in its pure form.

5.2 Ideal Solutions

Solutions are homogeneous systems or phases of variable composition. Solutions 
can be solid, liquid or gaseous. The latter refers to gas mixtures. The question of 
the theory of solutions is posed as a problem related to the discovery of the 
properties of solutions depending on the properties of their constituent atoms or 
molecules and on their concentration. 

The concentrations xi of the components composing the solution can be determined 
by various methods, which we analyze below:

1.- The molecular mass fraction

, where qi is the mass of the component in solution, 100∙𝜛𝜛i is the mass percentage 
of the component in solution.
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2.-The mole fraction

, where ni is the number of moles of component i, 100∙Ni is the molar percentage.

3.- The atomic fraction

, where ni is the number of atoms of component i, 100∙Ai is the atomic percentage.

4.- The volume fraction

, where Vi is the volume of component i in a solution with volume V. 100∙𝜑𝜑i is the 
percentage of the volume that is the same as the molar and atomic percentages 
for ideal systems.

The value of each of these fractions can vary only from 0 to 1. To analyze the 
main properties of ideal solutions, we write an expression for the Gibbs energy, 
considering one mole of a mixture containing two components. Suppose that in 
the general case, in one mole of a mixture, the concentration of the first 
component is x1, and the concentration of the second component is x2. As a result, 
the Gibbs energy corresponding to one mole of the mixture is denoted as

G = x1μ1 + x2μ2 = x1(μ1
0 + RT ln x1) + x2(μ2

0 + RT ln x2)=
=x1μ1

0 + x2μ2
0 + x1 RT ln x1 +x2 RT ln x2 = G0 + Gm (5.6)

In the expression (5.6)

G0 = x1μ1
0 + x2μ2

0

is called the standard function (standard Gibbs energy corresponding to the 
Gibbs energy of one mole), determined by the chemical potentials of the pure 
components 1 and 2, while
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Gm = x1 RT ln x1 + x2 RT ln x2 (5.7)

is called the mixture function, that shows how the specific Gibbs energy 
changes during the formation process of a solid solution from pure components.

Assume that the mixing of two components forming an ideal solution occurs 
without changing the enthalpy. This means that if the components are mixed at 
constant temperature and pressure, no heat is released or absorbed, since at 
P=const the heat Q is equal to the enthalpy H.

Considering that in the case where there is no pressure

dependence expressed in (5.7), the volume of the system does not change during 
the formation of an ideal solution, i.e., the mixing process is not accompanied by 
either compression or expansion.

The energy of the mixture

um = hm – Pνm

Consequently, it is also to zero.

If we differentiate the mixture function gm by temperature, we find the entropy of 
the mixture

(5.8)

In the last expression, we see that sm is always positive, since the natural 
logarithms ln xj  are negative for any xj<1, and the plot of this function is 
symmetrical about the point x1 = x2 = 0.5 with the maximum value of sm.

The analyzed properties allow us to formulate some assumptions regarding 
the conditions that must be met for the atoms of both mixed systems to 
form a solution. First, the change in the volume of the mixture is zero, since the 
sizes of the atoms of the mixing components remain unchanged. The internal 
energy in a solution is closely related to the interaction of atoms. The change in 
energy in the mixture is zero, in other words, the internal energy does not change 
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during the mixing process, since the interaction between different atoms in a 
solution must be equal to the arithmetic mean of the interacting energies of 
the atoms of both pure substances. 

5.3 The Laws of Raoult and Henry

According to the condition of thermodynamic equilibrium, the chemical 
potentials of the components of the equilibrium liquid μi

L and gaseous μi
Vap phases 

must be equal. For an ideal system, we have the following expressions for 
chemical potentials

μi
L = μi

L0 + RT ln xi
L 

μi
Vap = μi

VapΘ + RT ln Pi

Applying the equilibrium condition, we obtain that

μi
L0 + RT ln xi

L = μi
VapΘ + RT ln Pi 

or

And we can express the pressure as

 (5.9)

When xi
liq= 1  (5.9) corresponds to the vapor pressure or elasticity of the 

pure component i

Therefore

Pi = Pi
0 xi

L (5.10) 

Thus, the vapor pressure of component i of the solution is directly proportional 
to the product of the vapor pressure of the pure component and its concentration 
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xi
L in the solution. This formulation of the law was experimentally established by 

Raoult in 1882-1883. This law is also valid for the equilibrium solid- and 
gaseous-phases. In this case, in expression (5.9), the concentration of 
component xi

L in the liquid is simply replaced by the concentration of component 
in the solid phase xi

S. The derivation of the same law for liquid and gaseous 
phases in equilibrium is achieved in exactly the same way as the previous one.

If we consider a gas dissolved in some liquid, then from (5.9) it follows that

At a constant temperature, the exponential coefficient is independent 
on concentration.  Therefore, it can be denoted as a constant by the letter K

xi
L = KPi (5.11)

This shows that the concentration of dissolved gas (component i) in an ideal 
solution is directly proportional to the pressure of on the solution. This law is 
called Henry’s law.

5.4 General Properties of Gibbs Energy

Consider a hypothetical case when a system can simultaneously exist in two 
phases at constant temperature and pressure, for example, in the form of solutions 
or mechanical mixtures. To answer the question which of these states will be 
stable, it is necessary to compare the Gibbs energies of these phases. As it was 
established earlier, the stable state corresponds to the one with the minimum 
Gibbs energy.

Suppose, for example, that the Gibbs energy of a system in the form of a solution 
is higher than that of a system consisting of a simple mechanical mixture. In this 
case, the solution eventually arbitrarily transforms to the mixture state. If 
the Gibbs energy of the solution is less than the Gibbs energy of the 
mechanical mixture, then the solution is stable.

Let us demonstrate that the Gibbs energy is additive at P=const and T=const. 
Now, we will analyze two systems forming a mechanical mixture representing



93

two component systems

93

two component systems

the values of the Gibbs energy, internal energies, entropies and volumes of 
these two systems through G1, G2, U1, U2, S1, S2, V1, V2, respectively. Mixing the 
systems I and II, we obtain the sum of the systems for which the above 
values will be represented by G, U, S, V. Since in the analyzed process the 
systems form a mechanical mixture, the components in the initial systems I and 
II do not interact when mixed, therefore the internal energy, entropy and 
volume of the newly formed system are additive

U = U1 + U2; S = S1 + S2; V = V1 + V2 (5.12)

By definition, the Gibbs energy of the analyzed systems can be represented as 
follows

G1 = U1 – TS1 + PV1; G2 = U2 – TS2 + PV2; G = U – TS + PV (5.13)

Adding G1 and G2

G1 + G2 = U1 + U2 – T(S1 + S2) + P(V1 + V2)

If we follow (5.12) and (5.13) then we have

G1 + G2 = U – TS + PV = G (5.14)

Thus, we have confirmed that the Gibbs energy of a mechanical system is 
simply equal to the sum of the Gibbs energies of the parts that compose the 
mixture. And in the general case, this statement is also true, if we take into 
account that the forces of interaction between the components of the mixture 
are discarded. 

However, if the mixing of the systems I and II is accompanied by an interaction 
of components, for example, by dissolution or alloy formation, then the Gibbs 
energy is no longer additive. From the expression (5.13) we also conclude that 
the Gibbs energy depends on the mass of the substance of the system, just as the 
internal energy, entropy and volume depend on this mass. In other words, as 
noted in Section 4.1, for a one-component system, the value of the Gibbs energy 
is extensive. Therefore, to solve the question of the stability of one of these two 
states of the system, it is necessary to equate the value of Ḡ per mass unit (Gibbs 
specific energy) or per mole (Gibbs molar energy). However, in accordance with
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Fig. 5.1. The Gibbs energy for the two-component solid solution with complete mutual 
solubility (line GA DGB), the mechanical mixture (line GA GB) and the system with a partial 

solubility (line GA LFMGB).

Let us represent the chemical composition of such a system through the formula 
AxB1-x. If components A and B have infinite solubility among themselves 
in the solid, liquid, and gaseous phases, then the parameter x or the 
composition of the system can continuously change form 0 to 1, i.e., complete 
solubility between two substances is possible. In this case, the dependence of the 
Gibbs energy on concentration is represented by the curve passing under the 
additive line GAGB.

Now suppose that for the solution, the line of the Gibbs energy curve GACGB is 
above the dashed line GAGB in Fig. 5.1. In this case the Gibbs energy of the 
solution, represented by the vertical segment OC is higher than G for a mechanical 
mixture  of  the  same composition (segment OE), so the mechanical mixture must

A

A

OB
x

B

the simplification adopted in Section 4.1, we will omit the horizontal line over 
the letter G, but always remember that for different phases, the specific or molar 
Gibbs energy must be exactly equal in a thermodynamic equilibrium condition. 
Since the Gibbs energy of a two-component mixture is an additive value, the 
dependence of G on the composition in this case is represented by a straight line 
GAGB that joins the points corresponding to the Gibbs energies for components A 
and B. This is illustrated in Fig.5.1, are graph for a two-component mixture 
of substances A and B, where the Gibbs energy is a function of their 
concentration x.

Now assume that a two-component system is a homogeneous solid, liquid, or 
gaseous solution and exists over the full range of concentrations.
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have a stable state. However, we initially assumed that there is a continuous 
series of solutions between A and B, that is possible if and only if the Gibbs 
energy curve of the solution is below the GAGB line, which would represent the 
case of a simple mechanical mixture.

It is easy to see that the curve in Fig. 5.1, labeled as GADGB to illustrate the Gibbs 
energy of the solution, should be a concave curve. Assume, on the contrary, 
that the isobaric potential curve has a convex segment LFM for the Gibbs 
energy of the solution. Then one can draw a straight line LM tangent to the line 
GALFMGB, which will characterize the dependence of G on the 
composition of the mechanical mixture by the segment LM. In this case, in the 
concentration range LM, the Gibbs energy for the solution is higher than for the 
mixture. As a result, the solution in the LM range spontaneously transforms into a 
mechanical mixture, which contradicts the initial assumption about the mutual 
complete solubility of components A and B as thermodynamically stable state.

Thus, if the components have a complete mutual solubility, the Gibbs energy 
curve cannot contain segments similar to the LFM. In general, this curve must lie 
completely under the chord connecting its extreme points, and must be concave 
throughout its its entire length. If the curve contains any convex segment (for 
example, LFM), then the composition of the system is divided into a mixture of 
two limited solutions, the compositions of wich are determined by the positions 
of the tangent points L and M.

To analyze the behavior of the Gibbs energy near the pure components A and B, 
we annotate the expressions for the chemical potentials.  Assuming that the 
system is ideal, then

If in the last expression, x tends to 0 or to 1, then
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Fig.5.2. The dependences of the Gibbs energies of the liquid GL and the solid GS on 
temperature for the one-component system.

The curve characterizing the dependence of the Gibbs energy on the composition 
is tangent to the vertical lines corresponding to the pure components A and B, i.e., 
the compositions x=0 and x=1.

We can determine the dependence of the Gibbs energy for a phase of 
constant composition (e.g., a solid, liquid, or gaseous phase of a pure 
component) as a function of temperature

G = U – TS + PV = H – TS

Assume, that the thermodynamic system under consideration is a closed system. 
But first, note that the entropy term TS is always positive, because entropy is 
positive and T is absolute temperature. We can simplify the problem by assuming 
that the value of the enthalpy H is also positive. Then, considering the sign (–) in 
front of TS, we can say that with increasing temperature, the value of the Gibbs 
energy will decrease and the curve G = G(T) will approach the T axis, for 
which the concavity of this curve directed downward. The slopes of the function 
G = G(T) for different phases will be different due to differences in entropies.

According to the Boltzmann formula (2.38), the entropy SL of the liquid phase is 
greater than SS of the solid phase. For this reason, as shown in Fig. 5.2, the curve 
G = G(T) for the liquid phase has a more pronounced slope than for the solid 
phase as the temperature increases. The point of intersection of these two curves 
corresponds to the equilibrium point between the two phases. Below and above 
these temperatures, phases with lower G values are stable. As seen in Fig.19, when
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T > TM, GL < GS, means that there is only one liquid phase in the system. When 
T< TM, GS < GL, the solid phase is stable. The temperature TM at which GL = GS 
determines the condition of simultaneous existence of liquid and solid phases and 
is called the fusion temperature.

5.5 Classification of the Diagrams of State of Two Component Systems

When analyzing binary systems, i.e., those consisting of two elements or 
components, it is assumed that external pressure is constant.  In this case, the 
number of degrees of freedom is equal to 

f = k – 𝜑𝜑 + 1 = 3 – 𝜑𝜑

where, as in Section 3.4, k denotes the number of components, in this case 2, and 
𝜑𝜑 the number of phases.

Consider that components A and B of any binary system are completely mutually 
soluble in the liquid state. In other words, A and B, at least at temperatures above 
the fusion point, form liquid solutions of any concentration. It is important to note 
that this assumption is true for vast majority of diverse systems of semiconductor 
materials.

Solid phases, in general, can be formed by single component substances, alloys 
or compounds, or solid solutions. Remember that solid solutions, like liquid and 
gaseous ones, differ from pure substances or from alloys in the fact that their 
composition can be changed. If we write down in general terms the chemical 
formula of a binary alloy such as AmBn, then m and n are integers. This formula 
shows that the components A and B forming the alloy are in multiple proportions, 
and that is how alloys differ from solutions.

In addition to these variants, the solid phase can also be formed by a mechanical 
mixture, where components A and B do not interact, i.e., do not form solid solutions 
or alloys.

Thus, the following situations are possible in the solid phase:
1. A and B are not soluble between themselves and do not form alloys. In such

case, when in the solid state there is no solubility between A and B, the
binary system is characterized by a state diagram called a eutectic.
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2. Components A and B in the solid state are infinitely soluble with each other,
it is said to be a system with infinite mutual solubility.

3. Components A and B are partially soluble with each other and do not form
alloys.

4. Components A and B form an alloy in the solid state.

Almost all types of state diagrams of a binary system lead to any of the above 
mentioned cases or their combinations. We will analyze in detail the first two 
types of phase diagrams, starting from two different points of view.

The first view is based on the fact that the liquid and solid phases are in equilibrium 
and, therefore, the partial pressure components forming these phases should be 
equal. In this case, Raoult’s law is used to analyze the state diagram, as well as the 
fact that the derivative of pressure over temperature for the sublimation curve is 
higher than for the evaporation curve, as shown in section 4.2, and equation (4.9).

The second point of view is based on the plotting of the specific Gibbs energy as 
a function of concentration and temperature for liquid GL and solid GS phases. 
Between curves GL=GL(xL) and GS=GS(xS), plotted for different temperatures, a 
common tangent is drawn, which actually means finding the conditions under 
which the differential equations of the Gibbs energy as a function of 
concentration of the chemical potentials are equal to μi

L=μi
S. The point of the 

tangent line will indicate the composition of phases in equilibrium.

5.6 Binary Systems with Simple Eutectic

As suggested above, we consider a liquid phase containing components A and B 
infinitely soluble in each other. At the same time, if A and B are soluble in the 
solid phase, the same phase can be formed either by pure components A and B or 
by their mechanical mixture. Thus, in binary systems with simple eutectic the 
following variants of the equilibrium phase are possible

ABL ↔ AS, ABL ↔ BS, ABL ↔ AS + BS (5.15)

where in (5.14) ABL is the liquid, AS, BS and are solid phases of A, B and AS+BS is 
their mechanical mixture, respectively.
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I. First, we analyze the phase diagram on the example of a simple eutectic.
Assume that if phases (ABL) and (AS o BS) are in equilibrium, then the partial
pressures of corresponding components of the system (PA in the first case and PB in the
second case) must be equal. If components A and B form ideal liquid solutions with
each other, it means that they fulfill Raoult's law in the whole interval of concentrations

PA = PA
OxA,

PB = PB
OxB,

where, respectively, PA
O  and PB

O are the vapor pressures of the components on 
pure liquids A and B at a certain temperature, where PA and PB are their partial 
pressures on the solution at the same temperature, xA and xB  are the respective 
concentrations of A and B in the liquid phase. As was shown in Section 4.2 
(equation 4.9), for a one-component system, the solid phase sublimation curve ao 
is more pronounced than the pure liquid evaporation curve oc (Fig.5.3). 

Fig. 5.3. The curves of sublimation of the solid phase (line ao) and 
the liquid phase (line oc) in the one-component system.

In the case of ABL↔AS equilibrium, the pressure on the pure solid phase AS is 
still characterized by the curve ao. In this case, the partial pressure A on the 
liquid phase represented by the solution A–B is smaller according to Raoult’s 
law, since 0≤xA≤1. As a result, the partial pressure curve of A on the liquid 
phase A–B will shift downward with regard to oc as the concentration of A in 
the liquid increases, as shown by the dotted lines in Fig. 5.3. Thus, when 
component B is introduced into the liquid ABL as its concentration increases, 
the intersection point of the sublimation curve of pure solid phase AS with the 
curve characterizing the pressure A on the liquid A–B will shift toward lower 
temperatures, as illustrated in Figs. 5.3 and 5.4a.
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Fig. 5.4. The state diagrams of the two-component system without 
solubility in the solid phase (simple eutectic).

This point, as indicated previously, corresponds to the state of equilibrium, since it 
is the point where the pressure on the analyzed phases is equal. Therefore, the 
solid phase AS and the liquid A–B will be in equilibrium at a temperature 
that is lower than the equilibrium temperature T1 (Fig.5.3) for the liquid phases, AL 
and the solid phase AS. Naturally, the difference between temperatures T1 y T2 
will be larger in the liquid with a lower concentration of A. 

Now, if a large dose of component B is added to the liquid phase AL, the 
equilibrium temperature of the system A–B (líquid) –A (solid) will decrease (in 
Fig.5.3 T1>T2>T3). This means that, in the temperature-composition coordinates, 
the curve corresponding to the ABL ↔ AS equilibrium begins at the fusion point 
TA since the concentration of B slopes downward with increasing concentration. 
Similarly, the curve that corresponds to the ABL ↔ AS equilibrium will also 
decline, starting at point TB, as the concentration of component A in the liquid 
increases. Since each of these curves is formed by points characterizing the 
compositions of the liquid phases (which are in equilibrium with the solid phases 
A or B), they together form what is known as liquidus line. Both curves intersect 
at point E, which is called eutectic. The meaning of this name is explained 
below. The composition of the liquid is non-equilibrium with both solid phases 
simultaneously at temperature TE, and its composition xE is determind at point E, 
located simultaneously on the curves TAE and TBE. Correspondingly, the line 
characterizing the compositions of the solid phases AS and BS is called solidus. 
Obviously, this line is formed by the segments of vertical lines  y, since it is here 
that the points corresponding to the solid pure phases AS y BS are located. To find 
the compositions of the liquid and solid phases in equilibrium  at  certain 
temperature T,  it is enough to draw a horizontal line through this temperature.
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The segment of this line between the points of intersection with the liquidus and 
solidus curves allows us to determine the unknown compositions of the phases in 
equilibrium. This segment is called conode and we shall use this term when 
discussing this topic in the following figures. For example, Fig. 21 shows that at 
temperature T, composition x1 is in equilibrium with  AS and  x2 is in 
equilibrium with BS. The plane of the analyzed T–x diagram is divided by the 
liquidus lines TAE and TBE a horizontal eutectic passing through the point TE, and the 
vertical solidus lines into four regions. Region I, limited from below by the liquidus 
curve, is a single-phase region, and at its boundaries there is only the liquid ABL, 
the composition of which can vary from A to B. Between the liquidus curve and the 
horizontal eutectic there are two two-phase regions II and III, at the boundaries 
of which the liquid phase of changing composition is in equilibrium with the solid 
phase of constant composition with crystals A in region II and with crystals B in 
region III. Below the horizontal eutectic is located in region IV, in which two solid 
phases of constant composition (crystals A and crystals B) coexist, forming a 
mechanical mixture. 

According to the phase rule, the liquid in region I has two degrees of freedom,  f=k–𝜑𝜑
+1=3–𝜑𝜑=2, since 𝜑𝜑=1 is the number of phases, which in this region is only that of the
liquid, and k is the number of components, in this example 2. Thus, in the first region,
the temperature and composition can vary independently of each other, which in turn
means that the point that characterizes the state of the system is called the figurative
point, and can be located anywhere in region I. In the remaining three regions II, III
and IV the system is a two-phase system and therefore has only one degree of
freedom, i.e. it is univalent. This means that in these three regions only one of the
parameters (either composition or temperature) can vary independently and the
remaining parameters will have a well-defined value. Therefore, the figurative
point characterizing the state of the system in the second, third and fourth regions
must be found on the lines that are geometric representation of the univalent
system. Therefore, for regions II and III, the liquid phase point can only be
found on the liquidus line, and for the solid phase only on the solidus line. In
region IV, the two-phase region, the figurative point is located on the solidus lines
TAA and TAB. Note again that the figurative point cannot be located inside the two-
phase region and is always located on the dividing lines between these regions. It
follows that when the temperature decreases, the figurative points in regions II and III
will scroll down along the corresponding liquidus and solidus lines, and in region IV -
only along the solidus line. Suppose that the state of the liquid phase is characterized
by the figurative point (a). Since this point is in a region with two degrees of freedom,
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the composition of the liquid can be changed independently on the temperature, 
e.g. by increasing the concentration of component A. Such a change is
represented in Fig. 21 by a shift to the left on the horizontal line. This point can
only be shifted to the intersection of the horizontal with the liquidus line, i.e.,
up to position (a’) since no figurative point can be located in region II. Since at
position (a’) the concentration x1 of component A is the maximum at a given
temperature, the liquidus line is also called as the saturated liquid phase
interface line. Therefore, TAE is the point line that corresponds to the liquid
saturated with component A, and TBE with component B. Similarly, as the
concentration of component B increases, the initial figurative point (a) shifts to
the right to the position (a’’).

Next, we analyze the processes that occur during the cooling of the liquid phase AB. 
First, consider the pure components of AB. If the temperature of the system exceeds 
the fusion temperature of A and B, that corresponds, for example, to figurative points 
1 and 5 in Fig. 5.4.b, then the single-phase system has one phase and one component, 
and the number of degrees of freedom is f=k–𝜑𝜑+1=1. This means that in those cases 
considered at constant pressure and concentration, the only variable independent 
parameter is temperature. Thus, as the temperature is decreased, the figurative point 
characterizing the system simply moves down the fusion temperature T=TM of the 
corresponding component. In the process of decreasing the temperature, there should 
already be two phases in equilibrium: liquid and solid. In this case, the only degree of 
freedom of the system is lost. Therefore, in the one-component systems, the 
crystallization occurs only at constant temperature if the pressure is constant.

These processes can be illustrated using the cooling curves, which show how the 
temperature T in the system changes over time 𝜏𝜏. Clearly, in a one-component 
system with one phase, naturally having only one degree of freedom, the cooling 
curve is represented by a sloping segment as the temperature decreases. At 
temperature T=TM this segment, as shown in Fig. 21.b, changes in the horizontal 
direction. The temperature constancy at T=TM is due to the latent heat of the solid-
liquid phase transition. After solidification of the entire liquid, only one solid 
phase remains in the system - the solid, and the number of degrees of freedom 
becomes again equal to one. The subsequent cooling of the system is characterized 
by the second sloping segment of curves 1 and 5, shown in Fig.5.4.b.

The cooling curve of an alloy with eutectic composition (point 3) has the same form. 
First, as the system cools, the temperature goes down the sloping line, as shown 



103

two component systems

103

two component systems

in Fig.5.4.b. When the system is cooled to the eutectic temperature, the liquid phase 
is saturated with both components A and B, which simultaneously begin to 
crystallize. Crystallization occurs in any infinitesimal volume of liquid, so at the end 
of this process the solid phase is a very well-mixed mixture of A and B crystals. It can 
be seen that the eutectic point is at a lowest temperature. This determines the name of 
this type of state diagrams, since the word “eutectos” translates as “easily melted”.   

At point E the liquid phase of the eutectic composition XE is in equilibrium with the 
two solid phases SA and SB. According to the rule of phases, the number of degrees 
of freedom of a two-component regulatory system with three phases is equal to 
zero f=k–𝜑𝜑+1=2–3+1=0. As a result, the eutectic will crystallize at a constant 
temperature, which is demonstrated by the horizontal segment of the cooling curve 
3.After the eutectic crystallization is completed, the cooling curve turns downward.

Let us analyze the processes that occur in the system during cooling of the 
liquid phase, the composition of which is distributed between points 1 and 3. 
While figurative point 2 remains in the region of the liquid phase, the system 
maintains two degrees of freedom, so no changes occur in it when the 
temperature decreases, and this process is characterized by a vertical line in the 
diagram (Fig.5.4.a). When the liquid cools to the temperature of crystallization 
onset, the figurative point is localized on the liquidus TAE (point a’), the liquid 
is saturated with reference to the component A. It is at this point that the first 
crystal of the solid phase with pure composition of component A bursts out the 
liquid. This is accompanied by the release of heat during crystallization, 
which leads to an increase in the cooling rate: the cooling curve in Fig. 5.4.b

changes its slope and a narrowing appears that corresponds to the 

temperature at which the first crystal of component A drops out. At further 

cooling the number of crystals of A increases, and the remaining liquid phase is 
enriched with component B, i.e. in Fig.5.4.a, the figurative point slides down 
the liquidus line to the eutectic. We draw the isothermal line T2(Aa’) connecting 
the figurative points that are in phase equilibrium.

The extreme left point of this line T2 shows the composition of the solid phase 
(pure component A) and the extreme right point (a’) shows the composition x1 of 
the equilibrium liquid phase. When the system is cooled to the eutectic temperature, 
the extreme right point of the allied line ends at point E, i.e., the composition of the
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liquid phase will correspond to the eutectic composition. In addition to A, 
component B will also crystallize from the liquid of such composition. The 
eutectic crystallization occurs at constant temperature, so a horizontal section  
appears on the cooling curve, corresponding to the invariant process. After 
eutectic crystallization is complete, the system transforms into a monovariant 
system, as one of the phases (liquid phase) disappears and the cooling curve turns 
downward again. Thus, the crystallization of solutions, that conditionally can be 
called eutectic, begins with the release of component A from the liquid phase and 
ends with the eutectic crystallization, i.e. occurs in a certain temperature interval. 
The upper limit of the interval is determined by the temperature at the beginning 
of crystallization of A and depends on the composition of the solution, and the 
lower limit is located at the temperature of eutectic crystallization. 

Fig. 5.5. The state diagram of the system with simple eutectic.

The crystallization of the liquid phases whose composition is distributed between 
the eutectic and pure component B, i.e., post-eutectic phases, according to the 
common terminology, for example, in point 4, occurs in the same way as in the 
case discussed above.

Since the solidus lines on the state diagrams of binary systems with eutectics 
are simple vertical lines, only the liquidus lines and saturation curves should be 
constructed in the experimental study of such diagrams. Since these lines 
represent temperature parameters–composition dependences, their construction 
can be performed by two different methods. In each of these methods, one of 
the parameters is constant and the other is determined experimentally. Thus, for 
example, it is possible to determine the temperature at which the last crystal 
disappears when various liquid phases of known composition are heated. The 
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second method consists in determining the composition of the liquid phases in 
relation to the solid phase at different temperatures. Both methods allow us to 
plot the function between the composition of system and the temperature at 
which the liquid and solid phases are in equilibrium. It is important to note that 
the above state diagrams are idealizations, since in real systems the solid phases 
always have mutual solubility of their constituent elements. Often this mutual 
solubility is extremely small and cannot be determined experimentally, because 
the existing measuring equipment is not sensitive enough. For simplicity, the 
cooling curves plotted in Fig.5.4.b also represent an idealization. In practice, 
these dependences can often differ significantly from those analyzed.

II. Let us look at the diagram of state of the system with simple eutectic using
the dependency of the Gibbs energy on temperature and concentration. Such
dependence is represented in a tridimensional system of coordinates in Fig. 5.5.

Under the condition that there is a series of continuous solutions between A and B 
in the liquid phase, the Gibbs energy for the liquid will depend on concentration 
to the same extent as on temperature. In other words, in the tridimensional space 
G, T, x, this dependence can be represented by a convex region and limited by the 
curves GL=GL

AB(x), GL
A=GL

A(T)  and GL
B=GL

B(T). Since A and B in the solid 
phase form neither alloys nor solid solutions with each other, GS will not be a 
function of concentration. For this reason, for the solid phase, GS can be 
represented by the curves GS=GS

A(T) and GS=GS
B(T) located in the GAT and GBT 

planes. Plotting a set of vertical planes for constant temperatures T1,T2,T3,T4,  we 
obtan the points of intersection of these planes with the curves GS

A and 
GS

B(1S
A,1S

B,2S
A,2S

B). The vertical planes T1,T2,T3,T4, will intersect with the surface 
of the Gibbs energy for the liquid phase by lines L1,L2,L3,L4.

Consider the plane  T1. The points 1S
A,1S

B of the solid phases and the curve L1 for 
the liquid are located in this plane. The equilibrium condition for the liquid and 
solid phases is the equality of their respective chemical potentials. Since by 
definition the chemical potential is a differential equation of the Gibbs energy in 
regards to the concentration passing through the points 1S

A  and 1S
B that 

characterize the Gibbs energy for the solid phase, it necessary to draw the tangent 
lines to the curve L1. It is in this case that the differential equations of GL and GS 
will be equal. Thus, tangen point 1 corresponds to the composition of the liquid 
phase being at temperature T1 in simultaneous equilibrium with the solid phases 
A and B. In other words, the temperature T1 is the eutectic temperature. 
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As we can see, from points 2SA and 2SB in the vertical plane T2 two tangents to the 
line L2 can be drawn. The tangent points 2A and 2B define the composition of liquid 
A–B that is in equilibrium at temperature T2 with the pure solid phases A and B. At 
the temperature of the fusion point of pure element A, the pure phases, liquid 
and solid A, are in equlibrium at the combined points 3LA and  3SA.  As can be 
seen in Fig. 5.5, at this temperature a tangential line L3 can be drawn through 
point 3SB. The position of the tangent point 3B will determine the 
composition of the liquid phase A-B, which at temperature T3 will be in equilibrium 
with solid phase B. Therefore, the temperature T4 corresponds to the fusion 
temperature of B, at which the solid and liquid phases coexist in equilibrium.

Fig. 5.6. Construction of the state diagram with simple eutectic.
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Finally, the state diagram of a system with simple eutectic can be built if the points 
(1,2A,2B,3A,…) obtained to determine the compositions of the liquid phases are 
in equilibrium with the solid phases AS y BS at various temperatures and projected 
onto the TABT plane as shown in Fig. 5.6.

The Gibbs free energy GL curves will be convex curves for the liquid phases at 
each of these sites. As the temperature rises, these curves slope downward. Since 
there is no interaction between A and B in the solid phase, for each temperature the 
Gibbs energy for the solid phase is represented by the points in sections GS

A and 
GS

B. These points also slide downwards with the increasing temperature. Since 
the rate of downward sliding of the curve corresponding to the solid phase is less 
than for the liquid phase, the distance between points GL and GS decreases with 

increasing temperature due to the ratio of the entropy (SL > SS) and   . 

As shown in Fig. 5.6, in the temperature interval T1–T4, tangents can be drawn to 
the GL curve through the GS points. The tangent points indicate the composition 
of the liquid in equilibrium with solid phase A or B, or with their eutectic 
mixture. Points 1–10 thus obtained are transferred to a new system of coordinates 
temperature–composition, as shown at the bottom of Fig. 5.6.

5.7. Binary Systems with Unlimited Solubility in the Solid Phase

In this case, if the components of a binary system have a reciprocal solubility in 
the solid state,

(AxL B1-xL)L ↔ (AxSB1-xS)S

then a maximum of two phases can be found in that system, where (AxL B1-xL)L is a 
liquid solution of composition xL y (AxSB1-xS)S is the solid solution of composition   
xS. Note that unlimited solubility of the components of the solid phase is possible 
if they belong to the same type of crystal structure and if the sizes of their atoms 
and molecules are similar.

At the extreme points corresponding to the two pure components A and B or to 
two one component systems, the liquid- and solid-phases have the same 
compositions. Naturally, if the temperature of the components exceeds the 
corresponding fusion temperatures (TM

A or TM
B), the liquid phases are stable and
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the one-component systems are monovariant, i.e., have only one degree of 
freedom. When these systems have the temperatures below TMA or TMB, 
corresponding solid pure phases exist. At the fusion point of the pure components 
of the system A and B, there are no degrees of freedom and the liquid and solid 
phases are in equilibrium.

If the compositions of the phases in equilibrium are different from 1, the binary 
system AB will have only one degree of freedom. This means, in particular, that 
to any value of temperature corresponds one value of liquid and solid 
compositions, and vice versa. For this reason, as the temperature decreases, the 
compositions of the liquid and solid compositions slide along the liquidus and the 
solidus lines, that, as we have already mentioned, define the geometry of the 
monovariant system. It follows that in a binary system with unlimited solubility 
in the liquid and solid phases there are temperatures of the beginning and end of 
the crystallization process. The temperature of the beginning of crystallization is 
naturally located at the liquidus line, where the liquid phase is saturated. 
The temperature of the end of crystallization is located on the solidus line.

As in the previous section, we use two methods to study the state diagrams of 
binary systems with unlimited solubility in the solid phase:

I. The partial pressures of the components of the system on the phases in
equilibrium are equal.

II. In order to find the equilibrium conditions between the liquid and solid phases
at a given temperature, it is necessary to draw a tangent common to the
dependence of the Gibbs energy on the composition. The points on the tangent
line will indicate the compositions of the phases in equilibrium at a given
temperature, since at these points the differential Gibbs energy equations, taking
into account the number of particles and chemical potentials, should be equal.

I. Let us consider the first method. Fig. 5.7 shows the curves of pressure as a
function of temperature for the liquid and solid phases of a one component
system, where (co) is the evaporation curve, and (ao) is the sublimation curve of
the pure component A. At the intersection of these curves at temperature T0, the
pure phases, liquid AL and solid AS, are in equilibrium, since the pressures of their
corresponding vapors are equal. The transition from a one component system to
a binary system by adding component B to the pure liquid and solid phases of
component A will cause the evaporation and sublimation curves to slide
downward relative to co and ao. This is in agreement with Raoult’s law that the
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pressure on the vapor on the liquid and solid solutions is always lower than that 
on the liquid or solid phase of a one component. The vapor pressure of 
component A is proportional to its concentration. Therefore, as more and more 
component B is added to the liquid or solid phase of component A, i.e., as the 
concentration of A decreases, the point of intersection of the evaporization curves 
may slide toward higher and lower temperatures relative to the temperature T, as 
shown in Fig. 5.7.

Fig. 5.7. The curves of sublimation for the binary system at different temperatures.

It follows that components A and B form a continuous series of solid solutions, 
in which case three liquidus curves are possible:  

1. As the concentration of one the components increases, the
crystallization onset temperature or liquidus temperature increases
continuously.

2. When one component is added to another, the temperature of the
beginning of crystallization becomes higher, but there is a maximum on
the liquidus line.

3. When one component is addede to another, the temperature of the
beginning of crystallization becomes lower and a minimum is observed on
the liquidus line.

Fig. 5.8 shows three types of liquidus curves forming a continuous series of solid 
solutions of the system. Let us analyze the state diagram of the system in which 
the liquidus is a curve of the first type. As noted earlier, any liquid phase 
represented by any point on the liquidus curve must correspond a definite and 
single point characterizing the composition of the solid phase in equilibrium, i.e., 
a point on the solidus line. Therefore, the liquidus and solidus curves are often 
called conjugate curves.
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Fig. 5.9.a shows the liquidus and solidus lines for a simple system with 
unlimited mutual solubility in the liquid and solid phases. Such diagrams of state 
are often called “cigarette” or “lens” type diagrams. The liquidus and solidus 
lines divide the diagram into three parts or regions (I, II, III). Regions I and 
III correspond to the liquid and solid phases, which represent the liquid and solid 
one phase solutions that exist due to unlimited solubility of any concentration. In 
this case, the system is homogeneous and has two degrees of freedom, and the 
figurative points can be located anywhere in the regions I and III. The second 
region is heterogeneous and the two phases are in equilibrium. For this reason, it is a 
monovariant system and the figurative point cannot be located inside this region, 
but only on the liquidus and solidus lines. To find the compositions of the phases 
that are in equilibrium in the state diagram, it is sufficient to draw a horizontal 
line from the point T (in Fig. 5.9.a conodus ls), intersecting the liquidus and 
solidus curves at constant temperature. The abscissa of the intersection point 
indicates the composition of the equilibrium liquid xL and solid  xS phases.

Fig. 5.8. Possible positions of the liquidus line in the case of the unlimited solubility.

Fig. 5.9. The liquidus and solidus lines for the binary system with an unlimited mutual 
solubility in the liquid and solid phases.
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Observing the diagram, we can see that the solid solution will always be enriched 
in the concentration of the element B relative to the equilibrium liquid, so that the 
liquidus temperature increases as the concentration of B in the liquid. 

Suppose that the crystallization of a solid solution begins from the liquid phase 
whose the concentrations is xL

1. Assume that the temperature is such that in the 
diagram under consideration the figurative point characterizings the system (or the 
liquid phase) is located in position 2, i.e., in region I. As the temperature decreases, 
point 2 will fall down the straight line because the system has two degrees of 
freedom and a change in one parameter (temperature) does not result in a change in 
the other (concentration). At the moment when the vertical line crosses the liquidus 
line at point l1, the first crystal with the composition determined by the point s1 
should appear. The emergence of the second phase reduces the number of degrees 
of freedom and the system becomes monovariant. Therefore, the subsequent 
decrease in temperature leads to a change in concentration. The composition of the 
liquid phase will change along the solidus line. For example, at temperature T3, the 
composition of the liquid phase is represented by the abscissa of the point s2. 
Obviously, the previously separated solid solution s1 is no longer in equilibrium 
with the liquid phase l2. To reach equilibrium, the whole composition of this solid 
solution must change so that it corresponds to the abscissa of point s2, that means 
enrichment with component A. In principle, such enrichment can occur, for 
example, by diffusion. However, these processes are very slow because the 
diffusion coefficients of the elements in the solid phase are very small. In this 
connection, the composition of the liquid phase corresponds to the whole 
composition of the crystal growth, which would be achievable when s2 corresponds 
the composition of the liquid phase l2, is not achieved in practice, and therefore the 
real crystallization processes do not coincide with the equilibrium state diagrams. 

From the previous analysis of crystallization processes in a system with 
a cigarette-shaped state diagram, simple conclusions can be drawn as 
follows:

– In the crystallization process, the solid phase, in comparison to the liquid
phase, turns out to be enriched with the component that has a higher fusion
temperature (in the previous case, component B);

– As this component rapidly passes into the solid phase, its concentration
diminishes in the liquid phase ;

– This in turn leads to a decrease in the content of this component in the
solid phase, and therefore the growing crystal will always have a gradient
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of the composition, in particular, the first formed volumes of the crystal  
will be enriched with the component with the higher fusion temperature 
in relation to the subsequent volumes.

As the temperature decreases to the point T3, the volume of the solid phase increases and 
that of the liquid one decreases, and as seen in Fig. 5.9.a, the last traces of the liquid phase 
will have the composition of point l3. As a result, on the cooling curve drawn for the initial 

point 2, which has the composition xL
1, in Fig. 5.9.b, two changes in the slope         will 

be observed, one of which determines the beginning and the other, the end of the 

crystallization process. The shape of the cooling curves for figurative points 1 and 3 is 
similar to the previously shown dependences for pure components in the state 
diagram of the system with one single eutectic. As we have already noted, the cooling 
curves in practice may differ significantly from those shown in Fig. 5.9.b, which are 
presented in idealized form for simplification purposes. 

The ratio between the number of liquid and solid phases in the crystallization 
process is determined by the lever rule. According to this rule, for instance, at 
temperature T2, the ratio of volumes of the liquid and solid phases in the 
system is determined by the ratio of the distances between the segments Os2 y 
Ol2. To derive this rule, we will assume that at the time of the beginning of 
crystallization, that means, at temperature T1, the system had N particles. 
After some time in the process of cooling the system to temperature T2, the 
particles remained in the liquid phase NL

2 and the rest remained in the solid phase 
NS

2=N-NL
2. Let us write the expression for the mass balance for component 

B. At the beginning in the liquid phase of the composition xL
1  (at point l1) is

the amount of B, which is equal to NxL
1. At temperature T2 in the solid phase,

it is equal to NS
2xS

2 and, corresponingly, in the liquid phase to NL
2xL

2.
Naturally, N=NL

2+NS
2 and  NxL

1 =NL xL
2 +NS xS

2 since the total number of
particles has not changed during the process. Hence, (NL+NS)xL

1=NLxL
2

+NSxS
2. It is from this that we infer what we intended to demonstrate.

or

Now analyze the state diagrame of a two component system with unlimited 
solubility in the solid phase, departing from the laws that regulate the change of 
the Gibbs energy as a function of concentration and temperature.
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For simplicity, as in the first part of this section, we will first study the “cigarette” 
shaped diagram. In a three-dimensional space G–T–x, the Gibbs energy for the 
liquid phase, as well as for the solid phase, is represented by concave region (a 
curve whose second derivative in this case with a G positive; the opposite case 
we will call it a convex, that means it has a negative second derivative) (Figs. 
5.10 and 5.11). These regions will slide downward, reaching the x–T plane due to 
the temperatures increase, with the downward sliding GL=GL(T,xL) being faster 
for the liquid phase than for the solid phase. 

We shall draw, as shown in Fig. 5.10, a set of isothermal cross sections 
representing perpendicular planes to x–T. Obviously, in each cross section, the 
intersection of the vertical isothermal planes will result in two Gibbs energy 
curves, one for the liquid phase GL and the one for the solid GS. In such case, if 
the cross-sections are at temperatures below the fusion temperature of the 
component with the lowest fusion temperature in the system (in Fig. 11 it is 
component A), then the Gibbs energy curve in the concentration region for the 
solid phase will be located under the corresponding curve for the liquid. 
Therefore, other things being equal, it is impossible to draw a common tangent,
i.e., there is no composition in which these phases could be in equilibrium. The
only stable phase under these conditions is the solid phase, since its Gibbs energy
for any composition is lower than that for the liquid phase. Likewise, for
temperatures T>TB, the curves GL=GL(T,xL) or GS=GS(T,XS) also do not intersect.
In Fig. 5.11 the liquid phase is stable, since the composition-dependent Gibbs
energy function below the isothermal sections is in the temperature intervals
TA≤T≤TB, in each of these sections the curves GL=GL(xL) or GS=GS(XS) will
intersect as shown in Figs. 5.10 and 5.11. Consequently, it is possible to draw a
straight common tangential line whose points of tangency will indicate the lines
GL=GL(xL) or GS=GS(XS) of the phase compositions in equilibrium at a given
temperature.

For a more graphic illustration of the method of state diagram construction, 
previously shown in Fig. 5.11, four isothermal sections T1, T2, T3, T4 located in 
the interval of TA≤T≤TB are presented separately. The points denoting the 
compositions of the equilibrium liquid and solid phases for different temperatures 
are transferred to the temperature–composition coordinate plane, i.e., to the state 
diagram shown at the bottom part of Fig. 5.11. 
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Fig. 5.10. Construction of the state diagram for the binary system with 
the unlimited mutual solubility.

Fig. 5.11. Construction of the state diagram of the system with unlimited solubility with 
tangents to the Gibbs energy.
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Fig. 5.12. Various types of the state 
diagrams in the solutions with 

unlimited mutual solubility.

Fig. 5.13. Various types of the state 
diagrams in the solutions with 

unlimited mutual solubility.
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The example considered earlier rerers to one of the cases when the state diagram 
turns into a cigarette- or lens-type diagram, and the liquidus and solidus 
temperatures refer to the fusion points of components A and B. These diagrams 
are formed when the curvature of lines GL=GL(xL) or GS=GS(XS) does not differ 
much. Examples of systems that have similar diagrams are Cu–Ni, Ag–Au, Ge–
Si, AlAs–GaAs and some others. 

Nevertheless, in various cases on the state diagrams of systems forming a series 
of continuous solid solutions, intermediate maxima and minima are observed, 
which correspond to the second and third types of liquidus curves what was 
indicated at the beginning of this section. These types of liquidus curves, and 
correspondingly the diagrams with maxima or minima, are formed when the 
curvature of the lines GL=GL(xL) or GS=GS(XS) differ significantly from each 
other. If the GS curve has greater curvature than the GL curve, as shown in Fig. 
5.12, then the diagram has an intermediate maximum. On the contrary, there is a 
state diagram with an intermediate temperature minimum, as shown in Fig. 5.13. 
In the latter case, the state diagram of the Ag–Cu system is shown as an example.

Note that at the maximum or minimum points, the system should be considered 
as a one component system, since both phases, solid and liquid, coincide in their 
composition. Thus, the degree of freedom is zero.
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5.8 Real Systems and the Coefficients of Segregation

As shown previously, the chemical potential of an ideal system has the form

𝜇𝜇i = 𝜇𝜇O
i (T,P) + RT ln xi (5.15)

Where the first term is the chemical standard potential and the second term is a 
mixture function. Note that the described model using the equation (5.15) has not 
only a theoretical meaning, allowing us to study the properties of the ideal 
systems, but is also successfully applied in very specific calculations of the state 
diagrams. Of course, in such calculations, the criterion for the validity of using 
the model, in particular, the model of ideal systems, is the coincidence of 
theoretical and experimental data. It turns out that, for example, the Ge–Si system 
can be considered close to the ideal case, since the calculated data obtained for 
this system in the models of ideal solutions generally coincide with experimental 
data, as can be seen in Fig. 5.14. This figure shows the results of the study of the 
Ge–Si system given in the book of Richard A. Swalin “Thermodynamics of 
Solids” (John Wiley and Sons 1972), first published in the works of C.D. 
Thurmond, J. Phys. Chem. 57, p.827 (1953).   

Another example of close to ideal systems that can be mentioned is the GaAs-
AlAs system. The state diagram of this system has been theoretically studies 
using the method of the chemical equilibrium constant. In this method, 
widely described in the following chapter 6, approximations corresponding to 
the solid solutions were used. The validity of the application of this model is 
confirmed by a good coincidence of the calculated and experimental data. 
The method of the chemical equilibrium constant for the GaAs–AlAs system 
was developed by Dimitriy Nikolaievich Tretуakov in the book “The liquid 
phase epitaxy in the technology of semiconductor devices”, V. M. Andreev, 
L. M. Dolginov, D. N. Tretyakov, Moscow, Soviet-radio, 1975.
621.382:621.315.592 (Available in Russian only). It should be noted that the
most of the state diagrams cannot be accurately described by means by the
ideal solution models. That is why a special method is used for ideal systems,
which we will analyze below.

Suppose that the chemical potential of some real system 𝜇𝜇i
real is represented in the 

same way as it is done for an ideal system, but to account for the deviations from
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ideal behavior, the concentration in (5.15) is changed by one parameter ai, 
which we shall call “activity”. Thus, the activity can be defined as the 
corrected or “effective” concentration that allows the equation for the ideal 
systems to be applied. The degree or magnitude of deviation of the system 
with respect to concentration is called the activity coefficient

It is clear that in the ideal systems 𝛾𝛾=1.

Using these definitions, the chemical potential of a real system is written as follows

𝜇𝜇i
real = 𝜇𝜇i

O + RTlnai = 𝜇𝜇i
O + RTln𝛾𝛾i + RTlnxi = 𝜇𝜇i

real+ RTln𝛾𝛾i  (5.16)

That is why, in a general, the calculation of the phases in equilibrium involves 
solving a system of equations in which part of the equations relates temperature 
and concentration through the activity coefficient and the thermodynamic 
constants that characterize the interaction of the particles in solid solutions.

The first group of equations is written on the basis of chemical potentials of 
components in different phases. The second group of equations is derived in 
correspondence with the models of solutions in the liquid and solid phases.  Let 
us give the equilibrium condition for the i-th component of the two phase system: 
(L) liquid and (S) solid.
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Let us transform the exponent. It is known that

Ḡi = 𝜇𝜇i = Hi – SiT

As a result 

(5.17)

In the expression (5.17) 𝛥𝛥H0
i and 𝛥𝛥S0

i refer to the enthalpy and the entropy 
differences in the liquid and solid phases at an arbitrary temperature. The 
magnitudes of 𝛥𝛥H0

i and 𝛥𝛥S0
i also change with the temperature, but only slightly. 

That is why we substitute the magnitudes of 𝛥𝛥H0
i and 𝛥𝛥S0

i calculated at a given 
temperature T with 𝛥𝛥Hi

M and 𝛥𝛥Si
M at the fusion temperature Ti

M of component i. 
The resulting error from this substitution is so small that it can be neglected in 
the further calculations. Thus,

Therefore,

(5.18)

Fig. 5.14. The phase diagram Ge-Si.
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The resulting equation relates the concentration of component i in the liquid 
and solid phases to the temperature and thermodynamic parameters 𝛥𝛥Hi

M and

𝛥𝛥Si
M. The factor in front of the exponent characterizes the interaction        of the 

particles in the liquid and solid phases and is determined by the solutions model.

In the model of the ideal solutions 𝛾𝛾i
S=𝛾𝛾i

L=1. That is why, for the ideal case we 
have

(5.19)

The magnitude ki in (5.18) and (5.19) is called the segregation coefficient or 
distribution coefficient. This coefficient is one of the most important 
technological parameters in the crystal growth processes. If ki>1, the solid phase 
is enriched in component i in comparison to the liquid phase at a given T. 
Consequently, in the crystal growth process, the concentration i in the liquid 
phase xi

L decreases, which, in turn, causes a decrease in the concentration of 
this component in the solid phase xi

S.  If, on the contrary, ki<1, then xi
L 

increases with the growth, which leads to an increase xi
S in the depth profile along 

the crystal growth direction.

Suppose that the binary system A–B is ideal, i.e., it is described by expression 
(5.19). Let us imagine a hypothetical case when

TA
M = TB

M = T (5.20)

Then it follows from (5.19) that xi
L=xi

S. However, since no two different elements 
with the same melting point exist in nature, (5.20) cannot be fulfilled, so in any 
system containing more than one component, the composition of the liquid 
phase does not coincide with the composition of the crystal. Suppose that in a 
binary system, as shown in Fig. 27, TA

M<TB
M. In this case, for component A we 

have  TA
M<T and, as can be seen from (5.19),  kA<1.  

Similarly, for component B, we have B–TB
M>T and kB>1. In this way, the 

component that passes into the liquid phase at increasing liquidus 
temperature will always have a segregation coefficient higher than 1, and its 
concentration, as indicated above, will decrease from the beginning to the end
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of the crystal. And vice versa, for a component that, when introduced into the 
liquid phase, lowers the liquidus temperature, the segregation coefficient will be 
less than 1. Therefore, its concentration will increase along the crystal.

5.9 The Regular Solution Model

Consider two liquid phases formed by pure components A and B. Certain bonding 
or interacting energies act between the atoms of the different phases, which we 
denote as 𝜑𝜑AA and 𝜑𝜑BB. Suppose that A and B in the liquid phase are soluble in each 
other, i.e., when mixed they form a continuous series of liquid solutions. Then, 
when two liquids are mixed, the properties of the solutions should depend on the 
ratio of the interaction energies between equal and unequal atoms, that is, be a 
function of 𝜑𝜑AA and 𝜑𝜑BB. Thus three different cases are possible: all interaction 
energies are equal

𝜑𝜑AA = 𝜑𝜑BB = 𝜑𝜑AB

– The interaction energies among different atoms are stronger than among
identical atoms

𝜑𝜑AB > 𝜑𝜑AA (or 𝜑𝜑BB)

– The interaction energies among different atoms are weaker than among
identical atoms

𝜑𝜑AB < 𝜑𝜑AA (or 𝜑𝜑BB)

Each type of bond correponds to a different type of enthalpy HAA, HBB, and HAB. If 
in one gram-atom of a solution contains 𝜂𝜂AA of bonds A–A, 𝜂𝜂BB of bonds B–B, and 
𝜂𝜂AB of bonds A–B, then the common enthalpy of the solution is written as follows

H = 𝜂𝜂AA HAA + 𝜂𝜂BB HBB + 𝜂𝜂AB HAB

When the enthalpy composition of solution changes, other properties or 
parameters will also change. Thus, the properties of the solutions depend on 
the magnitude of the interaction energies of different atoms, their distribution and 
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concentration. Therefore, finding analytical functions of the properties of the 
solutions depending on their composition can only be achieved with the help of 
an adequate molecular kinetic model.

Likewise, in the case of equality of all inter-atomic interactions, the thermal 
effect should not appear, since the formation of new bonds A–B is equivalent to 
the breaking of the bonds A–A and B–B. In this case

HAB = 1 (H AA + HBB)

and therefore the properties of the solutions must be a linear function with 
regards to the concentration as was shown previously for ideal solutions. In 
section 5.2 it is shown that for ideal systems

hm = 0,vm = 0,qm = 0,um = hm – Pvm = 0,sm = –Rx1lnx1–Rx2lnx2 (5.21)

If at least one of the conditions in (5.21) is not met, the system deviates from tthe 
ideal system. One of the parameters of such models in which one of the 
idealization conditions is not satisfied is the so-called regular solution model, 
which is successfully used to describe the properties of many systems based on 
various semiconductors. In this model, all functions of the mixture are assumed 
to be equal to the corresponding functions for ideal solutions, except for the 
enthalpy, which is different from zero. As the volume of the mixture is 
vm(reg)=vm(id), since U=H–PV, is treated as one of the regular solutions in the 
model. It is known that 𝜇𝜇=Ḡ=H–TS. From where

𝜇𝜇reg – 𝜇𝜇id = hm = um = RT ln 𝛾𝛾 (5.22)

Thus, to find an expression for the activity coefficient in the regular solution 
model, it is necessary to calculate the internal energy of the system, which is 
the sum of the potential energies of the atoms forming it. After that, it is 
necessary to choose from the obtained expression the energy or enthalpy of the 
mixture, which, accordaning to (5.22), will determine the studied magnitude 
of the activity coefficient.

To simplify the calculations, we make the following assumption under which 
the solutions under consideration are called strictly regular:

2
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1. The atoms of components A and B analyzed in the system do not differ in
size and shape significantly.

2. In the calculation, we will consider only the interaction of neighboring
atoms, disregarding the action of those that are farther away from this
immediate vicinity. It is assumed that the interaction energy attributable to
the neighboring single- or adjacent atoms 𝜑𝜑AA, 𝜑𝜑BB and 𝜑𝜑AB is constant.

Based on the first assumption, we consider that the atom distribution in the solid 
phase is random. The second statement is equivalent to the fact that the 
internal energy of the system is the sum of the interaction energies of the 
neighboring atoms.

Now suppose that each atom is surrounded by z neighbors, i.e., z is the coordination 
number of NA atoms of one type and NB of another type. So, around one atom of 

component A there will be           atoms of the same type and 
atoms type B.

The interaction energy of atom A with its neighbors is a consequence of the limit 2 
for the energy of its interaction with the whole system and it is written in the form

(5.23)

Similarly, as we have NA atoms of the first type, their total interaction energy 
with the whole system is

(5.24)

Analyzing the atoms of the second type, we obtain a similar expression

(5.25)

The total energy of the system is equal to half of the sum of expressions (5.24) 
and (5.25), since no double counting should be done for each pair.
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(5.26)

In (5.26) we will carry on elementary transformations:

As a consequence, the internal energy of the system in the frame of regular solutions 
is written as follows

(5.27)

If NA = 0, then

Consequently  is the average energy of a B atom in a pure solid or liquid 

solution. Likewise, when NB = 0

where   is the average energy of an A atom.
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Suppose that we have two pairs AA(∘∘) and BB(∙∙). If two mixed pairs A–A and
B–B are formed from two identical pairs, the energy change of the system is 
equal to 2𝜑𝜑AB–𝜑𝜑AA–𝜑𝜑BB. Therefore, the energy increase during pair formation is 
expressed as

(5.28)

The physical sense of this formula can be understood from Fig. 5.15, in the upper 
part of which two mixtures A–B are represented, and in the lower part two equal 
pairs A–A and B–B. Here it can be seen that expression (5.28) represents 
half of the energy difference of the two configurations of atoms deplected in the 
upper and the lower parts of Fig. 5.15.

Fig. 5.15. To the definition of the interaction parameter.

For this reason, expression  is called exchange energy 

since it characterizes the average increase in the energy of an atom of any 
type when all its neighbors are replaced by atoms of opposite type. If, for 
example, the coordination number z is equal to 6, the sense of the exchange 
energy can be illustrated by Fig. 5.16.

Fig. 33. To the definition of the interaction parameter (z=6)
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In  (5.27) we indicated   through 𝛼𝛼A , and      ,    through 𝛼𝛼B, and 

through 𝛼𝛼AB. The magnitude 𝛼𝛼AB is called interaction 
parameter. This parameter is equivalent to the exchange of energy in the 
calculation for one mole. 

Once we have introduced these notations in (5.27) we have

(5.29)

Since the expression (5.29) represents the total energy of the system, the 
energy per atom of each type is equal to

(5.30)

(5.31)

As can be seen from expressions (5.30) and (5.31), the mixture energy (or 
residual term) for atom A is equal to Um

A = x2
B αAB and for atom B is equal to 

Um
B=x2

A αAB.

Therefore, for the system containing atoms A and B and obeying the approximation 
of regular solutions, we have

RTln𝛾𝛾A = 𝛼𝛼ABx2
B = 𝛼𝛼AB(1 – xA)2, (5.32)

RTln𝛾𝛾B = 𝛼𝛼ABx2
A = 𝛼𝛼AB(1 – xB)2, (5.33)

where αAB in the frame of regular solutions is a constant magnitude.

For the solutions in which “a strict regularity” is observed, in many cases a good 
agreement between experimental and calculated data is achieved by using a linear 
dependence of the interaction parameter on temperature

α = a + bT
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In this expression, a and b are parameters independent of temperature and 
concentration. The values of these parameters in each particulate case, i.e., for any 
specific diagram, are determined by substituting the experimentally found data 
between temperature and concentration into the corresponding equations for 
calculation of the equilibrium phases. The dependence of 𝛼𝛼 on temperature 
indirectly accounts for the fact that the difference in interaction energies between 
homogeneous and heterogeneous pairs leads to a deviation of the statistical 
distribution in the solution. Therefore, the ratio of the number of homogeneous and 
heterogeneous pairs will depend on temperature. This approximation, often used in 
the calculation of state diagrams in various semiconductor systems, is called 
quasiregular approximation or quasiregular model. 

5.10 Disintegration of Solid Solutions

Analyze the disintegration processes in the framework of regular solution models. 
As it was shown earlier, the entropy of the mixture in this model is equal to

𝛥𝛥Sm = –Rx1 – Rx2lnx2

Since the concentrations x1 or x2 can take values between 0 to 1, the value of the 
𝛥𝛥Sm is always positive, as discussed earlier in section 5.2, equation (5.8). In 
addition, the function 𝛥𝛥Sm is symmetric with respect to the composition x1=x2=0.5, 
for the maximum value of the entropy of the mixture. Since the absolute temperature 
T is also positive, the entropy term –T𝛥𝛥Sm in the Gibbs energy expression

𝛥𝛥Gm =𝛥𝛥Hm – T𝛥𝛥Sm (5.34)

will be negative and the curvature of the function T𝛥𝛥Sm with respect to the 
concentration will always be directed downward. As shown in the previous 
paragraph, the total energy of the regular solution is equal to

The symbol x will indicate the concentration of element A. Thus, the concentration 
of element B will be expressed as 1-x. Suppose that the total number of particles in 
the system is N. It is clear that NA=Nx, NB=N(1-x), NA+NB=N,  and 
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Hence the inference that

(5.35)

In the expression (5.35), the first two terms determine the energy of the system 
consisting of the mixture of the pure components A and B, which, in turn, 
depends linearly on their concentration. The last term in (5.35) represents the 
energy of the mixture, which in the model of regular solutions is equal to the 
enthalpy of the mixture and has the following form

(5.36)

where 𝜑𝜑AB, 𝜑𝜑AA, 𝜑𝜑BB, determined in section 5.9, are called the interaction energies 
of the corresponding pairs of atoms. As seen in (5.36), the enthalpy of the 
mixture is a parabolic function of the concentration and, like 𝛥𝛥Sm, is symmetric 
about the point x=0.5. Nevertheless, unlike the entropy term, the term 𝛥𝛥Hm can be 

either positive or negative depending on the sign of the interchange energy term 

  . Let us analyze in detail these two cases, since the sign of 𝛥𝛥Hm 

significantly affects the process of formation or disintegration of solid solutions. It is 
known that the atoms of the solid, located in the nodes of the crystal lattice, 
experience the interactions of both attractive and repulsive forces. The equilibrium 
state of the atoms is determined by the balance of these forces.

Fig. 5.17. The interaction energy between the atoms in dependence of distance.
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Analyze the dependence of the interaction energy between the atoms in a solid 𝜀𝜀 
as a function of the distance r between them in Fig. 5.17. At first, when the 
distance between the atoms is large, the energy is close to zero, but as r 
decreases, 𝜀𝜀 increases continuously in absolute value. Suppose that in this section 
the atom interaction is due to the attraction forces and that the attraction energy 

is negative and proportional to      .  

The forces of repulsion prevent atoms from coming closer together. The 
energy of repulsion is considered positive and is proportional to    n, where n is a 
constant magnitude. Thus, at r=r0 the function curve passes through the 
minimum, and the distance r0 is equal to the distance between the atoms of the 
solid or the period of the crystall lattice parameter. In the periodical crystal 
lattice, the energies 𝜑𝜑AA, 𝜑𝜑BB and 𝜑𝜑AB are negative. Let us return to the Gibbs 
energy for the mixture for regular solutions, which is represented by expression 
(5.36). In this case, if the value 𝛥𝛥Hm=𝛥𝛥Um is negative, the function 𝛥𝛥Gm, equal to 
the sum of 𝛥𝛥Hm and –T𝛥𝛥Sm, the curvature of 𝛥𝛥Gm as a function of composition is 
concave with respect to the composition axis of the solid solution. Such a 
function 𝛥𝛥Gm is shown in Fig. 5.18 and corresponds to the unlimited solubility in 
the solid phase. As seen in expression (5.36), the limited solubility will take place 
when 𝛥𝛥Hm<0 , as demanded, and thus, since all 𝜑𝜑 are negative, when

(5.37)

Fig. 5.18. The Gibbs energy in dependence 
on composition in the system with unlimited 

mutual solubility for 

Fig. 5.19. The Gibbs energy in dependence 
on composition in the system with 

unlimited mutual solubility for 
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In other words, if for the interaction energy between atoms of different types 𝜑𝜑AB, 
so it happens that its absolute value is higher than the average of the energies for 
atoms of the same type; 𝜑𝜑AA and 𝜑𝜑BB. Then the enthalpy of the mixture is 
negative, which in turn accounts the existence of solid solutions.

Fig. 5.20. The Gibbs energy in dependence on composition in the 
system with espinodal decomposition

Fig. 5.21. Formation of the area with limited solubility in the solid solution. 

On the contrary, if

(5.38)
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then the value of 𝛥𝛥Hm becomes positive, as shown in Fig. 5.19. If 𝛥𝛥Hm is a small 
magnitude, the bonding energy of atoms of onetype and atoms of another type is 
not much different, then  𝛥𝛥Gm=𝛥𝛥Hm–T𝛥𝛥Sm will continue to be concave (Fig. 
5.19). Let us indicate that this is possible at very high temperatures when the 
mixing energy (Fig. 5.21) leads to the formation of the area with limited 
solubility in the solid solution. 𝛥𝛥Gm is related to the part containing the entropy (–
T𝛥𝛥Sm). Nevertheless, as the temperature drops, this part also decreases, and 
gradually the 𝛥𝛥Hm becomes the main term. Therefore, at relatively low 
temperatures, the relationship between functions 𝛥𝛥Hm and –T𝛥𝛥Sm can be such that 
𝛥𝛥Gm changes its curvature from concave to convex over some concentration 
interval, as illustrated in Fig. 5.20.

If 𝛥𝛥Hm is negative, the Gibbs energy of the mixture always has a U-shape with a 
minimum. If, on the contrary, the average of the interaction energies between 
atoms of one type exceeds the absolute value of the interaction energy between 
atoms of different types ϕAB, then, at relatively high temperatures, the 𝛥𝛥Gm curve 
can have a W-shape with two minima, as shown in Fig. 5.20. In such case, a 
tangent to the 𝛥𝛥Gm curve can be drawn at points 1-2. Therefore, as was shown in 
Section 5.4, the solid solution in the concentration range determined by segment 
1–2 decomposes into two solid solutions, one near component A (point 1) and the 
other near component B (point 2). Often in the literature, the solutions rich in 
component A, i.e., the corner A of the state diagram, are called 𝛼𝛼 and, 
accordingly, the corner B is called 𝛽𝛽.

Consider the possible behavior of 𝛥𝛥Gm as a function of temperature and 
composition for a given binary system A–B in which the enthalpy of the mixture 
𝛥𝛥Hm is positive. Suppose that at sufficiently high temperatures the absolute value 
of the entropy  term (–T𝛥𝛥Sm) exceeds 𝛥𝛥Hm. In this case, the curve 𝛥𝛥Gm=𝛥𝛥Gm (x) 
will have a U-shape similar to that shown in Figs. 5.18 and 5.19. When T 
diminishes, as a consequence of the decreasing the magnitude T𝛥𝛥Sm, the curve 
with the U-shape of the function 𝛥𝛥Gm changes to a W-shape. In the upper part of 
Fig. 5.21, which shows the function 𝛥𝛥Gm in dependence on composition for five 
different temperatures, the change in the shape of the 𝛥𝛥Gm curve occurred at 
temperature T2. A tangent can be drawn between the minima of the curve 𝛥𝛥Gm for 
temperature T2, as is done in Fig. 5.21. The points obtained along tangent 1 and 2 
allow us to determine the compositions of the solid solutions in which the initial 
solid phase will first decompose. As seen in the figure, these points diverge in the 
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process of temperature decrease due to decreasing T𝛥𝛥Sm. The positions of these 
points for different isothermal sections T1>T2>T3>T4>T5 are marked by the 
numbers 1 and 2 with different numbers of apostrophes. This is how the 
compositions of the solutions are determined by the limit at which the system 
decomposes when lowering the temperature. By referring points 1 and 2 to the 
graph representing the T–x function, the decomposition curve is shown as a0b in 
the bottom part of Fig. 5.21.

For this reason, at relatively high temperatures, unlimited solubility can exist 
between elements A and B in the solid phase, which in some cases will be 
characterized by cigarette shaped diagrams of state. If the U-shaped curve of the 
function ∆ Gm transforms into a W-shaped curve as the temperature decreases, the 
solid phase decomposition curve appears on the state diagram shown in Fig. 5.21 
as line a0b.

Suppose that in the analyzed system the temperature in the liquid phase T1, the 
composition of which is determined by the position of point 1. In the process of 
lowering the crystallization temperature, something similar to what we described 
in section 5.7, will happen to the system. Immediately after crystallization is 
complete at temperature T2, the system will consist of single phase, representing 
the solid phase in fig. 5.22, whose composition x will be the same as the initial 
composition of the liquid phase (point 1). If the temperature continues to 
decrease, there will be no change in the state of the system until the figurative 
point is found on the decomposition curve. Naturally, the figurative point 
characterizing the state of the system in the temperature interval T2–T3 slides 
down the vertical line, since the single-phase system with two components at 
constant temperature has two degrees of freedom. At temperature T3, the solid 
solution of composition xS (point a1) must decompose to form a solid solution of 
composition characterized by point b1. The appearance of the second phase at 
temperature T3–𝛽𝛽 of the solid solution reduces the number of degrees of freedom 
of the system to 1. In this case, the state of the system during the process of 
continuous temperature decrease will be characterized by its displacement along 
the curved lines.

These curved lines correspond to segments a1a and b1b of the solid solution 
decomposition curve. Thus, the decomposition of the solid phases 𝛼𝛼 and 𝛽𝛽 occurs 
simultaneously when the system is cooled. This process will be characterized by a 
displacement of point a1 along the decomposition curve Oa in the direction of point 
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a, and b1 by a displacement along Ob in the direction of point b. We analyze 
the decomposition processes in the framework of the regular solution model 
when the functions 𝛥𝛥Hm and T𝛥𝛥Sm are symmetric aound the point x=0.5.

Fig. 5.22. The phase diagram with limited solubility in the solid phases at low temperatures.

Nevertheless, in practice, there are many systems not described by the regular 
solution model in which functions 𝛥𝛥Hm and T𝛥𝛥Sm are not simple functions and are 
not symmetric with respect to the concentration point x=0.5. Although, regardless 
of the shape of the functions 𝛥𝛥Hm and T𝛥𝛥Sm, the solid solution decomposition 
processes should be observed when the shape of the curve of the function 
𝛥𝛥Gm=𝛥𝛥Hm–T𝛥𝛥Sm, which has a concave curvature, transforms into the W-shape. In 
this case, a tangent can always be drawn between the two minima of the W-shaped 
curve from 𝛥𝛥Gm, which will determine the corresponding decomposition process. 

5.11 Systems with Limited Solubility in the Solid State

In different systems, the positions of the solidus curve and the decomposition 
curve of the solid solutions may differ significantly. In some cases, when the 
interaction energy between atoms of the same type 𝜑𝜑AA and 𝜑𝜑BB they barely 
exceed 𝜑𝜑AB, the decomposition of the solid solutions will happen at sufficiently 
high temperatures. As the temperature rises from the onset of decomposition, 
the decomposition curve will move upward. At some point, this curve can reach 
and intersect the solidus line, resulting in a state diagram of a specific 
type: with eutectic and peritectic* equilibrium* (from the Greek periteko=melting).
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The subsequent transformation of the state diagram that occurs as the 
decomposition curve moves upward, as shown in Fig. 5.23. This figure shows how 
the eutectic and peritectic phase diagrams unfold.

Now in two-component systems with unlimited solubility in the solid state three 
equilibrium phases can be found: one liquid L and two solid solutions 𝛼𝛼 and 𝛽𝛽. 
This statement also follows from the Gibbs rule for phases. In reality, a 
thermodynamic system cannot have a negative number of degrees of freedom.  
Therefore, the minimum value of f is zero, which means that in any binary 
system, the number of phases in equilibrium at constant pressure cannot exceed 
3. Therefore, the eutectic and peritectic equilibria take place at constant
temperature (Fig. 5.23), and the equilibrium of the liquid phase and solid
solutions 𝛼𝛼 and 𝛽𝛽 is represented by a horizontal line, since the binary system is
invariant at the equilibrium of all three phases.

Fig. 5.23. Transformation of a state diagram with limited solubility in the liquid phase into a 
state diagram with limited solubility in the liquid and solid phases.
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It follows that the points of intersection of the segments of the 
decomposition curve and the corresponding solidus lines with the eutectic 
or peritectic horizontal line must coincide. Otherwise there would be more than 
three phases in equilibrium, and therefore such a mutual arrangement of the 
solidus and liquidus lines of the decomposition and eutectic (or peritectic) curves, 
as shown in Fig. 5.24, where 5 phases would be in equilibrium, which contradicts 
the Gibbs rule of phases, is impossible.  

ae – eutectic curve 
aa’ y ee’ – decomposition 
curves
bb’ y dd’  – solidus lines 
cc’ y cc’’ – liquidus lines

In the general case of a very complicated system, when the equilibrium is 
displaced, transformations from some phases into others occur. Suppose that the 
total number of phases is 𝜑𝜑. Then as a result of the displacements, one phase is 
transformed into 𝜑𝜑–1, two phases into 𝜑𝜑–2, three phases into 𝜑𝜑–3, etc. The 
maximum number of transformed phases does not exceed 𝜑𝜑–1. Thus, the 
transformation processes can be written in the following form

𝜑𝜑1 → 𝜑𝜑2 + 𝜑𝜑3 + 𝜑𝜑4 + ... + 𝜑𝜑𝜑𝜑

𝜑𝜑1 + 𝜑𝜑2 → 𝜑𝜑3 + 𝜑𝜑4 + ... + 𝜑𝜑𝜑𝜑

................................................
𝜑𝜑1 + 𝜑𝜑2 + 𝜑𝜑3 + ... + 𝜑𝜑𝜑𝜑–2 → 𝜑𝜑𝜑𝜑–1 + 𝜑𝜑𝜑𝜑 

𝜑𝜑1 + 𝜑𝜑2 + 𝜑𝜑3 + ... + 𝜑𝜑𝜑𝜑–2 + 𝜑𝜑𝜑𝜑–1 → 𝜑𝜑𝜑𝜑

As a consequence, if three phases exist in the system, one or two can be 
transformed. This, in turn, means that two types of transformations are possible 
in systems with limited solubility in the solid state. In the first case, the liquid 
phase L transforms into two solid solutions 𝛼𝛼 and 𝛽𝛽

L ↔ α+β

Fig. 5.24. Example of impossible positions of 
points on the state diagram for the solutions 

with limited solubility.
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In the second case, the liquid phase and one of the solid phases, for example 𝛼𝛼, are 
transformed into another solid phase, that is

L + α ↔ β

The first type of equilibrium corresponds to the eutectic and the second to the 
peritectic equilibrium.

When analyzing diagrams of state with one simple eutectic, it is seen that if two 
solid phases composed of pure components can crystallize, the liquidus curve 
consists of two branches. Each one of these branches is the geometric location of 
the crystallization temperatures of the pure solid phases, A or B. Each branch of 
the liquidus corresponds to one conjugated vertical line from the solidus to it. 

If there is a continuous series of solid solutions in the system, the liquidus is a 
continuous curve, which is the geometric location of the crystallization onset 
temperatures of one of the solid phases of the solid solution. As a result, the 
number of branches of the liquidus curve is equal to the number of solid phases 
crystallizing from the liquid. On the state diagram, each solid phase will 
correspond to an initial crystallization temperature, which should be on the same 
line as the solidus. In other words, for each branching of the liquidus curve, there 
will be a corresponding branching of the solidus curve. For this reason, on the 
diagram of state with limited solubility in the solid phase it is always possible to 
distinguish regions of coexisting equilibrium of the liquid phase with solid 
solutions 𝛼𝛼 or 𝛽𝛽. 

5.12 Eutectic State Diagram of a System with Limited Solubility 
in the Solid Phase

The eutectic equilibrium of the state diagrams of the systems with limited 
solubility in the solid phase is denotated as 

L ⇄ α + β  (5.39)

Naturally, the equilibrium described by expression (5.39) can be preceded by two 
types of transformations: L⇄α and L⇄β. To each of these processes on the 
diagram of state will correspond two curves - liquidus and solidus, characterizing
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monovariant equilibrium between liquid and solid solutions. A general view of 
the state diagram with limited solubility in the solid phase with a eutectic is 
shown in Fig. 25.a. In this figure, the solidus curves TMBF and TMAD and the 
liquidus curves TMAE and TMBE begin at the fusion points of pure components A 
and B. The liquidus lines intersect at the eutectic point E. Points D and F on the 
solidus lines indicate the composition of solid solutions 𝛼𝛼 and 𝛽𝛽 in equilibrium 
with the liquid solution of eutectic composition. 

The state diagram is divided by the decomposition, liquidus, and solidus curves as well 
as the eutectic horizon into six different regions. The regions I, II, and III corresponds 
to single phase solutions. Region I contains the liquid phase, region II contains the 𝛼𝛼 
solid solution, and region III contains the 𝛽𝛽 solid solution. Regions IV, V, and VI are 
two-phase regions. Region IV corresponds to the equilibrium between the liquid phase 
and the L⇄α solid solution, region V to the  L⇄β equilibrium, and region VI to the 
equilibrium of the two α⇄β solid solutions. In the single-phase regions the system is 
coinvariant and in the two phase regions it is monovariant. At the eutectic point, the 
three phases L⇄α+β are in invariant equilibrium.

Fig. 5.25. State diagram and cooling curves for a system with limited solubility in the solid 
phase.

Consider the crystallization processes in a system with eutectic for solutions of 
different composition. Suppose the composition of the initial liquid phase is 
determined by point 1 (Fig. 5.25.a). If the temperature of the system is reduced, 
this point will move along the vertical line, since there are two degrees of 
freedom in the system. When the figurative point appears on the liquidus line l1, 
a solid solution starts to emerge from the liquid, whose composition can be found
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by means of a conode beginning at the point l1 and extending to the point of its 
intersection s1 with the solidus line. Naturally, when a new phase appears, the 
system loses one degree of freedom. During the subsequent cooling process, the 
right end of the conode will move along the liquidus segment l1 l2, and the left 
end will move along the solidus segment s1s2. As the system cools down, the 𝛼𝛼 
crystals move out of the liquid, and the liquid is enriched component B, which is 
characterized by the displacement of point l1 along the liquidus in the direction 
of point E. In accordance with the lever rule, the entire liquid phase crystallizes 
at the moment of reaching the temperature T’2, the composition of the formed 
solid phase is determined by point s’2 and corresponds to the initial composition 
of the liquid phase. After that, the system becomes covariant, i.e., acquires an 
additional degree of freedom, and in the process of temperature decrease, the 
figurative point slides down the vertical line. Three segments will be observed 
on the cooling line (Fig. 5.25b): the first one corresponds to the process of liquid 
cooling, the second one is determined by the process of solid solution 𝛼𝛼 
crystallization, and the third one is the cooling of the solid phase. The moderate 
slope of the second segment in comparison to the first one is related to the 
transformation process L↔α, where the heat is released by the crystallization 
phase intrinsic to the transition stage, that slows down the cooling rate of the 
system naturally. Thus, if the figurative point characterizing the initial 
composition of the liquid is located between points A and a on the horizontal 
line of compositions, the crystallization process is completely analogous to the 
case we previously considered for the systems with unlimited solubility in the 
solid phase. If the figurative point is farther to the right of point a, then certain 
particularities appear in the cooling process. Let us analyze the crystallization of 
the liquid phase, its composition and the temperature that is characterized by 
point 2.in this case, without waiting for the temperature to decrease to the value 
of T4, all the transfoematios in the system occur according to the previous case 
for point 1. Nevertheless, at temperature T4, when the figurative point moves 
vertically during cooling, it arrives the segment of the decomposition curve aD, 
and the solid solutions 𝛼𝛼 of composition sm must be in equilibrium with the solid 
solution 𝛽𝛽 of composition sn. Therefore, at temperature T4, the decomposition of 
the solid solution 𝛼𝛼 results in the appearence of a second phase in the system 
and, thus a certain degree of freedom is lost. If the temperature continues to 
decrease, then the ends of the isothermal segment of the mn or conode line will 
slide along the curves aD and bF that characterize the decomposition of the 𝛼𝛼 
and 𝛽𝛽 solid solutions, respectively. In principle, when this happens in the 
cooling curve, there should be a discontinuity due to the transition from the
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phase α ⇄ β. Nevertheless, in practice, this discontinuity is often not observed 
due to the negligible heat effect of the decomposition and the long duration of 
the process.

At point 3, when the eutectic temperature is reached, the liquid phase of the 
composition determined by point E will exist in equilibrium with the solid 
solution 𝛼𝛼 of the composition determined by point D. According to the lever 
rule, the relationship between the volumes of the liquid and solid phases will 
be determined by the relationship between the DH and HE segments. In 
accordance with the diagram of state, point E belongs simultaneously to the 
liquidus lines TAE and TBE. That is why the liquid phase of the eutectic 
composition at temperature TE is in equilibrium simultaneously with both solid 
solutions 𝛼𝛼 and 𝛽𝛽, and their compositions are determined by the position of 
points D and F. When the remaining liquid reaches the eutectic temperature, 
two more solid solutions crystallize. This process occurs at constant 
temperature, since with the emergence of a new phase the system under 
consideration becomes invariant. Therefore, on the cooling line after the 
breaking caused by the formation of solid 𝛼𝛼 phases, there appears a horizontal 
segment corresponding to the crystallization of the eutectic. The dimension of 
this segment will depend on the volume of eutectic liquid remaining in the 
system after the crystallization process of the solid solution 𝛼𝛼. In other words, 
the time required for the complete decomposition of the liquid eutectic phase 
into solid solutions 𝛼𝛼 and 𝛽𝛽 is determined by the initial position of the 
figurative point. For example, if the initial composition of the liquid 
corresponds to point D, at the moment the system reaches the eutectic 
temperature, the entire liquid will crystallize. Therefore, the subsequent 
process will be determined only by the decomposition and there will be no 
horizontal segment on the cooling curve. If the eutectic liquid undergoes 
cooling, the dimension of the horizontal segment corresponding to the 
transformation, L⇄α+β, will not be long. The previous reasoning is fully 
justified for the right part of the state diagram.

In principle, the phase equilibrium diagram for an eutectic system with limited 
solubility in the solid phase can be obtained, like any other phase diagram, by 
graphing isothermal sections for the functions GL=G(T,x) and GS=G(T,x). By 
drawing common tangents to the functions  and, at each isothermal section, the 
composition of the phases in equlibrium can be determined. This diagram of 
the principle of state construction is illustrated in Fig. 5.26. 
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Fig. 5.26. Determination of compositions of phases in equilibrium using a 
common tangent drawn to their Gibbs energies.

For instance, it can be seen that at the temperature T = TE, a common tangent can 
be drawn for the GL, GS

𝛼𝛼 and GS
𝛽𝛽 curves.

This corresponds to the equivalence of the chemical potentials of the liquid phase 
of eutectic composition, determined by point E, and the two solid solutions 𝛼𝛼 and 
𝛽𝛽, whose compositions corresponding to points D and F. Whereas in the graphs of 
the Gibbs energy functions as dependence on composition the equilibrium 
conditions are determined using a common tangent to the curves of the liquid and 
solid phases, in the state diagram the equilibrium points can be found by means of 
a conode. For example, in Fig. 5.25.a at temperature T2, the conode is the 
horizontal segment s2–l2. 

The state diagrams of the type discussed previously are characteristic of the 
systems Cr – Ni, Al – Si, Pb – Sb, NaNO3 – KNO3, CdCl2 – CdJ2, etc. In general, it 
should to be emphasized that the state diagrams of simple eutectics presented in 
section 5.6 are, to some extent, idealizations. The reality is that, in nature, there is 
always a small solubility between components A and B in the solid phase. For 
that reason, if a system is described by a simple eutectic diagram, as in Section 
5.6, it is most probably due to inaccuracy of the experimental determination of 
the solid phase compositions, which do not allow to identify the regions of 
mutual solubility of the components. Likewise, in a number of important 
practical cases, the existence of mutual solubility of the components in the solid 
phase may simply be underestimated.
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5.13 Peritectic Type Systems

As shown in Section 5.11, in addition to the eutectic equilibrium discussed 
earlier, the equilibrium L+α⇄β, called peritectic equilibrium, is also possible. In 
this case, the transforming phases are the liquid and one of the solid solutions, 
and, as a result of this transformation crystals appear from another solid solution. 
Naturally, the peritectic transformation occurs at constant temperature TP, since 
the two-component system containing three phases has no degrees of freedom. 
Remember that peritectic transformation requires the existence of at least two 
phases: the liquid phase and one solid solution 𝛼𝛼. In other words, the peritectic 
transformation must be preceded by the two-phase process L↔α. Depending on 
the quantitative ratio between the liquid phase and the solid solution 𝛼𝛼, the 
peritectic transformation process L+α⇄β can end in three ways.

1. First, the process may exhaust all 𝛼𝛼 crystals. As a consequence, a two-
phase process L⇄β ensues after the peritectic process.

2. Second, all the liquid may be consumed after the peritectic transformation.
In this case, the solid phase decomposition occurs according to the α⇄β
reaction.

3. Last, a third variant of the unique compositions of the liquid L and the
solid phase 𝛼𝛼 is also possible, when both phases are completely
consumed at the end of the transformation. In other words, in this case
the liquid and the solid  phase 𝛼𝛼 are in such a proportion that neither L
nor α remains after the formation of the solid solution 𝛽𝛽.

It is clear that as the temperature of the system that forms the solid solution 𝛽𝛽 
decreases, it will disintegrate in accordance with the next α⇄β. reaction. In this 
way, based on the previous discussion, a conclusion can be reached, that the process 
L⇄α must occur at higher temperatures than the peritectic, and the processes L⇄β 
and α⇄β at a lower temperature. These conditions are met in the state diagram 
represented in Fig. 5.27. The diagram of state of this type, as a rule, is formed 
between components A and B with very different fusion temperatures. In this 
diagram the liquidus curves TMA and TMB cross at the peritectic point P, between 
the fusion temperatures of the components.
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Fig. 5.27. Peritectic diagram of state.

Since increasing the component A in B raises the liquidus and solidus 
temperatures, the corresponding TMBP and TMBF curves run above the fusion point 
of component B. Correspondingly, the liquidus TMAP and of the solidus TMAD 
curves are directed downward, below the fusion point of A. The decomposition 
curves of the solid solutions 𝛼𝛼 and 𝛽𝛽 are CD and GF. The intersection points D 
and F of these curves with the corresponding solidus curves lie on the same 
horizontal line at point P, that corresponds to the peritectic composition of the 
liquid. This horizontal, located at the peritectic temperature TP, characterizes the 
invariant equilibrium between the liquid (whose composition is determined by 
point P) and its corresponding solid solutions 𝛼𝛼 (the composition of point D) and 
𝛽𝛽 (the composition of point F). As in the eutectic case, the liquidus lines, solidus 
lines, DFP isothermal straight lines, and the curves of the solid solutions divide 
the state diagram into 6 regions. Three of these regions are homogeneous or 
consist of only one phase: Region I corresponds to the liquid, region II to the 
solid solution 𝛼𝛼, and III to the solid solution β . Regions IV, V, and VI respectively 
characterize the equilibrium of two phases L⇄α, L⇄β and α⇄β. Let us analyze 
the crystallization processes in the peritectic type state diagram system. If the 
figurative point characterizing the initial composition and temperature of the 
system is located to the left of point 1, the crystallization processes do not differ 
from the previously analyzed diagrams of the eutectic type. As the liquid with the 
composition at point 1 cools down, in accordance with the lever rule, the whole 
liquid phase will crystallize as a solid solution 𝛼𝛼 at the moment the peritectic 
temperature is reached.

Now consider the crystallization of the liquid of an initial composition, 
which is determined by point 2. As the temperature decreases, point 2 moves
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along the liquidus curve and a solid phase α  is formed from the liquid phase, the 
composition of which can again be found with the help of conode l2s2. During the 
process of temperature decrease, the composition of the liquid phase will change 
along the liquidus curve l2P, and equilibrium with a point horizontally connected 
to the conodes at one point of the solidus curve s2D. At the peritectic temperature 
TP, the liquid phase will have the composition of point P and the solid phase 𝛼𝛼 of 
point D. Since at temperature TP the peritectic solid solutions 𝛼𝛼D and 𝛽𝛽F are in 
equilibrium with the liquid, the interaction in the system should proceed as 
follows: L+α⇄β.

In this manner, a third phase appears in the system - the solid solution 𝛽𝛽 with a 
composition at point F. Since the equilibrium is invariant, the cooling curve at 
temperature TP should show a horizontal segment corresponding to the 
equilibrium between the 3 phases.

The only composition at which the solid solution 𝛼𝛼D and the liquid solution LP are 
completely consumed in the process of peritectic transformation is determined by 
point F or otherwise by point 3. At this point the ratio between the amounts of the 
liquid and solid phases will be proportional to the ratio of the segments DF and 
FP. Since point 2 is located to the left of point 3, at the moment when the system 
reaches the peritectic temperature, in accordance with the lever rule, the amount 
of liquid will be proportional to the segment DH, and the amount of solid phase 
to segment HP. 

Let us indicate for the point H the mass of the liquid as mL
H and the mass of the 

solid solution 𝛼𝛼 as m𝛼𝛼
H. If for point F we have respectively mL

F and m𝛼𝛼
F, then, 

based on the lever rule 

This way, for the initial liquid phase with a composition determined by point 2, 
at the moment the peritectic transformation concludes, all of the liquid will have 
been consumed, since it had a lower mass than mL

F. In the system, two phases 
will remain: the solid solutions 𝛼𝛼 and 𝛽𝛽 with their respective compositions 
determined by points D and F. With the subsequent cooling of the system, the 
solid solutions will disintegrate and, for example, at temperature T1 their 
compositions may be found with the help of the conode cg.
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As already noted, upon cooling of the liquid phase with the composition 
determined at point 3, solutions 𝛼𝛼 and L are completely consumed as a result of 
the peritectic transformation. Therefore, during cooling, the solid solution 𝛽𝛽F   
decomposes according to the scheme α⇄β. If the figurative point is located to the 
right of point 3 (point 4, for instance), when the temperature reaches the point TP, 
the mass of the liquid is proportional to the length of segment DK, and the mass 
of the solid phase is proportional to the length of segment KP. Since in this case

then after the peritectic transformation in the system there remains a residue of 
the liquid and the solid solution 𝛽𝛽. At further temperature decrease, the 
composition of the liquid phase will change along the curve PTMB, and 𝛽𝛽 will 
change along the curve FTMB. In other words, the crystallization process of the 
solid solution 𝛽𝛽 will begin in the system and will end at temperature T2. At this 
moment, the system turns into a single-phase 𝛽𝛽-system, and as the temperature 
diminishes, the figurative point moves along the vertical line. When this line is 
intersected with the decomposition curve (point g) of the solid solution, the 
second phase appears (point c of the solid solution), and changes in the system 
will be determined by the decomposition processes.

The crystallization processes of the liquid phases with the compositions 
determined by points located to the right of point P (point 5, for instance) do not 
differ at all from those earlier analyzed in the systems with unlimited solubility in 
the solid phase.

From the previous analysis we conclude that the duration of the peritectic 
point should be the longest, its composition is determined by point F, and the 
number of degrees of freedom is zero when considering the compositions 
characterized by points D and P. It should be noted that the real crystallization 
processes often do not correspond described ones, which are possible only at 
very low cooling rates and sufficiently high diffusion rates.

The analyzed phase system can be obtained by constructing isothermal 
cross sections for the functions GL=G(T,x) and GS=G(T,x), drawing 
common tangents to the functionsGL and GS in each of these sections.    
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5.14 Diagrams of State of Systems with Chemical Compounds

Systems with chemical compounds, depending on the particularities of the fusion 
processes of the same alloy, can be divided into two different types. The first 
type includes those that coexist in equilibrium at the fusion temperature of the 
compound, and whose liquid and solid phases have the same composition.

S ⇄ L

Let us first analyze the simplest case: when components A and B form a chemical alloy 
AmBn, that fuses congruently, and there are no solid solutions. In the absence of 
solubility in the solid phase, as in the previous case with simple eutectic, the solidus of 
components A and B and of the alloy AmBn will be represented as vertical 
lines that end at the fusion temperatures TM

A, TM
B and TM

AB, respectively. Similar 
to the simple eutectic systems, the crystallization temperature of the pure 
components A or B should decrease when components A or B are added to the liquid 
AmBn. As a consequence, the liquidus curve of the system under consideration 
should exhibit three maxima located on the fusion points of A, B and AmBn, 
respectively, as shown in Fig. 45. Such a system can be represented as a set of two 
diagrams of state of two components with simple eutectics

A + AmBn and AmBn + B. 

These diagrams of two components have a common ordinate in which the 
chemical compound is located, and the right and left parts of the composition 
diagram can be analyzed independently of each other. It is obvious that the 
crystallization processes occur in the same way as in simple eutectic systems, with 
the only difference that in the left part of the diagram there are the solid phases of 
the pure component A and of the pure compound AmBn, and in the right part of the 
diagram are solid phases of the pure compound AmBn and pure component B.

Before proceeding to the study of other, more complicated types of diagrams, it is 
necessary to clearly formulate the concept of stoichiometry. This term comes from 
two greek words: “stoicheion” meaning basis, and “metred” meaning measurement. 
Stoichiometric relations are understood as relations between atoms that correspond 
to the chemical formula of a certain alloy formed by these atoms. So, for example, 
if an alloy has the formula AmBn and the concentration A is determined by the 
number m, and that of 𝛽𝛽 by the number n, then such alloy is called stoichiometric.
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In the stoichiometric compound AmBn, the elements A and B are insoluble, i.e. 
there are no solid solutions between A and AmBn and between B and AmBn. 
For this reason, the solidus of a stoichiometric compound is a vertical line. 
It should then be clear that the compound in Fig. 5.28 is 
stoichiometric. Likewise, the real composition of the compound may 
differ noticeably from its chemical formula, or, in other words, 
it is possible for solid solutions to form between the compound 
and its components. 

Fig. 5.28. State diagram of a system with the formation of a 
chemical compound between its components.

The solidus of a compound that is not stoichiometric is represented not by a 
single line, but by a region, the size of which may be determined by the solubility 
of the components in the compound. Often such a region is called the region of 
homogeneity. In general, in all chemical compounds there are always 
deviations from the stoichiometric composition. Nevertheless, in a set of systems 
such deviations are insignificant.

Some possible state diagrams for the systems of components that melt 
congruently and form solid solutions with their components A and B are shown in 
Fig. 5.29.

Let us now focus on a typical state diagram of a compound that melts 
incongruently. Suppose for simplicity that the solid solutions, based on 
their components and compounds, can be separated. Furthermore, suppose 
that the compound AmBn at the fusion point decomposes into a liquid of 
composition LP and a solid phase SB.

Am Bn ⇄ LP + SB
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Fig. 5.29. State diagrams of different types containing chemical compounds.

The general view of this state diagram is shown in Fig. 5.30. Consider the 
crystallization processes occuring in this system of liquid phases of different 
compositions. If the composition of the liquid phase is between points TA and 
E, then at the beginning of the liquid cooling process, crystals will emerge from 
component A. As the crystallization proceeds, the figurative point 
characterizing the state of the system will move along the liquidus curve TAE. 
At the eutectic point E, another phase appears of the composition AmBn, and the 
system becomes invariant. At this point at temperature TE the crystallization 
ends with the formation of the eutectic having the composition A+AmBn.

Fig. 5.30. State diagram with chemical compounds that fuse incongruently.

From the liquid phases with compositions between points E and P, the 
crystallization commences with the formation of the compound AmBn and ends at the 
eutectic point. The crystallization of the liquid phases with composition between 
points P and TB has certain particularities. In order to clarify these particularities, let us
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first imagine that the pure compound AmBn is heated. If during the heating process 
the peritectic temperature TP, is reached, then at this temperature the compound 
decomposes in the liquid phase with composition at point P and the solid phase 
SB with composition equal to that of the pure component B. The 
decomposition process is an invariant process (with one degree of freedom). At 
the moment the decomposition of the compound is completed, the number of 
phases is reduced to two (liquid LP and solid component B), and this system 
acquires one degree of freedom. With further heating, the liquid is enriched with 
component B due to the dissolution of small crystals of component B, which is 
caused by the increase in solubility with rising temperature. At this moment, the 
figurative point moves along the liquidus curve PTB and when the temperature 
T1 is reached, the last crystal disappears. After that, the covariance of the 
system is exactly the same as the composition of the compound. Terefore, during 
the heating process, the figurative point will move up the vertical line as shown in Fig. 5.30.

If now the liquid of AmBn composition, which is at temperature T > T1, will 
be cooled down, crystals of pure component B will appear when it first reaches 
the temperature T1. As the crystallization process of the pure component B 
develops, the composition of the liquid phase will change along the liquidus line 
TB, and when the point P is reached, the crystallization of the compound 
AmBn will commence. The alloy is formed at temperature TP from the 
liquid phase of composition LP and the crystals of component B

LP + SB ⇄ Am Bn (5.40)

At the moment of the end of this transformation all the liquid LP and all the crystals B 
are consumed, and one phase remains in the system - the crystals of the compound AmBn.

If now the composition is determind between points AmBn and P, crystallization 
begins with the separation of B. At temperature TP, the volume of the separated 
crystals will be consumed to form the compound AmBn, since in this case the 
liquid in the process of diffusion of the component B starts with a negligible amount, 
compared to the amount of liquid at point H. In this case, there remains a liquid 
residue with a composition corresponding to point P, and the system 
becomes invariant. In the process of the temperature decrease of this liquid, the 
crystals of AmBn will separate and the figurative point will move along the 
segment PE of the liquidus curve. When point E is reached, an eutectic 
crystallization will occur with the formation of crystals A and AmBn.
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If the composition of the liquid phase is between points B and AmBn, t hen by 
the time the transformation by reaction (5.40) is completed, all the liquid LP 
will have been consumed and the system will be a mechanical mixture of B and 
AmBn crystals.

In many component systems, some intermediate phases may exist between the 
initial substances A and B, such as compounds or solid solutions based on them. 
For the analysis of more complicated state diagrams, it is convenient to 
divide them into elementary diagrams, limited, for example, by two 
compounds or one compound and one component, and further analyze 
the crystallization processes of each of them separately.

5.15 Diagrams of State of the Binary Systems A3-B5

Today, binary compounds of elements of groups 3 and 5 of the periodic table and 
solid solutions based on them occupy a very important place among various 
semiconductor materials. The most of modern devices used in optoelectronics, such 
as laser and light diodes operating in spectral regions from infrared to ultraviolet 
range, nowadays are fabricated on the basis of A3B5 solid solutions. Indeed, to 
grow bulk crystals as well as various device structures  based on these 
materials, it is necessary to know their corresponding state digrams.

In this paragraph we focus on the A3–B5 state diagrams a of binary systems  
such as Ga–P, Ga–As, Ga–Sb, In–P, In–As, In–Sb (the systems containing N and B 
are not considered). Each of these systems contains a compound that melts 
congruently, and their state diagrams have a similar form, differing only in 
the fusion temperatures corresponding to the elements and 
compounds. The elements of group 3 are often reffered to as metals and 
those of group 5 as nonmetals. Each of these two types of elements must occupy 
a certain place in the crystal lattice of the compound, so two sublatticess can be 
distinguished in the lattice: metallic and non-metallic. A common 
particularity of the state diagrams of A3–B5 systems is that they have a 
very limited region of homogeneity of compounds and a significant vapor 
pressure of the nonmetals. 

In the sequence of the fifth group elements Sb–As–P, the vapor pressure increases 
rapidly for the lighter components from left to right. For example, the vapor 
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pressure o f  Sb is about 10-6 bar at the fusion temperature of GaSb at 712°C, 
the vapor pressure of As is 0.976 bar for GaAs fused at 1240°C, and the 
vapor pressure of P reaches 32 bar at the fusion point of GaP at 1465°C.

We shall analyze the solubility of the elements of groups 3 and 5 in A3B5 
compounds, which, as already mentioned, have a very limited area of 
homogeneity. Note that the experimental study of homogeneity is very 
complicated due to the limited sensibility of existing methods of composition 
measuring. Various theoretical estimations show that the average size of 
homogeneity areas of A3B5 compounds is of the order of 1018 – 1019 cm-3. Because 
of this, in diagrams of ordinary binary systems, in which the horizontal axis 
corresponds to the interval from 0≤х≤ 1 (from de 0 to 100 %), the areas of 
homogeneity simply cannot be shown on an adequate scale. It follows that in the 
state diagrams between 0 to 1, the solidus of the various A3–B5 systems will be 
represented as a vertical line starting at 0.5 from the horizontal axes. Since 
solubility in the solid phase de facto also does not exist between pure elements A3 
and B5 and their corresponding compounds A3B5, the general phase diagrams have 
the form of diagrams with simple eutectic. In the A3–A3B5 systems presented in 
the left part of the diagrams, the eutectic points are located in the vicinity of the 
vertical axis corresponding to a pure element of group 3 (e.g., Ga, In), i.e., the 
eutectic degenerates next to the metals. In real crystal growth processes, the areas 
of phase diagrams in the vicinity of the element of group 3 are not used, and 
therefore the shape or character of these areas are of no practical meaning. In 
connection to this, in the majority of cases analyzed, diagrams are represented 
without eutectic points in the vicinity of the metallic area, as shown in Fig. 5.31. 
The location of the eutectic point in the vicinity of element A3 is 
schematically presented in a separate frame of Fig. 5.31.

Fig. 5.31. State diagram III-V.
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In A3B5 compounds, the presence of homogeneous areas is often 
emphasized because to their small size (up to the minute scale of their average 
length in the diagrams where they appear). Nevertheless, in a number of cases 
it is necessary to consider the deviation of the stoichiometric ratio in the 
concentrations in which the elements of A3B5 alloys are found. As an example 
is the well-known case of Gallium Antimonide (GaSb), that without 
intentionally introducing impurities during crystallization (this happens due to 
liquid epitaxis) has a p-type conductivity with a gap concentration of about 1017 
cm-3. In contrast, all other A3B5 alloys (ignoring nitrides and borides as originally
conditioned) always grow with n-type conductivity due to uncontrolled
introduction of donors. The previously mentioned particularity of GaSb is
related to the stoichiometric deviation of the components or to the emergence
of stoichiometric defects, which in this alloy are electrically active, i.e., form
electrical inductions from acceptors in the bandgap.

One of the important technological characteristics of A3B5 systems is the 
vapor pressure function in dependence on temperature for all possible 
components of the gaseous phase formed above the solutions corresponding 
to the liquidus curve. Such a function for the Ga–As system is presented in Fig. 
5.32 as one of the most studied and important from the practical point of view.

Arsenic is present in the gaseous phase in equilibrium with the GaAs solid phase, 
forming As2 and As4 molecules. At low temperatures, the vapor pressure of the two-
atom molecules exceeds that of As4. It is known experimentally that at 
temperatures around 660°C (1/T = 1.145x10-3 K-1), the vapor pressure of Arsenic 
is determined mainly by As2, which is comparable in value to the vapor 
pressure of Gallium. At this temperature, GaAs evaporates 
congruently. It should be noted that the precision of determination 
of the position of the point of congruent evaporation is small. This is 
primarily due to the difficulties that arise in the measurement of 
small changes in pressure, which can be as low as 10-10 atmospheres. If GaAs 
is heated above the temperature of its congruent evaporation, drops of liquid 
Gallium saturated with Arsenic will form on the crystal surface, and the 
gaseous phase will be mainly composed of As2 and As4 molecules, whose 
fraction will be determined by temperature, as shown in Fig. 5.32.   

While the total Arsenic vapor pressure at the fusion point of Gallium Arsenide is 
about 1 atmosphere (Fig. 5.32), for the binary phosphide systems such 
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as Ga–P and In–P, the Phosphorus vapor pressure at the corresponding 
fusion temperatures reaches several tens of atmospheres. Hence, the 
crystallization processes in Phosphide and Arsenide systems in a number of 
cases (in particular when there is no need for a large crystalline volume) are 
viable in the metallic corners of state diagrams, i.e., on the basis of liquid 
solutions rich in Gallium and Indium. Under these conditions, the vapor 
pressure of elements of group 5 of the periodic table can be significantly 
reduced. On the contrary, the vapor pressure of Antimonium at the 
corresponding fusion temperatures of its binary alloys is considerably 
low. Therefore, antimonides of various metals from group 3 of the periodic 
table can be grown from both metallic solvents and Antimonium-rich solvents. 
In other words, in Sb systems, the crystallization processes can be carried 
out both in the metallic corner of the state diagram and in the non-metallic one. In 
the latter case, the replacement of metallic solvents by Sb may show 
advantages that will simplify a number technical problems in the crystallization 
process, as well as to improve the quality of the grown material. 

Fig. 5.32. Dependence of As vapor pressure on temperature.

Note that the sections of the state diagram describing the behavior of the system 
in the coordinates pressure (P) – temperature (T), similar to those shown 
in Fig. 5.32, turn out to be very important for the molecular-beam 
and gas epitaxy technologies. In the liquid phase epitaxy, as a rule, relatively 
low crystallization temperatures are used at which the vapors pressure of 
volatile elements is negligible, so the function of P–pressure with 
respect to T–temperature can be neglected.
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When analyzing the state diagrams of the systems with simple eutectics (Section 
5.6), the Gibbs energy GS for the pure solid phases was represented by a single 
point on the corresponding axis, as can be seen in Figs. 5.5 and 5.6. Likewise, 
areas of homogeneity exist in all semiconductor alloys. In other words, there are 
deviations of stoichiometric composition in alloys, conditioned by the formation 
of solid solutions between its compounds and its components. In the presence of 
solid phase solubility, the dependence of the Gibbs energy on the composition 
GS=GS(x), as demonstrated in Section 5.4, should be represented as a curve 
whose convexity is directed downward. If the homogeneity area of the 
compound is sufficiently narrow, the Gibbs energy increases rapidly with 
deviation from the stoichiometric relationship, or, in other words, is a 
curve with a narrow minimum, as seen in Fig. 5.33.

Fig. 5.33. A region of homogeneity of solid solutions based on the binary 
A3B5 system and its components.

This figure shows the dependence of Gibbs energy on composition GL=GL(x) 
for the liquid phase. This function has a much smaller curvature than GS=GS(x) 
since, in accordance with the assumption made earlier (Section 5.5), 
components A and B form liquid solutions at any concentration, i.e., they are 
mutually soluble over the whole range of composition. If we again draw 
tangents to the curves GS(x) and GL(x), we will find the compositions that are in 
equilibrium in the liquid and solid phases, i.e., we build the region of 
homogeneity, or the region of existence of solid solutions based on the binary 
compounds A3B5 and their components A3 and B5. This region in Fig. 5.33 is 
labeled by letter 𝛿𝛿. For clarity, Fig. 5.33 is not scale. It is only a schematic 
illustration. As stated before, the length of the homogeneous region is too small 
to be seen in detail on a horizontal scale of concentrations in the interval from 0 
to 1.  
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In the general case, the formation of the region 𝛿𝛿 can be due not only to the 
dissolution in the alloy of any of its components, but also to the formation of 
vacancies. The energy of vacancy formation at the sites of A3B5 elements is always 
differentiated according to which site of the considered A3 or B5 elements is vacant, 
and hence these vacancies in the metallic and nonmetallic sublattices are also 
different. Therefore, the homogeneity region of the alloy is not symmetric respect 
to the stoichiometrical composition, as illustrated by Fig. 5.34 (Morozov A.N., 
Bublik B.T. Journal of Crystall Growth 1986, v. 75, #3, p. 497-503) where 
calculated solidus curves for some A3B5 compounds are shown.

If we ignore the existence of the homogeneity region due to its short extension, the 
solidus in any A3-B5 system is a vertical line, and the solid phase composition 
corresponds to 0.5. Therefore, both experimental and theoretical studies of state 
diagrams in A3-B5 systems are reduced only to the construction of the liquidus line. 
Only the section of the line located near the group 3 element (in the metallic 
corner) is of practical interest. In this corner, the pure A3B5 solid compound is in 
equilibrium with liquid phase, which at relatively low temperatures is a 
solution with the group 5 element strongly dissolved in the metal (Fig. 
5.31). It is this region of the state diagram that is typically used in the liquid 
phase epitaxy and widely applied to grow the most important semiconductor 
crystals, including A3B5 compounds. The use of lower crystallization 
temperatures in comparison to the fusion temperatures of the corresponding 
alloys or the transition of stoichiometrically alloyed materials into solutions, as 
can be seen from the state diagram in Fig. 5.32, makes it possible to significantly 
reduce the vapor pressure of the group 5 element.

Fig. 5.34. Horizontal axis: excess of atoms by 1018 cm-3. 
Left: atoms of group III; right: atoms of group V.
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The attempt to carry on the growth processes of the binary alloys A3B5 
from the liquid phases located in the corner B5 in the corresponding state 
diagrams, is inappropriate, and in many cases technically impossible. The 
exception, as already noted, are Sb-based systems in which the pressure of 
Antimony vapor on the liquid phases in the nonmetallic corner is 
insignificant.

A number of scientific articles have been published on the processes of 
crystallization of alloys and solid solutions based on antimonides from the 
liquid phases enriched with Sb, i.e., the processes carried out in the nonmetal 
corner of the state diagrams.

Let us pay attention to calculations of the phase equilibria in the binary 
systems A3–B5. In general, the equilibrium between the liquid phase 
that is a non-metal solution BL in the melting of metal AL, and the solid 
phase ABS is written in the form of a simple chemical reaction

AL+BL⇄ABS

At equilibrium, the chemical potentials of the solid and liquid phases should 
be equal

μL
A + μL

B = μS
AB (5.41)

As seen above, the chemical potentials of components A and B in the liquid phase 
are of the form: 

μL
A= μ0

A + RTln𝛾𝛾L
A + RTlnxL

A (5.42)
μL

B= μ0
B + RTln𝛾𝛾L

B + RTlnxL
B

Where μ0A,B, 𝛾𝛾L
A,B and xL

A,B are, respectively, the chemical potentials of the pure 
components A and B, their activity coefficients and concentration in the liquid 
phase. In the model of quasiregular solution, successfully used to calculate the 
equilibrium of the phases in various A3–B5 systems, as shown in paragraph 5.9, 
the activity coefficients are described by the expressions   

RTln𝛾𝛾A = 𝛼𝛼ABx2
B = 𝛼𝛼AB (1–XA)2 (5.43)

RTln𝛾𝛾B = 𝛼𝛼ABx2
A = 𝛼𝛼AB (1–XB)2
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Where αL
AB = a+bT is the interaction parameter between the components in the 

liquid phase, in which a and b are constant and T is the temperature. 

In expression (5.41) the chemical potential for the pure solid phase can be annotated 
as follows

μS
III-V = μ0

III-V (5.44)

Since xS
AB, and the solid phase ABS is assumed to be ideal, the activity for it is 

also equivalent to unity. Substituting (5.42) and (5.44) into (5.41) we obtain

𝜇𝜇0
A + RTln(𝛾𝛾L

AxL
A) + 𝜇𝜇0

B + RTln(𝛾𝛾L
BxL

B) – 𝜇𝜇0
AB = 0 (5.45)

If we write the equation (5.45) for different temperatures T2 and T1 (T2>T1), and 
then perform the subtraction of these two equations, we obtain the following 
result

𝜇𝜇0
A(T2) – 𝜇𝜇0

A(T1) + 𝜇𝜇0
B(T2) – 𝜇𝜇0

B(T1) – 𝜇𝜇0
AB(T2) + 𝜇𝜇0

AB(T1) =
= –RT2ln [ 𝛾𝛾L

A(T2) 𝛾𝛾L
B(T2) xL

A(T2) xL
B(T2) ]+

+ RT1ln [ 𝛾𝛾L
A(T1) 𝛾𝛾L

B(T1) xL
A(T1) xL

B(T1) ]

Since the left part of this expression refers only to the pure components A, B, and 
AB, we shall label it as 𝛥𝛥𝜇𝜇0

𝜇𝜇0
A(T2) – 𝜇𝜇0

A(T1) + 𝜇𝜇0
B(T2) – 𝜇𝜇0

B(T1) – 𝜇𝜇0
AB(T2) + 𝜇𝜇0

AB(T1) = 𝛥𝛥𝜇𝜇0 (5.46)  

Starting with the already known relationship

the difference can be calculated 𝜇𝜇0
i(T2) – 𝜇𝜇0

i(T1) 

(5.47)

Using the expression for the differential of the entropy shown in Section 4.2, we 
have 
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where S0
i(T) for the pure component i

(5.48)  

Substituting (5.48) into (5.47) we obtain

(5.49)

After, considering (5.49) and the used notation (5.46) it can be written in the 
following form

(5.50)

In the expression (5.50), 𝛥𝛥S0(T2)=S0
A(T2)+S0

B(T2)–S0
AB(T2) and 𝛥𝛥c0

P=c0
P,B–c0

P,AB. 
Since the sum of the heat capacities c0

P,A+c0
P,B and the heat capacity of the solid 

phase c0
P,AB differ slightly from each other, the value 𝛥𝛥c0

P turns out to be small 
in comparison with other values in (5.50). For this reason, the double integral 
in this expression can be neglected. Additionally, by replacing T2 by the 
fusion temperature TM, and T1 by the current temperature T, and noting that 
the fusion temperature TM, xM

A(TM)=xM
B(TM)=0.5 we finally obtain

RTln[𝛾𝛾L
A(T) 𝛾𝛾L

B(T) xL
A(T) xL

B(T)]– (5.51)
–RTMln[0.25𝛾𝛾L

A(TM) 𝛾𝛾L
B(TM) +

𝛥𝛥S0(TM)(TM – T) =0

In the expression (5.51), i.e. the liquidus equation, the elements for calculating 
𝛥𝛥S0(TM) can be found in reference books on the thermodynamic constants  available 
in scientific literature, as well as the fusion temperature of the TM alloy and its 
corresponding activity coefficients 𝛾𝛾. In this equation, the liquidus line contains 
three unknown values: temperature T, concentration of components A and B in the 
liquid phase (xL

A y xL
B ). The number of the unknown concentrations can be reduced 

to one if we consider the equation of the liquid phase balance that allows any of the 
concentrations to be expressed through the other one.
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xL
A + xL

B = 1.

After that, two values or unknown/free variables remain in the liquidus equation 
(5.51). If one of them, e.g., temperature, is given different values, the 
corresponding compositions of the liquid phases at these temperatures can be 
found from the resulting equation, or, in other words, the liquidus curve, i.e., the 
whole state diagram can be calculated. In the theoretical method analyzed for the 
study of state diagrams, the values of the thermodynamic parameters 𝛥𝛥SM and TM 
are not known exactly, and therefore the state diagrams calculated in this way are 
not very precise.

In the calculation method of state diagrams using the chemical equilibrium 
constant is devoid of this disadvantage, but, nevertheless, it cannot be applied to 
all systems. This method will be analyzed in the next chapter on the example of 
ternary systems A3–B5. Knowledge of the 𝛥𝛥SM y TM values are not required when 
using the method of calculating state diagrams from the chemical equilibrium 
constant. A complete treatment of this method is given in the book 
“Heterostructure lasers” H.C.Casey, Jr. M.B.Panish. Part B. Materials 
and Operating Caracteristics.  Academic Press, INC. 1978, Orlando San Diego 
New York Austin Boston London Sydney Tokyo Toronto.
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CHAPTER 6.

MULTIPLE COMPONENT SYSTEM

6.1 General Points About Three Component Systems 

In each phase of any thermodynamic system, the sum of concentrations of the 
components is equal to 1. Therefore, in any binary system it is sufficient to know 
the concentration of one of the components to determine its composition. Thus, 
when representing the axis of the compositions in a two-component system, the 
length of an arbitrarily chosen straight line segment should be taken as an unit, as 
we did before in the analysis of various binary systems. The position of each 
dot on the horizontal axis corresponds to one unique composition that is 
determined by the values of the line segments on either side of the selected point. 
Since, at constant pressure, the temperature becomes the second variable 
parameter along with the composition, the two-dimensional phase diagram of any 
binary system is represented in a surface.

In a three-component system we have

xA + xB + xC = 1, (6.1)

where xA, xB and xC are, respectively, the concentrations of the components A, B, 
and C, expressed in atomic mass or volume units. Thus, the one-dimensional axis 
of the compositions of the two-component system turns into a surface for a three 
component system. In this case, we use an equilateral triangle (called the 
concentration triangle) as a geometric image reflecting the composition of the 
system. The vertices of this triangle correspond to the pure components A, B, and 
C. The points on the sides of the triangle correspond to the composition of each
two-component system: A–B, B–C, and A–C. The points inside the concentration
triangle determine the composition of the three-component system. One of the
geometrical properties of an equilateral triangle can be used to
quantitatively characterize the composition of this system:

– If we draw lines parallel to the sides through any point of the triangle, then
the sum of the lengths of the segments intersected by the lines on each side
is independent on the position of the point and it is equal to the length of
one side of the triangle.
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– If perpendicular lines are drawn from any point of the triangle to each side,
then the sum of the lengths of these lines is independent of the position of
the point and is equal to the height of the triangle.

Thus, condition (6.1) in the concentration triangle can be satisfied in two 
different methods: 

1. The unit (or 100% if the concentration is expressed as a percentage rather
than a fraction) is the length of one side of the triangle. The concentration
values xA, xB and xC are related to the length of the intersected segments on
the sides of the triangle along the parallel lines passing through the point
characterizing the composition of the ternary system. This method of
representing the concentrations in a three-component system is called the
Roseboom triangle. Fig. 6.1a illustrates this method.

Fig. 6.1. a) Roseboom triangle; b) Gibbs triangle. 

2. The height of the triangle is taken as the unit of measurement. The relative
lengths of the perpendiculars drawn to each side of the triangle from any
point inside correspond to the concentration of the component realative to
the vertex from which the perpendicular is directed. This method, shown in
Fig. 6.1b, is called the Gibbs triangle.

Fig. 6.2. Coordinate volume space for constructing three-dimensional phase diagram.
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The Roseboom triangle method is often used to build phase diagrams of ternary 
systems. In this method, the compositions determined by points on a line parallel 
to one side of the triangle contain a constant concentration of the component at 
the vertex opposed to the side.

When studying the state diagrams of a ternary system, i.e., its behavior as a 
function of its composition and temperature, the latter is represented by the 
vertical axis. In comparison to the binary case, the system is three dimensional, 
and therefore it transforms into a straight prism (Fig. 6.2). The three vertical 
planes of this prism contain the binary diagrams A–B, A–C, and B–C. As an 
example of a ternary state diagram, first consider a system with unlimited 
solubility of component in the solid phase. Such a diagram is usually found in 
systems formed by pure metals (for instance: Nb–Mo–W, Ag–Au–Pt) or 
semiconductor alloys of the A3B5, A2B6, A5

2B6
3 type (for example: AlP–GaP–InP, 

Bi2Te3 –Bi2Se3 –Sb2Te3).  

For clarity, consider three binary diagrams: A–B, A–C and B–C, in which solid 
solutions exist in the whole range of compositions. If we “unfold” the lateral 
planes of the prism, as in Fig. 6.3, we can visualize the binary concentration 
diagrams. In the planes, the vertical axes of the prism correspond to the 
temperatures. Note that the triangle in the center is the concentrations triangle.

Fig. 6.3. The diagram of state for a three-component system with unlimited mutual solubility 
represented as unfolding planes of binary concentration diagrams.
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The three-dimensional ternary diagram is obtained by unfolding the planes with 
repeated prism formation. In them, the solid solutions exist in the whole range of 
compositions. In the volume diagram thus obtained (Fig. 6.4), the liquidus is a 
surface with the convex curvature and limited by the lateral planes, on wich the 
corresponding binary systems are located.  

Fig. 6.4. The volumetric diagrams of state for a three-component system with unlimited 
mutual solubility represented as folding planes of binary concentration diagrams. 

In Fig 6.4, the liquidus lines of these binary systems are labeled as TM
AL1TM

B, 
TM

BL3TMC and TM
CL2TM

A. The solidus of a ternary system is a surface whose 
curvature faces down. The lateral vertical planes intersect this surface 
along the solidus lines labeled as TM

AS1TM
B, TM

BS3TM
C  and TM

CS2TM
A, respectively.

Fig. 6.5. Projections of liquidus and solidus isotherms on the plane of 
the concentration triangle.
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The liquidus and solidus surfaces are intersected by the horizontal planes of the 
constant temperature and the isotherms of the liquidus and solidus, as can be seen 
in Figs. 6.5 and 6.7. The points characterizing the compositions of the liquid and 
solid phases in equilibrium at a given temperature are located on the isothermal 
lines.

It should be noted that, on the state diagram of a ternary system, unlike a 
two-component system, it is impossible to find the equilibrium compositions 
of the liquid (xL) and solid (xS) phases. If in a two-component system there is 
a chord (i.e., a segment of a horizontal straight line) whose extreme points 
are the compositions of the phases in equilibrium, then for a three-component 
system we can only say that the chord lies in the horizontal plane where the 
liquidus and solidus isotherms are located.

Fig. 6.6. The diagrams of state for a three-component system without solubility in the solid 
phase as unfolding (a) and folding (b) planes of binary concentration diagrams.

To determine the position of the chord in this plane, or, in other words, to find the 
equilibrium compositions of the liquid and solid phases in the diagram of the 
ternary system, it is necessary to know the dependence between xL and xS at the 
considered temperature. In fact, such dependences found for a given temperature 
show how the segregation coefficient changes with the concentration. As an 
example, Figs. 6.6.a and b show a diagram of an eutectic system in which there is 
no solubility between the components of the solid phase.
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6.2 Diagrams of State in Ternary Systems A3B5

Let us analyze the state diagram a ternary system representing solid solutions of 
two semiconductor binary compounds of the A3B5 type. As noted in the previous 
chapter, such state diagrams are very important from a practical point of view, 
since a large number of optoelectronic devices are produced on the basis of 
various ternary and quaternary systems of  A3B5 solid solutions. 

All ternary systems of this type are similar, except that in some cases there are 
immiscibility gaps. The main differences between such diagrams are the fusion 
temperatures of their components and the positions of eutectics.

As we have already mentioned in Chapter 5.15, we shall not analyze the systems 
containing Boron and Nitrogen. Among the remaining ternary systems, two types 
can be distinguished. The first is the solid solutions with two elements of group 
A3 and one of group B5, such as, for example, the well-known AlxGa1-xAs, AlxGa1-

xP, GaxIn1-xAs and others. The second group includes solutions with the metallic 
element A3 and two different elements from the fifth group of the periodic table. 
An example of such a system is the GaAsxP1-x solid solution. 

Fig. 6.7. Ga-In system diagram of state.

Let us consider the first type of diagrams. In the system A3
1A3

2B5 the component 
parts are the double diagrams A3

1–B5, A3
2–B5 and A3

1–A3
2. The first two diagrams 

are similar, and they were analyzed, in a general way, in Chapter 5.15 (Fig. 5.32). 
As mentioned there, in them we only pay attention to metal corners. The third 
component part A3

1–A3
2 is formed by binary combinations of metals Al, Ga and In. 

As a characteristic example, Fig. 6.7 shows a diagram of the Ga–In system.
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The two remaining diagrams, namely Al–Ga and Al–In, are shown in Fig. 6.7. In 
the vicinity of these diagrams, i.e., in the liquid phases enriched with metals, at 
low temperatures (the maximum temperature in the liquidus line is 156.6 °C, as in 
the example in Fig. 6.7) the solubility of the elements of the fifth group is 
negligible. Therefore, in the processes of the crystal growth these parts of the 
ternary diagram are not used, and the binary diagrams based on the metals A3

1–A3
2 

are simply not taken into consideration. In the future, diagrams of the A3
1–A3

2 type 
should be presented only in the form of straight lines emphasizing the 
particularities of the liquidus lines. Note that in a ternary system such 
a simplification is not a change, since the liquidus line can be approximated as 
a straight line (see Fig. 6.7).

Besides the three given diagrams  A3
1–B5, A3

2–B5 and A3
1–A3

2, another component of 
the considered ternary system is the quasi-binary system A3

1B5–A3
2B5. In all 

ternary systems of this type (except for the AlSb–AlAs systems) in the solid phases 
there is unlimited solubility in the whole range of compositions. Therefore, in such 
systems there exist either liquid- A3

1–A3
2–B5, solid- A3

xA3
1-xB5, or both solution 

phases simultaneously. Solid solutions of A3B5 as well as its alloys are 
stoichiometric, that is, the content of element B5 in the solid phase is equal to 
0.5, and of course, stoichiometric deviations do not matter. As a result, in the 
concentrations triangle as shown in Fig. 6.8, the A3

xA3
1-xB5  solid solutions will be 

located on the median parallel to the A3
1–A3

2 side. The composition of the solid 
solution A3

xA3
1-xB5 can change when the ratio of its components A3 and A3

2 changes 
or, in other words, when the ratio between the binary alloys A3

1 B5 and A3
2 B5 changes.

Fig. 6.8. Drawing a stoichiometric section in the Gibbs triangle.

This is why any A3
1B5–A3

2B5 system is called quasi-binary, as is the A3
xA3

1-xB5 
alloy, which is formed from three components. In principle, the solid solution can 
be considered as a А’хВ’1-х binary phase in which the composition varies in the range
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0≤х≤1, where А’ is A31B5 and В’ is A32B5. In the liquid phase, the concentration of 
an element from group five in the quasi-binary system is constant and equal to 
0.5.

Fig. 6.9. Drawing a stoichiometric section in the Gibbs triangle.

The quasi-binary diagram of the system A31B5–A32B5, located on the vertical plane 
and resting on the median of the concentration triangle, is cigar-shaped, as shown 
in Fig. 6.10. Above the liquidus line is the liquid phase with a stoichiometric 
composition A31–A32–B5 and below the solidus line is the solid phase of 
composition A3xA31-xB5. Between these lines, as in any binary diagram with 
unlimited solubility, both phases are in equilibrium.

Fig. 6.10. Plotting a diagram of state for three-component A3-B5 system

In Fig. 6.10, the horizontal plane shows the diagrams, A31B5, A32B5 and A31–A32 
on the sides of the concentration triangle, and the vertical plane shows the
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quasi-binary diagram A3
1B5–A3

2B5. In this drawing, considering the restrictions 
mentioned above, the dashed lines show those parts that we will neglected further 
(the non-metal corner B5 and the system A3

1–A3
2). According to these constraints, 

the concentration triangle transforms into an equilateral trapezium.

Fig. 6.11. General view of the diagram of state for the A3-B5 ternary system.

To obtain the volume diagram of the ternary system A3
1A3

2B5, we rotate the 
binary diagrams A3

1–A3
2, A3

1–B5 and A3
2–B5 in Fig. 6.11 around the sides of the 

trapezium to the vertical position as indicated by the arrows. Then the solidus 
lines of these systems and the vertical axes corresponding to the pure alloys in 
the quasi-binary system A3

1B5–A3
2B5 will coincide. In the phase diagram thus 

obtained, shown in Fig. 6.12, the liquidus is a surface with a convex curvature 
towards any composition (remember that diagram A3

1–A3
2 is not considered). The 

surface of the liquidus is intersected by the vertical planes in which the binary 
systems A3

1–A3
1B5 and A3

2–A3
2B5 are located, and the quasi-binary diagram A3

1B5–
A3

2 B5 is intersected by the corresponding liquidus lines of these systems. The 
solidus of the ternary system A3

1A3
2B5 is formed by a segment of the vertical 

plane located between the solidus of the systems A3
1–A3

1B5, A3
2–B5, and A3

1B5–
A3

2B5 and the bottom line, that is the upper base of the concentration trapezium in 
which the compositions of the solid solutions A3

1A3
2B5 are placed.

The resulting diagram will be crossed by the horizontal planes T1 and T2, 
(planes denoting constant temperature). The liquidus surface lines formed by
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intersection with these planes (T1 and T2) are called liquidus isotherms. In 
addition to these isotherms presented in Fig. 6.11 for temperatures T1 and T2 in 
the three-dimensional space of the diagram A3

1–A3
2–B5, this figure shows 

projections of the isothermals on the plane of the concentration triangle plane 
(trapezium). Such projections are more convenient to use in practice.

Fig. 6.12. Liquidus isotherms in the Al-Ga-P system.

On the liquidus isotherms, there are points corresponding to the liquid phases 
A3

1–A3
2–B5, containing different concentrations A3

1 and A3
2, and saturated with the 

element B5 at a given temperature. Since at a constant temperature and with an 
established concentration in a saturated ternary liquid phase, the concentration B5  
is a maximum, the liquidus isotherms are also often called saturation or 
solubility curves.

Fig. 6.13. Liquidus isotherms for various temperatures.

Consider the specific system Al–Ga–P. In this system, the solubility of phosphorus 
in pure Ga is noticeable higher than in Al. Therefore, an increase in the
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concentration of this component in the liquid ternary phase leads to a decrease in 
the concentration of Phosphorus. Thus, any isotherms, as can be seen in Figs. 6.11 
and 6.12, decrease as one moves from the gallium corner towards the aluminium 
corner in the diagram, i.e., as the concentration of element A3 (Al, in the case of the 
considered system Al–Ga–P) in the liquid phase increases. Each of the saturated 
phases Al–Ga–P is in equilibrium with one unique solid phase, the composition of 
which is determined by the position of certain point located on the line of 
intersection of the horizontal isometric plane with the vertical solidus plane. 
Therefore, any point on the liquidus isotherm can be connected by a straight line 
segment (called a conode) to the corresponding point characterizing the 
composition of the equilibrium solid phase, as will be shown in Figs. 6.12 and 6.13.

Nevertheless, as already mentioned, there is no rule or law in a ternary diagram 
that allows to draw a chord across, or, in other words, to connect the points 
characterizing the equilibrium compositions of the liquid and solid phases. 
Additionally, it is necessary to know the dependence between the equilibrium 
compositions of the liquid and solid phases. These dependences are shown in Fig. 
6.14 and are commonly called distribution isotherms for Al–Ga–P, Al–Ga–As, 
Ga–In–As, and other similar systems. Thus, when developing solid ternary 
solution growth processes of a certain composition, it is first necessary to 
construct two families of curves. One of them is the family of the liquidus 
isotherms, which characterizes the compositions of saturated liquid phases at 
different temperatures. The second is a family of the isothermal distribution 
curves that help to find the relationship between the compositions in equilibrium 
in the liquid and solid phases. In other words, those that describe the composition 
of the extreme points of the conode in the isothermal plane. As an illustration, let 
us examine by an example how these families are used to find the composition of 
the liquid phase required for the epitaxial growth of an AlxGa1-xP film with a 
given value for the width of the bandgap energy Eg. First, the composition of the 
solid phase xS is determined in accordance with the required value of the bandgap 
energy Eg. These dependences are well studied and widely presented in the 
literature for almost all ternary systems. Then, the crystallization temperature T is 
chosen with respect to the desired epitaxial coating thickness. After that, 
following the distribution curve (Fig. 6.14), it is possible to determine the 
concentration of A3

1 for the already determined composition of the solid phase 
(for the considered case - Al) in the liquid phase, and then to find the solubility of 
element B5 (P) at fusing of A3

1 and A3
2 (Al and Ga) using the liquidus line (Fig. 

6.13).
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As shown in Section 5.8 (equations 5.18 and 5.19), the segregation coefficient is 
one of the most important technological parameters in the crystal growth process. 
This coefficient for any component i is determined by the ratio of the 
concentration of this component in the solid phase xSi to its concentration in the 
liquid phase xLi. 

Fig. 6.14. Solidus isotherms for various temperatures.

Ignoring the borides and nitrides, which are rather difficult or practically 
impossible to grow from a liquid solution, then for from the remaining A3B5 
materials the segregation coefficients of metals among themselves rise in the 
sequence In→Ga→Al and for nonmetals Sb→As→P. In the Al–Ga–P system, the 
segregation coefficient for Al has a value of 102 (for relatively low 
temperatures, such as those used in the liquid phase epitaxy). In a similar 
system such as Al–Ga–As, the segregation coefficient of Al reaches a similar 
value. In another system, such as Ga–In–P, the Ga segregation coefficient is 
well above the unit (30 to 60) and is a function of composition and temperature.

Thus, it can be concluded from the previous examples that it is necessary to grow 
ternary solid solutions in various A3B5 systems from the solid phases located in 
the corner of the state diagram, where there is a component with a segregation 
coefficient below 1. For example, in the Al–Ga–P system, since solid solutions 
grow over almost the whole composition range, the liquid phases must contain Al 
in small proportions (0-1% atom concentration), so they must be prepared 
strongly enriched in gallium. Similarly, the solubility of P in melting Ga with Al 
at higher temperatures is in the range of 0.1–3% for temperatures between 900°C 
and 1100°C, which are often used in real growth processes of these materials. 
Thus, in the analized case, the liquid phases can be considered as dilute solutions  
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of P in the fusions of Ga with Al, where Ga is the solvent. Likewise, for Ga–
In–P and Ga–In–As systems at Ga concentrations and solubilities of P and 
As in the liquid phases at commonly used temperatures, the solvent is In. It 
follows that these families of the liquidus isotherms and the distribution 
curves need only be investigated in a limited range of concentrations close to 
the corner on the state diagram corresponding to the solvent. The liquidus 
isotherm family can be represented in the triangle coordinates, as shown in 
Fig. 6.12, and in the rectangular coordinates (Fig. 6.13). Various constraints 
or simplifications are introduced to represent the state diagrams of the 
systems that contain more than three components. In one method, the 
concentrations of some components are assumed to be constant, which in 
turn allows the system to be represented in two- or three-dimensional form. 
In addition, the state diagrams of many components can be represented in the 
form of a graph in which the compositions in equilibrium, in liquid and solid 
phases, are filled in at constant temperatures. Let us note that in practice, it is 
almost never necessary to use the diagram of state for the entire range of 
compositions of the system. For instance, in the solid quaternary solutions 
GaInAsP, widely used in the fabrication of a large number of devices of the 
fiber optics systems, only in a few cases it is necessary to know the state 
diagram and only for some ranges of compositions where the solid phase has 
a lattice parameter close to that of the binary compounds GaAs and InP. This 
is because the latter are used as the substrates to grow multilayer structures 
of semiconductor devices, such as laser diodes, photodiodes, 
photosensors, etc. The regions of the compositions of the state diagrams 
in which the lattice constant of the solid phase is close or equal to that 
of one of the binary compounds are called isoperiodic sections. Latter 
receive special attention, when  drawing state diagrams of multicomponent 
systems.

6.3 Experimental Studies of Diagrams of State of 
Multi-component Systems

For the crystal growth of multicomponent solid solutions of a given 
composition, it is necessary to build a family of liquidus isotherms and 
distribution curves. Both families can be found theoretically or 
experimentally. Let us first analyze how this problem can be solved 
experimentally.  
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The liquidus curves show how the composition of saturated liquid phases 
changes at different temperatures. Therefore, two different methods can be used 
in the experimental study of these curves, in which one of the above parameters 
is fixed and the other is calculated. Thus, in the study of the liquidus curves it is 
possible:

1. To determine the composition of the saturated liquid phase at constant
temperature. This method is called the solubility method and can be carried
out, for example, with the help of the determination of mass loss of a
solid phase introduced into an unsaturated solvent.

2. To determine the complete disappearance of the solid phase in the liquid of
a known composition. This method is performed by visual observation of
the surface of the liquid phase during slow gradual heating and is called “in
situ” (the Latin term which in this case means simultaneous observation
during the process).

There are other methods of plotting diagrams of state. For example, differential 
thermoanalysis can be used in the study of the liquidus curves. Nevertheless, we 
shall analyze only these two methods in detail, since the accuracy of 
thermoanalysis is not very high. Each one of these methods of drawing liquidus 
isotherms has its own advantages and disadvantages. 

The solubility method is characterized by high precision, limited only by the 
precision of the scales, which is currently very high. This also applies to the 
measurement of temperature. This method is used in the liquid phase epitaxy in 
the experimental study of various binary state diagrams in the A3B5 and 
some other systems. In this case, the mass loss of the substrate of any 
of the A3B5 binary compounds that have been in contact with an unsaturated 
liquid solution for some time is determined. The typical size of the substrate 
in the liquid phase epitaxial is usually about one square centimeter with a 
thickness of about 0.5 mm and is determined by thechnical specifications or the 
simplicity of the process. For experimental study of the liquidus isotherms, 
it is important to count on the availability of commercially available 
monocrystals from which substrates in the required sizes can be 
prepared. Currently, the substrates are made from A3B5 binary compounds 
such as GaP, GaAs, GaSb, InP, InAs and InSb are currently produced.

Likewise, in more complicated cases, such as ternary or quaternary solid solution 
systems, the solubility method cannot be applied. This is because the liquid phase 
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of a ternary or quaternary system is in equilibrium only with its corresponding 
ternary or quaternary solid solution. In view of this, when studying the liquidus 
isotherms in multicomponent systems, when their solid phases are introduced 
into the unsaturated liquid, in principle the multicomponent crystals should be 
used. Unfortunately, multicomponent crystals cannot be grown due to the 
difficulties of many fundamental reasons. Therefore, in the absence of 
multicomponent substrates, in some cases in the study of complex systems, the 
binary substrates are used as a simplification for experimental study of their 
liquidus isotherms. 

As an example, we analyze the ternary system Al–Ga–As, on the basis of 
which the superiority of heterounions over homounions was first shown. In this 
system the initial binary alloys are GaAs and AlAs. GaAs substrates are 
produced commercially for use in the growth processes, while AlAs 
substrates are not produced, mainly due to their high corrosivity in air. Due to 
the high chemical activity of Al, this alloy quickly decomposes 
when interacting with water vapor according to the following reaction   

AlAs + H2O ↔  AsH3 + Al2O3. (6.2)

The only way to study the liquidus isotherms by the solubility method in the 
Al–Ga–As system is that the GaAs substrate at a certain constant temperature 
comes in contact with the Ga+Al liquid phase. Upon contact, a certain amount 
of GaAs, which of course depends on the temperature and concentration of Al, 
dissolves in the liquid phase due to As saturation. If the substrate is accurately 
weighed before and after the process, the mass loss can be determined. This 
means finding the concentration of As and Ga in the saturated liquid. The 
desired composition of the Al–Ga–As liquid phase can be defined considering 
the initial amount of Al in the Ga solvent and the amounts of Ga and As 
introduced during the substrate dissolution. This method is successfully used in 
various A3B5 systems. In particular, this method was used to study the state 
diagram in the Al–Ga–P system, which resembles the previously analyzed Al–
Ga–As. Moreover, there are publications with the results of using this method 
in the Ga–In–As–P quaternary systems upon contact of the InP substrate with 
an unsaturated Ga–In–As solution.

As noted earlier, the method described above for studying the liquid and solid 
phases can be successfully applied to various A3B5 binary systems, since the liquid
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and solid phases are able to find thermodynamic equilibrium. However, in 
the case of more complicated systems, problems arise, mainly 
related to nonequilibrium. In order to analyze these problems, we will first 
see some of the particularities of the process, such as what happens in the 
system when the compositions of the liquid and solid phases do not 
correspond. Assume that the solid phase of the system is a substrate 
prepared from the binary compound A3

1B5
1, and the liquid phase is a solution 

saturated with the B5
2 element in melts of the A3

1 and A3
2 metals. As examples 

of such a situation, we can name the processes of growing a structure by 
liquid phase epitaxia, in which GaInP and GaInAs solid solutions are grown on 
GaAs and InP substrates, respectively. In the first example, the liquid phase is a 
solution saturated with phosphorus in the Ga-In melts, and the solid phase is the 
GaAs substrate. In the second, the liquid is a solution saturated with As in the 
melts of the same metals, and the solid is the InP substrate. These systems 
are referred in the literature as GaAs/GaInP and, respectively, InP/GaInAs.  

In real epitaxial processes, initially, the solid phase (the substrate) and the 
saturated liquid have the same temperature, and are isolated from each other. If at 
some moment these phases come in contact, the heterogeneous system of liquid 
and solid will be in nonequilibrium, since the Gibbs energy corresponding to a 
particle in the liquid (ḠL) and solid (ḠS) phases is different. There are two 
possible options. Either the Gibbs energy for one particle in the liquid phase is 
greater than the Gibbs energy for a particle in the solid phase ḠL > ḠS, or vice 
versa ḠL < ḠS. After the contact of the liquid phase and the substrate, the 
processes of reducing the Gibbs energy of the system will begin to establish 
equilibrium. Note that equilibrium in this case is not strictly true, since in 
thermodynamics the concept of equilibrium is understood as the correspondence 
of the composition of the whole volume of the solid phase to the composition of 
the liquid phase. In this case, between the substrate and the liquid phase, a 
transition coating of intermediate composition of finite thickness will be formed, 
containing all the elements of both phases. After the formation of this coating, the 
liquid in contact with the coating does not “feel” the material of the substrate. 
Thus, the process occuring between the liquid and solid phases, whose 
compositions do not correspond to either of them, is more correctly called the 
process of establishing quasi-equilibrium. 

The formation of a transitional coating between the liquid phase and the substrate 
occurs due to the exchange of particles between them, and such an exchange is
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performed on account of two processes occuring simultaneously. One of these 
processes is the dissolution of the substrate and, as a result, the elements that 
are not present in the liquid or whose presence is insufficient pass to it from the 
solid phase. For example, in the case of the GaAs/GaInP system, during the 
dissolution of the substrate, equal amounts of As and Ga atoms are passed into 
the liquid phase, which previously did not contain As.

Due to this, the solid phase, in comparison to the liquid phase, does not have 
the elements A3

2 and B5
2. In particular, In and P in the first case, and Ga and As in 

the second. In the second process, due to the establishment of quasi-
equilibrium, these elements must partially rise to the surface of the 
substrate, which takes place through crystallization. A transition layer is 
formed on this surface containing elements that are not present in the 
substrate. In the general case, the transition layer may have a variable 
composition, due to diffusion processes in the liquid phase and segregation 
phenomena. In the solid phase, the diffusion velocity of atoms is very slow 
due to very small diffusion coefficients and, therefore, the diffusion 
processes can be neglected.

Thus, quasi-equilibrium in a heterogeneous system should be achieved as a result 
of two processes occuring simultaneously: the dissolution of the solid phase and 
the crystallization of transition layer of variable compositionon on the surface of 
the substrate. It is worth saying that although the term dissolution is often used in 
literature, as a rule, it does not describe precisely one of the processes that occurs 
when quasi-equilibrium between the substrate and the liquid is established, 
when the compositions do not correspond to each other. Initially, we assumed 
that when the substrate contacts the A3

1A3
2B5

2 ternary liquid phase, it will be 
saturated with the B5

2 element. That is why the process associated with the 
transition of a number of components from the solid phase to the liquid phase is 
more correctly called the dissociation of the substrate due to the nonequilibrium 
of the system.

In general, the process of establishing a quasi-equilibrium between the liquid 
phase and solid phasse is much more complicated than is shown in the 
elementary example illustrated above. Before anything else, we recall that the 
Gibbs energy of a particle in the liquid and solid phases is different when they 
are not in equilibrium. We suppose that the energy of the liquid phase is higher 
than of the solid phase. In this case, the tendency of the system to minimize its
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total energy will lead to the prevalence of the crystallization process over the 
process of substrate dissociation during the formation of quasi-equilibrium 
between the liquid and solid phases. This happens because the Gibbs energy 
of one separate phase is equal to the chemical potential of one particle 
multiplied by the number of particles. Since the chemical potential depends 
on the concentration x and the temperature T, if the latter is constant, the 
total Gibbs energy G can be reduced only by decreasing x, that is, through an 
isothermal crystallization.

Assume that in a certain ternary system A3
1A3

2B5
2, the lattice constants of the 

binary compounds A3
1B5

2 and A3
2B5

2 coincide, as, for example, in the systems  
AlxGa1-xAs and AlxGa1-xР. In such cases it is advisable to use any of the binary 
compounds A3

1B5
2 or A3

2B5
2 as a susbstrate. For the above-mentioned cases of 

solid solutions AlxGa1-xAs and AlxGa1-xР, the corresponding substrates are GaAs 
and GaP, respectively. If the saturated liquid phases Al–Ga–As and Al–Ga–P at 
constant temperature contact GaAs and GaP substrates, respectively, then a thin 
transition layer corresponding to a solid solution rapidly forms on the surfaces of 
the latter. The presence of such a layer was demonstrated in a series of research 
works on the establishment of quasi-equilibrium in the GaAs/AlGaAs and GaP/
AlGaP systems. We note a very important circumstance: since the lattice 
constants of binary compounds GaAs and AlAs, as well as GaP and AlP are 
practically the same, a monocrystal transition layer is formed on the 
corresponding substrate. The ternary liquid phase and the binary substrate are 
completely isolated by this layer ensuring the quasi-equilibrium in the 
system.  

Suppose that the Gibbs energy of one particle of the solid phase is higher than 
that of the liquid phase. In this case, the tendency of the system to minimize the 
total energy will lead to one of the two processes participating in the establishment 
of quasi-equilibrium between the liquid and solid phases, to prevail over the 
other, i.e., the crystallization will occur on the substrate. If the liquid phase is 
saturated prior contact with the solid phase, the disassociation of the substrate, 
in other words, the entry of constituent elements, will lead to supersaturation 
of the liquid phase, promoting the crystallization process. All these events occur 
in the immediate vicinity of the substrate, and the process of establishing 
quasi-equilibrium ends when the formation of the transition layer consisting 
of all the elements contained in both phases is completed. 
Nevertheless, if the lattice parameters of the substrate and the transition layer are
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different, this layer often does not crystallize as a monocrystal, but is absorbed 
in the AlxGa1-xAs and AlxGa1-xР systems mentioned earlier in the form of 
separated polycrystals. In the spaces between the polycrystals, the liquid 
phase, still in contact with the substrate, continues to interact with it. As a 
result, the liquid phase often fails to regenerate crystals in the growth process, 
and a part of them remains outside the surface of the substrate. Thus, the 
simultaneous processes of polycrystal growth and their dissociation from the 
substrate can lead to the formation of a transition heterogeneous and 
nonuniform layer.

Leaving both phases in contact for some time at a constant temperature is 
necessary to isolate them from each other. However, since the substrate surfaces 
are not completely flat due to the  processes of establishing equilibrium in a 
number of systems, it is rarely possible to completely remove the residual liquid 
phase from the substrate surface. Therefore, when the reactor is cooled to room 
temperature, a polycrystalline layer is formed from these residues. This, as well 
as the presence of solvent residue on the surface of this layer, prevents an precise 
determination of mass loss of the substrate. That is why the solubility method for 
the experimental determination of the liquidus isotherms cannot not be used in 
systems where processes similar to those discussed above occur. The well-
known case of the GaSb/GaInAsSb system, which is extremely important for 
practical applications in infrared optoelectronics, can be cited as an example. In 
this system, the GaSb substrate decomposes markedly upon contact with the 
saturated Ga–In–As–Sb liquid phase, and Sb entering the liquid strongly 
conditions crystallization. Because of this, the substrate in contact with the liquid 
is often said to be unstable. Another example of a system with unstable interfaces 
between the liquid and solid phases is the InP/GaInAsP system, that is currenlty
used to create active elements (laser diodes, LED diodes, photodetectors for 
optical communication. As the composition of this system moves toward GaInAs 
along the isoperiodic section with InP, i.e., as the bandgap of the solid solution 
narrows, the degree of nonequilibrium at the interface between the quaternary 
solid phase (in extreme cases, the ternary GaInAs and the saturated liquid In–P 
increases in the same proportion. Therefore, the growth of InP on the quaternary 
GaInAsP solid slution enriched with As (i.e., with a composition close to that of 
GaInAs or on the ternary GaInAs leads to a surface that is not perfectly planar. 
Therefore, the instability of the interface between the solid solution and the 
binary In – P saturated phase will affect the fundamental parameters of the 
device such as its degradation resistance and optical properties, and thus should 
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be minimized. For example, when growing InP/GaInAsP heterostructures for 
feedback distribution diode lasers, it is the best when the diffraction grating is 
placed directly over the quaternary solution layer and then the InP is grown on 
top of it. If the interface instability over which the Bragg diffraction grating is 
deposited cannot be eliminated, it will not be possible to fabricate the desired 
device. 

In the liquid phase epitaxy, immediately after the crystallization process ends, the 
substrate with the layers grown below the last liquid phase must be 
mechanically moved away from contact with the liquid phase. It is also 
necessary that during the process of cooling the reactor to room temperature, all 
residual solvent is completely removed from the surface of the newly grown 
structure. Otherwise, when the furnace cools down to room temperature, 
a process of crystallization of the remaining residues, which will notably reduce the 
quality of the last layer. This effect, in turn, may complicate the so-called post-
growth processes. Among the post-growth standard procedures, 
photolotography or chemical reactions are used to fabricate various devices. The 
quality of the top layer largely determines the parameters of any device made 
using these technological processes. This is why it is necessary that after 
finishing the growth of the structure, the top layer should be completely 
cleaned from solvent residues. However, in practice, the mechanical 
displacement of the substrate under the liquid phase does not always satisfy 
this requirement, and it is practically impossible to fulfill it.

For the AlGaAs and AlGaP systems there is a solution of this problem. The 
essence of this solution is that after the growth of the last layer, the structure is 
in contact with the liquid phase from which the auxiliary AlB5 layer, or the 
AlxGa1-xB5 solid solution enriched with Al (х≥0.8) crystallizes. For the arsenide 
systems it is understood that element B5 is As, and for the phosphides, 
respectively, P. After the completion of this process, the auxiliary layer is easily 
removed from the surface of the structure together with the residual solvent, in 
accordance with the reaction (6.2), by simple boiling in water. As a result, the 
structure will have an ideal plane and a mirror-like surface. At first sight, the 
AlGaSb system is very similar to AlGaAs and AlGaP. Nevertheless, the attempts 
to apply the above method to GaAsSb when the top layer is a GaSb layer, and 
when trying to grow AlSb on the structure with a total thickness of 5 microns 
and then contacting the liquid saturated Al-Sb phase, all lost because of the 
thermodynamic nonequilibrium. It is considered that the chemical coating of the
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surface is conditioned by thermodynamic nonequilibrium between the liquid 
phase Al–Sb and the solid phase GaSb, and the degree of this nonequilibrium 
increases as the concentration of Al in the liquid phase increases. In other 
words, in the example given earlier, the Gibbs energy in the solid phase 
(GaSb) of the system under consideration exceeds the Gibbs energy of the 
liquid phase Al–Sb. 

The solubility method is not applicable in various systems as a consequence of 
the particularities of the processes of establishing quasi-equilibrium between the 
liquid and solid phases, that do not have the same composition. For such 
systems in the study their liquidus curves is used the method “in situ”, in 
which during the slow heating of the liquid phase is determined by the 
temperature at which the solid phase completely disappears. The 
temperature thus determined corresponds to the liquidus temperature. If the 
components forming the liquid phase are carefully weighed before starting the 
experiment, the composition of the liquid phase at the moment of 
dissolution can be calculated. The liquidus temperature and composition of the 
liquid phase found in this manner allow us to obtain a given point on the 
liquidus curve. By repeating this experiment for other compositions, 
the families of the liquidus isotherms can be plotted. The method is 
accomplished in a vertical reactor by observing the liquid surface with the 
mirror systems through an optical microscope or using a video camera. It 
should be noted that although the advantage of this method is that it can be 
applied to any system, its main disadvantage is that it is rather inaccurate due 
to the lack of precision in measuring the liquidus temperature 
(approximately +/- 2°C) and the subjective perception of the moment of 
complete disappearance of the solid phase on the surface of the solvent.

Both methods allow us to find the dependence between the composition of the 
liquid phase and the temperature at which the liquid is saturated. 
This liquid at a fixed temperature is in equilibrium with one unique solid 
phase. To find the composition of this equilibrium solid phase, 
it must first be grown from a liquid phase whose composition 
and temperature have been found by one of the methods previously 
described. The composition of the solid phase is then determined 
by any method of measuring the chemical composition, such as 
X-rays. In this way, the isothermal liquidus families and distribution curves 
can be found experimentally.
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6.4 Calculation Methods of the Diagrams of State of Multi-component 
Systems of Group A3B5

Let us now analyze how we can theoretically study the state diagrams of the solid 
solutions of the ternary systems A3B5. Suppose that we have a pseudobinary 
system of alloys AC and BC that form solid solutions AxB1-xC.

Firstly, let us pass on to the method of the chemical equilibrium constant, which 
as we have already mentioned, is sufficiently simple and has certain advantages 
over other methods. It is important, however, to remember that it cannot be 
applied to all cases. 

The state of equilibrium between the AxB1-xC solid solutions and the liquid ternary 
phase can be described as a heterogeneous reversible reaction, where L and S are 
the indexes denoting the liquid and solid phases, respectively

AL + BL + CL ⇄ Ax B1-x CS (6.3)

Formally, this expression can be represented as two chemical reactions for 
molecules AC and BC

AL + CL ⇄ ACS (6.4)
BL + CL ⇄ BCS (6.5)

Although the above mentioned molecules AC and BC do not exist in the real 
system, from the mathematical point of view, due to the stoichiometricity of the 
A3B5 compounds and the solid solutions based on them, this representation is 
valid. In (6.4) and (6.5) the concentrations of the AC and BC molecules define 
the composition of the solid phase as xS and 1-xS, respectively.

It is known that the rate of a chemical reaction is proportional to the concentrations 
of the substances involved in it. Therefore, the reaction rate in (6.4) and (6.5) 
from left to right, can be written as follows: 

V1 = 𝛾𝛾L
AxL

A × 𝛾𝛾L
CxL

C (6.6)V2 = 𝛾𝛾L
BxL

B × 𝛾𝛾L
CxL

C,

The rate of the reactions from right to left in (6.4) and (6.5)
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V’1 = 𝛾𝛾S
AC xS

AC (6.7)
V2 = 𝛾𝛾S

BC xS
BC ,

where γi and γij are the activity coefficients of the components and molecules, 
respectively, involved in the reactions and x, as before, corresponds to the 
concentration of the elements and compounds in the liquid and solid phases.

The state of equilibrium in the system is established at equality of rates of the 
reactions proceeding from left to right (6.6) and from right to left (6.7) and is 
characterized by the equilibrium constants 

(6.8)

(6.9)

From here, we can obtain the relationship between xL
A, xL

B and xL
C,

xL
A + xL

B + xL
C =1.  (6.10)

For the solid phase

xS
AC + xS

BC = 1 (6.11)

For practical objectives in the ternary systems AxB1-xC it is important to study 
only one of its metal corners of the state diagram. To explain that particularity 
of the ternary systems A3B5, we shall analyze the magnitude of the coefficients of 

segregation in the series of metals Al, Ga, In. The segregation coefficient

of Al in the Al–Ga systems as a rule are higher than 100. In the Ga–In systems 
the segregation coefficientof of Ga is also around 100. In the Al–In systems 
kAl is determined by the values of about 103. At typical temperatures used in 
the growth processes of various A3B5 solid solutions from the solutions–melts, 
and in particular in the liquid phase epitaxy, the solubility of the fifth group 
in the A3 melts is very low. Therefore, a large part of the liquid phase consists 
of metals, and the segregation coefficients are less than the unit, and because 
of this circumstance, they are called solvents. Therefore, the solvents in systems
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A3B5 can be Ga or In, and the concentration of these elements in the liquid phase 
can be equal to 100% without significant error. 

Based on these considerations, we assume that equation (6.3) describes 
a heterogeneous reaction and the solvent is component B, i.e.

xL
B = 1 (6.12)

If we ignore the interaction between the liquid and solid phases, or in other 
words, study the system A–B–C as an ideal system, then the activity coefficients 
of all participants in the reaction can be equal to the one.

𝛾𝛾L
A = 𝛾𝛾L

B = 𝛾𝛾L
C =1 (6.13)

𝛾𝛾S
AC = 𝛾𝛾S

BC =1

That is why (6.8) and (6.9) in consideration with (6.10, 6.11, 6.12 y 6.3)

(6.14)

Considering that for the binary system B–C, taking into account the 
simplifications and assumptions, kBC=xB

C=x0
C, where x0

C is the solubility of 
component C  in pure component B, and resolving the system of equation written 
above, we obtain simple expressions for the liquidus isotherms and 
distribution curves at constant temperature

(6.15)

The expressions (6.15) establish the dependence of the solubility of the element 
C from the fifth group in the liquid phase on the concentration of element A and
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the dependence of the composition of the solid phase on the composition of the 
liquid phase. That is, they permit the calculation of the diagram of state if the 
equilibrium constants kAC and kBC are known. This expression can be further 

simplified if the relation  is denoted as k, called the equilibrium constant.

Its value, as seen from (6.14), can be found from the experimental data 
on solubility and solid phase composition. Thus, using the analyzed method, 
the state diagrams can be calculated without using thermodynamic 
parameters as entropy and fusion temperature, which as already noted, are 
known with low accuracy only for some substances. In this method, these 
parameters are included automatically in their corresponding 
equilibrium constants, that are determined from experimental data, 
which is indeed an advantage of this method over other methods of calculation of 
the diagram of state. Perhaps the method of equilibrium constants was first 
used in semiconductor materials in the study of the liquidus isotherms in the 
Ga–As–Cu system. As a consequence, the equilibrium constants began 
to be used to interpolate and extrapolate experimental data for the 
systems such as Ga–As–Si, for example, and A2B6–Si. A notorious 
disadvantage of this method is that it can be successfully applied only to a 
limited number of near-ideal systems, such as AlxGa1–xAs and AlxGa1-xP. The 
majority of the systems that are important from a practical point of view, 
since they can also be used to create various devices, cannot be 
considered ideal. Therefore, the method of chemical equilibrium constant 
cannot be applied to calculate the state diagram of such systems. In this case, the 
state diagrams are calculated using the classic method described in the equality of 
the chemical potentials in different equilibrium phases.

First consider this method in the system AxB1–xC system. In this method, we 
shall also use the reactions (6.4) and (6.5) to construct the state diagram to 
find the chemical equilibrium constants. The equilibrium conditions of the 
phases of these reactions can be represented on the basis 
of equality of their respective chemical potentials, i.e.

𝜇𝜇L
A + 𝜇𝜇L

C = 𝜇𝜇S
AC (6.16)

𝜇𝜇L
B + 𝜇𝜇L

C = 𝜇𝜇S
BC

Similar to the binary system described in Section 5.15, the chemical potentials 
in (6.16) for the components of the liquid phase are annotated as follows
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𝜇𝜇L
A = 𝜇𝜇0

A + RTln 𝛾𝛾L
A + RTln xL

A

𝜇𝜇L
B = 𝜇𝜇0

B + RTln 𝛾𝛾L
B + RTln xL

B (6.17)
𝜇𝜇L

C = 𝜇𝜇0
C + RTln 𝛾𝛾L

C + RTln xL
C 

And respectively for the solid phase

𝜇𝜇S
AC = 𝜇𝜇0

AC + RTln 𝛾𝛾S
AC + RTln xS (6.18)

𝜇𝜇S
BC = 𝜇𝜇0

BC + RTln 𝛾𝛾S
BC + RTln (1–xS).

As shown in chapter 5.15, (6.17) and (6.18) are substituted into (6.16)

𝜇𝜇0
A+RTln(𝛾𝛾L

A xL
A) + 𝜇𝜇0

C + RTln(𝛾𝛾L
C xL

C) – 𝜇𝜇0
AC– RTln (𝛾𝛾L

AC xS)=0 (6.19)𝜇𝜇0
B+RTln(𝛾𝛾L

B xL
B) + 𝜇𝜇0

C + RTln(𝛾𝛾L
C xL

C) – 𝜇𝜇0
BC– RTln [𝛾𝛾L

BC (1–xS)]=0

After similar transformations made in Section 5.15 for a binary system, an arbitrary 
temperature can be written 

(6.20)

To calculate of the state diagrams based on (6.20), or, in other words, to 
determine the compositions of equilibrium liquid and solid phases, it is necessary 
to express the activity coefficients through interaction parameters. As a rule, for 
the majority of the A3B5 systems, the dependences of the activity coefficients on 
the composition and the binary interaction parameters are calculated on the basis 
of a regular approximation. These functions published in the literature 
are summarized below in (6.21)

RTln𝛾𝛾L
A = 𝛼𝛼L

AB(xL
B)2 + 𝛼𝛼L

AC(xL
C)2 + xL

BxL
C(𝛼𝛼L

AB – 𝛼𝛼L
BC + 𝛼𝛼L

AC)
RTln𝛾𝛾L

B = 𝛼𝛼L
BC(xL

C)2 + 𝛼𝛼L
AB(xL

A)2 + xL
CxL

A(𝛼𝛼L
BC – 𝛼𝛼L

AC + 𝛼𝛼L
AB) (6.21)

RTln𝛾𝛾L
C = 𝛼𝛼L

AC(xL
A)2 + 𝛼𝛼L

BC(xL
B)2 + xL

AxL
B(𝛼𝛼L

AC – 𝛼𝛼L
AB + 𝛼𝛼L

BC)
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The activity coefficients for the solid phase using the regular solutions model are 
annotated as follows

RTln𝛾𝛾S
AC = 𝛼𝛼S

AC–BC (xS)2 (6.22)
RTln𝛾𝛾S

BC = 𝛼𝛼S
AC–BC (1–xS)2

To calculate the ternary phase diagram, three interaction parameters are needed: 
the temperature and the fusion entropies of the binary alloys AC and BC. This 
data can be found in the literature. Considering the law of conservation of mass

xL
A + xL

B + xL
C = 1, (6.23)

that permits to reduce the number of unknown variables, to calculate the 
state diagrams by expressions (6.20), (6.21), (6.22), and (6.23), as well as the 
necessary thermodynamic data. The description of this method is discussed 
in more detail in various books, articles, and, in particular, in the second 
volume of the book “Heterostructure Lasers” by H. Casey and M. 
Panish , published by Academic Press, 1978.

When calculating the diagrams of state in the AxByC1-x-yD quaternary 
systems, where A, B, and C are elements from the third group of the periodic 
table, and D is of the fifth group, the calculation method is similar to 
the method for ternary systems, since the interchange of atoms in the 
solid phase takes place only in the metallic sublattice. However, in the case 
of AxByC1-x-yD, when the atoms A and B are substituted in the metallic 
sublattice and the atoms of C and D are substituted in the nonmetallic 
sublattice, the calculations of the phase diagrams become more 
complicated. In such systems, the equilibrium equations are 
formally annotated as chemical potentials in the form of equations

𝜇𝜇L
A + 𝜇𝜇L

C = 𝜇𝜇S
AC

𝜇𝜇L
B + 𝜇𝜇L

C = 𝜇𝜇S
BC (6.24)𝜇𝜇L

A + 𝜇𝜇L
D = 𝜇𝜇S

AD

𝜇𝜇L
B + 𝜇𝜇L

D = 𝜇𝜇S
BD

Without going into details, we note that, in the case of the quaternary system of 
the AxByC1-x-yD type, the following additional conditions on the chemical 
potentials of the components of the solid phase arise
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𝜇𝜇S
AC + 𝜇𝜇S

AD = 𝜇𝜇S
BC + 𝜇𝜇S

BD (6.25)

Using the mass balance equation for the liquid and solid phases, equations 
(6.24), (6.25) and the expressions for the activity coefficients, and the required 
values of the thermodynamic parameters such as the entropy, enthalpy, and 
fusion temperature of the respective components of the system, the desired state 
diagram can be calculated. A more detailed information concerning these 
calculations can be found, for example, in the books: “Liquid Phase Epitaxy of 
Electronic, Optical and Optoelectronic Material”, edited by Peter Capper and 
Michael Mauk. Wiley series in Material for Electronic & Optoelectronic 
Application, 2007, and in the scientific literature relevant to this field.
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