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Abstract

Hyperspectral imaging (HSI) capture a wide range of spectral bands across the electromagnetic spectrum, includ-

ing both the visible range and beyond human perception. These images contain valuable information about the scenes

captured by the optical sensors. By using this information in conjunction with classification algorithms, it is possible

to determine the material or substance present in each pixel of the image. One of the main benefits of this technology

lies in its versatility, as it can be used as a visual assistance tool in various areas, from industrial applications to the

medical field. It is precisely in this medical domain where HSI has been applied for the classification and identification

of biological tissues affected by certain pathologies, showing promising results in characterizing their spatial-spectral

properties.

Despite the numerous advantages offered by HSI technology, the task of identifying pathologies through spatial-

spectral information is not straightforward. This is due to the variability among the samples and the lack of distinctive

spectral separability between healthy and diseased tissues. Moreover, the large volume of spectral information can

lead to redundancies, as increasing the number of spectral bands does not always result in improved accuracy. Further-

more, the design, evaluation, and optimization of classification methods by HSI present a computational challenge,

particularly due to the high dimensionality of the data. Furthermore, there is limited availability of HSI databases in

the medical field and an even more restrictive scarcity of labeled databases in this area.

This dissertation work aims to exploit the characteristics of hyperspectral images to develop unmixing and clas-

sification algorithms, in order to provide precise localization of different components present in hyperspectral images.

To achieve this goal, spectral unmixing methodologies were developed, considering spatial coherence and nonlinear

interactions (multi-linear mixing model) among the components in the scene of interest. Additionally, hybrid clas-

sification methods were generated, combining unmixing algorithms with machine learning for hyperspectral image

evaluation, to reduce computational costs and avoid overfitting. A new data calibration method was also proposed to

reduce the variability in the information. In addition, state-of-the-art image processing methods were explored and

adapted for hyperspectral applications.

The results of this work showed that the proposed methods allow an accurate classification of different classes of

interest, outperforming state-of-the-art methods in most of the evaluated metrics. Additionally, classification maps can

be generated with a higher level of agreement with the initial segmentations produced by clinical experts. Furthermore,

the proposed methods reduce training and inference times, opening up the feasibility of implementing these in real-

time applications.
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Resumen

Las imágenes hiperespectrales (HSI) capturan una amplia gama de bandas espectrales a lo largo del espectro elec-

tromagnético, incluyendo tanto el rango visible como más allá de la percepción humana. Estas imágenes contienen

información valiosa sobre las escenas capturadas por los sensores ópticos. Mediante el uso de esta información en

conjunto con algoritmos de clasificación, es posible determinar el material o sustancia presente en cada píxel de la

imagen. Uno de los principales beneficios de esta tecnología radica en su versatilidad, ya que puede utilizarse como

herramienta de asistencia visual en diversas áreas, desde aplicaciones industriales hasta el campo médico. Precisa-

mente en este ámbito médico es donde se ha aplicado la HSI para la clasificación e identificación de tejidos biológicos

afectados por ciertas patologías, mostrando resultados prometedores en la caracterización de sus propiedades espa-

ciales y espectrales.

A pesar de las numerosas ventajas que ofrece la tecnología HSI, la tarea de identificar patologías a través de infor-

mación espacio-espectral no es sencilla. Esto se debe a la variabilidad entre las muestras y a la falta de separabilidad

espectral distintiva entre tejidos sanos y enfermos. Además, el gran volumen de información espectral puede llevar a

redundancias, ya que aumentar el número de bandas espectrales no siempre resulta en una mayor precisión. Aunado

a esto, el diseño, la evaluación y la optimización de los métodos de clasificación mediante HSI presentan un desafío

computacional, particularmente debido a la alta dimensionalidad de los datos. Asimismo, existe una disponibilidad

limitada de bases de datos HSI en el campo médico y una escasez aún más restrictiva de bases de datos etiquetadas en

esta área.

El objetivo de este trabajo de tesis es aprovechar las características de las HSI para desarrollar algoritmos de

desmezcla y clasificación, con el fin de proporcionar una localización precisa de los diferentes componentes presentes

en las mismas. Para lograr este objetivo, se desarrollaron metodologías de desmezcla espectral, considerando coheren-

cia espacial e interacciones no lineales (modelo de mezcla multilínea) entre los componentes en la escena de interés.

Además, se generaron métodos de clasificación híbridos, combinando algoritmos de desmezcla con aprendizaje au-

tomático para la evaluación de HSI, con el fin de reducir los costos computacionales y evitar el sobreajuste. Asimismo,

se propuso un nuevo método de calibración de datos para reducir la variabilidad en la información. Además, se explo-

raron y adaptaron métodos de procesamiento de imágenes de vanguardia para aplicaciones hiperespectrales.

Los resultados de este trabajo mostraron que los métodos propuestos permiten una clasificación precisa de difer-

entes clases de interés, superando a los métodos de vanguardia en la mayoría de las métricas evaluadas. Además, se

pueden generar mapas de clasificación con un mayor nivel de coincidencia con segmentaciones iniciales producidas

por expertos clínicos. De igual forma, los métodos propuestos reducen los tiempos de entrenamiento e inferencia,

abriendo la posibilidad de implementarlos en aplicaciones en tiempo real.
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Chapter 1

Introduction

1.1 Overview of Hyperspectral Imaging

Cancer has been a global health problem, since according to the World Health Organization (WHO)

data, in 2018 there were 18.1 million new cases and 9.8 million deaths worldwide [7]. Cancer is char-

acterized by uncontrolled cell division in specific body regions that can later spread to other areas and

encompasses various pathologies [8, 9]. Although symptoms can initially be mistaken for other conditions,

physical examinations, blood tests, imaging tests, and biopsies can help to identify the presence of the dis-

ease [10]. However, a definitive diagnosis usually requires a histological examination to classify the lesion,

which is necessary to determine the most appropriate treatment based on the type of cancer, its stage, and

its extent [10, 11].

Medical technology is a vital part of assessing, diagnosing, and treating cancer patients. These tech-

nologies provide vital information that enables a detailed analysis using processing techniques or the ability

to seek a second opinion through telemedicine technologies [12]. Among these technologies, medical imag-

ing is one of the most informative and essential in clinical practice and research [13, 14]. Examples of

medical imaging technologies include X-rays, computed tomography (CT), magnetic resonance imaging

(MRI), and positron emission tomography (PET) scans. These technologies use various forms of radiation,

such as magnetic fields or X-rays, to create detailed images of the internal parts of the body. These images

enable doctors to identify and measure different tissue types, thus detecting diseases in their early stages,

sometimes even before they cause symptoms [13, 15].

Although imaging techniques have advanced considerably in the detection and treatment of various

tumors, it remains challenging to differentiate between healthy and diseased tissues using only the informa-

tion provided by digital images [15]. Furthermore, these analyses are conducted by clinical experts, making

them prone to interpretation variations and fatigue. As a result, assistive medical technologies have been de-
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Figure 1.1: Exemplification of different image capture modalities: A) RGB, B) Multispectral, and C) Hy-
perspectral.

veloped that are based on medical image processing and classification techniques [15, 16]. However, despite

the assistance provided by these technologies, it is still not possible to accurately distinguish among different

types of tissue and composites. Consequently, there has been growing interest in multispectral (Figure 1.1

B) and hyperspectral (HS) images (Figure 1.1 C) in recent years. These technologies can identify various

components using the optical response of a sample, enabling to distinguish of different types of tissues and

composites with greater accuracy [17].

Hyperspectral imaging (HSI) is a relatively new type of imaging modality that originated in the field

of remote sensing and has found many applications in various industrial and research areas in recent years

[18]. Some of the areas that have benefitted from HSI are food quality inspection [19], pharmaceutical prod-

uct quality control [20], marine ecosystem monitoring [21], soil pollution monitoring [22], petrochemical

industry [23], and defense and security [24]. HS images are composed of spatial and spectral information,

forming a three-dimensional matrix known as a hypercube or HS cube [25, 26]. Each spatial pixel corre-

sponds to a vector of intensity values that describe the response at hundreds of different spectral wavelengths

or bands, forming a continuous spectrum called a spectral signature. Unlike standard digital color cameras

that only capture red, green, and blue (RGB) images with three wavelengths (see Figure 1.1), HS cameras

can cover wide spectral ranges using different sensor types such as visual and near infrared (VNIR) between

400 and 1000 nm, near infrared (NIR) from 900 to 1700 nm, or short-wave infrared (SWIR) from 900 to

2500 nm (Figure 1.2) [27]. The spectral signature allows the differentiation, at pixel level, of the materials

presented in the captured scene based on their chemical composition and optical properties [28].
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Figure 1.2: Electromagnetic spectrum with the most commonly used divisions.

HSI techniques have made significant advances in various fields of study, including the medical field,

because of their noninvasive, nonionizing, nonlabeled, and contactless nature. In the medical field, HSI has

been utilized to measure changes in deoxyhemoglobin and oxyhemoglobin using isosbestic points of the

hemoglobin absorption spectral at the oxygen-sensitive wavelength [29]. Additionally, HSI systems have

been used to identify skin lesions by analyzing the spectral properties of the skin affected by chromophores

[30]. In another application, HSI was used for organ quality assessment during perfusion, where it predicted

the tissue water index in the kidneys, allowing the analysis of tissue-related damage during ex vivo preser-

vation [31]. Furthermore, Alzheimer’s disease has been investigated by analyzing amyloid-beta protein in

the retina in combination with HSI systems without contrast agents [32]. All of these applications are made

possible because the optical characteristics of tissues, such as reflection, diffraction, and scattering, change

as pathology progresses [26].

1.2 HSI in Cancer Detection

The applications of HSI in the healthcare environment have evolved significantly, to the point that in

recent years this technology has been investigated and employed to identify various types of tumor tissues

[33]. Consequently, this section provides a brief overview of how HSI is used to detect and evaluate various

types of cancer.

1.2.1 Skin Cancer Applications

The incidence of skin cancer has been increasing around the world, with malignant melanoma and

nonmelanoma skin cancer (NMSC) being the most common types. NMSC includes basal cell carcinoma

(BCC), squamous cell carcinoma (SCC), and other less prevalent types, while melanoma ranks 17th among

the most frequent cancers worldwide with 325,000 new cases in 2020, and NMSC ranks 5th with 1,200,000

new cases in 2020 [34]. BCC is the most frequent type of skin cancer, accounting for 80-85% of all cases,

followed by SCC with 15-20% [35].

Traditionally, skin cancer is detected through visual inspection by the naked eye and dermoscopy, which

evaluates the shape and color of the lesion using the ABCDE (Asymmetry of the mole, Border irregular-

UNIVERSIDAD AUTÓNOMA DE SAN LUIS POTOSÍ
FACULTAD DE CIENCIAS

3



Introduction

ity, Color uniformity, Diameter, and Evolving size) protocol [36]. In recent years, various imaging tech-

niques have been employed in clinical practice, including confocal microscopy, polarized imaging, three-

dimensional topography, thermal imaging, multispectral imaging (MSI), and HSI [30]. These latter imaging

modes can capture information beyond the visible range related to different chromophores [37]. MSI tech-

nology has been widely used to identify skin cancer, with commercial systems such as MelaFind developed

specifically for melanoma detection [38]. This device uses a snapshot imaging system to capture skin le-

sions. In 2015, Neittaanmäki-Perttu et al. presented a prototype HSI system to define the contour of lentigo

maligna and its progression to melanoma [39]. The HS images were analyzed using a linear mixture model

to identify the spectral responses of malignant lesions and normal skin, producing abundance maps that

delineated the lesion borders with a match of 94.7%. In 2019, the same system was used in a pilot study

to delineate BCC, achieving an accuracy of 75% [40]. In 2021, the system was tested to distinguish be-

tween BCC and melanoma, and a convolutional neural network (CNN) classifier was employed to identify

26 pigmented lesions, achieving a sensitivity of 100% and a specificity of 90% [40].

Zherdeva et al. proposed an HSI system that uses the optical density of hemoglobin and melanin to

discriminate among different types of skin cancer [41]. The authors evaluated 45 skin lesions and achieved

a sensitivity and specificity of 84% and 87%, respectively. Hosking et al. employed a Melanoma Advanced

Imaging Dermatoscope (mAID) that covers 21 distinct wavelengths in the spectral range of 350-950 nm to

classify nevus and melanoma lesions [42]. The study collected 70 HS images of skin lesions, performing a

classification between nevus and melanoma with sensitivity and specificity of 100% and 36%, respectively.

Fabelo et al. developed a system that captured HS images with 125 spectral bands in the 450-950 nm

range to evaluate 49 HS images of skin lesions corresponding to 36 patients [43]. Later, Leon et al. proposed

a methodology that combined unsupervised and supervised techniques for the automated classification of

pigmented skin lesions [44]. In this study, excellent differentiation of benign and malignant skin lesions was

achieved with 87.5% sensitivity and 100% specificity.

In 2021, Courtenay et al. reported the use of a pushbroom HS camera to discriminate between healthy

and non-healthy skin [45]. The acquisition system was composed of an HS camera with two 60 W halogen

light lamps on each side and captured 270 spectral bands in the 398-995 nm range. Statistical tests were

performed on a total of 60 patients, including 41 BCC and 19 SCC diagnosed cases. In a later study, a

combination of a CNN and a final activation layer of a support vector machine was proposed to classify the

same dataset, achieving up to 90% overall accuracy [46]. Furthermore, the SICSURFIS system has recently

been proposed as a hand-held HSI tool for complex skin surfaces [46]. In this work, a total of 42 skin

lesions were evaluated using only 33 of the thousands of spectral bands captured by the system in a spectral

range of 475 to 975 nm. The classification and delineation method employed a CNN that utilized spectral,

spatial, and skin-surface models, resulting in an 87% sensitivity and 93% specificity for the different tissues

evaluated.

UNIVERSIDAD AUTÓNOMA DE SAN LUIS POTOSÍ
FACULTAD DE CIENCIAS

4



Introduction

1.2.2 Brain Cancer Applications

A considerable cause of morbidity and mortality worldwide is represented by primary brain and central

nervous system cancers. The treatment consists of biopsy or aggressive surgical resection with postoperative

radiation and chemotherapy [47]. However, to achieve successful resection that increases the probability

of survival, it is necessary to precisely delineate the boundaries between tumor and normal tissue [48].

During surgery, different tools are often used to act as surgical guidance, such as intraoperative image-guided

stereotactic neuronavigation, intraoperative MRI, or fluorescent tumor markers like 5-aminolevulinic acid

[49].

An emerging intraoperative guidance tool is HSI, which has been used to monitor brain oxygenation

and hemodynamics in animals [50]. Recently, Fabelo et al. designed an intraoperative HS system to identify

human cancer tissue during in vivo brain surgery [51]. The system employed two pushbroom HS cameras,

an illumination source, and a scanning platform. The VNIR spectral range between 400 and 1000 nm was

covered by one HS camera, capable of acquiring 1004 pixels with 826 spectral bands. Another HS camera

imaged the NIR range between 900 and 1700 nm, capturing 172 spectral bands and 320 spatial pixels.

The illumination system was based on a quartz tungsten halogen (QTH) lamp of 150 W with a bandwidth

emission in the range 400 to 2200 nm. A scanning platform was used to provide the necessary spatial

scanning to build the HS cubes. An HS human brain database was obtained from 22 patients employing this

system [52].

In fact, the database obtained from 22 patients by Fabelo et al. [52] has been utilized in several works

for the classification and delimitation of brain cancer. A hybrid approach that combined supervised and

unsupervised machine learning (ML) methods was developed to perform a spatio-spectral classification. In

the supervised stage, the SVM algorithm was used for pixel-wise classification, and the resulting map was

spatially smoothed by K-Nearest Neighbors (KNN) filtering on a representative band of the HS cube. The

output from this stage was combined with the unsupervised stage, which utilized a hierarchical K-Means

strategy to obtain a segmentation map. The results showed that the approach accurately distinguished be-

tween normal tissue, tumor tissue, blood vessels, and background, with an overall accuracy close to 100%.

Separately from traditional ML methods, deep learning (DL) approaches were also proposed to identify

glioblastoma (GB) tumors. The proposed framework employed a 2D fully CNN to identify the parenchy-

mal region, which corresponds to the principal surgical zone of the brain, and a 2D-CNN to identify blood

vessels. The HS cube was then classified by a 1-dimensional deep neural network (1D-DNN) generating

a classification map with the four tissue classes. The blood vessels and parenchyma maps were combined

into the 1D-DNN classification map. This framework was able to identify GB tumors with a general mean

accuracy of 80%. Another research used a blind linear unmixing (BLU) method to identify GBs as a low

computational time-cost alternative [5]. This method was compared with a supervised SVM strategy, which

required a high training time, achieving similar classification results, but with a speed-up factor of 429×.
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Recently, a method combining multiple ML models was proposed to use spectral and spatial information

to identify GBs [53]. The main strength of the framework is the joint implementation of 1D-DNN and

2D-CNN architectures, which yield spectral and spectral-spatial HSI feature extraction and classification,

respectively. These structures, in conjunction with fusion and optimization, based on edge-preserving fil-

tering and background class estimation by a fully CNN, enabled the proposed method to achieve an overall

accuracy of 96.69% for four-classes classification and 96.34% for GB identification.

An HS acquisition system was presented by Urbanos et al. to acquire and process HS images during

the surgical environment [54]. The system employs a snapshot HS camera that is capable of capturing 25

bands in the range of 655 to 975 nm. The illumination system uses a 150 W halogen lamp connected to two

fiber optic cables to remove thermal exposure. In this study, an HS database was generated, consisting of

over 50 images of various pathologies and labeled into five different categories: normal tissue, tumor, dura

mater, venous, and arterial blood vessels. Finally, 13 images with advanced stages of GB (grades III and IV)

were used to train and assess the SVM, Random Forest (RF), and CNN classifiers, resulting in an overall

accuracy between 60% and 95%.

In addition, HSI systems have been used to monitor the differences in oxygenated and deoxygenated

hemoglobin levels that occur in the brain during neurosurgical procedures [55]. A camera capable of cap-

turing 25 bands in the spectrum between 675 and 975 nm was used for this application. Another HSI system

was used to identify postoperative cerebral hyperperfusion syndrome by monitoring intraoperative changes

in brain surface hemodynamics using the spectral range between 400 and 800 nm [56].

1.2.3 Gastrointestinal Cancer Applications

Gastrointestinal cancer includes the stomach, liver, esophagus, pancreas, and colorectum; this cancer

modality represents 26% of the global incidence and 35% of mortality in 2018 [57]. Endoscopic tools such

as gastroscopy, colonoscopy, and wireless capsule endoscopy using RGB cameras are commonly employed

to detect gastrointestinal cancers and their abnormalities [58]. To increase versatility, HSI has been incor-

porated into endoscopy to explore the optical properties of the tissue. In 2018, a system called ICL SLHSI

(Structured Light and Hyperspectral Imager) was developed by Lin et al., which employed a pushbroom HS

camera that covers the spectral range 400-1000 nm with 270 spectral bands [59]. Similarly, a study proposed

a technique to distinguish early esophageal cancer lesions using standard and HSI endoscopy with a spectral

range of 350-800 nm [60]. Yoon et al. reported a line-scanning HSI endoscopy that was able to capture

100 spectral bands that spanned wavelengths of 680 to 730 nm. The HSI system was used to improve polyp

discrimination for detection and resection in seven patients undergoing routine colonoscopy screening, and

the KNN algorithm was used as a classifier to discriminate between patients with and without polyps [61].

Furthermore, Köhler et al. developed an HSI laparoscope capable of capturing 100 spectral bands ranging

in wavelengths from 500 to 1000 nm, and the platform was tested with resected human tissue [62].
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A pushbroom NIR HS camera with 256 bands and a spectral range of 1000 − 2350 nm was employed

by Sato et al. to image 12 ex vivo gastrointestinal stromal tumors [63]. During this the study, the SVM

algorithm was utilized to predict normal and lesion regions, resulting in a performance of more than 73% in

all evaluated metrics. In other studies, the TIVITA Tissue System (Diaspective Vision GmbH, Am Salzhaff,

Germany), a commercial HSI system capable of capturing images with a spatial dimension of 640 × 480

pixels and a spectral range of 500 to 1000 nm, was evaluated to determine the resection margin during

colorectal surgery in 24 patients [64]. Additionally, the same tool was used in another study to detect

colorectal carcinoma in 54 patients, achieving a sensitivity of 86% and a specificity of 95% through the use

of a neural network (NN) to classify tumor and healthy mucosa in colorectal carcinoma [65].

1.2.4 Head and Neck Cancer Applications

The oral cavity, nasopharynx, pharynx, and larynx are all included in head and neck cancer, which is

often diagnosed through patient self-identification by presenting symptoms like voice changes or cranial

nerve palsies [66]. HSI applications for this type of cancer are still in their early stages of development.

An optical biopsy method using HSI and CNN was proposed by Halicek et al. for ex-vivo head and neck

cancer [67]. The acquisition structure utilized a CRI Maestro imaging system (Perkin Elmer Inc., Waltham,

Massachusetts) comprising a xenon white-light illumination lamp, a liquid crystal tunable filter, and a 16-bit

charge-coupled devices (CCD) camera capable of capturing 91 bands with wavelengths ranging from 450

to 900 nm. Recently, Eggert et al. conducted a prospective clinical observational study to classify healthy

and tumor tissue of laryngeal, hypopharyngeal, and oropharyngeal mucosa [68]. The HSI system used was

capable of capturing 30 spectral bands ranging from 390 to 680 nm. In this work, 98 patients were examined

in vivo due to suspicious lesions of the mucosal membrane before surgery. DL methods were employed to

achieve an average accuracy of 81%, a sensitivity of 83%, and a specificity of 79%.

1.2.5 Histological Samples in Cancer Applications

Several diseases can be identified by examining histological samples using digital pathology. Mi-

croscopy is used to digitize samples and capture partial or complete images at higher magnifications [69].

HSI has been employed in various studies to analyze histological samples using microscopy [25].

A process to attain high-quality HS images using a pushbroom HS microscope was proposed by Ortega

et al. [70]. The HS camera captured 826 spectral bands and 1004 spatial pixels in the spectral range of 400 to

1000 nm. The camera was coupled to a conventional light microscope to capture 83 HS images for 5× and

10× magnifications. These images were obtained from 13 pathology slides of human brain tissue affected

by a grade IV GB tumor resected during surgery [71]. Three supervised classification algorithms, SVM,

NNs, and RF, were utilized to classify the HS images captured at 5× magnification. The system achieved

competitive results in distinguishing between normal and tumor tissue with an accuracy of more than 80%
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[72]. In a recent study, the pushbroom HS microscope system was modified to overcome the limitation of

the effective spectral range. A new database of 527 HS images was collected, including 337 non-tumor

brain samples and 190 GB samples [25]. The system was also employed to differentiate between normal

and tumor breast cancer cells using 112 HS images captured from histologic samples of human patients at

20× magnification. A DL network was employed, achieving an area under the curve of over 0.89 for all

experiments.

An HS microscopic imaging system was developed by Ma et al., covering a spectral range of 460 to 750

nm with 87 spectral bands, employing a SnapScan HS camera [73]. A total of 15 histologic slides of larynx

and hypopharynx from 15 head and neck cancer patients were collected at 40× magnification. The author

proposed a nuclei segmentation strategy based on the analysis of the main components. Spectral-based

SVM and patch-based CNN were used for nuclei classification. The average accuracy of the spectral-based

SVM classification was 68%, and of CNN was 82%. Finally, a system was presented by Souza et al. for

acquiring HS images using a conventional microscope and a liquid crystal tunable filter (LCTF) [74]. The

light in various wavelengths from 400 to 720 nm is filtered using this system based on light polarization. The

system was tested on a H&E-stained slide of rat skin treated with ALA-mediated photodynamic therapy.

Four different algorithms (KNN, SVM, and RF) were employed, resulting in an accuracy between 96% and

98%.

1.3 Problem Statement

The potential and versatility of HSI in the medical field have been demonstrated in recent years, as

shown in previous sections. Despite these advances, there are some limitations to this technology that

must be taken into account. One of them is that direct identification of tumor or injured tissue regions is

not directly possible in the raw HS images. Because of this, advanced processing is necessary to identify

the spectral signatures of the different elements that make up a sample, and at the same time classify the

regions that have them. These processes, as can be seen in the previous cases, are diverse with different

advantages and disadvantages of each particular algorithm and application. In addition, this heterogeneous

condition involves high difficulty in analyzing the data and extracting meaningful information with a high

computational cost for its study. Finally, capture conditions can affect data quality and certain materials can

be complex to identify, such as those with low reflectance or transparent materials.

In the literature, there are standard algorithms that allow to perform HS analysis in multiple applications

in different research fields [75]. Among these algorithms, decomposition or unmixing methods are versatile

techniques widely used in various research fields to analyze HS data. These algorithms allow estimating

the characteristic spectral signatures of the different components present in a sample, also called profiles or

end-members, and their fractional contributions known as abundance or concentration at each pixel [76, 77].

In the state-of-the-art, different approaches have been proposed to perform spectral decomposition, methods
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such as those based on artificial intelligence (SVM, NNs, among others), spectral divergence information,

spectral angle mapping, and mathematical linear spectral unmixing (SU) techniques [77]; these methods

have emerged as several important processing options [78]. Nevertheless, identifying characteristic spectral

signatures of a particular tissue, such as the regions with the highest concentration of them, without prior

knowledge is not a simple task, even with training information. In this sense, linear SU methods let blind or

unsupervised estimation of both end-members and abundance maps without prior training information [79].

Although linear unmixing (LU) techniques have been shown to be efficient in classifying various types

of tissues, they are susceptible to noise from different sources and light scattering from adjacent pixels [80].

Still, these techniques have positioned themselves as a powerful tool for converting spectral information

into data that may be related to the physical abundances of materials on the surface [80, 81]. But this

condition is strictly valid only for the situation where the end-members are arranged at discrete locations on

the surface, condition rarely met in practice. Moreover, in many research fields these material mixtures are

closely related to each other, which is very difficult to consider for simple linear models [81, 82]. However,

in the case of nonlinear spectral decomposition, it is possible to distinguish between microscopically mixed

materials and even to take into account events that present multiple scattering effects, in addition to showing

greater robustness to the presence of noise [80, 81]. Furthermore, taking into account spatial coherence

properties, corresponding to the spectral signatures surrounding the analyzed area allows a much more

accurate and robust estimation of abrupt changes [83].

We believe that this research will provide the foundation for developing various SU algorithms based on

linear and nonlinear mixture models for the classification and identification of basic components in tissue

samples affected by different pathologies. These methods would enable rapid and accurate analysis of

the data using unsupervised, semisupervised, and supervised approaches. Additionally, we aim to explore

the possibility of combining these methods with other decomposition or classification techniques, thereby

enhancing the accuracy of the estimations.

1.4 Research Objectives

The overall objective of this dissertation project is to propose advanced analysis methods that allow

the identification of different components present in HS biomedical images. This work is based on the un-

mixing mathematical framework of the Extended Blind End-member and Abundance Estimation (EBEAE)

algorithm [84]. These methods involved the addition of spatial coherence information and the extension of

the linear model to a nonlinear one. Additionally, hybrid methodologies that combined unmixing algorithms

with ML techniques were explored and proposed. Furthermore, possible sources of variability in the HS data

that could have affected classification processes were analyzed.

The following specific aims were established for the period September 2019 - August 2023 to meet the

general objectives:
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(1) Study, analyze and understand the mathematical framework of the EBEAE algorithm.

(2) Evaluate the EBEAE method on different types of HS images.

(3) Develop a blind estimation methodology that includes spatial coherence information in its formu-

lation.

(4) Evaluate the unmixing algorithm with spatial coherence with different HS databases.

(5) Develop, study, and understand the nonlinear extended blind abundance and end-member estima-

tion (NEBEAE) method.

(6) Evaluate the NEBEAE algorithm on experimental HS images.

(7) Explore ML algorithms for joint classification methodologies with spectral decomposition methods.

(8) Reduce variability in the classification and identification of components by a new calibration method.

The specific aim 1 will be achieved by reviewing in the literature the EBEAE algorithm, which was

proposed in [84], and its previous versions. In this stage, the mathematical analysis will be carried out to

deduce each component present in the synthesis framework, such as the hyperparameters. Subsequently,

aim 2 will consist of studying the behavior of the decomposition algorithm in different types of HS images,

both synthetic and experimental. This stage will provide a better understanding of the hyperparameters and

the implications of modifying each of them. In addition, the experiments will allow interpretation of the

results and identification of possible limitations in the evaluations.

The work done in specific aims 1 and 2 will serve as the basis for the specific aim 3, in which var-

ious types of spatial coherence techniques in the literature will be analyzed. In addition, decomposition

algorithms that implement spatial coherence information in the estimation will be studied. Once this aim

is achieved, a spatial coherence version of EBEAE will be proposed. The specific aim 4 of this study is to

evaluate the performance of the proposed algorithm on both experimental and synthetic HS images and to

compare it with the methods discussed in the literature.

Subsequently, with the experience obtained in the previous objectives and examining in detail the state-

of-the-art, a version of nonlinear unmixing will be proposed. This algorithm will be evaluated in different

databases, as in the specific aim 2, which will fulfill the specific aims 5 and 6. After that, in specific aim 7

it will seek to improve the results generated by means of hybrid classification algorithms, which combine

spectral decomposition and ML techniques. Finally, in specific aim 8 will seek to improve the estimations

made by a new preprocessing proposal and a new DL approach using attention methods.
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Figure 1.3: General thesis organization diagram.

1.5 Thesis Organization and Scientific Contributions

This section describes the organization of this dissertation document, which has been divided into six

chapters covering the general objectives described previously. The structure and general content of this dis-

sertation are depicted in Figure 1.3, providing an overview of its distribution. This diagram also illustrates

the journey undertaken during the doctoral period. Initially, the focus was solely on unmixing algorithms,

but the challenges encountered during the project’s development led to the creation of new strategies, pre-

sented in subsequent chapters. Additionally, it highlights the main contributions resulting from achieving

the proposed specific objectives and the challenges overcome. It also discusses the main contributions made

to achieve the set goals.

Initially, Chapter 1 provides an overview of the main argument, the specific aims, and structure of this

document. The general view of HSI in medical applications emerges as part of the following book chapter:

- I. A. Cruz-Guerrero, R. Leon, A. R. Mejia-Rodriguez, D. U. Campos-Delgado, S. Ortega, H. Fa-

belo, and G. M. Callico, “Hyperspectral Imaging for Cancer Applications,” in Diagnosis and Treat-

ment of Cancer using Thermal Therapies, CRC Press, 2023, pp. 81–101, doi: 10.1201/9781003342663.

Subsequently, each chapter aims to address the proposed objectives and presents the contributions developed

based on them.
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Chapter 2: Methodological Background
Contains detailed information about different concepts, topics, and definitions used throughout this doc-

ument. In addition, this chapter includes subjects not so extensively detailed in the first one.

Chapter 3: Databases for Hyperspectral Image Analysis: Description and Preprocessing
In this chapter, the HS databases employed in this research work are presented, along with their prop-

erties, acquisition platform, and preprocessing.

Chapter 4: Spectral Unmixing
This chapter presents the theoretical background of the mixing models found in the literature, which

form the basis for the different SU methods developed during this dissertation. It covers both linear and

nonlinear algorithms. The objective of this chapter is to provide an overview of the proposed SU methods,

explore various approaches to achieve classification based on these methods, and develop classification

proposals based on LU. This chapter materialized in four scientific contributions, whose references are

provided below:

- I. A. Cruz-Guerrero, R. Leon, D. U. Campos-Delgado, S. Ortega, H. Fabelo, and G. M. Callico,

“Classification of hyperspectral in vivo brain tissue based on linear unmixing,” Appl. Sci., vol. 10,

no. 16, Aug. 2020, doi: 10.3390/app10165686.

- I. A. Cruz-Guerrero, D. U. Campos-Delgado, A. R. Mejia-Rodriguez, A. J. Jo, S. Ortega, H. Fabelo,

and G. M. Callico, “Multi and Hyperspectral Image Unmixing with Spatial Coherence by Extended

Blind End-member and Abundance Extraction,” J. Franklin Inst., 2023.

- D. U. Campos-Delgado, I. A. Cruz-Guerrero, J. N. Mendoza-Chavarría, A. R. Mejía-Rodríguez,

S. Ortega, H. Fabelo, and G. M. Callico, “Nonlinear extended blind end-member and abundance

extraction for hyperspectral images,” Signal Processing, vol. 201, p. 108718, 2022,

https://doi.org/10.1016/j.sigpro.2022.108718.

Chapter 5: Reflectance Calibration with Normalization Correction In this chapter, a proposal for

spectral calibration is introduced with the aim of reducing spectral variability, followed by its respective

evaluation in both a controlled scenario and an experimental case. This proposal was presented at the

Euromicro Conference on Digital System Design, while the experimental evaluation was presented at the

National Congress of Biomedical Engineering, whose references are provided below:

- I. A. Cruz-Guerrero, R. Leon, L. Granados-Castro, H. Fabelo, S. Ortega, D. U. Campos-Delgado,

and G. M. Callico, “Reflectance Calibration with Normalization Correction in Hyperspectral Imag-

ing,” in 2022 25th Euromicro Conference on Digital System Design (DSD), 2022, pp. 855-862,

https://doi.org/10.1109/DSD57027.2022.00120.
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- I. A. Cruz-Guerrero, J. N. Mendoza-Chavarría, and D. U. Campos-Delgado, “Glioblastoma Clas-

sification in Hyperspectral Images by Reflectance Calibration with Normalization Correction and

Nonlinear Unmixing,” in Congreso Nacional de Ingeniería Biomédica, Cham: Springer Interna-

tional Publishing 2022, pp. 393–402, https://doi.org/10.1007/978-3-031-18256-3_43.

Chapter 6: Advanced Hyperspectral Brain Tissue Classification with Hybrid Schemes of Linear
Unmixing and Artificial Intelligence

This chapter addresses the methodologies developed regarding hybrid approaches, which combine SU

techniques with ML algorithms for classification and identification of components. Additionally, a proof of

concept based on vision transformers for spectral information classification is evaluated. The results and

proposals in these topics are reflected in three scientific contributions, whose references are listed below:

- I. A. Cruz-Guerrero, D. U. Campos-Delgado, A. R. Mejia-Rodriguez, H. Fabelo, S. Ortega, and G.

M. Callico, “A hybrid approach to the hyperspectral classification of in vivo brain tissue: linear un-

mixing with spatial coherence and machine learning,” in Artificial Intelligence in Cancer Diagnosis

and Prognosis, Volume 3: Brain and prostate cancer, IOP Publishing, 2022,

https://doi.org/10.1088/978-0-7503-3603-1ch9.

- I. A. Cruz-Guerrero, D. U. Campos-Delgado, A. R. Mejia-Rodriguez, R. Leon, S. Ortega, H. Fa-

belo, R. Camacho, M. Plata, and G. M. Callico, “Hybrid Brain Tumor Classification Scheme of

Histopathology Hyperspectral Images Using Linear Unmixing and Deep Learning,” Submitted in

Healthcare Technology Letters, 2023, Manuscript ID: HTL-2023-08-0027.

- I. A. Cruz-Guerrero, J. N. Mendoza-Chavarría, D. U. Campos-Delgado, H. Fabelo, S. Ortega, and

G. M. Callico, “Classification of Brain Tissues in Hyperspectral Images Using Vision Transform-

ers,” in 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI), 2023, pp. 1–4,

doi: 10.1109/ISBI53787.2023.10230806.

Chapter 6: Conclusions
This last chapter summarizes the main findings of this dissertation, as well as the limitations and areas

of future development and application of the methods proposed in this research work.
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Chapter 2

Methodological Background

The field of HSI has undergone remarkable expansion and advancement in recent years, driven by the

emergence of novel technologies and cutting-edge techniques designed to tackle a diverse array of chal-

lenges. To truly appreciate the significance of the research unveiled in this dissertation, it becomes impera-

tive to cultivate a comprehensive grasp of the contemporary landscape within the HSI domain. In essence,

the overarching objective of this chapter is to lay down a sturdy bedrock of knowledge, one that will serve

as a vantage point for the research expedition that unfolds in the ensuing chapters. By delving into the

fundamental principles, methodologies, and innovations that underlie HSI, it aims to provide readers with

the essential context required to grasp the implications of the research endeavors documented within this

dissertation.

2.1 HSI Platform

As described in Chapter 1, HSI is a technology used to capture and analyze the full spectrum of light

reflected or emitted by an object or scene [26]. A typical HS image is a 3-dimensional array, where the

first two dimensions correspond to the spatial x and y coordinates of the image, and the third dimension

corresponds to the wavelength of light [25, 26]. This means that each pixel of an HS image represents a

collection of measurements taken at different wavelengths (such as in the visible, infrared, or ultraviolet

regions of the electromagnetic spectrum); this information is the unique pattern of light that is reflected,

emitted, or absorbed by a substance or object and can be used to identify it or determine its properties [25].

In general, HSI has several advantages over other types of imaging techniques, which include:

• High spectral resolution: HSI can capture light across a wide range of wavelengths and can be used

to detect materials or features that are not visible to the naked eye, which allows the identification

of hidden features and the characterization of a wide range of materials [33, 85]. This property of
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HSI is useful in a variety of applications, such as mineral exploration, environmental monitoring,

and medical imaging [85].

• Chemical analysis: HSI can be used to determine the chemical composition of a wide range of

materials, such as rocks, soils, and biological tissue [86].

• Non-destructive testing: HSI is a non-destructive testing method, meaning that it does not damage

the object being imaged, which is relevant in applications such as art conservation and archaeolog-

ical research [33, 85].

• High spatial resolution: With the advancements of technology, HSI sensors can also provide high

spatial resolution, allowing them to detect small objects on a big image and a high level of detail

[85, 87].

• Combination with other sensors: HS data can be easily integrated with data from other sensors,

such as lidar and radar, to provide a more complete understanding of the objects being imaged

[33, 85].

Despite the many advantages HSI offers, there are some limitations such as:

• Data size: The large amount of data collected by an HSI system can be difficult to store and transmit

[33, 85].

• Spatial resolution: The spatial resolution of an HS image is usually lower than that of a traditional

image, especially when a high spectral resolution is required or a quick capture is desired [87].

• Signal-to-noise ratio: In some cases, the signal-to-noise ratio of an HS image may be too low

to obtain useful data, particularly in cases where the scene being imaged is low in contrast or

variability [87, 88].

• Interference: Some environmental factors can introduce noise and interfere with the image acqui-

sition process, which can reduce the accuracy of the data [85, 86].

• Object occlusion: Certain items or substances may be hidden by others, making it difficult to obtain

precise information about them. [87].

• Spectral analysis: Sometimes, the accurate spectral analysis might be limited by the complexity of

the target and the quality of a known prior spectral library [33, 86].

• High computational requirements: HS data require a lot of computational power and time to extract

information [85].

The selection of HSI instrumentation can have a significant impact on the limitations of the technique, since

there are always trade-offs between advantages and drawbacks. In the following subsection, the instrumen-

tation required within HSI and the main characteristics of each element will be studied.
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2.1.1 HSI Instrumentation

In HSI, instrumentation is a crucial element for reliable, efficient, and high-quality spectral data acqui-

sition. Usually, an HSI platform consists of an HS camera, a light source, a computer with the acquisition

software, and, in some cases, a motorized mobile station, which depends on the scanning mode employed

by the HS camera [86, 89]. This section provides an overview of the key components of an HSI system.

2.1.1.1 HS Camera

The HS camera is the main component of the acquisition system, which consists of two structures:

spectrographs or spectrometers and a detector or array of photosensitive detectors [90]. Spectrographs al-

low the dispersal of incident polychromatic light into beams with specific wavelengths, with three types

of devices [86]: monochromator, optical bandpass filter, and single-shot imager. These scattering devices

focus the narrow wavelength light toward each of the detectors. In this sense, the photosensors most used

in HSI are CCD and complementary metal-oxide semiconductors (CMOS) [88]. The principal difference

between these two sensors lies in the transmission scheme of the incoming signals. On the one hand, CCD

sensors focus on measuring the luminous intensity, transferring the resulting multisensor signal to a digi-

tal/analog converter. On the other hand, CMOS sensors incorporate the photodetector and the digital/analog

converter together; thus, the information from each sensor is independent of the rest. Because of this differ-

ence, CMOS sensors are faster in measuring and capturing photons, but these sensors are susceptible to the

presence of noise and are mostly affected by dark currents [88, 90]. This situation is compensated by CCD

sensors, since digitizing the signals outside the photodiode allows for the inclusion of components with dif-

ferent characteristics that mitigate noise, dark current, and acquisition speed. In addition, CCDs have better

sensitivity for visible and VNIR wavelengths, whereas CMOS have higher efficiency in the infrared range.

In general, HSI cameras are classified according to the scanning method used to generate hypercubes,

with four main types of scanning: whiskbroom, pushbroom, focal plane, and snapshot [85, 86, 88]. Whiskb-

room or point-scanning cameras are characterized by capturing the spectral information of one pixel at a time

(Figure 2.1A); this means that to scan a particular region, it is necessary to have a mobile station that travels

through the scanning area of the camera at each location in dimensions X and Y, where the acquired hy-

percube is stored in a band-interleaved-by-pixel (BIP) format [86, 88]. Due to this, whiskbroom cameras

require considerable time to acquire an image, so spatial resolution is often limited. Nevertheless, the main

strength of these cameras is their high spectral resolution, which permits one to capture a large amount

of information. Like in the previous case, the pushbroom or line-scanning cameras (Figure 2.1B) acquire

complete spectra of several pixels continuously, that is, the area of interest is scanned line by line until the

entire image is captured, storing the hypercube in a band-interleaved-by-line (BIL) format [85, 88]. This

scanning mode requires a mobile station to traverse the scan line through the area, however, motion artifacts

may occur. The pushbroom camera provides high spatial and spectral resolution, and for this reason is the
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Figure 2.1: Hyperspectral imaging scanning techniques: A) whiskbroom, B) pushbroom, C) focal plane,
and D) snapshot.

most used today.

Focal plane and snapshot cameras (Figures 2.1C and 2.1D) allow scanning of complete areas, capturing

spatial and spectral information together [85, 88]. Focal plane cameras acquire a 2D monochromatic image

at a given wavelength, i.e., each spectrum is captured independently until completion of the hypercube,

using a band sequential format (BSQ) as a form of storage [86, 88]. The main advantage of these cameras is

that they can capture a single wavelength or several wavelengths by selecting them, but they are susceptible

to the presence of motion artifacts. As in the previous case, snapshot cameras acquire spatial and spectral

information simultaneously, but unlike focal plane cameras, this type of camera produces the hypercube in

a single shot, which results in a reduction of the capture time. However, snapshot cameras can acquire a

limited number of spectral bands, so the spectral resolution is lower than with other camera types.

2.1.1.2 Light Source

In this sense, the light source is another crucial component of the HSI acquisition system, as light is

the medium that provides information about the objects under study. Currently, halogen lamps are the most

widely used because of their broad-spectrum, which is continuous, soft, and without sharp peaks [86, 90].

However, this type of illumination has certain disadvantages, such as a temperature rise in the sample, short

lifetime, and spectral peak change as a result of variations in temperature, voltage, and time of use. On the

other hand, light-emitting diodes (LEDs) have started to be used as light sources due to their long lifetime,

fast response, compact size, low power consumption, and low heat generation. LEDs can produce broad

and short spectra in the ultraviolet, visible, and infrared regions. However, they are not very efficient in

dissipating heat, which reduces their lifetime and affects their spectrum. Finally, lasers are light sources with

narrow bandwidth, linear direction, and are used mainly in fluorescence and photoluminescence applications

[86, 90].
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Figure 2.2: Most common hyperspectral acquisition modes: A) reflectance, B) transmittance, and C) inter-
actance.

2.1.2 HSI Acquisition Methodologies

The most common acquisition modes or methodologies are reflectance, transmittance, and interactance,

which configurations are depicted in Figure 2.2. These acquisition modes are fundamental in the interaction

studies of electromagnetic radiation with objects and are often used to provide different kinds of information

about a material [86, 89, 90].

Reflectance is the amount of light reflected by a surface across the electromagnetic spectrum [86, 89,

90]. It is measured in percent, with 100% reflectance equal to the total amount of light incident on the

surface, while 0% indicates that the surface reflects no light. This information allows to create of spectral

signatures, which are unique patterns of reflectance that can be used to identify different materials by mea-

suring their properties, and tracking their changes over time. This acquisition mode has a preprocessing

step linked to the reflectance information to eliminate the effects of temperature and illumination changes,

as well as the aging of the light source [85, 86, 89, 90]. This preprocessing is known as reflectance cali-

bration, so that the raw image (I0 ∈ RX×Y×L) is modified based on a dark (ID ∈ RX×Y×L) and a white

(IW ∈ RX×Y×L) reference images. The reference ID is captured by closing the camera shutter, while IW
is captured from a highly reflective and uniform white surface. These images are related by the following

equation

IR = 100× I0 − ID
IW − ID

, (2.1)

where IR ∈ RX×Y×L is the resultant image, with spatial dimensionsX×Y and L number of spectral bands

[86, 90].

Transmittance is the measurement of the amount of light that passes through a material at different
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wavelengths. It is measured in percent, with 100% transmittance equal to the total amount of light passing

through the surface and 0% indicates that light cannot pass through the sample under analysis [85]. This

information can measure the optical properties of translucent materials. As in the case of the reflectance

mode, transmittance also has a preprocessing stage to adjust the spectral information and eliminate unwanted

effects. This preprocessing is known as transmittance calibration, using the same images as in the case of

reflectance calibration (I0, ID, and IW ) [86]. The transmittance is obtained through

IT = −log10

(
I0 − ID
IW − ID

)
, (2.2)

where IT ∈ RX×Y×L is the transmittance image.

Finally, interactance is the measurement of the amount of light interacting with a surface, including

both reflectance and transmittance. In this mode, the light sources and the optical detector are on the same

side of the sample, but the capture field of the detector is not illuminated [86], as shown in Figure 2.2C. The

sensor captures the light as it passes through the sample and reaches the surface, reducing the adverse effects

caused by the thickness of the sample and those caused by specular reflection, thus obtaining both external

and internal information. This information measures the optical properties of opaque or semitransparent

materials [86].

2.2 HSI Analysis Algorithms

HS image processing has emerged as a significant research field to extract valuable information from

captured objects and scenes. This processing involves the application of various algorithms, which play a

crucial role in information extraction, material classification, change detection, object segmentation, and

identification of chemical compounds present in a scene.

This section presents the most common algorithms for HS image processing. Additionally, the analysis

methodologies to tackle specific tasks, such as supervised, unsupervised, and semi-supervised learning,

will be discussed. Each of these learning approaches and processing methods comes with its own set of

advantages and challenges, and the selection depends on the specific characteristics of the problem at hand

and the available data.

2.2.1 Analysis Methodologies

In general, the models used to analyze HS images employ diverse strategies to perform tasks such as

classification, segmentation, compound identification, and even regression. Among the different analysis

approaches, supervised, unsupervised, and semi-supervised learning stand out [91, 92].
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2.2.1.1 Supervised Approach

Supervised learning is a strategy in which a model is trained using pairs of input/output data, where the

outputs can be discrete (classification) or in real numbers (regression) [91, 92]. The goal of the supervised

methodology is for the model to learn to correctly map input data to the expected outputs. The principle

of this approach is to provide the model with a significant amount of training data, where each input data

is associated with a specific output value. During training, the models adjust their parameters to minimize

the difference between the predicted outputs and the expected outputs. Finally, once the model has been

trained, it can be used to make predictions on unpaired input data by employing the learned patterns to

infer the corresponding outputs. In this way, the supervised method allows one to gain knowledge and

identify patterns from previously labeled examples [91, 92]. It is also important to note that the performance

of supervised learning is highly dependent on the quality and representativeness of the training data. The

more varied and comprehensive the training data set is, the better the model will be in making precise and

applicable predictions.

2.2.1.2 Unsupervised Approach

Unsupervised methodology is a type of ML in which the models learn from data without any informa-

tion about the corresponding outputs. Unlike the supervised approach, the unsupervised method does not

have explicit information to provide to the model, whose main goal is to discover patterns, clusters, hidden

structures, or intrinsic relationships in the data without any external support or prior knowledge of the labels

or classes to which they belong. However, interpreting the results can be more challenging and subjective

since there is no clear reference to evaluate the quality of the predictions [91, 92]. Furthermore, the effec-

tiveness of the unsupervised approach, as in the supervised case, depends on the quality of the data and the

appropriate choice of algorithms and parameters.

Some examples of common unsupervised techniques include clustering and dimensionality reduction

methods [92]. Clustering algorithms are employed to group data into sets or clusters based on their similarity,

to allow data within the same cluster to be as similar as possible to each other, while data between clusters

should be significantly different. On the other hand, dimensionality reduction is used to represent data in a

lower-dimensional space while preserving characteristic information. This new representation allows better

visualization and understanding of the data, as well as reducing computational complexity in subsequent

analysis after reduction [91, 92].

2.2.1.3 Semi-supervised Approach

The semi-supervised method combines the capability of the unsupervised approach with the use of su-

pervised information to improve accuracy [93]. In this strategy, labeled data (typically a small amount) is

used alongside unlabeled data, where the latter usually represents a larger proportion for training [91, 92].
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The main idea behind the semi-supervised approach is to leverage the limited information from the labeled

data to enhance the performance of the model. However, unlike supervised learning, the semi-supervised

method uses labeled in conjunction with unlabeled data to learn patterns and underlying structures, estab-

lishing the assignment of classes to the unlabeled information [91, 92, 93]. In other words, the objective is

to use the labeled data to guide the model in the classification or prediction of unlabeled data.

The semi-supervised strategy is a highly useful tool in scenarios where obtaining labeled data is chal-

lenging or costly. However, similar to previous approaches, the performance of this method is based on

the quality and representativeness of the data. Additionally, finding an appropriate balance between labeled

and unlabeled data is important to achieve good performance, as an imbalance can introduce bias in model

generalization [91, 92, 93].

2.2.2 Spectral Information Divergence

Spectral Information Divergence (SID), together with Spectral Angle Mapper, is one of the most com-

mon methods in HS image analysis. This method assesses the difference between the spectra of two pixels

in an image [26, 33]. In simple terms, the more prominent the divergence, the larger the difference between

the spectra and vice versa. The SID is calculated based on the probability distribution of two spectral vec-

tors: one corresponding to the pixel under analysis {ti} and the second corresponding to a reference pattern

{ri}. The probability distribution of the reference spectra {qi} is calculated as:

qi =
ri∑c
i=1 ri

∀i ∈ {1, ..., c}, (2.3)

while the distribution of the test spectra {pi} is calculated using the following equation:

pi =
ti∑c
i=1 ti

∀i ∈ {1, ..., c}. (2.4)

Once the probability distributions {pi} and {qi} are calculated, it is possible to estimate the value of the SID

using the equation:

SID =

c∑
i=1

pi log
pi
qi

+

c∑
i=1

qi log
qi
pi
, (2.5)

where c represents the number of spectral channels or bands [94, 95].

2.2.3 Spectral Angle Mapper

The Spectral Angle Mapper (SAM) is a widely used algorithm in the field of HS image analysis. This

method measures the spectral similarity between pixels in an HS image and a reference spectra by calculat-

ing the angle between both spectra [26, 33]. Typically, this evaluation is performed by comparing each pixel

in the image with a known reference spectra, based on the assumption that similar materials have similar
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spectral signatures [33, 96]. SAM determines the similarity using the following equation:

α = cos−1

∑c
i=1 tiri√∑c

i=1 t
2
i

√∑C
i=1 r

2
i

, (2.6)

where α is the angle between the spectral response {ti} (the spectrum under analysis) and {ri} (the reference

spectrum). In this case, if the result of this equation is small, the pixel is considered to belong to the same

class as the reference spectrum [96]. On the contrary, if the angle is large, the pixel is classified as belonging

to a different class.

2.2.4 Spectral Unmixing

Spectral unmixing (SU) methods are pixel analysis algorithms that decompose the spectral information

of a pixel under the assumption that it is a mixture of elemental spectra or end-members, along with a set

of fractional abundances indicating the proportion of each end-member. There are two main approaches

to evaluate unmixing algorithms: supervised and unsupervised [26, 84]. In supervised unmixing, prior

knowledge about the basic materials composing the mixture is available, such as their reflectance patterns

or spectral signatures, or their abundance maps. On the other hand, unsupervised or blind unmixing aims to

identify end-members and their abundances solely based on measured data, without any prior information

[26, 84]. This topic is explored in detail in Chapter 4, where the theoretical foundations and proposed

approaches are discussed.

2.2.5 Machine Learning

Machine learning (ML) is a set of techniques and algorithms within the field of artificial intelligence that

allow learning and decision making directly from data, rather than learning through mathematical inference

or explicit programming [91, 92]. ML algorithms are based on identifying patterns and relationships in

training data, to carry out tasks such as classification, regression, clustering, and anomaly detection [97,

98]. As a result, these algorithms can improve their performance as they are provided with more data and

feedback from users and are capable of identifying these patterns in unlabeled data and even in unforeseen

situations.

In the literature, ML algorithms have been widely used for HS image classification with very good

results [99, 100]. Some of these algorithms include:

• Random Forest (RF),

• Support Vector Machines (SVM),

• Fully Connected Neural Network (NN),

• Convolutional Neural Network (CNN),
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• Autoencoders (AE),

• Deep Belief Network (DBN),

• Recurrent Neural Network (RNN),

• Residual Network (ResNet),

• Vision Transformers (ViT).

Each of these algorithms employs a different theoretical approach and a distinct functional approach to

produce information classification, hence they have advantages and disadvantages specific to each strategy

[97, 98, 99, 100]. Because of this, the results vary depending on the application. The methods listed above

are briefly discussed in the Appendix B, mentioning some applications of these strategies in the field of HSI.
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Chapter 3

Databases for Hyperspectral Image Analysis:
Description and Preprocessing

HS images, characterized by their numerous spectral bands, often reaching into the hundreds or even

thousands per pixel, present a rich source of information for a wide range of applications. Yet, their high-

dimensional nature brings forth a unique set of challenges when it comes to their analysis. Among these

challenges, one stands out prominently: the need for extensive and diverse databases to support the develop-

ment, training, and evaluation of the various analysis methods commonly employed in HS image research.

These datasets are the lifeblood of research in HSI. They serve as the foundation upon which innovative

techniques are honed, algorithms are fine-tuned, and novel approaches are rigorously tested. However, the

demand for these datasets has been steadily growing and their availability remains limited. This chapter

provides an overview of the synthetic and experimental HS image databases used in this dissertation work

and explores their characteristics, including the number of bands, spatial resolution, and types of scenes that

they cover. Additionally, it delves into the preprocessing stages typically employed to prepare HS images

for analysis.

3.1 Synthetic Databases

The synthetic databases consist of three datasets, the first of which corresponds to a VNIR image, which

was generated with three components (N = 3) over a spatial domain of 120×120 pixels. The pixel spectral

response ranged from 450 to 950 nm and consisted of 129 spectral bands [84]. It should be clarified that in

this HS image, a linear mixing model (LMM) was followed to generate the dataset. Figure 3.1 displays the

visualization of the end-members and abundances for both synthetic images.

In addition, two additional synthetic images were created based on two different types of HS signatures

and a nonlinear mixing model (NMM): (i) Spectral Library Version 7 (SLV7) [101], and (ii) in-vivo human

brain tissue in the VNIR range [84]. Both synthetic images were generated using four end-members (N = 4)
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Abundances

End-members

Figure 3.1: Components of end-members and abundances of VNIR synthetic image.

Figure 3.2: Mappings showing the ground-truth abundances of the four end-members during the synthetic
nonlinear evaluation.

and a multilinear mixing model (MMM), which will be discussed in the next chapter. These synthetic images

shared similar spatial characteristics, with a dimension of 60×60 (i.e., a total of 3600 spatial measurements)

and the corresponding abundance maps (in Figure 3.2). For the SLV7 data set, each end-member had 470

spectral channels ranging from 0.21 to 2.69 µm [101]. On the other hand, the VNIR end-members consisted

of 128 spectral channels spanning from 450 to 950 nm [84]. Figure 3.3 visually illustrates the end-members

for both synthetic datasets.

The main advantage of these databases lies in the availability of ground truth for both abundances and

end-members. These reference data enable a precise comparison of the various unmixing methods under

study. Their primary objective is to create a controlled environment that facilitates the evaluation of results

generated by algorithms based on both LMM and NMM.
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Figure 3.3: Profiles illustrating the spectral characteristics of the end-members during the nonlinear synthetic
evaluation.

3.2 Real Remote Sensing Datasets

Typically, different algorithms for HS unmixing and classification are evaluated using remote sensing

data. In this dissertation work, the HS images utilized were Jasper Ridge, Samson, Cuprite, Urban, and Pavia

University. The Jasper Ridge, Samson, and Cuprite datasets consist of VNIR-HSI images captured by the

NASA AVIRIS system (available at https://rslab.ut.ac.ir/data and http://lesun.weebly.com/hyperspectral-

data-set.html). Meanwhile, information regarding the infrastructure or the specific regions where the Urban

image was acquired is currently unavailable. Lastly, the HS image of Pavia University was acquired during

a flight campaign over Pavia, located in northern Italy, using the ROSIS sensor.

The Jasper Ridge database provides spectral information from a region within the Jasper Ridge Bio-

logical Reserve in California, USA. This high-resolution HS image covers a diverse landscape and contains

four main components, representing water, soil, road, and trees as four end-members. The database consists

of 100×100 pixels and 198 spectral bands, spanning the spectral range from 380 to 2500 nm. Similarly, the

Samson database is widely used in HSI research. Captured in the Samson area in California, an agricultural

region with various types of crops, it includes three components water, soil, and trees. This database has

a spatial dimension of 95 × 95 and 156 spectral bands that range from 401 to 889 nm. These datasets are

valuable resources, much like the synthetic datasets used in this work.

The Cuprite database refers to an HS image captured in Cuprite, Nevada, United States [102]. This HS

image was obtained using a VNIR spectrometer. The dataset consists of 188 spectral channels in the wave-

length range 1.94 to 2.48µm, after removing some noisy and water absorption channels. The spatial domain

contains a region of 250× 190 pixels, and there are 12 target end-members or components to be identified:

“alunite", “andradite", “buddingtonite", “dumortierite", “kaolinite1", “kaolinite2", “muscovite", “montmo-

rillonite", “nontronite", “pyrope", “sphene", and “chalcedony". For this dataset, ground-truth information is

available only for the end-members and not for the abundance maps.

The Urban database comprises an HS image obtained from an undisclosed urban area [103]. The image

covers a spatial area of 2 × 2 square meters, corresponding to a size of 307 × 307 pixels. It contains 210
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spectral channels spanning the spectral range from 400 to 2500 nm. After excluding channels affected

by dense water vapor and atmospheric effects, a total of 162 spectral channels are available. One notable

advantage of this dataset is the availability of three versions of ground-truth information for land cover

(end-members and abundances) with four, five, and six end-members respectively, representing “asphalt",

“grass", “tree", “roof", “metal", and “dirt".

The final database for HS remote sensing is the Pavia University scene, which refers to an image cap-

tured in the city of Pavia, Italy. This dataset was obtained using a reflective optical system imaging spec-

trometer over the city and consists of 103 spectral bands ranging from 430 to 860 nm [104]. The HS image

covers an area of 610 × 340 pixels with a spatial resolution of 1.3 m2 per pixel. The scene contains nine

ground-truth end-members: ‘Asphalt”, “meadows”, “gravel”, “trees”, “painted metal sheets”, “bare soil”,

“bitumen”, ”self-blocking bricks” and “shadows”. Nevertheless, there is no ground-truth available for the

abundance maps, meaning that the exact composition of the materials in the scene is not provided.

Real remote sensing databases, similarly to the case of synthetic databases, are used to evaluate the

algorithms studied in the subsequent chapters of this study. However, unlike synthetic databases, the real

remote sensing databases described in this section correspond to real-world scenarios. In these databases, the

information has been pre-processed, and the ground truth for each HS image has been reliably established,

meaning that accurate reference data are available to assess the performance of the algorithms.

3.3 Experimental Databases

3.3.1 Plastics Hyperspectral Database

The HS image dataset for plastic materials was obtained using two HS cameras. The first camera,

operating in the VNIR range, captured spectral information between 400 and 1000 nm. The second camera,

which captures the NIR range, covered wavelengths from 900 to 1700 nm. To illuminate the samples,

a 150 W QTH lamp with a broad emission spectrum from 400 to 2200 nm was employed [105]. To avoid

excessive heat, the QTH lamp was connected to a cold light emitter via an optical fiber. Both HS cameras and

the cold light emitter were mounted on a scanning platform, enabling the push-broom technique to generate

complete HS cubes. The working distance between the camera lens and the samples was maintained at 40

cm. It should be clarified that in this dissertation work only the data from the VNIR camera were used. As a

result, more emphasis is placed on this dataset [105]. However, the data from the NIR camera are available

for further analysis.

For the analysis, ten squares of synthetic materials made from various plastic polymers (labeled S1 to

S10) and four different colors (white, black, red, and magenta) were utilized. The test-bench comprised three

main materials: polylactic acid (PLA), acrylonitrile butadiene styrene (ABS), and polyethylene terephtha-

late glycol (PETG). These materials have been extensively studied in the field of HS characterization [105].

The materials used in this database are shown in Figure 3.4. The left portion presents a standard diffuse re-
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flectance material called Spectralon White, which has a reflectance of 99% and serves as the white reference

tile, denoted RW (x, y, λ). The right section includes PLA (S2, S5, and S6), ABS (S1, S8, S9, and S10), and

PETG (S3, S4, and S7) materials, representing the colors white (S1 and S4), magenta (S2, S8, and S10), red

(S3, S6, and S9), and black (S5 and S7).

Figure 3.4: Materials of the test-bench that conform to the HS plastic database. On the right side, there is the
standard diffuse reflectance material, Spectralon White, with a reflectance of 99%, which serves as the white
reference tile denoted as RW (x, y, λ). The left part of the image showcases ten plastic squares made from
three materials: polylactic acid (S2, S5, and S6), acrylonitrile butadiene styrene (S1, S8, S9, and S10), and
polyethylene terephthalate glycol (S3, S4, and S7). These squares come in different colors and contribute to
the diversity of the database.

The HS sample of the test bench was imaged by simultaneously capturing the white reference and

plastic squares, as shown in Fig. 3.4. The result was a raw image (Iraw(x, y, λ)) consisting of 440 × 1004

spatial pixels with 826 spectral bands ranging from 400 to 1000 nm. The dark reference (RD(x, y, λ)) was

captured across the entire area of interest with the shutter closed, while the white reference (RW (x, y, λ))

was created by averaging the rows corresponding to the spectral bands of the reflecting surface in Fig. 3.4.

This process resulted in a vector of 1004 pixels with 826 spectral bands. Since the push-broom camera

captures the data line by line, the spectral response remains relatively consistent along the columns. By

averaging the values, the variation is reduced and the reference spectral signatures are smoothed.

The hyperspectral plastic database was created to provide a reference point in a controlled experimental

context. This is because the materials used in this database have been widely employed in studies of spectral

variability and hyperspectral resolution, thanks to their well-known spectral signatures and minimal pres-

ence of geometric aberrations [105]. These characteristics make these materials ideal for investigating and

comprehending variations in spectral information with a high degree of precision and control.
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3.3.2 Overview Brain Tumor

A tumor is an abnormality in tissues that causes an unusual increase in volume anywhere in the body.

Specifically, it is an accumulation of cells that grow uncontrollably [106, 107]. This cellular growth can

originate in various ways: if it comes from multiple cells (polyclonal), it is called hyperplasi; conversely,

when it arises from a single cell (monoclonal), it is referred to as neoplasm [108]. The distinction between

these terms is related to the nature of the cellular growth process. The classification of tumors is based

on their ability to infiltrate surrounding tissues [107]. In general terms, tumors are divided into two main

categories: benign and malignant [109, 110]. Benign tumors tend to grow locally without invading nearby

tissues or spreading to other parts of the body. On the other hand, malignant tumors, also known as cancers,

have the ability to infiltrate and damage surrounding tissues and can spread through the bloodstream or

lymphatic system to other areas of the body.

Neuronal tumors are a group of neoplasms that garner significant attention in research due to their com-

plexity and the diversity of types and subtypes that can manifest in the central nervous system (CNS) and

peripheral nervous system [111]. These tumors have a considerable impact on brain and nervous system

function, making it crucial to study them in order to comprehend their pathophysiology and develop effec-

tive diagnostic and treatment strategies [109]. The importance of addressing these tumors is reflected in

incidence statistics. In 2020, brain and CNS tumors ranked twelfth on the list of most common cancers in

terms of mortality, with approximately 308,102 new cases worldwide and associated with 251,329 deaths

across all ages and genders [112, 113]. In the young population, particularly those under 35 years old, these

tumors represented the second leading cause of mortality, while in children under 14 years old, these tumors

were the second most common cause of both diagnosis and mortality [113, 114]. In general, brain tumors

constitute over 90% of all cases of CNS cancer, and they are associated with high rates of mortality and

morbidity [112, 114].

Brain tumors can be categorized into two main groups: primary tumors and secondary tumors (metastatic

tumors). Primary tumors originate within the brain itself, while secondary tumors originate in other parts of

the body and then spread to the brain through metastasis. Primary tumors are further divided into low-grade

and high-grade tumors based on their level of malignancy [115, 116]. Low-grade tumors encompass grades

I and II, whereas high-grade tumors correspond to grades III and IV. Grade IV GB is the most common

type, accounting for approximately 50% of all primary brain tumors [109, 115]. It is also the most deadly,

with an average survival time of 16 months and a 5-year survival rate of 5.5%. GB is characterized by

rapid growth and infiltration into underlying tissues, consisting of a heterogeneous mixture of poorly dif-

ferentiated astrocytic tumor cells with pleomorphism, necrosis, vascular proliferation, and frequent mitosis

[107].

Currently, the most common treatment for primary brain tumors is surgical resection. Early and com-

plete removal of the tumor significantly improves overall survival rates, increasing the 5-year survival rate
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to 50% [116]. To achieve maximum resection, neurosurgeons must accurately identify the boundaries of

the tumor and the infiltrated tissue during surgery using image-guided techniques[117]. Additionally, neu-

rosurgeons must avoid damaging normal brain tissue, as this can lead to neurological deficits in patients and

negatively impact their quality of life [118]. Hence, HSI proves to be an important tool, allowing the identi-

fication of regions affected by tumor tissue without compromising the analyzed samples, being its feasibility

for use as a surgical guide in clinical procedures [119].

Due to the aforementioned reasons, this dissertation investigates two HS image databases: histopatho-

logical samples and in-vivo brain tissue. These databases are described in detail below, with the aim of

developing algorithms that enable the precise identification of brain tumor tissue, both at the cellular and

macroscopic levels. Each database includes labeled information that is used to create training and validation

sets. The main objective of these databases is to validate the analysis of complex tissues, such as brain tu-

mor tissue, using HS images. Additionally, the study of these databases intends to expand the knowledge in

this specific area with the expectation of standardizing algorithms to facilitate the development of practical

applications in the clinical field.

3.3.2.1 Histopathology Hyperspectral Database

The histopathology database consists of a set of HS images acquired from various histological samples

of human brain tissue, as described in [1, 2]. These samples were processed and analyzed by the Pathological

Anatomy Service of the University Hospital Doctor Negrín in Las Palmas de Gran Canaria, Spain, with

the ethical approval of the Clinical Research Ethics Committee (CEIC/CEI). The definitive diagnosis of

the samples was determined by pathologists from the aforementioned institution according to the WHO

classification of central nervous system tumors [120]. Once the diagnosis of GB was confirmed, a clinical

expert made macroscopic annotations on the slides using a marker, delineating non-tumor areas in blue,

while tumor areas were marked in red (as shown in Figure 3.5A). After delimiting both tissue classes in the

samples, the regions were divided into different HS images.

HS images were obtained using an Olympus BX-53 microscope (Olympus, Tokyo, Japan) equipped

with a Hyperspec VNIR A-Series scanning HS camera from HeadWall Photonics (Fitchburg, MA, USA).

The camera was set to a 20×magnification, resulting in HS images with dimensions of 375× 299 µm. This

imaging system is described in detail in [72]. The spectral range of the images spans 400 to 1000 nm, with

a resolution of 2.8 nm. The captured HS images have a resolution of 1004 × 800 pixels and include 826

spectral channels. Figure 3.5A provides an example of HS images for the two classes analyzed in this study:

non-tumor and tumor.

This database was derived from 13 tissue samples corresponding to various patients with GB tumors

(grade IV). Based on the pathologist’s comments, different regions of interest within the sample were se-

lected, from which up to 10 HS images (as described in [2]) were acquired per region, resulting in 494 HS
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Figure 3.5: Database summary: A) An illustration of a pathological sample displaying annotations made by
clinical experts, delineating regions of tumor (indicated by a red line) and non-tumor (indicated by a blue
line) tissues. This sample was used for diagnosis, and HS images of both non-tumor and tumor regions were
captured for classification purposes, utilizing a 20× magnification. B) Total number of HS images obtained
from each patient sample, categorized into tumor and non-tumor images. C) The data distribution for each
patient in the proposed folds, including patients with solely tumor data (indicated by ‡).

images. Of these HS images, 328 corresponded to the non-tumor class and 166 were classified as tumor.

The tissue distribution on the slide for each patient is shown in Figure 3.5B. As can be seen, the number

of images marked as non-tumor varies from patient to patient. For some patients, only tumor class HS im-

ages were available. This distribution of data causes three main problems: (i) limited number of patients

and samples; (ii) not all patients include both classes (non-tumor and tumor), only 8 patients present both

histologies; (iii) the dataset is unbalanced between both classes due to the availability of more non-tumor

images. For this reason, it was decided to spread the data over four folds to perform the evaluation and

classification. These folds gather three different sets, each consisting of an independent subset of patients

for training, validation, and testing. Three of these folds consist of 9 training samples, 1 validation sample,

and 3 test samples, and the remaining fold contains 8 training samples, 1 for validation, and 4 for testing.
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Tumor HSI Non-tumor HSI

A) B) C)

Figure 3.6: Example of the spectral information in the pathological HS images: A) and B) HS image with
tumor and non-tumor tissue, respectively (the examples of selected regions are labeled with a circular marker
to analyze their spectral information); and C) mean average spectral signatures and STDs: tumor cells (red),
non-tumor cells (blue), tumor background tissue (black), and non-tumor background tissue (green).

The proposed distribution of the four folds is shown in Figure 3.5C. The random assignment of samples

within each fold ensured that each one was presented once to the test subgroup, and patients with both types

of labeled data (non-tumor and tumor) were included in the validation subgroup. Therefore, at least 3 of the

patients with pure tumor information were assigned to the training subgroup. This organization of the four

folds was used in previous works with the same database [1, 2].

Subsequent to the setting up of the database and folds, the data were visualized to assess the complexity

of the classification problem. This challenge was solved by selecting different regions corresponding to

cell nuclei and their external structures in images of both classes and different patients. An example of this

visualization is shown in figure 3.6. After the data from different regions have been acquired (selected by the

red, blue, green, and black circles in figures 3.6A and 3.6B), the spectral signatures of the selected regions

were analyzed using mean and standard deviation (STD) for both classes. In Figure 3.6C, it can be observed

that there is a great similarity between the spectral signatures of the non-tumor and tumor classes. This

similarity can be measured using the correlation coefficient between the mean spectral responses of each

class. Therefore, with the applied H&E staining process, a high correlation (correlation > 0.98) is observed

that is very close to perfect registration. In other words, the spectral responses tend to be very similar in

both cases, as the same reagents were used for both classes. This means that it is not possible to distinguish

between both types of tissue simply by analyzing their spectral signatures, so more complex classification

schemes are needed.

The study of this database was conducted with the aim of streamlining and enhancing the analysis of

histological samples. This is because histopathological studies typically consume a considerable amount

of time, and performing this task in large quantities can lead to human errors. The primary focus of this

database is its practical application, as it seeks to simplify and expedite work in the field of histopathology.
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This is crucial to ensure accuracy and efficiency in sample analysis, which, in turn, can have a positive

impact on clinical decision-making and medical diagnostics.

3.3.2.2 In-vivo Human Brain HS Dataset

The database of in-vivo human brain images was obtained using a custom-built intraoperative HS acqui-

sition system developed in [121], as part of the HELICoiD European project (#618080) [122]. The system

included an illumination system based on a 150 W quartz tungsten halogen QTH lamp with broadband

emission between 400 and 2200 nm; a pushbroom HS camera in the VNIR spectral range of 400 to 1000

nm (Hyperspec R© VNIR A-Series, Headwall Photonics Inc., Fitchburg, MA, USA); and a scanning platform

to provide the necessary movement for pushbroom scanning, capable of covering an effective area of 230

mm2. The generated HS cubes have a spatial resolution of 128.7 µm, a spectral resolution of 2-3 nm, and

826 spectral bands with a sampling of 0.73 nm.

The HS database used is reported in [52] and gathered 26 pictures from 16 adult patients. During clinical

practice at the University Hospital Doctor Negrin at Las Palmas de Gran Canaria (Spain), patients underwent

craniotomies to remove intraaxial brain tumors or other forms of brain surgery. Grade IV GB tumors were

discovered in eight separate individuals and 11 HS pictures of exposed tumor tissue were recorded. The

remaining patients had different tumors or other illnesses that required a craniotomy to expose the surface

of the brain. All participant subjects provided their written informed consent, and the University Hospital’s

CEIC/CEI (Comité Ético de Investigación Clínica-Comité de Ética en la Investigación) Doctor Negrin,

approved the study protocol and consent procedures.

The methodology outlined in [121] had to be followed to obtain HS pictures during surgical procedures.

The operating surgeon initially pinpointed the general position of the tumor (if applicable) and the normal

brain during the craniotomy and removal of the dura. On the surface of the brain, where the existence of

the tumor and non-tumor was determined on the basis of preoperative imaging data, the surgeons inserted

sterilized rubber ring markers. Once the tumor markers were found, the operator took an HS image while

the clinical expert performed a biopsy on the tissue inside the tumor markers and sent the sample to a

pathologist. The surgeon used a histopathological diagnosis to establish the kind and grading of tumor as

well as to confirm its presence or absence.

After capturing the HS images, a specified group of pixels was tagged using a semi-automatic method

based on the SAM algorithm published in [52]. Once the clinical procedure was completed, the surgeon used

the semiautomatic tool to select small groups of very reliable pixels to build the ground-truth map for each

acquired HS image. Subsequently, the SAM was calculated for the entire image with regard to the previously

chosen pixel. The other pixels with the most similar spectral characteristics to the selected one can be

found using a threshold manually set by experts. Tumor tissue (TT), normal tissue (NT), hypervascularized

tissue (HT) (mainly blood vessels), and background (BG) were the four classes used to label pixels. The
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Figure 3.7: Six HS test datasets of synthetic RGB images with the tumor area enclosed in yellow (first row)
and ground-truth maps (second row). Green, red, blue, and black, respectively, are used to label the NT, TT,
HT, and BG classes. Meanwhile, white pixels in the images represent unlabeled data [4].

background class covered additional elements or components that were included in the surgical scenario but

were not related to the tumor resection technique, such as skull bone, dura, skin, or surgical supplies.

Due to poor image conditions, only four of the eight patients who were initially affected by GB tumors

in this database had their GB tumor pixels labeled. The remaining GB tumor HS images were added to the

database, but no tumor samples were taken into account. Six HS cubes in total (P008-01, P008-02, P012-01,

P012-02, P015-01, and P020-01) were used as test databases and labeled with the four examined classes

(NT, TT, HT, and BG). The datasets studied are depicted in Figure 3.7, where the tumor areas are enclosed

by a yellow line in the synthetic RGB images, and the ground-truth maps of each HS image are displayed

below.

The main objective of this study on the in-vivo human brain tissue database is the development of

standardized applications that facilitate differentiation between healthy and diseased tissue during surgical

procedures. This is of utmost importance since, in general, visually identifying tumor tissue is a complex

task, and histopathological studies require a significant amount of time. Furthermore, due to ethical consid-

erations, it is not feasible to analyze all tissues, both healthy and tumorous. In this context, the use of HSI

allows for the identification of specific compounds without jeopardizing the examined areas. Therefore, the

development of algorithms for the study and assessment of the mentioned database aims to enable practical

applications once the methods are standardized and robust technology is established in this field.
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Figure 3.8: Blocks diagram of preprocessing chan.

3.4 Preprocessing Chain

The preprocessing of the databases was carried out following the HS image preprocessing pipeline

described in Figure 3.8 and proposed in [4] and [123]. This process consists of four steps: image calibration,

spectral band removal and selection, noise reduction, and spectral signature normalization.

The first step was the calibration of the HS image, which was performed to smooth out the raw spectral

signatures and compensate for the nonlinear camera response. This step was carried out using two reference

images. The first reference image (IW ) was acquired on a white surface at the same location as the clinical

procedure, under the same lighting conditions. The second reference image (ID) was obtained by capturing

an image with the shutter closed, generating a dark reference image. The preprocessed HS image was then

computed via a normalization step after these two images were acquired. This process is carried out based on

the acquisition mode used, with reflectance and transmittance being the most commonly employed modes.

Therefore, Equations (2.1) and (2.2) were used to obtain the calibrated HS images.

Subsequently, the spectral bands in the low- and high-frequency ranges were removed because of their

low signal-to-noise ratio (SNR) caused by the poor performance of the CCD sensor in these sections of the

spectrum. Next, a 1:5 decimation method was used to down-scale the spectral signature samples to elimi-

nate redundant spectral values. The experimental databases of Plastic and In Vivo Human Brain were con-

sequently condensed to 128 spectral bands. The data was then filtered through a spectral domain Gaussian

filter to smooth them out. The final stage of the preprocessing pipeline comprised spectral normalization to

take into account fluctuations in radiation intensity caused by irregular surfaces. Two methods were used to

normalize the spectral signatures: the first involved scaling the values of the spectral signatures between zero

and one, with the minimum value being zero and the maximum value being one, and the second involved

normalizing the values of each spectral signature to have a sum of one.

UNIVERSIDAD AUTÓNOMA DE SAN LUIS POTOSÍ
FACULTAD DE CIENCIAS

35



Databases for Hyperspectral Image Analysis: Description and Preprocessing

Regarding the histopathology database, a preprocessing involving four steps was applied. First, the

radiance images were transformed into normalized transmittance using a reference white image captured

from a blank area of the pathological slide, and a dark image with the shutter closed. Subsequently, in the

second step, neighboring spectral bands were averaged to reduce redundant information resulting from a

high correlation between adjacent spectral bands. This averaging step led to a reduction in the number of

spectral bands from 826 to 275. The third stage involved filtering the transmittance data using a Gaussian

filter. Finally, the spectral signatures were normalized from zero to one, as described previously.

In this dissertation work, two different schemes were implemented to evaluate the various proposed

methods: intra-patient and inter-patient. In the intra-patient approach, the labeled data from each image

was used to generate its analysis. On the other hand, in the inter-patient case, all the labeled data from the

HS database were considered, except for the labeled pixels of the HS image to be classified. Furthermore,

it is important to clarify that preprocessing was applied only to the experimental databases. Synthetic and

remote sensing data were appropriately generated (synthetic data) or had undergone preprocessing by the

authors (remote sensing data).
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Chapter 4

Spectral Unmixing

HS images, as discussed in previous chapters, have emerged as a new visualization tool in diverse

research and industrial fields. However, this tool presents a significant challenge that can greatly influence

the expected results. This challenge is the presence of mixed pixels resulting from a combination of different

materials [124, 125, 126]. Moreover, if the spatial resolution of the HS camera is not sufficient to identify

objects on the surface in a heterogeneous manner, it is inevitable that a pixel in the HS image contains

the spectral information of more than one object [124, 126]. As a result, SU techniques have emerged,

which allow the analysis and identification of the spectral information of pure materials also known as end-

members and their respective fractional proportions or abundances in the analyzed scene [124, 127]. Due to

these properties, SU has become one of the most studied topics in HSI [126].

In general, SU models are based on a mixture representation that describes the interactions among

various pure elements present in a scene and the process of combination among these end-members [79,

128]. In the literature on the subject, two main categories of mixtures that are frequently encountered in HS

images are identified: LMM and NMM [79, 128, 129]. These categories are defined based on the type of

interaction that optical information undergoes when captured by the sensor. These mixture models serve as

a fundamental foundation for estimating unmixing methods, which are formulated as an inversion problem

for both LMM and NMM. This process involves recovering the spectral signatures of pure elements from

the observed spectral signatures in the image.

In this chapter, as described in the diagram of Figure 4.1, the fundamentals of LMM and NMM are ex-

plored. This is done to establish the context of the origin of unmixing models. Subsequently, the unmixing

approach developed by the UASLP research team, titled "extended blind end-member and abundance extrac-

tion" (EBEAE) [84], is reviewed. This method serves as the basis for two proposed unmixing approaches,

which will be discussed in detail in this chapter. Following this section, the principles of image classification



Spectral Unmixing

Figure 4.1: General diagram of chapter content

using unmixing algorithms are described, in order to understand how information is classified using these

methods. Once the foundations are laid, two contributions related to unmixing proposals are described. The

first of these is an extension of EBEAE that incorporates spatial coherence information, while the second

is a nonlinear version of the same algorithm. Additionally, two strategies for tissue classification based on

EBEAE are presented.

4.1 Linear Mixing Model

The LMM, as its name suggests, is a model that describes a linear combination of the spectral infor-

mation from the end-members [79]. In this mixing approach, it is assumed that the reflected light from

the scene reaching the sensor has only interacted with single elements or components [79, 129]. In other

words, each incident ray of light interacts with unique materials; this type of interaction is exemplified in

Figure 4.2. Due to its simplicity and interpretability, the LMM has become the most studied in the literature,

demonstrating good results in multiple application fields.

Specifically, the interactions produced by the LMM generate convex linear combinations of the end-

member information. This leads to two commonly applied constraints in unmixing algorithms to ensure

a physical interpretation [128, 129]. The first is abundances non-negativity constraint (ANC). Since the

fractional contributions are the result of the light reflected by the scene, this information must be positive

[128]. The second is abundance sum-to-one constraint (ASC), which means that during unmixing, the

abundances are a fractional contribution of the end-members, and their sum at each location must be one,

excluding unknown components or scaling factors [79, 128, 129]. In addition to these constraints, in the

literature often employs the end-members sum-of-one constraint (ESC), which aims to delimit the search
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space for estimation and also reduce variability [84, 129, 130]. These constraints allow the SU algorithms

to have a physical interpretation.

The LMM is based on the assumption that there are K spatial measurements of L-dimensional vectors

zk ∈ RL ∀k ∈ [1,K], (4.1)

where zk ≥ 0. Generally, to maintain consistency with the physical interpretation and the commonly

considered abundance constraints, all measurements Z = {z1, ..., zK} are normalized to sum up to one,

such that

yk ,
1

1>Lzk
zk, (4.2)

where 1L is an L-dimensional vector filled with ones and (·)> denotes the transpose operation. Once the

above is established, it is possible to define the LMM for the k-th measurement in Y = {y1, ...,yK} by

yk =

N∑
n=1

αk,npn + vk =
[
p1 . . . pN

]
︸ ︷︷ ︸

P∈RL×N


αk,1

...

αk,N


︸ ︷︷ ︸
αk∈RN

+vk = Pαk + vk ∀k ∈ {1, . . . ,K}, (4.3)

where pn ∈ RL is the n-th end-member, αk,n ≥ 0 its abundance in the k-th pixel, N represents the LMM

order (2 ≤ N < L), and vk ∈ RL denotes a noise or uncertainty vector (vk ∼ N (0)) [79, 129, 131].

The scaled measurements, end-members, abundances, and noise vectors can be represented with a matrix

notation (Y,P,A,V), respectively, so the LMM in Equation (4.3) can be written as:

Y = PA + V (4.4)

where

Y = [y1 · · ·yK ] ∈ RL×K (4.5)

A = [α1 . . .αK ] ∈ RN×K (4.6)

V = [v1 . . .vK ] ∈ RL×K . (4.7)

Given the LMM presented in Equation 4.3 (see Figure 4.2), the goal of SU is to estimate the inverse

of this mixing process in order to deduce the desired quantities based on the measured spectra [82]. SU

typically involves three main stages: determining the number of end-members present, extracting the spec-

tral characteristics of these end-members, and estimating the abundance of the end-members in each pixel

[125]. The determination of the number of end-members is a complex problem, for which multiple solu-

tions have emerged. These solutions not only estimate the number of components in the mixture, but also

calculate their spectral information based on the measurements. Examples of such solutions include virtual

dimensionality and HS signal identification by minimum error (HysSime) [132].
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Figure 4.2: Diagram of the LMM, where it can be observed that the measurement captured by a sensor,

corresponding to the information of a pixel, is a weighted average of the reflectances of the materials present

in the pixel.

Regarding the estimation of end-members, the focus is solely on the unsupervised identification by

assuming that the measurements contain pure spectral signatures corresponding to the components and as-

suming a certain number of end-members [79]. On the other hand, the estimation of abundances takes a

supervised approach, where characteristic end-members are provided to estimate their contributions [79].

However, LMM also allow for the joint estimation of end-members and abundances in an unsupervised or

semi-supervised manner [79]. The former is known as BLU, which enables the simultaneous estimation

of end-members and abundances without previous knowledge [79]. The semi-supervised approach, in con-

trats, takes pre-known end-members (with certain similarity or affinity to those present in the data to be

analyzed) as input and modifies them based on the measurements, acquiring the characteristic end-members

and abundances from the database [79].

Furthermore, algorithms based on the LMM are usually classified into four categories based on the

proposed approach for estimation: geometric, sparse, statistical, and DL models [129, 125]. On one hand,

geometric unmixing algorithms are based on the assumption that there are pure or nearly pure end-members

within the measurements, acting as vertices in a geometric space. Within this space, a convex simplex is

generated that encloses the rest of the spectral data. Geometric unmixing methods are often employed to

estimate pure end-members present in the measurements [77, 125, 129]. Some examples of these methods

include Pixel Purity Index (PPI) [133], N-FINDR [134], Iterative Error Analysis [135], Vertex Component

Analysis (VCA) [136], and the simplex growing algorithm [137]. Nevertheless, geometric algorithms face

difficulties in extracting end-members from data with a high degree of mixing, as they lack access to pure

spectral signatures [125, 129].

On the other hand, sparse unmixing methods emerged due to the availability of spectral libraries con-
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taining various materials. The goal is to estimate the abundances of end-members using the prior information

provided by these libraries [125]. It is assumed that each measurement combines linearly with a few spectra

from the library. As a result, there will often be a higher number of end-members than pure elements within

the HS image, leading to a scarcity of information in some abundances [129]. This is why these methods

are referred to as sparse unmixing. However, this category of unmixing has the disadvantage of requiring

spectral libraries composed of different spectra of interest, which is not always feasible. Additionally, there

are multiple factors that can cause differences between the spectral library and the actual characteristics

[125, 129]. To address these problems, a technique called sparse coding has been proposed in the literature

[77]. It aims to learn the end-members directly from the measurements, creating the spectral library from the

measured data. This approach eliminates the need for libraries with prior information on the characteristic

components and avoids the issues of variability related to the different conditions under which the libraries

and data were acquired [125]. This allows for the joint and unsupervised estimation of the characteristic

end-members and their abundances, which is known as blind estimation.

In turn, statistical algorithms identify the end-members and abundances simultaneously using prior

knowledge obtained from the statistical properties of the measurements [77]. This strategy has the advantage

of not being conditioned by the initial conditions of the process, which can lead to a better solution in certain

cases [125, 129]. Among the most popular statistical algorithms are Independent Component Analysis [138]

and Bayesian approaches [139, 140].

Finally, DL methods have emerged in recent years and have shown their potential in SU tasks [125, 141].

In this regard, methods such as autoencoders, generative NNs, CNNs, and even fully connected networks

have been widely used to process HS data for unmixing purposes. However, there are still some drawbacks

with these types of techniques. One of the main challenges is that these algorithms require a large amount of

training data. Additionally, they have a high number of parameters, and due to the properties of HS images,

they often require significant computational resources [125, 141].

4.2 Nonlinear Mixing Models

Although LMM-based SU methods have shown good performance, they can present low performance

when the interactions between different elements in the scene do not conform to linear mixing [82, 142].

Examples of such interactions occur when scenes exhibit geometric structures, including multiple shad-

ows, reflections, absorptions, diffractions, and the presence of different incident illuminations, which can

lead to changes in spectral properties [142, 143, 144]. Additionally, LMM typically considers only the

reflected light information and not the transmitted one. This limitation can overlook intimate and multi-

layer relations in the analyzed scene (see Figure 4.3), where the incoming light ray may interact multiple

times with different components, resulting in nonlinear relationships that are difficult to model using LMM

[82, 128, 142, 143, 144]. To address this condition, various types of NMM have been proposed to better
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understand how different end-members in a given scene interact with each other. Moreover, scenarios that

can be represented by NMM are more common in nature compared to LMM cases [142, 143, 144].

Figure 4.3: Diagrams of the NMM, where it can be observed that the measurement captured by a sensor,

corresponding to the information of a pixel, is a weighted average of the reflectances of the materials present

in the pixel.

Since the beginning of the past decade, various teams have proposed different NMM that consider

the nonlinear phenomena caused by the physical interactions of light in the area under analysis. Among

these models, the most representative ones are: the Fan et al. model [145], the Generalized Bilinear Model

(GBM) [146], the Polynomial Post-Nonlinear Model (PPNM) [147], and more recently, the MMM [128].

These models build upon the linear perspective and include the nonlinear formulation of the physical interac-

tions considered for each case. In particular, GBM and PPNM aim to scale the bilinear interactions with the

linear abundances, assuming that the probability of interacting with two different materials should be pro-

portional to their presence in the pixel [128, 130]. Likewise, it has been suggested that bilinear models can

be expanded to higher-order terms or using higher-order polynomials. However, the literature argues that

these expansions do not significantly contribute to the spectral signal and do not justify the added complex-

ity [128]. MMM is also an extension of bilinear models that attempts to consider all possible interactions

through a nonlinear interaction level [128].

Similar to the LMM, in this case, K spatial measurements are considered, expressed as real positive

L-dimensional vectors zk ∈ RL with k ∈ K , {1, ...,K}. Each measurement zk can be analyzed un-

der the aforementioned nonlinear frameworks, but unlike LMM, NMM approaches do not strictly require

initial scaling of the measurements. Additionally, in these frameworks, the contribution variables βk,n are

considered as abundances, resulting in the following representations:
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a) Fan et al. model [145]:

zk =

N∑
n=1

βk,npn +

N−1∑
n=1

N∑
m=n+1

βk,nβk,mpn � pm + vk. (4.8)

b) GBM [146]:

zk =
N∑
n=1

βk,npn +
N−1∑
n=1

N∑
m=n+1

γk,n,mβk,nβk,mpn � pm + vk

where γk,n,m ∈ [0, 1] denotes the degree of interaction between the n-th and m-th end-members at

k-th measurement.

c) PPNM [147]:

zk =

N∑
n=1

βk,npn + χk

(
N∑
n=1

βk,npn

)
�

(
N∑
m=1

βk,mpm

)
+ vk

where χk ∈ (−0.3, 0.3) refers to the strength of nonlinear interaction in the k-th measurement.

d) MMM [128]:

zk = (1− dk)
N∑
n=1

βk,npn + dk

N∑
n=1

βk,nzk � pn + vk (4.9)

where dk ∈ (−∞, 1] defines the nonlinear interaction level. As described in [128], if dk ∈ [0, 1],

this factor will imply a decrease in reflectance with respect to the LMM, and conversely dk < 0 an

increment [128].

4.3 Extended blind end-member and abundance extraction

The approach known as extended blind end-member and abundance extraction, introduced in the work

by Campos et al. [84] as EBEAE, provides a method to estimate end-members and their corresponding

abundances in non-negative datasets using a LMM. Moreover, the BLU procedure implemented by EBEAE

is regulated by hyperparameters that regulate the similarity between end-members and the entropy of the

abundance, thus influencing the final results.

EBEAE is based on an LMM, as described in Section 4.1, by considering to the constraints of ANC,

ASC, ESC, and measurement scaling. Based on the above, the synthesis problem of EBEAE is defined as

the following constrained optimization process:

min
{αk},P

J({αk},P), (4.10)
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where

J({αk},P) =
1

2K

K∑
k=1

||yk −Pαk||2

||yk||2
− µλmin(P>P)

2K

K∑
k=1

||αk||2 (4.11)

+
ρ

2ϑ

N−1∑
n=1

N∑
j=n+1

||pn − pj ||2, (4.12)

λmin(.) represents the minimum eigenvalue of the argument matrix, µ ∈ [0, 1) (entropy weight) and ρ ≥ 0

(similarity weight) are hyperparameters, and

ϑ =

(N − 1) + · · ·+ 1 N ≥ 3,

1 N = 2,
(4.13)

with restrictions 1>Nαk = 1, 1>Lpn = 1 and αk, pn ≥ 0. Therefore, the hyperparameters in EBEAE

are defined as (N,µ, ρ). To solve the optimization problem, an alternating least squares approach [148] is

used to overcome the nonlinear dependence of the end-members {pn}Nn=1 and the abundances {αk}Kk=1 in

Equation (4.12), until a convergence condition is met or a maximum number of iterations is reached [84].

In this formulation, the end-members {pn}Nn=1 identify N characteristic or representative components to

reproduce all pixels in the measurements set Y .

4.4 Classification of Hyperspectral Image Based on Linear Unmixing

The classification of HS data based on SU methods has been extensively explored in the literature,

primarily focusing on its constituent elements, namely end-members and abundances. In this regard, both

end-members and abundances allow for the identification and classification of different materials present in

a scene or sample. Specifically, there are two types of approaches used for HS image classification based on

SU estimates: abundance-based and end-member-based methods [149, 150, 151].

Abundance-based classification is a commonly used approach in HS image analysis. This strategy

involves identifying the abundance of the material or component that has the highest incidence at each spatial

location and assigning the label of that material to that location [84, 149]. In other words, the dominant class

is determined based on the highest incidence in each pixel. It is important to note that classification using

this approach can be affected by the amount of noise present in the image, the contribution level of each

component to the mixture, and the accuracy of the SU algorithms [149, 150]. Due to its characteristics,

abundance-based classification is a useful technique in HS data analysis, especially when evaluating HS

information of materials with well-defined spectral signatures and significant spectral differences [150].

In contrast, end-member-based classification utilizes the characteristic spectral information of each

known material to create a set of reference spectral signatures or ground-truth. This dataset is then used to

compare the spectral signatures of each pixel using similarity metrics [151]. Subsequently, the class label
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is assigned based on the best match with the materials within the ground-truth [151]. It is important to

consider that the accuracy of this type of classification, similar to abundance-based, depends heavily on the

quality of the reference spectral signatures, spectral variability in the image, the level of noise present, and

the consideration of spectral mixtures [150, 151].

In recent years, classification approaches that integrate SU methods with various types of classifiers

have increased, effectively incorporating the inherent characteristics of each algorithm into the applica-

tion of HS images. These methodologies are commonly referred to as hybrid classification approaches as

they merge abundance and end-member estimation with classification algorithms, such as ML methods,

resulting in more precise classification outcomes. In these methodologies, relevant spatial features are ex-

tracted alongside with the spectral information using SU methods. These extracted patterns, comprising

end-members and abundances, are then utilized in various classification algorithms to learn pattern charac-

teristics and assign classes [152, 153]. The objective of these approaches is to address the challenges faced

by each individual technique through their combined implementation [152, 153, 154]. Such proposals offer

two significant advantages. Firstly, they reduce the dimensionality of input data for classification techniques

[152, 153]. Secondly, by leveraging this dimensional reduction, the proposed classifiers can adopt sim-

pler architectures, thereby facilitating their implementation on computing platforms and reducing execution

time. Furthermore, this joint framework has the potential to enhance classification results by mitigating the

risk of overfitting [152, 153]. In this dissertation work, different classification approaches based on SU are

proposed that rely on ML.

4.5 Extended Blind End-member and Abundance Extraction with Spatial Coherence

In the field of BLU, EBEAE methodology provides a comprehensive framework for solving the unmix-

ing problem. However, the existing EBEAE approach does not consider spatial coherence in its formulation,

which limits its ability to handle different types of noise in the HS images. To address this limitation, an

extension of the EBEAE methodology that incorporates spatial coherence using Total Variation (TV) the-

ory is proposed. This enhanced methodology is referred to as extended blind end-member and abundance

extraction with spatial coherence (EBEAE-SC).

EBEAE-SC formulates the BLU problem with a generic noise model and introduces a TV regularization

component in the synthesis problem. This TV regularization effectively compensates and attenuates the

effects of various types of noise, including Gaussian, shot, and impulse noise. By considering internal

abundances for each calculated end-member, the TV regularization enhances the robustness of the algorithm.

In this section, the mathematical formulation of EBEAE-SC is introduced, and the estimation scheme is

described by applying constrained quadratic optimization (CQO), coordinate descent algorithm (CDA), and

the split Bregman formulation [155].

In EBEAE-SC, three main variables are estimated: end-members, their nominal abundances, and in-
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ternal abundances. Nominal abundances are estimated locally, treating each measurement independently,

while a global approach is adopted for the overall end-members using the complete dataset. For internal

abundances, a global approach is once again employed to capture spatial correlations. A notable advantage

of EBEAE-SC over other state-of-the-art BLU methods is the joint estimation of end-members, nominal

abundances, and noise-free internal abundances using the Bregman split [155]. This approach enhances the

algorithm’s robustness without affecting the accuracy of the end-members. The Bregman split has demon-

strated superior performance in TV-based noise removal and artifact correction compared to other strategies

in the literature.

4.5.1 Model Formulation

Similar to EBEAE, EBEAE-SC is based on the LMM described in Section 4.1, adhering to the con-

straints of measurement normalization ( 1>Lyk = 1 ∀k ∈ [1,K]), ANC (1>Nαk = 1), and ASC

(1>Nαk = 1). Furthermore, the end-members in EBEAE-SC are normalized to sum up to one (1>Lpn =

1 ∀n ∈ [1, N ]), following the aforementioned constraints. In the original BLU problem, the estimated

abundances {αk}Kk=1 can be influenced by noise from different sources as well as light scattering from

neighboring pixels. To address this issue, a new set of variables called internal abundances {wk}Kk=1 is in-

troduced in this formulation. These internal abundances {wk}Kk=1 incorporate spatial coherence in both the

vertical and horizontal components using the TV theory. The goal is for the internal abundances to remain

close to the nominal abundances {αk}Kk=1, while also satisfying positivity and sum-to-one conditions.

The formulation of EBEAE-SC deviates from the approach presented in [84] by incorporating a modifi-

cation of the energy functional in Equation (4.12) to include a TV component. The problem can be described

as follows:

min
A,P,W

1

2K

K∑
k=1

‖yk −Pαk‖2

‖yk‖2
+

ρ

2ϑ

N−1∑
n=1

N∑
j=n+1

‖pn − pj‖2

+
λ

2K

K∑
k=1

‖wk −αk‖2 +
τ

K
HTV (W), (4.14)

where ‖ · ‖ stands for the Euclidean norm, and ρ, λ, and τ are hyper-parameters that control the strength

of the regularization process. The normalization variable ϑ in Equation (4.14) takes the value described in

Equation (4.13). In addition, matrix W = [w1, ...,wK ] ∈ RN×K gathers the internal abundances {wk}Kk=1

in all pixels. The HTV (.) component in Equation (4.14) is a TV regularization that adds SC in the problem

formulation [156], which is defined as:

HTV (W) =

N∑
n=1

‖w̃nD
>
x ‖1 +

N∑
n=1

‖w̃nD
>
y ‖1, (4.15)

where the L1 or Manhattan norm is denoted by ‖ · ‖1. The vector w̃n ∈ R1×K corresponds to the n-th row

in the matrix W (internal abundances of all pixels for n-th end-member), where n takes values from 1 to N .

UNIVERSIDAD AUTÓNOMA DE SAN LUIS POTOSÍ
FACULTAD DE CIENCIAS

46



Spectral Unmixing

The matrices Dx ∈ RK×K and Dy ∈ RK×K represent 2-D horizontal and forward vertical finite difference

operators applied to the internal abundances. To maintain the original dimensions, zero adjustments are

made at the borders. In Equation (4.14), the parameter ρ > 0 controls the similarity among the resulting

end-members, λ > 0 regulates the difference between the nominal and internal abundances at each spatial

position, and τ > 0 determines the strength of the SC during the estimation process.

Hence, the optimization problem stated in Equation (4.14) can be divided into three estimation sub-

problems: (i) end-members P, (ii) nominal abundances A, and (iii) internal abundances W, using a CDA.

To solve these sub-problems, a CQO approach is employed, where at each step of the CDA, two sub-

problems are held constant while the remaining one is optimized, following the methodology outlined in

[84].

In this proposed approach, particular attention is given to the estimation of the internal abundances

W, which represents a significant difference compared to the original formulation [84]. By incorporating

the HTV (·) term in the cost function of Equation (4.14), the internal abundances are able to capture the

spatial variations between neighboring pixels using TV theory. Consequently, the resulting concentration

maps exhibit reduced granularity and a higher correlation with their neighboring pixels. The estimation of

the end-members follows the same approach as in the original EBEAE formulation [84]. The subsequent

sections provide detailed descriptions of the proposed solutions for the three sub-problems.

4.5.2 End-member Estimation

In this particular sub-problem, the abundance matrices A and W are maintained as known constants

during the estimation process. To achieve this goal, the expression in Equation (4.14) is modified to focus

solely on the end-member matrix P [84]:

min
P≥0,P>1L=1N

1

2K

K∑
k=1

‖yk −Pαk‖2

‖yk‖2
+

ρ

2ϑ

N−1∑
n=1

N∑
j=n+1

‖pn − pj‖2. (4.16)

To meet the constraints of the above problem, a Lagrange multiplier vector χ ∈ RL is added to consider the

equality constraint to obtain the stationary equations:

P
(
ATA> +

ρ

ϑ
O
)
−YTA> + 1

L
χ>= 0 (4.17)

P>1L − 1N= 0 (4.18)

with T , 1
K diag([ 1

‖y1‖2 , . . . ,
1

‖yK‖2 ]), diag(·) denotes the resulting diagonal matrix, and O , NIN −
1N1>N . From Equations (4.17) and (4.18), a closed-solution for P is reached as follows:

P = (IL −
1

L
1L1>L )YTA>(ATA> +

ρ

ϑ
O)−1 +

1

L
1L1>N . (4.19)

After computing (4.19), a linear rectification is applied to all elements in P, and each column is normalized

to sum-to-one.
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4.5.3 Abundance Estimation

In the second sub-problem, the matrices W and P are considered known and remain fixed during the

estimation process. To address the estimation of the abundance vector at the k-th measurement, Equation

(4.14) can be reformulated, and by introducing the notation ŷk = ‖yk‖2, the estimation process can be

expressed as follows:

min
αk≥0,αᵀ

k1N=1

1

2
‖yk −Pαk‖2 +

λŷk
2
‖wk −αk‖2 ∀k ∈ [1, . . . ,K]. (4.20)

Similar to the previous sub-problems, a Lagrange multiplier is introduced to enforce the constraints in

Equation (4.20), resulting in a system of linear equations. The closed-form solution for this system is given

by:

αk = Θ

(
P>yk + λŷkwk −

y>k PΘ1N + λŷkwkΘ1N − 1.0

1>NΘ1N
1N

)
, (4.21)

with Θ = (P>P + λŷkIN )−1. In Equation (4.21), a large value of λ will induce a similarity in the nominal

{αk}Kk=1 and internal W = [w1, . . . ,wK ] ∈ RN×K abundances, and if λ = 0, the induced SC is omitted.

4.5.4 Internal Abundance Estimation

In this final step, similar to previous iterations, the matrices P and A are considered known and un-

changed. The objective is to estimate the n-th row w̃n in W by rewriting Equation (4.14) in vector form. In

this step, it is assumed λ > 0, so the optimization problem can be formulated as follows:

min
w̃n

λ||w̃n − ãn||2 + τ‖w̃nD
>
x ‖1 + τ‖w̃nD

>
y ‖1 ∀n ∈ [1, . . . , N ], (4.22)

where ãn ∈ R1×K represents the n-th row in the abundance matrix A. The estimation problem described

in Equation (4.22) poses a challenge as it involves a high-dimensional, non-differentiable optimization due

to the non-separability of w̃n. To address this issue, new variables Rn = w̃nD
>
x and Qn = w̃nD

>
y are

introduced to restructure the optimization problem. Consequently, the original problem can be reformulated

as an unconstrained optimization problem:

min
w̃n,Rn,Qn

λ

2
‖w̃n − ãn‖2 + τ‖Rn‖1 + τ‖Qn‖1 +

ν

2
‖Rn − w̃nD

>
x ‖2 +

ν

2
‖Qn − w̃nD

>
y ‖2, (4.23)

where parameter ν serves as a regularization term, ensuring equal contributions from both the horizontal and

vertical components. This balance is achieved by considering the 2D finite difference operator of TV theory.

Additionally, parameter τ regulates the influence of the substituted variables, controlling their impact on the

overall optimization process.

The optimization problem presented in Equation (4.23) involves three variables (w̃n, Rn, Qn), but

it can be decomposed into three separate sub-problems using the split Bregman approach [155, 157]. This
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decomposition allows us to address each sub-problem individually. To achieve this decomposition, Bregman

variables B1,n and B2,n are introduced into Equation (4.23), resulting in the following modified form:

min
w̃n,Rn,Qn,B1,n,B2,n

λ

2
‖w̃n − ãn‖2 + τ‖Rn‖1 + τ‖Qn‖1

+
ν

2
‖Rn − w̃nD

>
x −B1,n‖2 +

ν

2
‖Qn − w̃nD

>
y −B2,n‖2. (4.24)

By examining Equation (4.24), three distinct sub-problems can be identified:

• P1: minRn ‖Rn‖1 + ν
2τ ‖Rn − w̃nD

>
x −B1,n‖2,

• P2: minQn ‖Qn‖1 + ν
2τ ‖Qn − w̃nD

>
y −B2,n‖2,

• P3: minw̃n λ‖w̃n − ãn‖2 + ν‖Rn − w̃nD
>
x −B1,n‖2 + ν‖Qn − w̃nD

>
y −B2,n‖2.

Sub-problems P1 and P2 can be effectively addressed by employing the soft thresholding operation [155,

158] as follows:

SoftTh(U, c) = sign(U)×max
(

0, |U| − c

2

)
, (4.25)

where the absolute value | · | and sign(·) functions are applied component-wise. In contrast, P3 sub-problem

can be formulated as a least-squares problem, and its solution is derived from the following system of linear

equations:

(λI + ν∇)w̃n = λãn + νD>x (Rn −B1,n) + νD>y (Qn −B2,n), (4.26)

with ∇ , D>x Dx + D>y Dy. The Bregman variables B1,n and B2,n are iteratively estimated to generate an

internal loop over the index j. This observation involves solving sub-problems P1, P2, and P3 to compute

(Rj
n,Q

j
n, w̃

j
n) and updating the variables, as described in [156, 158]:

Bj+1
1,n = Bj

1,n + Dxw̃
j+1
n −Rj+1

n ,

Bj+1
2,n = Bj

2,n + Dyw̃
j+1
n −Qj+1

n . (4.27)

Once all the rows {w̃n}Nn=1 in the internal abundances matrix W have been computed, a linear rectification

procedure is performed to ensure that each element remains positive. Furthermore, each column {wk}Kk=1

is normalized to ensure that the sum of its elements is equal to one.

4.5.5 Implementation and Analysis

The pseudocode for the implementation of EBEAE-SC is outlined in Algorithm 1, along with several

noteworthy observations. Initially, the convergence of the CDA will be assessed based on the percentage

change in the estimation error J i , ‖Y −PiAi‖F at the i-th iteration, denoted as:

|J i − J i−1|
J i−1

< ε, (4.28)
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where ‖ · ‖F denotes the Frobenius norm, and ε > 0 is a convergence threshold. Additionally, a maximum

number of iterations is defined as a termination criterion.

Regarding the optimization process in Equation (4.23), the approach employed is based on the alternat-

ing direction method of multipliers (ADMM), where sub-problems P3, P1, and P2 are solved sequentially.

The Bregman variables are updated using Equation (4.27) at the end of each iteration [159]. To estimate

the rows of the internal abundance matrix {w̃i
n}Nn=1 at the i-th iteration, an inner iterative loop is defined

[157]. The stopping condition for this loop is based on the percentage change between the (j − 1)-th and

j-th iterations, calculated as Li,jn , ‖w̃i,j
n − w̃i,j−1

n ‖, with a convergence threshold of εint > 0 and a limit

on the maximum number of iterations. As explained in [157], since the data-fitting term in Equation (4.24)

is quadratic, the split Bregman formulation guarantees convergence.

The iterative procedures involved in EBEAE-SC are summarized in Algorithm 1. If the hyperparam-

eters are not specified, the original values from EBEAE are used [84]. Algorithm 1 primarily focuses on

solving the subproblem of estimating internal abundances, where the innermost while loop is dedicated to

smoothing the abundance map corresponding to each end-member. It is evident that the internal abundance

estimation subproblem is more complex compared to the other two subproblems. This can be observed by

analyzing the computational complexity of Algorithm 1 using Big O notation [160]. Specifically, the com-

plexity of estimating end-members and their abundances isO(L·K) andO(K ·N4), respectively. Moreover,

the complexity of estimating internal abundances is O(maxiter · N · K2), which is higher than the other

subproblems due to the large value of K compared to N . Therefore, considering the outer while loop in Al-

gorithm 1, the overall complexity of EBEAE-SC is O
(
maxiter ·K · (maxiter ·N ·K + L+N4)

)
, with

the main contribution coming from the internal abundance subproblem. However, in our approach, K is sig-

nificantly larger than L, and L is larger than the model order N (K � L� N ). As a result, the complexity

of EBEAE-SC can be reduced to O(maxiter2 · N ·K2). In contrast, the original EBEAE approach has a

complexity ofO
(
maxiter ·K · (L+N4)

)
, which is directly proportional to the number of maximum iter-

ations and the number of measurements K. On the other hand, EBEAE-SC exhibits a quadratic complexity

growth with respect to the same parameters.

Furthermore, the quadratic optimizations in Equations (4.16), (4.20), and Bregman’s division [157] will

exhibit convergence by analyzing the original formulation in Equation (4.14) at each stage of the CDA. As

a result, the global convergence of the iterative CDA scheme presented in Algorithm 1 is guaranteed. The

details regarding this point are explored extensively in the following section. However, it is important to

note that the selection of the initial end-members matrix P0 and regularization variables (ρ, λ, τ, ν) will

significantly impact the optimal global solution. Finally, the internal abundance matrix W is chosen as the

abundance matrix obtained from the EBEAE-SC method because it yields more uniform abundance maps

with reduced granularity. Nonetheless, matrix A also produces acceptable results; however, it exhibits a

higher level of granularity.
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Algorithm 1 EBEAE-SC
Input: Matrix of scaled measurements Y , number of total measurements K, number of end-members N ,

initial end-members matrix P0, maximum number of iterations maxiter, convergence threshold ε, and
hyperparameters ρ, λ, ν, τ .

Output: End-member matrix P, abundance matrix A and internal abundance matrix W.
Normalize measurements to sum-to-one

yk =
1

1>Lzk
zk

Initialize matrix W to zero, the end-members matrix by P0, and set i = 0.
if Estimation with spatial coherence is desired (i.e. λ > 0, ν > 0, and τ > 0) then

while Stopping criterion in Equation (4.28) is not satisfied or i < maxiter do
Estimate the columns αi

k of the abundance matrix Ai per each spatial measurement k ∈ {1, . . . ,K}
by (4.21).
Estimate the end-members matrix Pi over the whole dataset by Equation (4.19).
for n = 1 until N do

Set j = 1

while |Li,j
n −Li,j−1

n |
Li,j−1
n

< εint or j < maxiter do

Estimate internal abundance row w̃i,j
n by Equation (4.26),

Calculate P1 and P2 sub-problems,
Update Bj+1

1,n and Bj+1
2,n by Equation (4.27),

Set j = j + 1.
end while

end for
Set i = i+ 1.

end while
else

Evaluate the original EBEAE formulation in [84].
end if

4.5.6 Synthetic, Remote Sensing and Experimental Results, and Discussion

This section shows the application of the proposed EBEAE-SC method on a synthetic VNIR image and

two other widely used HS images in the remote sensing literature [161, 162]. To quantify the accuracy in

the proposed unmixing process, the resulting end-members and their abundances at all spatial locations are

collected in sets P andA, respectively. The labeled ground-truth sets are defined as Ā and P̄ . Subsequently,

estimation errors are calculated as follows:

Ep =
1

card(P) + card(P)
min

∀p∈P,p∈P
‖p− p‖, (4.29)

Ea =
1

card(A) + card(A)
min

∀ā∈A,a∈A
‖ā− a‖, (4.30)

where card(·) denotes the cardinality of a set [163]. The metrics described above are used to evaluate the

performance of unmixing algorithms.
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Five state-of-the-art BLU methods that incorporate spatial information were considered for comparison

with the EBEAE-SC results. These methods are: (i) graph-regularizedL1/2 nonnegative matrix factorization

(GLNMF) [164], (ii) preserving the intrinsic structure invariant nonnegative matrix factorization (PISINMF)

[165], (iii) nonnegative matrix factorization-quadratic minimum volume (NMF-QMV) [166], (iv) graph total

variation regularized NMF solved by Merriman-Bence-Osher (gtvMBO) [162], and (v) sparsity-enhanced

convolutional decomposition (SeCoDe) [167]. Different mathematical principles have been employed by

all these algorithms, and previous studies [162, 165, 167, 168] have compared them with multiple unmixing

methods. Furthermore, an evaluation with an in-vivo human brain HS image was conducted for EBEAE-

SC. The scripts used to generate the results presented in the figures and tables can be found in the following

GitHub repository: https://github.com/Alex-CruzG/EBEAE-SC.

In order to assess the effectiveness of the proposed method under adverse conditions, two types of noise,

namely Gaussian and shot noise, are taken into consideration. To generate a measurement incorporating both

types of noise, denoted as yk, from a noise-less observation y0
k, the subsequent transformation is applied:

yk = y0
k + nk + mk ∀k ∈ {1, . . . ,K}, (4.31)

where nk ∈ RL and mk ∈ RL are associated with the Gaussian and shot noise components, respectively.

The Gaussian noise vector nk is characterized by a zero mean and a STD of σSNRk , represented by E{nk} =

0L and E{n>k nk} = (σSNRk )2IL, respectively. Here, E{·} denotes the expected value. On the other hand,

the shot noise component mk is modeled as a signal-dependent term, which can be approximated using a

continuous distribution according to [169, 170]:

E{mk} = 0 & E{m>k mk} = (σPSNRk )2diag(y0
k). (4.32)

Therefore, the variances of the components within mk are determined by the amplitudes in y0
k, which

correspond to positive values. In this model, the mean value of the shot noise component is derived from

y0
k in Equation (4.31) and is therefore excluded from the noise distribution. These definitions incorporate

σSNRk and σPSNRk as specified by the desired signal-to-noise ratio (SNR) and peak signal-to-noise ratio

(PSNR) within the datasets:

σSNRk =

√
1

L−1‖y
0
k‖2

10
SNR
10

, σPSNRk =

√
maxl∈{1,...,L}(y

0
k)

2
l

10
PSNR

10

, (4.33)

where (·)l represents the l-th component within the vector. To assess the performance of EBEAE-SC and the

state-of-the-art methods, evaluations were conducted under different noise scenarios. The noise levels were

set to the same values of the SNR and the PSNR, specifically (SNR,PSNR) ∈ {(20, 20), (17.5, 17.5),

(15, 15), (12.5, 12.5), (10, 10), (7.5, 7.5), (5, 5)}. These conditions impose high demands on most BLU

algorithms. A Monte Carlo evaluation was conducted for each combination of SNR and PSNR values.

This evaluation involved calculating the estimation errors Ep in Equation (4.29) and Ea in Equation (4.30)

by performing 50 noise realizations for both the synthetic and real datasets.
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The hyperparameters of the examined methods were determined using the fminsearch function in Mat-

lab within an intermediate noise scenario (SNR = 12.5 dB and PSNR = 12.5 dB). Hence, the values

with the lowest overall estimation error were selected. The hyperparameters that were chosen are presented

in Table 4.1, along with the estimation errors for abundances and end-members at the highest noise level

during the Monte Carlo evaluation. Consequently, EBEAE-SC demonstrated a significant reduction of 11%

in abundance estimation errors compared to the best-performing state-of-the-art BLU methods. Regarding

end-members, PISINMF and EBEAE-SC exhibited similar error levels, with the former achieving the low-

est error. In terms of execution time, EBEAE-SC showed an increase compared to gtvMBO, which is the

fastest algorithm in this scenario. However, compared to other state-of-the-art BLU methods, EBEAE-SC

ranked second, improving the execution time of SeCoDe by 67%. In summary, EBEAE-SC achieved the

second shortest computational time among synthetic VNIR dataset, while exhibiting the best performance

in terms of abundance errors.

The subplots in Figure 4.4 show the abundance maps for a single realization at the noise level of SNR =

12.5 dB and PSNR = 12.5 dB in the VNIR scenario. It is observed that, in general, the state-of-the-art

BLU methods yielded higher errors. Furthermore, in areas where high and low concentrations transitioned,

all methods exhibited a noticeable level of noise-induced granularity. Nevertheless, the abundance maps

generated by EBEAE-SC demonstrated greater homogeneity compared to the other methods and exhibited

better consistency with ground-truth data.

Boxplots depicting the abundance and end-member errors from the Monte Carlo test are illustrated

in Figure 4.5 for the synthetic VNIR-HSI datasets. As the noise levels (SNR,PSNR) increased, all the

methods demonstrated a corresponding increase in errors (Ep, Ea). Regarding abundance errors, EBEAE-

SC consistently delivered the most accurate results. In terms of end-member errors, EBEAE-SC reached the

lowest errors in the majority of the noise scenarios, although SeCoDe, PISINMF, GLNMF, and EBEAE-SC

displayed notable similarity in their end-member errors across all noise levels. In summary, based on the

evaluations conducted using the synthetic VNIR dataset, EBEAE-SC exhibited the most consistent results

Table 4.1: Optimal hyperparameters estimated for the Monte Carlo evaluation, resulting in: (i) estimation
errors and their STD for abundances and end-members at a noise level of SNR = 5 dB and PSNR = 5
dB, and (ii) computational time and its STD for the VNIR synthetic dataset. The method with the lowest
value in each category is highlighted in bold font.

VNIR
Method Hyperparameters Ea Ep × 10−4 Computational Time (seconds)

(mean±STD) (mean±STD) (mean±STD)
GLNMF µ = −0.0015, λ = −0.6463 4.712±0.282 24.493±5.151 91.972±0.268
PISINMF µ = 0.01, α0 = 0.001, δ = 45, τ = 25, window size = 5× 5 4.703±0.283 23.440±4.956 8.178±0.057

NMF-QMF β ∈ [10−5, 105] 5.040±0.266 39.230±6.189 15.391±0.969
gtvMBO λ = 4.333, ρ = 0, γ = 10.331 4.901±0.209 34.817±6.927 0.493±0.059
SeCoDe α = 5.103× 10−6, β = 3.102× 10−4, γ = 0.205 4.706±0.284 24.285±5.055 4.182±0.157

EBEAE-SC ρ = 0.085, λ = 0.347, µ = 1.237× 10−7, ν = 1.3× 10−3, τ = 0.097 4.201±0.252 23.460±5.052 1.375±0.219
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Figure 4.4: The Monte Carlo estimation results for VNIR synthetic dataset (N = 3, SNR = 12.5 dB,
and PSNR = 12.5 dB) are illustrated in seven panels: A) Ground-truth, B) GLNMF, C) PISINMF, D)
NMF-QMV, E) gtvMBO, F) SeCoDe, and G) EBEAE-SC, representing one realization of the abundance
maps.

in terms of end-member and abundance errors, as well as computational time, when compared to state-of-

the-art BLU algorithms.

4.5.6.1 Remote Sensing Datasets

Jasper Ridge and Samson HS images are widely used as experimental images to characterize unmixing

algorithms in studies such as [161, 162, 171]. Similar to the synthetic datasets, the noise levels mentioned

above were added to the real data. Additionally, a Monte Carlo test comprising 50 realizations was carried

out and the hyperparameters of each methodology were fine-tuned using the fminsearch function in Matlab

within an intermediate noise condition (SNR = 12.5 dB and PSNR = 12.5 dB), selecting the values that
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Figure 4.5: The boxplots of the Monte Carlo test for estimation errors of abundances (top plot) and end-
members (bottom plot) in VNIR-HSI synthetic datasets (N = 3) across various SNR and PSNR values.

resulted in the lowest overall estimation error. For the Jasper and Samson HS images, the VCA and FCLSU

algorithms were employed as the initialization methods for end-members and abundances, respectively,

following the same approach as with the synthetic dataset. The hyperparameters selected for both datasets

are presented in Table 4.2. The execution time results for both HSIs demonstrate that gtvMBO achieved

the shortest processing time, with EBEAE-SC closely following. On the other hand, GLNMF exhibited the

longest duration to generate the estimates.

Table 4.3 presents the results of the Monte Carlo test for the mean estimation errors Ea and Ep in

Jasper Ridge HS image. As the noise intensity increased (indicated by lower pairs of (SNR,PSNR)),

the estimation errors generally increased for all state-of-the-art BLU methods, which is expected. However,

our proposed method, EBEAE-SC, consistently reduced the estimation errors for both abundances and end-

members in both low and high noise scenarios, outperforming all state-of-the-art BLU methods. In fact,
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Table 4.2: Optimal hyperparameters estimated for the Monte Carlo test and mean computational time and
its STD for the Jasper Ridge and Samson HS images. The method with the lowest value is highlighted in
bold font.

Jasper Ridge HSI
Method Hyperparameters Computational Time (seconds)

(mean±STD)
GLNMF µ = 2.579× 10−5 and λ = −0.2462 65.478±2.578
PISINMF µ = 0.001, α0 = 1, δ = 45, τ = 20, window size = 5× 5 2.015±0.238

NMF-QMF β ∈ [10−5, 105] 4.283±0.042
gtvMBO λ = 5.6× 10−3, ρ = 7.365× 10−9, γ = 16.582 0.257±0.004
SeCoDe α = −0.021, β = 6.324× 10−4, γ = 0.826 4.512±1.513

EBEAE-SC ρ = 0.225, λ = 9× 10−4, µ = 1.081× 10−4, ν = 1.59× 10−10, τ = 2.392× 10−6 0.789±0.128
Samson HSI

GLNMF µ = 1.163× 10−4, λ = −8.037× 10−2 43.401±1.361
PISINMF µ = 1× 10−4, α0 = 0.001, δ = 10, τ = 35, window size = 5× 5 8.178±0.057

NMF-QMF β ∈ [10−5, 105] 15.391±0.969
gtvMBO λ = 19.833, ρ = 9.806× 10−9, γ = 6.586 0.493±0.059
SeCoDe α = −0.033, β = 5.218× 10−4, γ = 3.168 4.182±0.157

EBEAE-SC ρ = 0.766, λ = 4.5× 10−3, µ = 1.455× 10−6, ν = 3.533× 10−8, τ = 0.014 1.375±0.219

Table 4.3: Mean estimation errors for abundances and end-members in the Monte Carlo test for various
SNR and PSNR values in the Jasper Ridge HS image. The lowest value for each pair of SNR and
PSNR is indicated in bold font, while results without statistically significant difference from EBEAE-SC
(determined by ANOVA with p > 0.05) are highlighted in blue.

Method
Noise level GLNMF PISINMF NMF-QMV gtvMBO SeCoDe EBEAE-SC

(SNR,PSNR) Ea
Ep
×10−4 Ea

Ep
×10−4 Ea

Ep
×10−4 Ea

Ep
×10−4 Ea

Ep
×10−4 Ea

Ep
×10−4

20 0.259 1.448 0.249 1.868 1.311 4.702 0.796 4.349 0.597 16.085 0.183 0.946
17.5 0.357 2.072 0.346 2.474 1.497 6.854 0.942 6.009 0.552 15.524 0.274 1.580
15 0.474 3.159 0.461 3.514 1.693 10.419 1.111 9.154 0.570 15.659 0.384 2.756

12.5 0.604 3.869 0.592 4.777 1.837 14.752 1.249 11.886 0.803 17.639 0.530 3.456
10 0.757 5.484 0.743 6.269 1.978 20.044 1.367 13.550 0.839 17.030 0.688 4.926
7.5 1.034 7.426 1.021 8.256 2.226 26.435 1.626 15.881 1.106 18.365 0.982 6.679
5 1.168 7.677 1.155 10.190 2.453 31.597 1.861 20.190 1.198 18.022 1.117 6.585

EBEAE-SC exhibited similar results to GLNMF and PISINMF in most cases, while also achieving shorter

execution times (see Table 4.2). Figure 4.6 illustrates a comparison of the abundance maps generated by the

state-of-the-art BLU methods for a specific noise level of SNR = 12.5 dB and PSNR = 12.5 dB. It can

be observed that GLNMF, PISINMF, SeCoDe, and EBEAE-SC produced estimations that closely resemble

the ground-truth. Although there are subtle differences among the four methods, EBEAE-SC accurately

estimated regions with very low concentrations and transition zones. Furthermore, our proposed method

reduced the granularity present in the abundance maps compared to the state-of-the-art BLU methods.

Table 4.4 displays the results of the Monte Carlo test for the mean errors Ea and Ep in the Samson

HS image. Similar to Jasper Ridge, EBEAE-SC exhibited estimates that were closer to the ground-truth

for both abundances and end-members. However, EBEAE-SC did not demonstrate significant differences

in end-member errors compared to GLNMF, PISINMF, and SeCoDe. Nonetheless, this proposed method
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Figure 4.6: One realization of the Monte Carlo estimation results (abundance maps) in Jasper Ridge HS
image (N = 4, SNR = 12.5 dB and PSNR = 12.5 dB): A) Ground-truth, B) GLNMF, C) PISINMF, D)
NMF-QMV, E) gtvMBO, F) SeCoDe, and G) EBEAE-SC.

achieved shorter execution times (see Table 4.2). Figure 4.7 illustrates the abundance maps obtained from the

state-of-the-art BLU methods for an intermediate noise realization (SNR = 12.5 dB, PSNR = 12.5 dB).

Qualitatively, it is evident that EBEAE-SC closely resembles the ground-truth, with differences primarily

observed in regions with extreme abundances. Specifically, areas with low abundance in the ground-truth ap-

pear slightly brighter in the EBEAE-SC estimates, indicating a slight increase in concentration. Conversely,

areas with high concentration in the ground-truth exhibited lower concentration in EBEAE-SC estimates.

Notably, the abundance maps generated by the state-of-the-art BLU methods showed more pronounced

effects and significant granularity.

In certain scenarios, EBEAE-SC may have a potential drawback related to oversmoothing when dealing

with low noise in synthetic and remote sensing HS images [162]. This phenomenon arises from the utiliza-

tion of TV theory in computing internal abundances (see Section 4.5.4), which can result in smoothing and

uniformization effects [162, 172]. Consequently, if the TV component is applied without modifying the hy-
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Table 4.4: Mean estimation errors for abundances and end-members in the Samson HS image during the
Monte Carlo test for various SNR and PSNR values. The lowest value for each pair of SNR and PSNR
is indicated in bold font, while results without statistically significant difference from EBEAE-SC (deter-
mined by ANOVA with p > 0.05) are highlighted in blue.

Method
Noise level GLNMF PISINMF NMF-QMV gtvMBO SeCoDe EBEAE-SC

(SNR,PSNR) Ea
Ep
×10−4 Ea

Ep
×10−4 Ea

Ep
×10−4 Ea

Ep
×10−4 Ea

Ep
×10−4 Ea

Ep
×10−4

20 2.604 4.029 2.582 4.561 3.157 9.715 3.043 10.509 2.583 3.868 2.363 3.463
17.5 3.076 5.152 3.058 5.732 3.544 13.096 3.325 12.855 3.056 5.004 2.761 4.496
15 3.342 6.905 3.324 7.151 3.823 16.024 3.602 15.033 3.325 6.699 3.056 6.392

12.5 3.547 10.451 3.535 10.287 4.086 19.867 3.863 18.559 3.532 10.251 3.194 9.493
10 3.947 13.524 3.933 13.782 4.498 25.466 4.237 22.090 3.934 13.230 3.617 12.444
7.5 4.250 18.779 4.236 18.036 4.552 30.781 4.426 28.179 4.241 18.426 3.833 17.748
5 4.712 24.493 4.703 23.440 5.040 39.230 4.901 34.817 4.706 24.285 4.201 23.460

perparameters (λ, τ, ν) in low noise conditions, the discrepancies between the EBEAE-SC estimates and the

ground-truths may increase, particularly when analyzing images with significant intensity variations. Nev-

ertheless, it is important to note that EBEAE-SC still demonstrates competitive performance across various

noise levels by appropriately selecting hyperparameters in low noise scenarios. Moreover, in cases with

higher noise, EBEAE-SC consistently produces estimates with lower errors compared to state-of-the-art

BLU methods, while maintaining relatively low computational time (refer to Tables 4.1 and 4.2).

4.5.6.2 VNIR Biomedical Application

For the final evaluation of EBEAE-SC, a VNIR image of a patient diagnosed with a grade IV glioblas-

toma brain tumor was analyzed. This particular image, denoted as HS P012-01, is part of the in-vivo human

brain database discussed in Subsection 3.3.2.2 of this dissertation work. The tumor area in the HS image

was delineated with a yellow line, as depicted in Figure 4.8A, which illustrates the corresponding synthetic

RGB image.

In the analysis of the VNIR image, the initial step involved defining characteristic end-members by

extracting the labeled pixels from the gold standard map for the four classes under study. Using the mean

spectral signatures {pNT , pTT , pBV , pBG}, an end-members matrix P was constructed, as these labeled

pixels represent pure spectral signatures of each class. To generate abundance maps, only the algorithms

described by Equations (4.21) and (4.23) were used, with hyperparameter values of λ = 6× 10−5, τ = 0.1,

and ν = 1× 10−4.

The resulting abundances and end-members obtained by EBEAE-SC for this application are shown in

Figures 4.8B) and 4.8C), respectively. Furthermore, a classification map indicating the labels NT, TT, BV,

or BG was generated based on the maximum abundance per pixel, as shown in Figure 4.8E). These results

are consistent with the gold standard depicted in Figure 4.8D) and the manual segmentation performed by
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Figure 4.7: One realization of the Monte Carlo estimation results (abundance maps) for Samson HS image
(N = 3, SNR = 12.5 dB and PSNR = 12.5 dB): A) Ground-truth, B) GLNMF, C) PISINMF, D)
NMF-QMV, E) gtvMBO, F) SeCoDe, and G) and E) EBEAE-SC.

the clinical expert shown in Figure 4.8A). Additionally, the accuracy of the estimates compared to the pixels

labeled in the gold standard was 97.4%, which confirms their high similarity with the findings reported in [5,

51]. One advantage of using EBEAE-SC over existing methodologies in the literature is that it eliminates the

need for a smoothing stage after abundance estimation [5, 51]. Moreover, EBEAE-SC opens up possibilities

for reducing processing stages without sacrificing the ability to identify characteristic elements in such

applications.
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Figure 4.8: Results of the VNIR application using EBEAE-SC: A) A synthetic RGB image highlighting the
tumor area with a yellow line, B) Abundance maps representing four classes: Normal Tissue (NT), Tumor
Tissue (TT), Blood Vessel (BV), and Background (BG), with values ranging from 0 to 1, C) Estimated end-
members for each class, D) Gold standard map, and E) Classified image. The NT, TT, BV, and BG classes
are visually represented by green, red, blue, and black colors, respectively. White pixels in the images
indicate non-labeled data.

4.5.6.3 Qualitative Analysis

The results in Figures 4.4, 4.6, 4.7, and 4.8 for synthetic and remote sensing HS images demonstrate that

EBEAE-SC effectively reduces the granularity present in the concentration maps derived from the internal

abundances matrix W, while preserving a significant level of fine detail that is not discernible in state-of-

the-art BLU methods. Moreover, EBEAE-SC maintains sharp edges, a characteristic often compromised by

denoising algorithms employing TV components in their formulation. This improved uniformity and detail

preservation in the internal abundance maps result in estimations that closely align with the ground-truth,

outperforming the state-of-the-art BLU methods. Additionally, the inclusion of the TV component slightly

enhances the end-member estimation, which proves advantageous in BLU tasks. Consequently, leveraging

prior knowledge of the end-members and employing EBEAE-SC for abundance calculation yields remark-

ably similar results to the ground-truth dataset, effectively eliminating the majority of granularity. Further-

more, the Bregman split technique prevents excessive smoothing by controlling the relationship between the

hyperparameters µ and τ .

Nonetheless, the primary hurdle faced by EBEAE-SC lies in the calibration of its hyperparameters to

achieve well-defined transition regions and prevent oversmoothing, as discussed earlier in the text. The
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hyperparameters of EBEAE-SC, as mentioned in a previous section, affect various aspects of the unmixing

process. For instance, hyperparameter ρ modifies the similarity between end-members, where a value close

to 1 produces similar morphology among end-members, while a value close to 0 allows for different shapes.

The impact of this parameter is evident in the implementation results presented in preceding sections. On the

other hand, hyperparameters λ, ν, and τ control the smoothness and uniformity of the internal abundance

maps. Hence, hyperparameter λ regulates the similarity between the matrices A and W; when λ approaches

1, both matrices become highly similar, resulting in minimal impact from the TV smoothing. Consequently,

small values of λ were employed in the experiments. Lastly, the hyperparameters ν and τ regulate the

variability and smoothness of the internal abundance maps. These hyperparameters mitigate granularity by

assigning weight to the finite difference operators (ν) and controlling the effect of the Bregman variables

(τ ).

4.5.6.4 Convergence Analysis

In order to demonstrate the convergence characteristics of EBEAE-SC, a detailed analysis of the es-

timation errors was performed at each iteration using both synthetic (VNIR) and remote sensing (Samson

HS image) data sets. These evaluations were carried out using identical hyperparameters, as discussed in

Subsections 4.5.6 and 4.5.6.1, with a fixed SNR and PSNR noise levels of 5 dB, and a maximum iteration

limit of 1000. The convergence plots, illustrated in Figure 4.9, clearly indicate a consistent pattern of de-

creasing estimation errors with each iteration. Eventually, the errors stabilize and converge to a fixed value,

as the number of iterations increases.

Furthermore, upon examination of the energy functional of EBEAE-SC presented in Equation (4.14),

it can be observed that most of its components exhibit quadratic characteristics, rendering them convex

and differentiable functions. However, when addressing the subproblem associated with estimating the

internal abundances W in (4.22), the cost function involves the utilization of both L2 and L1 norms. The

latter is effectively resolved through the Bregman split technique, which has been extensively studied in

the literature and proven to converge without imposing constraints or exact updates, as demonstrated in

[157]. The aforementioned discussion, combined with our experimental evaluations, provides evidence of

the convergence properties exhibited by EBEAE-SC, even in scenarios characterized by high levels of noise.

4.6 Nonlinear Extended Blind End-member and Abundance Extraction for Hyperspectral
Images

In the field of nonlinear optical interaction analysis, the MMM provides a comprehensive framework

for unmixing. However, the research on unsupervised unmixing strategies based on this model is limited,

and the work by Wei et al. [176] is one of the few contributions in this area. Furthermore, the develop-
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Figure 4.9: Convergence analysis of EBEAE-SC, which was performed on two datasets: VNIR synthetic
(shown in the left plot) and Samson HS image (shown in the right plot) datasets. Both datasets were evalu-
ated at a noise level of 5 dB for both SNR and PSNR.

ment of new blind unmixing methods based on the MMM requires considerations of precision, robustness,

and computational efficiency as essential performance requirements. To address these concerns, a novel

methodology unmixing proposal is suggested based on the optimization structure of EBEAE. This novel

methodology is known as NEBEAE.

An advantage of the original EBEAE formulation was the normalization of measurements, which re-

stricted the search space and reduced estimation variability. In NEBEAE, a similar normalization condi-

tion is suggested to constrain the abundances. The synthesis optimization objective function of NEBEAE

comprises three components: estimation error, abundance entropy, and end-member similarity. Due to the

nonlinear relationship between decision variables, a cyclic CDA (CCDA) is adopted to derive an iterative

scheme [173].

4.6.1 Problem Formulation

Similarly to the case of EBEAE-SC, NEBEAE draws inspiration from both EBEAE and LMM to for-

mulate its approach. In this case, the normalization conditions in the formulation are described next:

〈1L, zk〉 = 1>Lzk = 1, ∀k ∈ K , {1, ...,K}, (4.34)

〈1L,pn〉 = 1>Lpn = 1 ∀n ∈ N , {1, ..., N}, (4.35)

〈1N ,αk〉 =
N∑
n=1

αk,n = 1, ∀k ∈ K, (4.36)

with 〈x,y〉 representing the inner product x>y, 1L denoting an L-dimensional vector of ones, and αk,n
representing the normalized abundances αk,n , βk,n/1

>
Lzk. With these restrictions, it is possible to achieve

an equivalence of the LMM in Equation (4.3) based on nonlinear variables.
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Now, to establish the MMM in Equation (4.9), it is necessary to restructure the restriction in the normal-

ized abundances {αk}k∈K in Equation (4.36) to account for nonlinear interactions, based on the assumption

of Equations (4.35) and (4.34), as follows:

(1− dk)
N∑
n=1

αk,n + dk

N∑
n=1

αk,n〈zk,pn〉 = 1 (4.37)

[
(1− dk)1 + dkP

>zk

]>
︸ ︷︷ ︸

δ>k

αk = δ>k αk = 1. (4.38)

In a vector format, the MMM in Equation (4.9) can be written as:

yk = (1− dk)Pαk + dk (Pαk)� zk + wk ∀k ∈ K. (4.39)

Therefore, the matrix P representing the end-members is shared among all measurements, while the nor-

malized abundances {αk} and the levels of nonlinear interaction {dk} are unique to each observation.

The problem formulation of NEBEAE differs from the approach presented in [84] by considering a

MMM for each individual measurement. The NEBEAE synthesis problem can be represented as follows:

min
{αk},P,{dk}

1

2K

K∑
k=1

‖yk − (1− dk)Pαk − dk (Pαk)� zk‖2

‖yk‖2︸ ︷︷ ︸
(a)

− µ

2K

K∑
k=1

‖αk‖2︸ ︷︷ ︸
(b)

+
ρ

2ϑ

N−1∑
n=1

N∑
j=n+1

‖pn − pj‖2︸ ︷︷ ︸
(c)

, (4.40)

such that:

αk ≥ 0 & δ>k αk = 1 ∀k ∈ K, (4.41)

dk ∈ (−∞, 1], (4.42)

pn ≥ 0 & 1>pn = 1 ∀n ∈ N , (4.43)

where µ ≥ 0 and ρ ≥ 0 are hyperparameters in NEBEAE, and the normalization variable ϑ takes the value

described in Equation (4.13).

In Equation (4.40), the component denoted by (a) represents the fidelity error as a percentage in the

estimation made by the MMM. This error accumulates across the entire dataset. On the other hand, the

component denoted by (b) acts as a regularization term, taking into account the Euclidean norm of the abun-

dance vectors with a normalization weight. Finally, the component denoted by (c) quantifies the Euclidean

distance between pairs of end-members, serving as a similarity metric among them. Since the objective

function in Equation (4.40) involves joint minimization, the fidelity error in (a) and the similarity among
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resulting end-members in (c) are reduced. However, due to the negative sign in (b), the abundance vectors

tend to increase their values. Nevertheless, as the abundances are positive and constrained by the equality

condition in Equation (4.41), and the Euclidean norm is squared in each term, the overall effect is to promote

larger abundances towards their upper limit and diminish smaller abundances towards zero. Consequently,

this pattern can be interpreted as an increase in the entropy of the abundances. The hyperparameter µ is thus

associated with the abundance entropy, while ρ relates to the similarity among end-members.

Furthermore, the synthesis scheme described in Equation (4.40) poses an ill-posed inverse problem,

where the end-members are computed across the entire dataset, and the abundances and nonlinear interac-

tion levels vary spatially. Therefore, the regularization term in (b) plays a crucial role in stabilizing this

optimization process and enhancing the robustness of the estimation scheme. In summary, the overall syn-

thesis framework presented in Equation (4.40), inspired by [84], aims to minimize estimation errors while

controlling the entropy of normalized abundances and promoting similarity among resulting end-members.

To address the optimization problem presented in Equation (4.40), three sub-problems are formulated

for estimation using a CCDA [173]: (i) normalized abundances {αk}k∈K, (ii) nonlinear interaction levels

{dk}k∈K, and (iii) end-members matrix P. To solve these sub-problems, a CQO approach is adopted within

each stage of the CCDA. This approach involves fixing the variables of two sub-problems while optimizing

the remaining one [84].

4.6.2 Abundance Estimation

In this initial sub-problem, the nonlinear interaction levels dkk∈K and the end-member matrix P are

kept fixed during the optimization process. To achieve this goal, the cost function in Equation (4.40) is

rewritten and each individual k-th measurement is analyzed individually from the others as:

min
αk

1

2

‖yk −Λkαk‖2

‖yk‖2
− µ

2
‖αk‖2, (4.44)

such that the condition in Equation (4.41) is satisfied, where:

Λk , P�
[
(1− dk)1L×N + dkzk1

>
N

]
∈ RL×N . (4.45)

The cost function is augmented by incorporating a Lagrange multiplier σk > 0 to account for the equality

condition in Equation (4.41). The resulting expression is as follows:

J1(αk, σk) ,
‖yk‖2 − 2α>k Λ>k yk + α>k Λ>k Λkαk

2‖yk‖2
− µ

2
α>k αk + σk

(
δ>k αk − 1

)
. (4.46)

The optimization problem stated in Equation (4.44) can be solved by deriving a closed-form solution based

on the stationary conditions:
∂J1

∂αk
= 0 &

∂J1

∂σk
= 0 (4.47)
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and redefining the weight hyperparameter µ =
λmin(Λ>k Λk)

‖yk‖2
µ̃ with µ̃ ∈ [0, 1), such that:

αk = Θ−1
k

[
Λkyk −

δ>k Θ−1
k Λ>k yk − 1

δ>k Θ−1
k δk

δk

]
, (4.48)

where Θk , Λ>k Λk − µ̃ λmin(Λ>k Λk) I ∈ RN×N . The calculation of Equation (4.48) involves inverting

matrix Θk, which is an N × N matrix determined by the order of the MMM in Equation (4.9). However,

the order N is significantly smaller compared to the size of each measurement L or the cardinality of

the dataset K = card(Z). Therefore, the computational complexity of this step is not expected to be

restrictive. Additionally, the construction of matrix Θk based on Equation (4.45) primarily depends on

the linear independence of the end-members in P. It is worth noting that this condition is continuously

monitored through the computation of λmin(Λ>k Λk). In the event of encountering a singularity condition,

the CCDA process is halted as the resulting end-members in P would lack a physical interpretation.

4.6.3 Estimation of Nonlinear Interaction Level

In the case of the second sub-problem, the absence of interaction between the measurements in the cost

function allows for the independent estimation of each nonlinear interaction level. Therefore, the optimiza-

tion problem for this estimation process can be expressed as follows:

min
dk∈(−∞,1]

1

2
‖yk − (1− dk)Pαk − dk (Pαk)� zk‖2. (4.49)

Following several mathematical derivations, the cost function can be formulated as:

J2(dk) ,
1

2
‖yk −Pαk‖2 + dk (yk −Pαk)

> (Pαk − [Pαk]� zk) +
d2
k

2
‖Pαk − [Pαk]� zk‖2. (4.50)

Next, by taking into account the optimality condition ∂J2/∂dk = 0 and considering the feasible interval,

the optimal solution is written as follows:

dk = Π

(
−(yk −Pαk)

> (Pαk − [Pαk]� zk)

‖Pαk − [Pαk]� zk‖2

)
, (4.51)

where Π(·) is a projection function:

Π(x) =

{
x x ∈ (−∞, 1],

1 x > 1.
(4.52)

4.6.4 End-member Estimation

In this final sub-problem, the normalized abundances {αk}k∈K and nonlinear interaction levels {dk}k∈K
remain constant throughout the estimation process. Departing from Equation (4.40), the resultant optimiza-

tion problem becomes:

min
P

1

2K

K∑
k=1

‖yk − (1− dk)Pαk − dk (Pαk)� zk‖2

‖yk‖2
+

ρ

2ϑ

N−1∑
n=1

N∑
j=n+1

‖pn − pj‖2. (4.53)
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The updated objective function for this estimation procedure can be expressed as follows:

J3(P) ,
1

2K

K∑
k=1

‖yk‖2 − 2y>k MkPαk + α>k P>M>
k MkPαk

‖yk‖2
+

ρ

2ϑ
Tr(POP>), (4.54)

where

Mk , (1− dk)I + dkdiag(zk) ∈ RL×L (4.55)

O , NI− 1N1>N ∈ RN×N . (4.56)

The derivative of J3 with respect to the end-member matrix P can be calculated straightforwardly by:

∂J3

∂P
=

1

K

K∑
k=1

{
−

M>
k ykα

>
k

‖yk‖2
+

M>
k MkPαkα

>
k

‖yk‖2

}
+

ρ

2ϑ
PO ∈ RL×N . (4.57)

Due to the nature of the equation mentioned earlier, finding a closed-form solution for the optimal end-

members matrix P is not feasible. Therefore, an alternative approach is proposed, which involves a gradient

descent scheme with an optimal linear search to define the step size [173]:

Pl+1 = Pl − γlΓl l ≥ 0, (4.58)

where

γl = arg min
γ≥0

J3

(
Pl − γΓl

)
(4.59)

and

Γl ,
∂J3

∂P

∣∣∣∣
P=Pl

. (4.60)

After performing a straightforward derivation and considering the quadratic relationship on γ in Equation

(4.6.4), the optimal step in Equation (4.58) is determined by setting:

∂J3(Pl − γΓl)

∂γ
= 0 (4.61)

which produces:

γl = max

(
0,
γlnum
γlden

)
(4.62)

such that:

γlnum =
1

K

K∑
k=1

α>k (Γl)>M>
k Mk(P

lαk − yk)

‖yk‖2
+

ρ

2ϑ
Tr(ΓlO[Pl]> + PlO[Γl]>)

γlden =
1

K

K∑
k=1

α>k (Γl)>M>
k MkΓ

lαk

‖yk‖2
+
ρ

ϑ
Tr(ΓlO[Γl]>). (4.63)
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4.6.5 Implementation

The implementation of NEBEAE using the formulation in Equation (4.40) requires an initial step of

end-members matrix P0 initialization during the CCDA. To achieve this, four widely used schemes from

the literature are proposed: N-FINDR, VCA, SVMAX, and SISAL [136, 174, 175, 176]. However, the main

computational complexity in NEBEAE arises from estimating the end-members matrix P shared across the

measurements dataset Z . To accelerate this process, similar to [84], we perform this estimation on reduced

datasets. To achieve this, we randomly select a subset of indices I ⊂ K = {1, . . . ,K} such that the

cardinality of I is less than K, and form the reduced datasets:

Ẑ = {zk|k ∈ I} ⊂ Z,

Ŷ = {yk|k ∈ I} ⊂ Y. (4.64)

The assessment of convergence in the CCDA for the initial iterative scheme will be determined by examining

the percentage variation in the estimation error at the l-th iteration:

Jl =
∑
k∈I
‖yk − (1− dlk)Plαl

k − dlk
(
Plαl

k

)
� zk‖2 l ≥ 0. (4.65)

Additionally, a maximum number of iterations lmax > 0 is considered as a termination criterion, ensuring

the following convergence property is achieved:

|Jl − Jl−1|
Jl−1

< ε OR l > lmax, (4.66)

where ε > 0 is the convergence threshold. After obtaining the estimated end-members matrix P, the next

step is to compute the normalized abundances {αk} and nonlinear interaction levels {dk} for the remaining

indexes in K\I. To achieve this, a new CCDA is employed, incorporating the nonlinear interaction be-

tween {αk} and {dk} within the framework of the MMM. A similar estimation error to Equation (4.65) is

considered:

Jh =
∑
k∈K\I

‖yk − (1− dhk)Pαh
k − dhk

(
Pαh

k

)
� zk‖2. (4.67)

Upon reaching convergence of the second iteration scheme, the reconstructed measurements {ẑk}k∈K can

be estimated as follows:

ẑk = (1− dk)P(ωk αk) + dk [P(ωk αk)]� zk ∀k ∈ K. (4.68)

As mentioned previously, the solution to Equation (4.40) considers an ill-posed inverse problem, so the

proposed regularization terms in abundances and end-members look to overcome the ambiguity in the for-

mulation. Furthermore, at each stage of the CCDA, all the terms in Equations (4.44), (4.49) and (4.53)

involve the Euclidean norm, so they induce convex optimization problems. So, overall convergence is guar-

anteed at each stage, but not necessarily to the global optimum, due to the nonlinear dependence of the
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Algorithm 2 NEBEAE
Input: The sets of original measurements and its scaled version Z and Y , the number of end-members N ,

the initial end-members matrix P0, the maximum number of iterations lmax, the convergence threshold
ε, and the hyperparameters ρ and µ̃.

Output: End-member matrix P, normalized abundances {αk}k∈K and nonlinear interaction level
{dk}k∈K.

1: Normalize measurements {zk}k∈K to sum-to-one

yk =
1

1>zk
zk k ∈ K.

2: Initialize the end-members matrix by P0 and set the nonlinear interaction levels to zero, i.e. dk = 0
∀k ∈ K.

3: Select randomly the indexes set I ⊂ K, construct the reduced datasets by Equation (4.64), and set l = 0.
4: while Convergence condition in Equation (4.66) is not satisfied. do
5: Estimate the normalized abundances αlk for all k ∈ I by Equation (4.48).
6: Estimate the nonlinear interaction levels dlk for all k ∈ I by Equation (4.51).
7: Update the gradient descent estimation of end-members matrix Pl over the reduced datasets Ŷ and

Ẑ by Equation (4.58).
8: Compute the estimation error in Equation (4.65).
9: end while

10: Set h = 0.
11: while Convergence condition in Equation (4.66) with Jl = Jh is not satisfied. do
12: Estimate the normalized abundances αhk for all k ∈ K\I by Equation (4.48).
13: Estimate the nonlinear interaction levels dhk for all k ∈ K\I by Equation (4.51).
14: Compute the estimation error in Equation (4.67).
15: end while
16: Compute the estimated measurements {ẑk}k∈K by Equation (4.68).
17: Compute the nonlinear interaction levels {dk}k∈K with the estimated end-members and abundances,

and original measurements {zk}k∈K by Equation (4.69).

variables {αk},P, {dk} in the error fidelity term in Equation (4.40)-(a). Hence, the optimal solution will

be local and depend largely on the selection of the initial end-members matrix P0.

Lastly, as a result of the normalized requirement specified in Equation (4.34), the calculated nonlinear

interaction levels in Equation (4.51) lack the appropriate physical interpretation. Therefore, these parameters

need to be computed in the final step after undergoing re-normalization using the following procedure:

dk = Π

(
−(zk −P(ωkαk))

> (P(ωkαk)− [P(ωkαk)]� zk)

‖P(ωkαk)− [P(ωkαk)]� zk‖2

)
∀k ∈ K. (4.69)

Algorithm 2 describes the implementation of NEBEAE and provides a high-level summary of the entire

discussed process.
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4.6.6 Validation and Discussion

In this section, the validation of the blind nonlinear unmixing under a MMM model is conducted using

two types of synthetic HS images, as well as experimental datasets from remote sensing literature and a

biomedical imaging application similar to the test in the last Subsection. The performance of NEBEAE is

compared to two state-of-the-art unmixing methods based on MMM: (i) Multilinear Mixing Model for Non-

linear Spectral Unmixing (MMMNSU) with end-members initialized by VCA [128], and (ii) Unsupervised

Nonlinear Spectral Unmixing Based on MMM (UNSUBMMM) [144]. Additionally, for the experimental

datasets, the blind sparse nonlinear HS unmixing (BSNHU) method, which utilizes an `q-regularizer and

a bilinear model [177], is considered for comparison. A comparison is made between the blind nonlinear

unmixing and BSNHU, as they address different NMMs than the MMM in NEBEAE, and incorporate both

abundance nonnegativity and abundance sum constraints jointly. In order to measure the accuracy of the

estimation process, the estimated end-member sets and their corresponding abundances are defined for each

method as Â and P̂ , respectively. The ground-truth sets were denoted asA and P . The performance metrics

using these sets are calculated as follows:

Ez =
‖Z− Ẑ‖F
‖Z‖F

, (4.70)

Ep = min
∀p̂∈P̂,p∈P

‖p̂− p‖
‖p‖

, (4.71)

ESAM = min
∀p̂∈P̂,p∈P

cos−1

(
p̂>p

‖p̂‖‖p‖

)
, (4.72)

Ea = min
∀â∈Â,a∈A

‖â− a‖
‖a‖

, (4.73)

where Z = [z1 . . . zK ] represents the matrix measurements, while Ẑ = [ẑ1; . . . ; ẑK ] represents the esti-

mated ones obtained by each blind nonlinear unmixing method. The tests were performed using Matlab c©
2018a software on a MacBook Pro equipped with a 2.3 GHz Intel Core i5 dual-core processor and 16 GB

of RAM. The scripts used to generate the results presented in the Figures and Tables can be found at the

following GitHub repository: https://github.com/Alex-CruzG/NEBEAE.

The convergence threshold for NEBEAE was set at ε = 0.001, and the maximum number of iterations

was limited to 50 to balance convergence evaluation and computational complexity. The similarity weight

ρ was chosen to be ρ = 0.1, considering a middle point within the range of [0.01, 1.0] as suggested in

[84]. For the entropy weight µ̃, it was restricted to the interval [0, 1), and in our evaluation, we selected

µ̃ = 0.1. This choice of µ̃ ensures a balance between using abundances for classification (when µ̃ > 0.5)

and minimizing the fidelity error in Equation (4.40) (when µ̃ = 0). Furthermore, as noted in [84], a small

value of µ̃ improves noise robustness. Lastly, the initialization of the end-members matrix in NEBEAE can

be performed using various methods such as VCA, N-FINDR, SVMAX, and SISAL [136, 174, 175, 176].
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4.6.6.1 Synthetic Data Evaluation

The synthetic HS images used in this evaluation were generated by the MMM model, described in

Section 3.1, corresponding to: (i) Spectral Library Version 7 (SLV7) [101], and (ii) VNIR of in-vivo human

brain tissue [84]. It is important to clarify that in all synthetic images, the level of nonlinear interaction

{dk}Kk=1 was set to 0.5, that is, an intermediate value in the range [0, 1], to induce dominance of the nonlinear

reflectance term in the MMM. Additionally, to accelerate the estimation of the end-members, a reduced

dataset is assumed, reducing the cardinality to card(I) = 2700 measurements.

To evaluate the performance of the proposed method in challenging scenarios, two types of noise com-

monly encountered in these images were introduced: Gaussian and shot noise. To generate a noisy mea-

surement yk from a noiseless observation y0
k, the following transformation is applied:

yk = y0
k + nk + mk ·

√
y0
k ∀k ∈ K, (4.74)

where the vectors nk ∈ RL and mk ∈ RL correspond to the Gaussian and shot noise components, respec-

tively. In our approach, the Gaussian noise vector nk is characterized by having a zero mean and a STD of

σSNRk . On the other hand, the shot noise component mk is also defined by a Gaussian distribution with a

mean of zero, but with a STD of σPSNRk . The values of σSNRk and σPSNRk were determined based on the

desired SNR and PSNR specified in the dataset:

σSNRk =

√
1

L−1‖ȳ0‖2

10
SNR
10

, σPSNRk =

√
maxl∈[1,L](ȳ0)2

l

10
PSNR

10

, (4.75)

where (·)l represents the l-th component of the vector, and ȳ0 denotes the mean vector in the dataset Y .

To assess the performance of NEBEAE and the state-of-the-art methods, they were tested under challeng-

ing conditions of varying noise levels (SNR,PSNR) ∈ {40, 35, 30, 25, 20} dB. These noise levels were

particularly demanding for most blind nonlinear unmixing algorithms. For each combination of SNR and

PSNR values, a Monte Carlo evaluation was conducted, generating 50 noise realizations for the synthetic

datasets. The performance metrics, including (Ey, Ep, ESAM , Ea) in Equations (4.70)-(4.73), were calcu-

lated for each realization.

In the initial evaluation, the four proposals for the initial end-members matrix P0 in NEBEAE were

considered: VCA, N-FINDR, SVMAX, and SISAL. This evaluation was conducted under various noise

levels. The results of this quantitative analysis are presented in Tables 4.5 and 4.6. To assess the statistical

significance of the numerical results, an ANOVA evaluation was performed. Based on the results in Table

4.5, SISAL demonstrated the best performance across most of the metrics for the SLV7 dataset. Similarly,

in Table 4.6, SISAL outperformed the other methods in the VNIR dataset, although N-FINDR and VCA

achieved the best results for certain noise conditions and metrics such as Ea, Ep, and ESAM . Interestingly,

for N-FINDR and VCA, the values of these metrics did not change significantly for noise conditions above
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20 dB. Therefore, SISAL will primarily be adopted for the initialization process in NEBEAE, while VCA

and N-FINDR will be considered as alternative options in some datasets.

Table 4.5: Evaluation of estimation performance using the synthetic Monte Carlo approach with different
pairs of SNR/PSNR and initial end-members matrixes P0 for SLV7 synthetic database. The results are
presented as the mean value ± STD, at the same form, the lowest error and computational time are high-
lighted in bold-face for each SNR/PSNR pair. It is worth noting that all values in the table show statistical
differences based on ANOVA analysis with a significance level of p < 0.05.

Initial End-members Matrix P0

Metric (SNR,PSNR) N-FINDR VCA SVMAX SISAL

Output Estimation Error Ez

20 0.0990 ± 9.7882×10−5 0.0992 ± 7.2496×10−05 0.0992 ± 5.9183×10−5 0.0988 ± 5.1793×10−5

25 0.0562 ± 3.7470×10−5 0.0562 ± 4.1662×10−05 0.0562 ± 3.2716×10−5 0.0558 ± 2.7228×10−5

30 0.0320 ± 2.2002×10−5 0.0320 ± 3.3105×10−05 0.0320 ± 2.2955×10−5 0.0314 ± 3.3431×10−5

35 0.0186 ± 2.2638×10−5 0.0186 ± 4.8501×10−05 0.0186 ± 2.7026×10−5 0.0178 ± 6.8842×10−5

40 0.0115 ± 3.7539×10−5 0.0115 ± 9.4781×10−05 0.0114 ± 2.7655×10−5 0.0104 ± 2.4093×10−5

Abundances Estimation Error Ea

20 0.3492 ± 0.0321 0.3442 ± 0.0317 0.3422 ± 0.0166 0.3597 ± 0.0158
25 0.3567 ± 0.0108 0.3667 ± 0.0087 0.3662 ± 0.0053 0.3340 ± 0.0182
30 0.3861 ± 0.0042 0.3829 ± 0.0053 0.3887 ± 0.0022 0.3261 ± 0.0149
35 0.3757 ± 0.0037 0.3749 ± 0.0084 0.3777 ± 0.0034 0.3281 ± 0.0129
40 0.3731 ± 0.0030 0.3731 ± 0.0098 0.3733 ± 0.0025 0.3293 ± 0.0121

End-members Estimation Error Ep

20 0.0444 ± 0.0100 0.0479 ± 0.0099 0.0449 ± 0.0039 0.0358 ± 0.0061
25 0.0421 ± 0.0024 0.0464 ± 0.0032 0.0444 ± 0.0012 0.0370 ± 0.0053
30 0.0463 ± 0.0006 0.0476 ± 0.0012 0.0460 ± 0.0002 0.0387 ± 0.0054
35 0.0472 ± 0.0003 0.0478 ± 0.0010 0.0470 ± 0.0003 0.0390 ± 0.0049
40 0.0474 ± 0.0002 0.0477 ± 0.0009 0.0473 ± 0.0002 0.0390 ± 0.0015

End-members Spectral
Angle Mapper ESAM

20 0.0442 ± 0.0098 0.0477 ± 0.0099 0.0448 ± 0.0039 0.0356 ± 0.0061
25 0.0419 ± 0.0023 0.0462 ± 0.0031 0.0442 ± 0.0012 0.0368 ± 0.0052
30 0.0461 ± 0.0006 0.0474 ± 0.0012 0.0457 ± 0.0002 0.0385 ± 0.0054
35 0.0470 ± 0.0003 0.0476 ± 0.0010 0.0468 ± 0.0003 0.0388 ± 0.0049
40 0.0472 ± 0.0003 0.0475 ± 0.0009 0.0471 ± 0.0002 0.0388 ± 0.0015

Computational Time (seconds)

20 21.0742 ± 4.2993 13.7782 ± 5.1759 13.0834 ± 2.3485 5.9417 ± 0.3974
25 18.0637 ± 1.6096 20.4937 ± 4.0539 22.2896 ± 3.0965 6.0775 ± 0.7183
30 34.2252 ± 2.9930 34.0510 ± 3.6826 38.0171 ± 5.0760 5.7977 ± 0.3236
35 44.8495 ± 2.1743 43.6023 ± 5.6222 46.9741 ± 4.7431 5.0665 ± 0.0516
40 56.5148 ± 1.6697 55.6090 ± 7.3566 57.2215 ± 1.6614 5.1774 ± 0.5516

In the second evaluation, the performance of NEBEAE, MMMNSU, and UNSUBMMM under differ-

ent noise levels is presented in Tables 4.7 and 4.8. BSNHU is not compared since the synthetic datasets

were generated by MMM, making the comparison unfair. ANOVA evaluation was conducted to assess the

statistical significance of the synthetic results, revealing statistical differences for all values in Table 4.7.

NEBEAE consistently outperformed MMMNSU and UNSUBMMM in terms of the lowest estimation er-

rors (Ez, Ea, Ep, ESAM ) and computational times, as shown in Table 4.7. Figure 4.10 displays the estimated

abundance maps for SLV7 at an SNR and PSNR of 20 dB. Visually, NEBEAE provides a more consistent

estimate compared to the ground-truths depicted in Figure 3.2, which aligns with the quantitative analysis in

Table 4.7. Lastly, the three blind nonlinear unmixing methods accurately estimated the nonlinear interaction

levels, as seen in the last column of Figure 4.10.

Table 4.8 presents the results for synthetic VNIR HS images, where statistical differences are con-

sistently observed. NEBEAE achieved the best performance in terms of output estimation error Ez and

computational time compared to all other methods. MMMNSU obtained the lowest abundance estimation

errors Ea for some noise conditions, while UNSUBMMM performed the best in terms of end-members
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Table 4.6: Evaluation of estimation performance using the synthetic Monte Carlo approach with different
pairs of SNR/PSNR and initial end-members matrixes P0 for VNIR synthetic database. The results are
presented as the mean value ± STD, at the same form, the lowest error and computational time are high-
lighted in bold-face for each SNR/PSNR pair. It is worth noting that all values in the table show statistical
differences based on ANOVA analysis with a significance level of p < 0.05.

Initial End-members Matrix P0

Metric (SNR,PSNR) N-FINDR VCA SVMAX SISAL

Output Estimation Error Ez

20 0.0983 ± 0.0001 0.0983 ± 9.1205×10−5 0.0982 ± 9.9727×10−5 0.0979 ± 8.5406×10−5

25 0.0556 ± 7.8924×10−5 0.0556 ± 7.4253×10−5 0.0555 ± 6.7405×10−5 0.0552 ± 6.0191×10−5

30 0.0315 ± 5.4413×10−5 0.0314 ± 8.5194×10−5 0.0314 ± 4.6024×10−5 0.0311 ± 3.3697×10−5

35 0.0180 ± 0.0001 0.0179 ± 0.0001 0.0179 ± 7.5787×10−5 0.0175 ± 1.8572×10−5

40 0.0105 ± 0.0001 0.0106 ± 0.0004 0.0104 ± 7.0883×10−5 0.0098 ± 1.2410×10−5

Abundances Estimation Error Ea

20 0.3952 ± 0.0426 0.3892 ± 0.0643 0.3890 ± 0.0590 0.5226 ± 0.0130
25 0.3482 ± 0.0526 0.3705 ± 0.0657 0.3610 ± 0.0473 0.5069 ± 0.0243
30 0.3262 ± 0.0602 0.3554 ± 0.0430 0.3493 ± 0.0286 0.4906 ± 0.0167
35 0.3349 ± 0.0377 0.3669 ± 0.0290 0.3601 ± 0.0251 0.4002 ± 0.0319
40 0.3589 ± 0.0217 0.3778 ± 0.0427 0.3711 ± 0.0170 0.3110 ± 0.0186

End-members Estimation Error Ep

20 0.0589 ± 0.01096 0.0301 ± 0.0122 0.0282 ± 0.01017 0.0708 ± 0.0135
25 0.0298 ± 0.00792 0.0233 ± 0.0067 0.0244 ± 0.0051 0.0414 ± 0.0156
30 0.0222 ± 0.0089 0.0245 ± 0.010 0.0227 ± 0.0034 0.0255 ± 0.0119
35 0.0212 ± 0.0021 0.0226 ± 0.0023 0.0228 ± 0.0014 0.0163 ± 0.0078
40 0.0227 ± 0.0012 0.0239 ± 0.0033 0.0232 ± 0.0010 0.0125 ± 0.0025

End-members Spectral
Angle Mapper ESAM

20 0.0571 ± 0.0096 0.0293 ± 0.0116 0.0272 ± 0.0093 0.0675 ± 0.0105
25 0.0291 ± 0.0078 0.0226 ± 0.0064 0.0235 ± 0.0049 0.0399 ± 0.0146
30 0.0215 ± 0.0083 0.0235 ± 0.0094 0.0219 ± 0.0032 0.0243 ± 0.0108
35 0.0206 ± 0.0019 0.0219 ± 0.0021 0.0220 ± 0.0013 0.0154 ± 0.0071
40 0.0221 ± 0.0011 0.0232 ± 0.0030 0.0225 ± 0.0009 0.0123 ± 0.0023

Computational Time (seconds)

20 1.4050 ± 0.1609 0.7728 ± 0.2059 0.7329 ± 0.1374 0.4609 ± 0.0221
25 1.3362 ± 0.1396 1.0004 ± 0.1638 0.9805 ± 0.1701 0.4550 ± 0.0194
30 1.6323 ± 0.2236 1.5186 ± 0.5014 1.3581 ± 0.1234 0.4445 ± 0.0152
35 2.0461 ± 0.1597 1.8679 ± 0.3594 1.7558 ± 0.1884 0.4810 ± 0.0763
40 2.0149 ± 0.1847 2.2304 ± 0.3023 2.0884 ± 0.1306 0.5929 ± 0.0916

metrics Ep and ESAM . However, overall, NEBEAE demonstrated superior performance across most tested

scenarios. This synthetic evaluation emphasizes the enhanced accuracy of NEBEAE in handling challenging

noise conditions and end-members with different physical interpretations.

4.6.7 Real Remote Sensing and Experimental Datasets

This section compares NEBEAE with MMMNSU and UNSUBMMM, but also includes BSNHU for

other types of NMMs. For BSNHU, there is no single value per pixel for quantifying nonlinear optical

interactions, so this parameter cannot be extrapolated for comparison with NEBEAE, MMMNSU, and UN-

SUBMMM. However, if there is a ground-truth for both variables, you can compare the estimated end

members and their abundance. In this section, the different methods of blind nonlinear SU are evaluated on

three remote sensing datasets described in Section 3.2: Cuprite, Urban, and Pavia University Scene. Finally,

the proposal is evaluated on two VNIR images of the in-vivo human brain, described in Section 3.3.2.2.
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Table 4.7: Performance evaluation of estimation in a synthetic Monte Carlo environment, presented as the
mean deviation ± STD, applying nonlinear unmixing methodologies on the SLV7 dataset with different
pairs of SNR and PSNR. The lowest error and computational time are highlighted in bold in this table, and
all the results in the table were statistically significant with p < 0.05 according to ANOVA analysis.

Method
Metric (SNR,PSNR) NEBEAE MMMNSU UNSUBMMM

Output Estimation Error Ez

20 0.0992 ± 7.5409×10−5 0.1018 ± 0.0012 0.0999 ± 0.0003
25 0.0562 ± 4.4945×10−5 0.0617 ± 0.0024 0.0577 ± 0.0005
30 0.0320 ± 2.7767×10−5 0.0415 ± 0.0032 0.0345 ± 0.0004
35 0.0179 ± 6.4545×10−5 0.0314 ± 0.0032 0.0226 ± 0.0013
40 0.0104 ± 6.2130×10−5 0.0269 ± 0.0055 0.0171 ± 0.0010

Abundances Estimation Error Ea

20 0.3457 ± 0.0215 0.3649 ± 0.0547 0.3820 ± 0.0552
25 0.3665 ± 0.0083 0.3895 ± 0.0456 0.3966 ± 0.0357
30 0.3845 ± 0.0052 0.3951 ± 0.0423 0.4065 ± 0.0290
35 0.3327 ± 0.0167 0.3964 ± 0.0235 0.4114 ± 0.0416
40 0.3323 ± 0.0101 0.4311 ± 0.0559 0.4123 ± 0.0275

End-members Estimation Error Ep

20 0.0466 ± 0.0090 0.0574 ± 0.0109 0.0519 ± 0.0126
25 0.0457 ± 0.0019 0.0602 ± 0.0059 0.0504 ± 0.0058
30 0.0469 ± 0.0011 0.0638 ± 0.0085 0.0513 ± 0.0032
35 0.0386 ± 0.0048 0.0630 ± 0.0049 0.0522 ± 0.0050
40 0.0395 ± 0.0018 0.0653 ± 0.0062 0.0525 ± 0.0028

End-members Spectral
Angle Mapper ESAM

20 0.0464 ± 0.0089 0.0573 ± 0.0107 0.0517 ± 0.0124
25 0.0455 ± 0.0019 0.0600 ± 0.0059 0.0503 ± 0.0056
30 0.0466 ± 0.0011 0.0636 ± 0.0084 0.0511 ± 0.0032
35 0.0384 ± 0.0047 0.0629 ± 0.0049 0.0520 ± 0.0049
40 0.0393 ± 0.0018 0.0651 ± 0.0061 0.0524 ± 0.0028

Computational Time (seconds)

20 9.1165 ± 1.6853 15.2092 ± 1.2149 10.0364 ± 1.4549
25 13.5596 ± 1.9506 14.8229 ± 0.9186 16.7374 ± 3.4365
30 24.4548 ± 3.1559 14.8204 ± 0.9733 78.2267 ± 54.6767
35 24.0440 ± 0.0460 14.1591 ± 0.7397 145.7370 ± 9.3060
40 24.0922 ± 0.1341 14.6954 ± 0.8340 147.5184 ± 0.9670

4.6.7.1 Cuprite Dataset

Cuprite is one of the most widely used benchmark data sets for evaluating SU methods. For this dataset,

there are ground-truths just for the end-members, but not for the abundance maps. Therefore, the estimation

errors for NEBEAE, MMMNSU, UNSUBMMM, and BSNHU will be evaluated by Equations (4.70) and

(4.71); and at the same time by the computational time. The hyperparameters in NEBEAE were roughly

the same as those used to evaluate synthetic data, only the entropy weight was increased to account for the

noise in the experimental data set, so it was defined µ̃ = 0.2. In this scenario, VCA initialization performed

better compared to SISAL and N-FINDR.

As illustrated in Table 4.9, NEBEAE shows clear advantages over MMMNSU, UNSUBMMM, and

BSNHU. NEBEAE achieved the lowest estimation errors in measurements (Ez), end-members (Ep), and

SAM (ESAM ). Additionally, NEBEAE exhibited the shortest computational time compared to the other
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Figure 4.10: Abundance maps estimated for the SLV7 dataset, along with the resulting nonlinear interaction
levels for an SNR and PSNR to 20 dB: A) NEBEAE: 0.4993 ± 0.0033, B) MMMNSU: 0.4997 ± 0.0025,
and C) UNSUBMMM: 0.4999± 0.0025.

methods. Figure 4.11 shows the nonlinear interaction level maps (dk) for NEBEAE, MMMNSU, and UN-

SUBMMM. As mentioned earlier, BSNHU does not provide this parameter. Nonlinear interaction maps

reveal negative values, indicating an increase in reflectance compared to LMM as described in [128]. Al-

though the resulting maps of the three unmixing techniques generally exhibit consistency in the separation of

the morphological regions, NEBEAE achieves better resolution, as shown in the approximated RGB image

in Figure 4.11A.

4.6.7.2 Urban Dataset

In conjunction with the previous evaluation, blind nonlinear unmixing methods were evaluated in the

Urban database, described in Section 3.2. Table 4.10 presents the estimation performance of NEBEAE,

MMMNSU, UNSUBMMM, and BSNHU for three different conditions regarding the end-members. To im-

prove estimation performance, slight adjustments were made to the hyperparameters in NEBEAE compared

to synthetic evaluation, setting ρ = 1.0 and µ̃ = 0.25. The VCA initialization yielded the best results for

NEBEAE on this dataset compared to SISAL and N-FINDR. NEBEAE demonstrated a significant reduction

in computational time compared to MMMNSU, UNSUBMMM, and BSNHU. The output estimation error

Ez was the lowest for UNSUBMMM with four end-members, while NEBEAE achieved smaller errors with
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Table 4.8: Performance evaluation of estimation in a synthetic Monte Carlo environment, presented as the
mean deviation ± STD, applying nonlinear unmixing methodologies on the VNIR dataset with different
pairs of SNR and PSNR. The lowest error and computational time are highlighted in bold in this table, and
all the results in the table were statistically significant with p < 0.05 according to ANOVA analysis.

Method
Metric (SNR,PSNR) NEBEAE MMMNSU UNSUBMMM

Output Estimation Error Ez

20 0.0979 ± 1.1126×10−4 0.0989 ± 0.0007 0.0986 ± 0.0007
25 0.0553 ± 5.7677×10−5 0.0563 ± 0.0008 0.0563 ± 0.0011
30 0.0311 ± 3.0159×10−5 0.0325 ± 0.0004 0.0325 ± 0.0017
35 0.0175 ± 2.3667×10−5 0.0195 ± 0.0005 0.0191 ± 0.0011
40 0.0098 ± 1.5885×10−5 0.0152 ± 0.0056 0.0132 ± 0.0036

Abundances Estimation Error Ea

20 0.5228 ± 0.0156 0.3939 ± 0.0676 0.4215 ± 0.0720
25 0.5043 ± 0.0231 0.3917 ± 0.0640 0.4534 ± 0.0812
30 0.4851 ± 0.0202 0.3670 ± 0.0505 0.4206 ± 0.0569
35 0.4075 ± 0.0278 0.3750 ± 0.0304 0.4222 ± 0.0593
40 0.3169 ± 0.0195 0.4428 ± 0.0467 0.4399 ± 0.0557

End-members Estimation Error Ep

20 0.0724 ± 0.0132 0.0357 ± 0.0134 0.0345 ± 0.0130
25 0.0369 ± 0.0118 0.0291 ± 0.0110 0.0253 ± 0.0095
30 0.0212 ± 0.0093 0.0261 ± 0.0087 0.0234 ± 0.0070
35 0.0148 ± 0.0069 0.0255 ± 0.0020 0.0242 ± 0.0080
40 0.0121 ± 0.0028 0.0259 ± 0.0030 0.0244 ± 0.0050

End-members Spectral
Angle Mapper ESAM

20 0.0693 ± 0.0110 0.0348 ± 0.0126 0.0334 ± 0.0119
25 0.0360 ± 0.0105 0.0282 ± 0.0106 0.0245 ± 0.0091
30 0.0206 ± 0.0088 0.0253 ± 0.0081 0.0226 ± 0.0065
35 0.0140 ± 0.0063 0.0248 ± 0.0019 0.0233 ± 0.0071
40 0.0119 ± 0.0027 0.0252 ± 0.0027 0.0236 ± 0.0046

Computational Time (seconds)

20 0.6262 ± 0.0261 17.0775 ± 0.7811 2.3985 ± 1.0793
25 0.6266 ± 0.0401 17.3067 ± 0.6933 5.2546 ± 8.0038
30 0.6156 ± 0.0066 17.1421 ± 0.8298 8.0615 ± 10.4945
35 0.6458 ± 0.0790 17.2223 ± 0.6115 8.3488 ± 7.1535
40 0.7647 ± 0.1279 18.7007 ± 0.9869 13.675 ± 12.3457

Figure 4.11: Approximate RGB image and estimated levels of nonlinear interaction for the Cuprite dataset:
(a) RGB image, (b) NEBEAE, (c) MMMNSU, and (d) UNSUBMMM.

five and six end-members. In terms of abundance estimation error Ea, NEBEAE performed the best with
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Table 4.9: Estimation errors for blind nonlinear unmixing methods in the Cuprite dataset: NEBEAE,
MMMNSU, UNSUBMMM, and BSNHU. The lowest error and computational time are highlighted in bold.

Parameter
Method Ez Ep ESAM Computational Time (seconds)

NEBEAE 0.0103 0.0532 0.0532 257.0032
MMMNSU 0.1614 0.0630 0.0629 617.9150

UNSUBMMM 0.0776 0.0566 0.0564 1151.5394
BSNHU 0.0233 0.0608 0.0608 125164.7874

four and six end-members, and for five end-members, NEBEAE was within the 20% range of MMMNSU,

which had the lowest error. BSNHU achieved the best end-member estimation error Ep, and only UNSUB-

MMM outperformed NEBEAE in terms of SAM ESAM for six end-members. In conclusion, NEBEAE

demonstrated a significant improvement by greatly reducing computational time while maintaining a bal-

anced level of estimation performance. Figure 4.12 displays the approximated RGB image and the estimated

levels of nonlinear interaction for NEBEAE, MMMNSU and UNSUBMMM with four end-members. The

results demonstrate a high level of consistency in this parameter among the three methods. The presence

of negative values in Figure 4.12 indicates areas with enhanced reflectance compared to the LMM, which

aligns with findings reported in [178].

Figure 4.12: Approximate RGB image and estimated levels of nonlinear interaction for the Urban dataset:
(a) RGB image, (b) NEBEAE, (c) MMMNSU, and (d) UNSUBMMM.

Table 4.10: Estimation errors for blind nonlinear unmixing methods in the Urban dataset: NEBEAE,
MMMNSU, UNSUBMMM, and BSNHU. The lowest error and computational time are highlighted in bold.

Number of End-members
Output Estimation Error Ez Abundance Estimation Error Ea End-member Estimation Error Ep Computational Time (seconds)

Method 4 5 6 4 5 6 4 5 6 4 5 6
NEBEAE 0.0576 0.0449 0.0467 0.2373 0.3314 0.4346 0.1306 0.2116 0.1653 64.7214 70.6075 95.7871

MMMNSU 0.0987 0.0832 0.1166 0.5897 0.2757 0.7312 0.0849 0.1148 0.1318 306.0314 349.4668 355.7806
UNSUBMMM 0.0493 0.0455 0.0731 0.3937 0.5476 0.5859 0.1165 0.2098 0.1242 1645.6323 1730.4609 1748.7644

BSNHU 0.1842 0.2224 0.2339 0.5018 0.7285 0.7690 0.0452 0.1059 0.1073 2854.1665 4031.3013 4597.8123
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Table 4.11: Estimation errors for blind nonlinear unmixing methods in the Pavia University Scene dataset:
NEBEAE, MMMNSU, UNSUBMMM, and BSNHU. The lowest error and computational time are high-
lighted in bold.

Parameter
Method Ez Ep ESAM Computational time

NEBEAE 0.0406 0.0121 0.0118 248.6713
MMMNSU 0.0863 0.2117 0.1911 2381.4301

UNSUBMMM 0.0445 0.1642 0.1120 2896.0229
BSNHU 0.0596 0.0489 0.0481 277829.7414

Figure 4.13: Approximate RGB image and estimated levels of nonlinear interaction for the Pavia University
Scene dataset: A) RGB image, B) NEBEAE, C) MMMNSU, and D) UNSUBMMM.

4.6.7.3 Pavia University Scene Dataset

The final HS image from remote sensing is the scene of Pavia University. This database is also de-

scribed in Section 3.2, where the main characteristics are discussed. The hyperparameters used in NEBEAE

for this experiment were identical to those used in the synthetic evaluation, with ρ = 0.1 and µ̃ = 0.1.

The initialization of end-members was performed using N-FINDR, which yielded optimal results. Table

4.11 presents the results of the nonlinear unmixing methods NEBEAE, MMMNSU, UNSUBMMM, and

BSNHU in terms of quantitative indexes. Once again, NEBEAE shows superior performance in all metrics

(Ez, Ep, ESAM ) and exhibits the shortest computational time. The second best algorithm in terms of error

metrics was BSNHU, although its computational time was significantly longer compared to MMMNSU and

UNSUBMMM. Figure 4.13 visually represents the approximated RGB image and the estimated nonlinear

interaction levels for NEBEAE, MMMNSU, and UNSUBMMM. Notably, clear distinctions in the estima-

tion of the nonlinear interaction level by NEBEAE are observed, particularly in certain unlabeled regions

present in the ground-truth data.
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4.6.7.4 Hyperspectral VNIR Images of In-vivo Human Brain Surgery Scenes

The final evaluation of the blind nonlinear unmixing methods was conducted on two in-vivo brain tissue

HS images described in Subsection 3.3.2.2, specifically images P15-01 and P20-01. The main objective

of this evaluation was to assess the performance of the nonlinear proposal on experimental data for the

identification of the four classes of interest: NT, TT, HT, and BG. The BG class encompasses various

materials that can be found in a surgical scene, including skull, bone, dura mater, skin, or other tools. This

application is focused on evaluating the nonlinear properties within the experimental image.

Since the advantages of NEBEAE over various state-of-the-art blind nonlinear unmixing algorithms

(MMMNUS, UNSUBMMM, and BSNHU) were described in the previous examples, in this final scenario,

only the proposed algorithm is presented. However, to identify the differences in linear and nolinear un-

mixing methods, for comparison, EBEAE is considered. Therefore, the labeled dataset was first used for

the identification of the end-members using NEBEAE and EBEAE in the two previously mentioned images,

where the approximate RGB images are illustrated in the first column of Figure 4.14. The experiments were

conducted following an intra-patient validation process.

In EBEAE, six end-members were identified in the labeled dataset: one for NT and TT, two for HT, and

four for BG. However, increasing the number of end-members in the NT and TT classes led to a singularity

condition during the abundance extraction step [84]. To improve accuracy, the number of end-members was

increased in NEBEAE: two for NT, TT, and HT, and four for BG. The abundances were then calculated for

the entire image. During the end-member identification step in NEBEAE, the estimated nonlinear interaction

levels consistently decreased to an average value of -40 for all cases. This indicates that the reflectance by the

LMM dominates, thus confirming the purity of the labeled pixels. The hyperparameters of both EBEAE and

NEBEAE were set to ρ = 0.1 and µ̃ = 0.2, i.e., the same values as used in the Cuprite dataset. Concentration

maps were constructed by adding the total abundance of the end-members for each class, and each pixel

was labeled as (NT, TT, HT, BG) based on the maximum abundance value per class. Table 4.12 presents

the quantitative results comparing EBEAE and NEBEAE, showing an overall improvement in estimation

accuracy with NEBEAE, despite an increase in computational time due to the nonlinear unmixing technique.

Figure 4.14 shows the RGB images, ground-truth maps, classified images by EBEAE and NEBEAE, and

nonlinear interaction maps for both HS images (P015-01 and P020-01). In P015-01, the tumor region is

better defined by NEBEAE, as well as the NT inside the black rubber rings in P020-01. The nonlinear

interaction maps in Figure 4.14 reveal a decrease in reflectance (dk > 0) compared to the LMM in certain

BG regions and areas with high light reflections, and an increase in some hypervascularized zones (dk < 0).

The last row of Table 4.12 shows a significant difference in classification performance between EBEAE and

NEBEAE. So, in this scenario, the NMM provides an improved performance in the classification compared

to the LMM.
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Figure 4.14: Classification results by EBEAE and NEBEAE: A) P015-01 and B) P020-01. The first column
shows the synthetic RGB images (tumor region delineated by a yellow line), followed by the ground-truth
background map (green - normal tissue, red - tumor tissue, blue - hypervascularized tissue, black - back-
ground). The third and fourth columns display the classified images using EBEAE and NEBEAE (same
color coding). Finally, the fifth column presents the nonlinear interaction level, obtained from the evaluation
with EBEAE.

Table 4.12: Quantitative assessment of estimation errors in the VNIR hyperspectral images of in-vivo human
brain surgery scenes, utilizing NEBEAE and EBEAE for classification.

Output Estimation Error Ez
Classification Precision in

Ground-truth Pixels
Computational Time (seconds)

Total Error Percentage in Classified
Images NEBEAE vs EBEAE

VNIR Image P015-01 P020-01 P015-01 P020-01 P015-01 P020-01 P015-01 P020-01
NEBEAE 0.0971 0.0849 0.9893 0.9665 50.9256 48.9586

0.2320 0.3638
EBEAE 0.1172 0.0972 0.9756 0.9311 9.7039 6.0889

4.7 Classification of Hyperspectral In-vivo Brain Tissue Based on Linear Unmixing

In existing literature, previous studies have utilized SU approaches such as PCA and ICA for cancer

detection using HSI. Other methods like MCR, NNMF, and EBEAE have been employed to identify can-

cer cells in various biomedical imaging applications. Moreover, ML techniques including supervised and

unsupervised algorithms have been investigated for brain tissue classification. In this section, we propose

two methods based on BLU using the original EBEAE approach for the classification of in-vivo brain HS

images. The main goal of these methods is to achieve precise and efficient classification results for HSI,

specifically for intraoperative brain tissue HS images discussed in Subsection 3.3.2.2.

These two strategies adopt a semi-supervised approach to perform the classification, starting with a

small set of labeled pixels as ground-truth. These pixels belong to four general classes: NT, TT, HT, and

BG. The BG class encompasses a wide range of spectral signatures, including distinctive flat spectral sig-
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natures from rubber marker rings and other materials [4, 121, 123]. To mitigate variability in the unmixing

process, an initial segmentation of the rubber marker rings based on their flat spectral signatures is con-

ducted, particularly in the lower frequency bands [4]. This step aims to prevent misclassifications caused

by the presence of rubber, moisture, and light scattering. The energy is calculated from the initial twenty

spectral signatures and raised to the power of 3/2 to enhance the magnitude differences. The resulting image

is then normalized to grayscale tones. Finally, the Otsu method is applied to the grayscale image to seg-

ment the regions associated with the rubber marker rings [179]. Subsequently, two proposed classification

methodologies based on BLU were explored, differing primarily in the assumption that an initial segmen-

tation of the binary classes BG versus non-BG (NT, TT, and HT) could improve overall accuracy without

significant computational overhead.

4.7.1 Method A

The first methodology comprises three primary stages after the segmentation of the rubber marker rings,

as illustrated in Figure 4.15. In the initial stage, the distinctive end-members of the four studied classes (NT,

TT, HT, and BG) were estimated using the EBEAE algorithm. This estimation process leverages the labeled

pixels from the ground-truth datasets of each image as training data. In this case, method A uses labeled

data from all HS images except for the HS image under analysis to train the algorithm.

Figure 4.15: Schematic representation illustrating the different steps involved in method A [5].

The number of representative end-members for each class is determined based on the variability of

spectral signatures in the dataset [123], following the approach described in [180]. In our study, we selected

two representative end-members for NT (NNT = 2), two for TT (NTT = 2), one for HT (NHT = 1),

and three for BG (NBG = 3) in all HS images. As for the hyperparameters of the EBEAE algorithm, they

were manually chosen to improve the classification results, taking into account the recommendations in

[84]. The entropy weight parameter (µ) was set to zero to minimize estimation errors, while the similarity

weight parameter (ρ) was selected as 0.3 for NT (ρNT = 0.3), 0.2 for TT (ρTT = 0.2), and 0.01 for BG

(ρBG = 0.01) to account for dataset variability. After this estimation process, the sets of representative end-

members {PNT ,PTT ,PHT ,PBG} for NT, TT, HT, and BG classes were obtained, respectively. It should

be noted that card(PNT ) = 2, card(PTT ) = 2, card(PHT ) = 1, and card(PBG) = 3, as mentioned earlier.

In the next stage, the distance between each pixel yk (where k represents the pixel index) in the HS
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image and the corresponding end-member sets was calculated using the concept of point-to-set distance:

d(yk,Pi) = inf
p∈Pi

d(yk,p) i ∈ {NT, TT,HT,BG}, k ∈ {1, . . . ,K} (4.76)

where d(·, ·) represents a distance or metric. In this study, five distances were evaluated:

d1(x,y) =
L∑
l=1

|(x)l − (y)l| Manhattan metric (4.77)

d2(x,y) =
√

(x− y)>(x− y) Euclidean metric (4.78)

dC(x,y) =
x>y

‖x‖‖y‖
Correlation metric (4.79)

dM (x,y) =
√

(x− y)>Q(x− y) Mahalanobis metric (4.80)

dSAM (x,y) = cos−1

(
x>y

‖x‖‖y‖

)
SAM metric (4.81)

where Q ∈ RL×L represents the covariance matrix of the dataset. In the final step, the classification of the

k-th pixel yk is determined by calculating the minimum distance between the pixel and the four available

classes:

c(yk) = arg min
i∈{NT,TT,HT,BG}

d(yk,Pi). (4.82)

4.7.2 Method B

In the case of the second approach (refer to Figure 4.16), the main focus was on achieving a precise

estimate of the BG class, which exhibits the most significant spectral variation [4, 121]. Initially, the com-

putation of representative end-members for each class follows the same steps as in method A. Subsequently,

the collection of all these estimated end-members is defined as follows:

P = PNT ∪ PTT ∪ PHT ∪ PBG.

Subsequently, for each pixel yk (where k ranges from 1 to the total number of pixels) in the HS image,

the distance to all M = card(P) estimated characteristic end-members in P is calculated. This process

generates M images, each representing the distance to a specific characteristic end-member. To further

analyze these images, a segmentation step is performed using the K-means algorithm, which separates the

pixels into four distinct groups [181].

Subsequently, using the non-BG labeled pixels (NT, TT, and HT) in each HS image, the regions corre-

sponding to the BG class are identified based on the positions of the spectral signatures of the non-BG class

within the HS image. In this final step, a binary image is created specifically for the BG class, which is then

combined with the regions containing the rubber ring markers to construct the comprehensive BG image for

that particular patient. Pixels labeled BG are not considered in subsequent stages of the process. Moving
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on to the next phase of method B, the distance between the k-th pixel yk located outside the BG mask in

the HS image is computed with respect to the sets of end-members PNT ,PTT ,PHT using Equation (4.76).

Finally, in the last stage, the classification of the k-th pixel yk is determined based on the minimum distance

calculated in Equation (4.82), considering only three classes {NT, TT,HT}.

Figure 4.16: Schematic representation of the sequential steps involved in method B [5].

4.7.3 Results and Discussion

In this section, the performance of the proposed BLU-based classification methodologies by EBEAE is

presented, with respect to an SVM-based approach from the literature [51]. The effect of different metrics

in method A is first evaluated, and then the comparison results between method A, method B, and the

SVM-based scheme are shown.

4.7.3.1 Metrics Evaluation in Distance to End-members Sets

Method A relies on the identification of rubber rings markers, which the surgeon places to delineate the

tumor and healthy tissues, and then extracting the characteristic end-members by excluding these markers

information. Evaluation of this methodology involved utilizing the six test HS images shown in Figure

3.5 (P008-01, P008-02, P012-01, P012-02, P015-01 and P020-01), which database is described in Section
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3.3.2.2. Various distance metrics were employed for the evaluation, including Manhattan metric, Euclidean

metric, correlation metric, Mahalanobis metric and SAM metric, as defined in Equations (4.77)-(4.81).

The average classification performance results for each metric are presented in Figure 4.17. This figure

illustrates the accuracy, sensitivity, and specificity outcomes. Across all metrics, the accuracy values are

comparable. Similarly, the sensitivity performance for the NT and BG classes is consistent across all metrics.

However, notable performance differences are observed for the TT and HT classes. The Manhattan metric

demonstrates the highest sensitivity in the HT class, achieving a value of approximately 70%, while the

correlation metric exhibited the lowest performance around 47%. On the contrary, in the TT class, the

correlation metric delivers the best sensitivity results at 50%, while the Manhattan metric performs the

poorest at approximately 32%. With respect to specificity, consistent results were observed across all classes.

The NT class consistently achieves specificity above 70%, while the TT, HT, and BG classes have specificity

above 90%. Figure 4.17 also presents the results of the MCC. It can be observed that most metrics yielded

similar performance, with the exception of the correlation metric in the HT class, which exhibits a slight

decrease of around 7% compared to the best performing metric. However, it should be noted that the

correlation metric performs exceptionally well in the TT class, exceeding other metrics. Therefore, on

average, the correlation metric demonstrates the best overall results, particularly in the TT class, which is of

great significance given the nature of the clinical application.

Figure 4.17: The average classification performance of method A utilizing different metrics (4.77)-(4.81):
accuracy, sensitivity, specificity, and MCC normalized.

The classification maps generated using each metric for method A are illustrated in Figure 4.18. Figure

4.18A displays the synthetic RGB images where the tumor area is indicated by a yellow line. Figures

4.18B to 4.18F show the classification results obtained with all metrics in Equations (4.77)-(4.81). The

classification results demonstrate consistent performance across all metrics, as indicated by the accuracy

evaluation in Figure 4.17. However, when it comes to defining tumor areas in HS images, the correlation

metric provided better results. This is evident in images P012-02 and P015-01, where the correlation metric

successfully identified tumor areas with greater precision compared to other metrics. For example, in the
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Figure 4.18: Classification maps generated for method A using the metrics defined in Equations (4.77)-
(4.81): A) Synthetic RGB images with the tumor area identified by a yellow line, B) Method A with Man-
hattan metric, C) Method A with Euclidean metric, D) Method A with correlation metric, E) Method A with
Mahalanobis metric, F) Method A with SAM metric.

case of image P012-02, the Manhattan metric (Figure 4.18B) misclassified some pixels in the HT class

within the tumor area. On the contrary, the correlation metric (Figure 4.18D) accurately identified the tumor

area and exhibited a more homogeneous classification compared to other distances. It should be noted that

for P020-01, none of the metrics was able to distinguish the TT class. Synthetic RGB image reveals that the

marked tumor area presented a similar colorization to the NT class, which aligns with the findings in [4].
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As mentioned in the aforementioned study, this misclassification of the TT class may be attributed to the

limited representation of inter-patient spectral variability in the database.

4.7.3.2 Comparison Results

In method B, it was determined through our analysis that the correlation metric was the most suitable

choice for enhancing accuracy in extracting the BG class. Additionally, the Mahalanobis metric was selected

to improve the performance in tissue classification. Consequently, a comparison was made between method

A with the correlation metric and method B with the correlation/Mahalanobis metrics against the SVM-

based approach. The evaluation was carried out using six test HS images (P008-01, P008-02, P012-01,

P012-02, P015-01 and P020-01) in a leave-one-patient-out cross-validation setup. On average, method A

yielded an overall accuracy of 67.2±11.5%, while method B achieved 76.1±12.4%. These results were

lower than the accuracy obtained by the SVM-based approach, which averaged at 79.2±15.6%. However,

as shown in Figure 4.19, the use of alternative metrics for each class demonstrated some improvements in

classification performance.

The sensitivity results for the TT class were significantly improved with the proposed approaches com-

pared to the SVM-based method, which is the most notable outcome for this specific application (Figure

4.19A). Method A and B achieved a median sensitivity of 47.8% and 31.3%, respectively, representing an

increase of 26.2% and 9.7% compared to the sensitivity obtained with the SVM approach (21.6%). Con-

versely, the median sensitivity for the NT class remained relatively constant across all three approaches,

with values exceeding 97% and reaching 99.7% in method A. However, both methods A and B experi-

enced a decrease in median sensitivity for the HT class, resulting in sensitivity values of 46.5% and 18%,

respectively, compared to the performance of SVM (92. 9%). Nevertheless, in this specific application, the

accurate identification and differentiation of the NT and TT classes was more important than the identifica-

tion of hypervascularized tissue, which could be visually distinguished or identified using image processing

algorithms based on morphological characteristics of blood vessels.

In terms of the specificity results (Figure 4.19B), there were minor variations among the three proposed

methods, except for the NT and TT classes. Method A exhibited a median specificity value of 70.4% for

the NT class, while method B and the SVM scheme achieved values of 88.8% and 87.3%, respectively. The

specificity of the TT class decreased slightly in the two proposed methods, with higher interquartile ranges

(IQR) compared to the SVM-based approach, but with median values above 92%.

Regarding the F1-score results, Figure 4.19C shows that methods A and B improved the median values

for the TT class, reaching 30.7% and 31%, respectively, compared to the result obtained by the SVM-based

approach (25.7%). For the NT and BG classes, method B achieved the highest median results of 90.7% and

98.3%, respectively. On the other hand, the SVM-based approach obtained the best result in the HT class

(91.5%), which is consistent with the results of the sensitivity metric.
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Figure 4.19: Box plots of classification performance of method A, method B and SVM-based approach
using leave-one-patient-out cross-validation: A) Sensitivity, B) specificity, C) F1-score, and D) MCC (nor-
malized).

Finally, the normalized MCC results are depicted in Figure 4.19D, that takes into account the imbal-

anced dataset. These results reveal that the median values for the TT class were quite similar (approxi-

mately 66%) among the three methods. Method B exhibited the highest median MCC value for the NT class

at 90.4%. In contrast, methods A and B showed a reduction in the median MCC value for the HT class,

approximately 19% and 5% respectively, compared to the SVM-based approach.

The classification maps shown in Figure 4.20 provide a qualitative evaluation of the entire HS im-

ages, including non-labeled pixels. Figure 4.20A presents the synthetic RGB images with the tumor area

delineated by a yellow line. Figures 4.20B, C, and D display the classification maps obtained using the

SVM-based approach, method A, and method B, respectively. These results demonstrate that the proposed

methods improved the labeling of pixels within the tumor area compared to the SVM-based approach. How-

ever, the proposed methodologies exhibited more false positives in non-tumor areas. Regarding the other

tissue classes, the qualitative results were generally similar, except for the BG class, where method B demon-

strated accurate identification of the parenchymal area (exposed brain surface) in images P008-01, P008-02,
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and P012-02. Furthermore, these results indicate that the lower classification performance observed in the

quantitative results for the HT class in method A (see Figure 4.19) is attributed to misclassifications between

the BG and HT classes in images P008-02 and P015-01, where the main blood vessels were identified as

background. This phenomenon did not occur in method B, where the hypervascularized areas were overall

well identified.

Figure 4.20: Classification maps for method A, method B, and SVM-based approach: A) Synthetic RGB im-
ages with the tumor area identified by a yellow line, B) SVM-based approach, C) Method A with correlation
metric, and D) Method B with correlation/Mahalanobis metrics.

In terms of comparing the execution time among the three methods, Figure 4.21 presents the average

time required for the six test HS images. To facilitate the comparison, a logarithmic scale was utilized. The

execution time encompassed both the training and classification processes for the SVM-based approach, as

well as the complete execution of the two proposed methods illustrated in Figures 4.15 and 4.16. These

results were obtained using MATLAB R© on a system equipped with an Intel i7-4790K processor at 4.00

GHz and 8 GB of RAM.

The SVM-based approach needed nearly four hours to train and classify a single HS image. Conversely,

the proposed methods based on the EBEAE algorithm required an average of approximately 30 seconds to

complete the training and classification tasks for the datasets. Notably, these methods achieved comparable
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accuracy results as discussed in the previous sections. In summary, methods A and B offered significant

speedup factors of approximately 459x and 429x, respectively, compared to the SVM-based approach.

Figure 4.21: Execution time for method A and B, and SVM-based approach (representation in logarithmic
scale).
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Chapter 5

Reflectance Calibration with Normalization
Correction in Hyperspectral Imaging

The calibration stage establishes an amplitude adjustment for the spectral signatures stated in percent-

ages with the intention of compensating for negative effects during acquisition [182]. This step enables the

standardization of spectral signatures, which ensures that the morphology of the spectral data obtained from

the same object or component by various HS cameras is the same in both cases. The standard calibration

(SC) process, carried out in most high-speed imaging studies, is carried out through the linear transformation

of Equation (2.1) into the raw unprocessed image (IR ∈ RX×Y×L). Equation (2.1) uses an inverse model

viewpoint to account for nonuniform gain and is derived from the spectral response of the sensors as stated

in [183]. As a result, this SC procedure offers comparable spectral signatures for acquisitions conducted

with various HS cameras and circumstances using the same components.

Nonetheless, the HSI stage still has problems, despite the benefits of the SC method described in the

literature (Equation (2.1)). Therefore, the effects generated by optical filters used in the HS camera sensors

are not compensated entirely by the conventional transformation. Optical filters are employed as bandpass

components to reject undesirable data and restrict the acquisition to a particular wavelength band [184].

However, the fundamental characteristics of bandpass filters, in conjunction with electronics, can result in

some parasitic effects, such as crosstalk, leakage, and harmonics, which cause sensors to measure light

from undesirable wavelengths, leading to slight shape changes and an increase in the amplitude of spectral

signatures [184, 185]. Harmonic effects, which mainly alter the amplitude of the spectral signatures and

have different impacts depending on the material being studied, are still taken into account in measurements

[184]. Because HS cameras produce discretized spectral responses for each pixel, the effects of harmonics

are typically undetectable [184]. Nonetheless, it becomes feasible to assess the impact by contrasting the

measurements under capture conditions identical to those of a white reference sample.

In this context, this chapter proposes a modification to the standard reflectance calibration, as described



Reflectance Calibration with Normalization Correction in Hyperspectral Imaging

in Equation (2.1). This modification aims to address the significant impact caused by unwanted alterations

in the amplitude of spectral signatures. The proposed calibration (PC) incorporates a normalization cor-

rection, ensuring a resulting reflectance range between zero and one hundred. This adjustment eliminates

the need for subsequent normalization steps. Moreover, the PC method reduces variability and preserves

the morphology of spectral signatures, as demonstrated in the initial tests for the classification of different

compounds. In addition to this, a second experimental evaluation of the PC was conducted in conjunction

with the developed NEBEAE algorithm. This was done to assess the impact of the PC on data containing

nonlinear components.

5.1 Proposal Reflectance Calibration

The proposed method departs from the raw HS image (IR), and the dark (ID) and white (IW ) references,

which are used in the standard reflectance calibration. The proposed reflectance calibration is motivated by

(2.1), but defines two auxiliary images:

α(x, y, λ) = Iraw(x, y, λ)− ID(x, y, λ) (5.1)

β(x, y, λ) = IW (x, y, λ)− ID(x, y, λ)− min
x,y,λ

α(x, y, λ), (5.2)

where α(x, y, λ) ∈ RX×Y×L and β(x, y, λ) ∈ RX×Y×L are the numerator and denominator of (2.1). To

ensure that the minimum values are equal to or greater than zero, an additional component is introduced

in the auxiliary image β(x, y, λ) by subtracting an offset from the spectral signals in the denominator of

Equation (2.1). This adjustment guarantees the non-negativity of the minimum values. Subsequently, the

same operation is applied to α(x, y, λ) to correct for any negative values that may arise from undesired

effects during the acquisition stage. It is important to note that in an ideal scenario, the global minimum

value of α(x, y, λ) should already be greater than or equal to zero. Therefore, even in cases where negative

values are present, the smallest values of the spectral signatures are assigned as zero.

After defining α(x, y, λ) and β(x, y, λ), we proceed with the normalization process by:

β̂(x, y, λ) ,
β(x, y, λ)

maxx,y(β(x, y, λ))
∈ [0, 1], (5.3)

when applying this operation, the lower and upper values in β̂(x, y, λ) are constrained to zero and one,

respectively. Consequently, the purpose of β̂(x, y, λ) is to assess the nonuniform gain across the analyzed

wavelengths in a normalized and positive manner. Likewise, α(x, y, λ) undergoes a similar adjustment:

α̂(x, y, λ) ,
α(x, y, λ)−minx,y,λ α(x, y, λ)

β̂(x, y, λ)
, (5.4)

where the offset is calculated using the general minimum of α(x, y, λ), limiting the minimum values that

can be used without constraining the maximum values (α̂(x, y, λ) ∈ [0,∞)). The PC formula is defined as:

Î(x, y, λ) = 100× α̂(x, y, λ)

maxx,y(α̂(x, y, λ))
∈ [0, 100], (5.5)
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this guarantees values in the [0,100] range and establishes the upper limit of the spectral signatures within

the image Î(x, y, λ). The proposed methodology addresses the non-uniform gain of the HS sensor, as shown

in Equation (2.1). Hence, in this new approach represented by Equation (5.5), the resulting values are now

constrained. This novel perspective effectively reduces spectral variability and improves the accuracy of

classification results, as will be demonstrated in the subsequent analysis.

5.1.1 Evaluation of Calibration

This section presents the results of the comparison between the SC and the PC. The evaluation of these

two approaches was performed on an HS image in Figure 3.4, and the acquisition process, image charac-

teristics, and results discussion are detailed in the subsequent subsections. All evaluations were carried out

using MATLAB R©2018a on a computer equipped with a 4.2 GHz Intel Core i7 quad-core processor and 16

GB of RAM.

The evaluation of both the SC method (Equation (2.1)) and the PC method (Equation (5.5)) was carried

out using the HS plastic database (see Figure 3.4). The results of this evaluation are presented in Figures

5.1 and 5.2, where each row represents the spectral information of a specific square. The first and second

columns illustrate the spectral signatures obtained using the SC and PC methods, respectively. It can be

observed that the SC method yields values above 100%, with scenarios such as S1 showing almost all

spectral signatures exceeding this threshold. On the contrary, the PC method produces results within the

expected range of [0, 100], showing less variability in spectral signatures compared to the SC method. To

validate these results, the means and STD of both methods were analyzed in the third column. The values

of the PC method were found to remain below 100%, exceeded for the squares S5 and S7. In contrast, the

means and STD of the SC method exceed 100% in most cases, except for the aforementioned squares. The

STD values demonstrate a reduction in variability for the PC method in all squares compared to SC.

Furthermore, the fourth column displays the mean and STD of both methods after applying the prepro-

cessing stage (described in the section involving normalization from zero to one). The results show similar

mean and STD values between the two methods, with PC performing better for squares S5 and S7. This

improvement can be attributed to the elimination of the end bands, which helps reduce variability in the

spectral signatures. It is worth noting that there is significant variability at the spectral extremes due to the

response of the HS sensors at those particular wavelengths. Thus, the preprocessing step effectively mini-

mizes differences between the two methods. However, it should be mentioned that normalization can also

remove distinctive features of the information that are relevant for classification purposes. In cases where

no undesired effects are present during the capture process, the normalization step may not be necessary.

Apart from the aforementioned comparison, two classifications were conducted on the HS image using

both calibration methods, without considering the preprocessing stage. The evaluations involved the utiliza-

tion of the standard K-means algorithm (Ahmed et al., 2020), with two different values of K (K ∈ {4, 9}).
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Figure 5.1: Results of calibration of the HS image, where each row represents the spectral information of
each square from S1 to S5. The first column shows the results of the standard calibration (SC), while the
second column presents the results of the proposed calibration (PC). The third column reports the mean and
STD of both approaches. Finally, the fourth column also shows the mean and STD of both methods after
performing the preprocessing chain.

The Euclidean distance metric was used for the K = 4 case, while the L1 distance metric was used for the

K = 9 case. The first classification generated a color-based segmentation, while the second classification
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Figure 5.2: Results of calibration of the HS image, where each row represents the spectral information of
each square from S6 to S10. The first column shows the results of the standard calibration (SC), while the
second column presents the results of the proposed calibration (PC). The third column reports the mean and
STD of both approaches. Finally, the fourth column also shows the mean and STD of both methods after
performing the preprocessing chain.

focused on a per-square classification. This is to generally consider the differences between the clusters,

being more specific for the second case, where the differences are directly taken into account in a linear
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manner in the color identification.

The classification results for the color-based segmentation with K = 4 are presented in Figure 5.3.

It can be seen that the results obtained using the SC method exhibited numerous errors in most squares,

leading to an accuracy of 79% (Figure 5.3A). Conversely, the segmentation of the HS image with the PC

method demonstrated fewer errors, primarily in squares S3 and S5 (Figure 5.3B). Consequently, the second

classification achieved a significantly improved accuracy of 97% compared to the corresponding results

obtained using the SC method.

Figure 5.3: Classification results per color. A) standard calibration and B) proposed calibration.

Figure 5.4: Classification results per square. A) standard calibration and B) proposed calibration.

The classification results per square are illustrated in Figure 5.4. Overall, there is an increase in classi-

fication errors compared to the color-based segmentation case. This trend can be attributed to the similarity

between the spectral signatures and the presence of certain texture characteristics in the squares of the test-
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bench.

Figure 5.4A displays the classification results using the SC method, revealing a higher number of classi-

fication errors among the labels assigned for different squares, particularly in S2, S3, S6, and S10. Notably,

S10 is entirely misclassified as S5, and most of S9 squares are erroneously labeled as S5. In contrast, Figure

5.4B presents the classification results obtained with the PC method, demonstrating a decrease in classifica-

tion errors compared to Figure 5.4A. The squares with the highest classification accuracy were S2, S3, and

S5. As a result, S10 and S8 were correctly classified with the same label due to their identical material and

color. In general, the SC classification achieved an accuracy of 64%, while the PC classification achieved

88%. Therefore, in this second evaluation, the PC method once again exhibited a significant improvement

over the SC method.

Figure 5.5: Classification results per color with preprocessing stage. A) standard calibration and B) proposed
calibration.

The classification tests conducted on the calibrated data, incorporating the preprocessing stage, yielded

highly similar outcomes for both SC and PC spectral signatures. The results of the color classification

are displayed in Figure 5.5, where most of the errors were concentrated in squares S1 and S5, with a higher

noise level observed in the case of PC for these specific squares. Conversely, the remaining squares exhibited

lower noise levels when using PC compared to SC. These observations were further supported by the overall

classification accuracy analysis, with PC achieving 90% accuracy compared to 89% for SC. This pattern was

also evident in the per-square classification, as depicted in Figure 5.6, where PC demonstrated improved

accuracy at 69% compared to the 64% accuracy achieved by SC.

In addition to the aforementioned tests, a classification evaluation was performed with both calibration

methods, incorporating the preprocessing step but excluding the zero-to-one normalization. The purpose was

to assess whether the normalization step was solely responsible for the similarity in the shape of the spectral

signatures. Qualitatively, the results of this evaluation closely resembled those presented in Figures 5.3 and
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Figure 5.6: Classification results per square with preprocessing stage. A) standard calibration and B) pro-
posed calibration.

5.4 for both SC and PC. However, when examining quantitative accuracy data, SC achieved 79% accuracy in

color classification, while PC achieved 95%. Similarly, for square classification, SC yielded 64% accuracy,

whereas PC generated 87%. Therefore, there was a slight decrease in precision for PC compared to the

classification results obtained solely with the calibration step, while SC maintained consistent performance

in both tests.

To conduct a more in-depth analysis of the evaluation results, a dimensionality reduction technique was

employed on the calibrated spectral signatures. Local linear embedding algorithm (LLE) [186] was utilized

to transform the data into three-dimensional points. LLE is a dimensionality reduction method that aims to

preserve the intrinsic geometric properties of the original database by considering the relationships between

neighboring points. In this evaluation, LLE was performed with a neighborhood size of five and nearest

neighbors were estimated using the KDTree algorithm [187].

The selection of LLE for dimensionality reduction was based on a comparison with other techniques

such as principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) [188].

When evaluating the data with both calibration methods, PCA and t-SNE exhibited qualitatively inferior

class separation in the resulting three-dimensional space. In contrast, LLE proved effective in reducing

the high-dimensional space by capturing nonlinear structures while preserving the underlying geometric

characteristics of the original data [188].

The results of the dimensional reduction analysis are presented in Figure 5.7. Figures 5.7A and 5.7B

show the dimensional reductions obtained using SC and PC methods, respectively. Additionally, Figures

5.7C and 5.7D display the dimensional reductions after applying the preprocessing step, as described earlier.

In the plots showing the SC dimensional reductions, the data points tend to cluster in a central region with

significant overlap between different squares. Conversely, the PC dimensional reductions exhibit improved
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Figure 5.7: The dimensional reduction of spectral signatures was performed using the following approaches:
A) standard calibration, B) proposed calibration, C) standard calibration with preprocessing stage, and D)
proposed calibration with preprocessing stage.

separability for each square, indicating the effectiveness of the PC calibration method in enhancing the

distinguishability of spectral signatures.

Analyzing the dimensional reductions with the preprocessing step, the PC method maintains a consis-

tent shape similar to Figure 5.7B, preserving the proportions in the three-dimensional space and reducing the

presence of outliers for each square. Similarly, the reduction in SC dimensions with preprocessing shows

a reduction in outliers and sharper curves compared to Figure 5.7A. However, when the zero-to-one nor-
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malization is applied, similar behavior for both SC and PC methods is observed, causing the data points to

concentrate and overlap in a central area. This behavior aligns with the observations in the fourth column

of Figures 5.1 and 5.2. When classification is performed with the preprocessing step, the results demon-

strate a high degree of similarity. In summary, particularly for the PC method, where the normalization step

is not necessary due to the limitations in the formulation, the application of this transformation modifies

the spectral signatures, causing a loss of distinguishing characteristics. This, in turn, hinders the accurate

identification of data from each square and consequently leads to less precise classification outcomes.

5.2 Glioblastoma Classification in Hyperspectral Images by Reflectance Calibration with
Normalization Correction and Nonlinear Unmixing

In addition to the previous evaluations, comparison tests were carried out regarding the calibration

methodologies, followed by a nonlinear unmixing stage using NEBEAE. To carry out this comparison, the

methodology described in Figure 5.8 was followed, consisting of five stages: HS image raw input (Fig-

ure 5.8A), preprocessing (Figure 5.8B), semi-supervised dataset (Figure 5.8C), nonlinear unmixing (Figure

5.8D), and classification results (Figure 5.8E).

The data used in this evaluation, similar to the previous assessment, was the in-vivo human brain tissue

database described in Section 3.3.2.2. Specifically, four images were employed from the database: P008-01,

P012-01, P015-01, and P020-01. In this test, the preprocessing chain described in Section 3.4 was applied

in general, except for the normalization step. In the calibration stage, Equation (2.1) was used, along with

the PC method described in Section 5. After the pre-processing stage, pathology-labeled pixels were used

as training data in a semi-supervised perspective, employing intra-patient and inter-patient approaches.

Figure 5.8: General scheme of the methodology for evaluating standard and proposed calibration in the
classification of HS images.

Following the preprocessing stage, a feature extraction step was conducted as part of the classifica-

tion process. This step involved separating the HS data into its constituent end-members, along with their

corresponding abundances. The initial phase involved identifying the characteristic end-members for each

class in the HS images using the labeled pixels from the database. These labeled pixels were divided into
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four distinct sets, representing the four classes, and analyzed from both the intra-patient and inter-patient

perspectives. Subsequently, various numbers of end-members were manually selected per class, as depicted

in Table 5.1, ensuring consistency across both classification perspectives. These selections were intended to

minimize the estimation error during data reconstruction. Hence, when considering a single end-member for

a particular class, its spectral signature was determined by averaging the spectral signatures of the labeled

pixels within that class. In all other cases, NEBEAE was applied to estimate the final set of end-members for

each labeled pixel set. During this stage, specific hyperparameters were set for NEBEAE: a similarity coef-

ficient of ρ = 0.01 and an entropy weight of λ = 0. Additionally, the VCA technique was used to initialize

the end-members matrix [136]. Once the characteristic end-members were obtained, they were utilized to

estimate the corresponding abundance maps using NEBEAE with ρ = 0 and λ = 0.2, while maintaining

fixed the end-members matrix. This estimation process was performed on the HS image targeted for clas-

sification. Once the abundance maps were calculated, the classification maps were generated based on the

maximum abundance criterion. In the case of having multiple end-members for a class, the abundances of

the final members belonging to this class were summed, and then the pixel label was based on the maxi-

mum contribution of abundance sums. Next, the results were evaluated considering the pixels labeled by

the clinical expert as the ground-truth, using the following metrics: accuracy, sensitivity, specificity, and

F1-score.

Table 5.1: End-members per class in each HS image.

End-members Per Patient
Class P008-01 P012-01 P015-01 P020-01
NT 1 1 1 2
TT 2 1 1 2
HT 2 1 1 2
BG 4 4 4 4

5.2.1 Calibration Results

As an initial evaluation, the labeled end-members in the database were compared after the processing

stage, contrasting both calibration methods and separating them by class. Figure 5.9 presents this compari-

son, where except for BG, each calibration provided a different mean spectral signature. Furthermore, when

analyzing the variability among the end-members, the PC reduces the variability, especially in TT and HT.

This property can be observed by a larger red shaded area compared to the green area, which corresponds to

the STDs.
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Figure 5.9: Mean and STD of the labeled end-members of each class in the database.

5.2.2 Classification Results

The resulting classification maps are presented in Figures 5.10 and 5.12. It can be observed that there

is a reduction in false positives for the TT class, both in inter- and intra-patient scenarios, when using the

PC approach. Additionally, this approach also presented better identification of the rubber ring markers.

An example of this phenomenon is shown in Figure 5.12A for the intra-patient strategy, as well as in Fig-

ure 5.12D. Regardless of the calibration method, the labeled maps are more consistent in the intra-patient

approach, as the labeled information of each patient is used for their own estimation. In contrast, in the

inter-patient case, there are multiple classification errors, especially in the NT and TT classes. However,

there is a better agreement with the ground-truth compared to the PC in both classification approaches.

On the other hand, when studying the quantitative results presented in Figures 5.11 and 5.13, it is

possible to verify the previous observations. As seen in the classification maps of Figures 5.10 and 5.12,

there is a great similarity in the results of both calibrations, which is corroborated by the performance

metrics. However, it is important to clarify that in the intra-patient case, the SC produces better results,

but they are quite similar to each other. On the other hand, in the inter-patient approach, the best results

are obtained using the PC with a significant advantage in most of the studied metrics. These results are

important because in a more realistic scenario (such as in the inter-patient case), the PC in Section 5.10

improves the performance of classification methods and spectral analysis.

These results demonstrate a significant improvement when using the PC, which can be attributed to the

fact that it preserves the nonlinear relationships of the analyzed HS image and adjusts the spectral signatures

to uniform conditions. In contrast, the SC, as the pixel values are not constrained, may introduce changes in

the reflectance signatures, including their shape. Despite the improved performance of the PC, challenges

still persist in terms of calibration, particularly in the geometric aspect. This phenomenon is because the

white reference used is a flat structure, in contrast to the three-dimensional structure of the scene being

analyzed.
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Figure 5.10: Inter-patient classification performance results using HS images: A) P008-01, B) P012-01, C)
P015-01, and D) P020-01. The synthetic RGB image serves as a reference in the first column, while the
ground-truth maps are shown in the second column. The SC labels maps are displayed in the third column,
and the PC results are presented in the last column. The colormap used is as follows: NT (green), TT (red),
HT (blue), and BG (black), with non-labeled data represented by white pixels.

Figure 5.11: Classification performance metrics for each HS image within the inter-patient approach.
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Figure 5.12: Intra-patient classification performance results using HS images: A) P008-01, B) P012-01, C)
P015-01, and D) P020-01. The synthetic RGB image serves as a reference in the first column, while the
ground-truth maps are shown in the second column. The SC labels maps are displayed in the third column,
and the PC results are presented in the last column. The colormap used is as follows: NT (green), TT (red),
HT (blue), and BG (black), with non-labeled data represented by white pixels.

Figure 5.13: Classification performance metrics for each HS image within the intra-patient approach.
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Chapter 6

Advancing Hyperspectral Brain Tissue
Classification with Hybrid Schemes of Linear
Unmixing and Artificial Intelligence

Unmixing methods have gained recognition in the literature as a valuable tool for HS image processing.

However, in recent years, the advancement of computational architectures has paved the way for the integra-

tion of DL methods into computer vision tasks, including HS image processing [189, 190]. The combination

of DL and HSI has been successfully employed for feature extraction and tissue sample classification in

various studies [1, 2, 191, 192, 193, 194]. These examples exemplify the wide range of applications and op-

portunities for leveraging DL techniques to effectively analyze different biological samples. It is important

to highlight that this line of research is relatively new [189], given that the utilization of HSI in the biomed-

ical field is still in its experimental stages. Despite the advancements achieved by DL, these algorithms face

certain challenges, such as the need for substantial amounts of training data, computational complexity, and

intricate hyperparameter tuning [190].

Numerous research teams have recognized the potential challenges in DL architectures and have dedi-

cated their efforts to addressing these issues. They have identified that the combined utilization of DL and

SU can offer potential solutions for improving HS image classification performance and overcoming certain

limitations [152, 153, 154]. These methodologies propose a two-step approach: first, the unmixing of HS

images into abundance maps and end-members, and second, the utilization of these outputs as feature in-

puts for DL architectures. This integration presents two significant advantages. Firstly, it reduces the input

dimensionality for DL models, enhancing computational efficiency . Secondly, it enables the development

of simple DL classifiers, making them more accessible for implementation on high-performance comput-

ing platforms and reducing overall execution time. Moreover, this combined framework demonstrates the

potential to improve classification accuracy by mitigating the risk of overfitting [152, 153].

This chapter introduces two methodologies that address the combination of SU and DL approaches,

also known as hybrid methods. The first methodology focuses on estimating abundances, which are then
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used as features for classification by various ML models. In contrast, the second approach takes a different

perspective by utilizing the end-members obtained through unmixing as features for classification using an

ensemble of NNs. Furthermore, the chapter concludes with a concept test involving a vision transformer

classifier applied to HS images, aiming to leverage the benefits of attention-based algorithms.

6.1 A Hybrid Approach to the Hyperspectral Classification of In-vivo Brain Tissue: Linear
Unmixing with Spatial Coherence and Machine Learning

The hybrid classification methodology proposed in this Section comprises two mainly stages. The

initial phase involves a dimensionality reduction step using a linear unmixing (LU) approach, which aims to

capture the essential features of the HS image. Subsequently, in the second stage, a classifier is employed,

leveraging well-established techniques in ML such as NN, SVM, and RF. The overall process of the hybrid

classification methodology is illustrated in Figure 6.1, with the LU stage performed first, followed by the

application of the ML classification approach. This methodology was designed for the processing and

classification of the in-vivo brain tissue database described in Section 3.3.2.2, aiming to identify the four

specific classes (NT, TT, HT, and GB) within this database.

Figure 6.1: Diagram illustrating the block structure of the hybrid classification methodology.

The LU stage of the proposed methodology takes as input the HS image to be analyzed and the expert-

labeled data. Once this information is defined, a leave-one-patient-out cross-validation methodology or

inter-patient approach is implemented. The training dataset is then divided into four subsets representing

the classes of interest. These subsets are subjected to LU using the EBEAE-SC algorithm, specifically the

standard formulation without spatial coherence (λ = 0, τ = 0, and ν = 0), i.e., the EBEAE algorithm

[84]. The goal is to obtain representative characteristic end-members (PNT , PTT , PHT , and PBG). Spatial
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coherence is not utilized in this stage, as not all labeled pixels in the training dataset incorporate spatial

information from the image.

The estimation of representative end-members is based on [84], defining two end-members for the NT

class (card(PNT ) = 2), three for TT (card(PTT ) = 3), two for HT (card(PHT ) = 2), and three for GB

(card(PBG) = 3) for all HS images. Hyperparameters for EBEAE-SC were set manually to ensure the

best representation of each class, while maintaining suitable dissimilarity among the end-members of the

interclass, as stated in [33]. The selection of the similarity weight ρ varies for each class to account for

the variability of the data. For NT, a weight of 0.05 (ρNT = 0.05) is used, while for TT, a weight of 0.1

(ρTT = 0.1) is chosen. HT is assigned a weight of 0 (ρHT = 0), and GB has a weight of 0.01 (ρGB = 0.01).

The resulting end-members are then combined into the set P , following this approach:

P = PNT ∪ PTT ∪ PHT ∪ PGB. (6.1)

After obtaining the set of ten characteristic end-members P (card(P) = 10), the next step is to es-

timate the abundances in the training data and the HS image using these end-members. This estimation

process generates the set of features that will be fed into the classifier. For the training data, the abundances

are estimated using EBEAE-SC without considering spatial coherence (λ = 0, τ = 0 and ν = 0), and

these abundances serve as the training data for the different ML models. The reason for this is that the

data used to train the model only includes individual pixels, without any information about the neighboring

pixels surrounding it. This can result in problems when trying to consider spatial coherence in the estima-

tion. To address each HS image, the EBEAE-SC algorithm is used to reduce variability and granularity in

the resulting abundance maps. The hyperparameters for EBEAE-SC were empirically selected to achieve

smooth abundances without abrupt changes. An exhaustive search is performed for the hyperparameters (λ,

τ and ν) in the range of [1 × 10−8, 1.0] to minimize the error, and the optimal values are determined to be

λ = 1× 10−5, τ = 1× 10−4, and ν = 0.1 for all the HS images.

In the ML phase, depicted in Figure 6.1, the first step involves a procedure called base function ex-

pansion. In DL, this step entails transforming the feature space to achieve a more distinct separation in the

database, thereby enhancing the classifier’s performance. Various tests were conducted to determine the

most suitable expansion of the base function. These tests included squared, polynomial, sinusoidal, and

exponential patterns. The exponential function with a negative argument (e−X ) was found to give the best

performance and significantly improve the accuracy of the hybrid classifier.

The objective of the ML stage is to categorize the extracted features into four classes (NT, TT, HT,

and GB). To achieve this objective, the suitability of NN, SVM, and RF classifiers was investigated, as

mentioned above. Initially, the NN architecture consisted of four layers: an input layer with 10 neurons, a

second layer with 50 neurons, a third layer with 100 neurons, and an output layer with four neurons. Sigmoid

activation functions were employed in the intermediate layers, while a softmax activation function was used

in the output layer for the multiclass problem. In addition, batch normalization with a momentum of 0.8
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was applied to the training data. The Adam optimization algorithm with a learning rate of 0.0002 was used

and each batch contained 64 elements. The training process consisted of 50 epochs. These parameter values

were selected through extensive evaluations to optimize classification performance. Different combinations

of epoch numbers, batch sizes, and layer configurations (ranging from one to ten layers) were examined,

along with varying the number of neurons within each layer (from 10 to 500).

To determine the properties of the SVM classifier, various experiments were conducted using different

kernels such as linear, polynomial, and RBF. The optimal configuration for the SVM classifier was achieved

by employing a linear kernel along with the Crammer-Singer strategy for multiclass classification. Similar

to the NN, the SVM hyperparameters were carefully selected to achieve optimal performance on the training

dataset. The regularization hyperparameter, denoted asC, was tested with values ofC ∈ {10, 50, 100, 200};
nevertheless, no substantial enhancements in training accuracy were observed.

Similar to the previous classifiers, the RF configuration was modified during the training stage to opti-

mize the classification performance for the target dataset. In order to achieve this objective, several parame-

ters were adjusted, including the number of trees (ranging from 10 to 500), the minimum number of samples

necessary to create a split (10, 20, 30, or 40), the minimum number of samples in a leaf (1, 2, or 3), and the

criterion for determining the maximum number of features considered for the best split (’log2’ or ’sqrt’).

As a result, the RF model was constructed with 200 trees, utilizing the Gini function as the quality criterion

for generating splits. The minimum number of samples per leaf was set to two, the minimum number of

samples required to generate a split was set to 20, and the ’log2’ function was employed to determine the

optimal split.

6.1.1 Experimental Results and Discussion

The performance of the proposed hybrid classification methodologies is evaluated in this section with

respect to the state-of-the-art methods described in [5], namely the SVM-based approach and the LU-based

scheme (methodology B with correlation metrics and Mahalanobis distance). All implementations were per-

formed using the Python programming language with the use of libraries such as NumPy, SciPy, matplotlib,

Scikit Learn, and TensorFlow. The experiments were carried out on a computer equipped with an Intel R©
CoreTM i7 quad-core processor operating at 4.2 GHz and 16 GB of RAM. The evaluation involved test-

ing six HS images as described in Subsection 3.3.2.2 (P008-01, P008-02, P012-01, P012-02, P015-01, and

P020-01) using leave-one-patient-out cross-validation, and the classification metrics were calculated based

on the pixels labeled by clinical experts. The evaluation of the classification results for both the proposed

methodologies and the state-of-the-art methods used the following metrics: precision, sensitivity, specificity,

F1-score, and normalized MCC.
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6.1.1.1 Evaluation of the Hybrid Classification Methodology

Figure 6.2: Comparison of the classification maps generated by the hybrid classification methodology, where

the NT, TT, HT, and BG classes are represented by green, red, blue, and black regions, respectively. The

figures include: A) Synthetic RGB images with the tumor area highlighted by a yellow line, B) Classification

map produced by the RF hybrid method, C) Classification map produced by the SVM hybrid method, and

D) Classification map produced by the NN hybrid method.

The hybrid classification methodology utilizing ML tools produced labeled maps, as illustrated in Fig-

ure 6.2. Figure 6.2A show the synthetic RGB image with the manual segmentation performed by a clinical

expert, highlighting the approximate tumor-affected area with a yellow line. Figures 6.2B - 6.2D display the

labeled maps resulting from the hybrid classification method employing RF, SVM, and NN, respectively. In

these maps, the NT class is represented by green regions, the TT class by red, the HT class by blue, and the

BG class by black. The labeled maps demonstrate similarities primarily in the NT and BG classes. How-

ever, errors in classification are observed, particularly in the TT class. Among the hybrid approaches, the

NN method exhibited greater accuracy in identifying the tumor regions as delineated by the expert, while

the SVM method achieved lower performance in identifying this class.
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Figure 6.3: Class-wise overall accuracy generated by the hybrid methodology employing NN, SVM, and

RF models.

The accuracy per class was analyzed using the labeled dataset, and the findings are visually represented

in boxplot diagrams shown in Figure 6.3. The results demonstrate that the hybrid classification methodology

effectively identifies the NT and BG classes, while also achieving good accuracy in the HT class, with

median accuracies exceeding 80%. However, the performance in identifying the TT class is notably low,

particularly in the SVM hybrid method, where the correct identification of tumor tissue pixels is practically

non-existent. On the other hand, the NN approach enhances the estimation of the TT class, yielding a higher

median accuracy of over 20%, although these values varied widely between 0% and 70%.

6.1.1.2 Comparison with Other Related Works

Figure 6.4: Comparison of the overall accuracy achieved per HS image using the hybrid classification

methodology and its comparison to the accuracy obtained by the NN, SVM, and RF methods, along with

the SVM- and LU-based approaches.
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The results obtained from the SVM-based and LU-based schemes in [5] were utilized to compare with

the proposed hybrid classification methodology. Figure 6.4 presents the overall accuracy results per HS

image for each method. Generally, a similar performance was observed among the evaluated methods. The

SVM-based approach presented slightly higher accuracy in half of the HS images, with an average accuracy

of 79.2± 14%, while the LU-based method achieved an accuracy of 76.0±11%. On the other hand, analyz-

ing the overall accuracy of the hybrid classification methodology, a similar trend was observed: 75.9±13%

for NN, 73.8±13% for SVM, and 71.5±14% for RF. These results may appear somewhat counterintuitive

when compared to the accuracy per class, primarily due to the varying number of labeled pixels per class.

Specifically, the TT class had the lowest number of labeled pixels. In particular, the NN hybrid method

demonstrated accuracy results that were nearly equivalent to the LU-based approach, with a difference of

approximately 3% from the SVM-based approach.

Figure 6.5: Comparison of the classification performance achieved by the NN, SVM, and RF hybrid meth-

ods, as well as the SVM-based and LU-based approaches, utilizing leave-one-patient-out cross-validation.

The evaluation metrics presented are: A) sensitivity, B) specificity, C) F1-score, and D) normalized

Matthews correlation coefficient.

The classification metrics in Equations (11) to (15) were presented in Figure 6.5, considering the labeled

pixels. Sensitivity analysis (Figure 6.5A) revealed a similar trend for the NT and BG classes across all five

UNIVERSIDAD AUTÓNOMA DE SAN LUIS POTOSÍ
FACULTAD DE CIENCIAS

109



Advancing Hyperspectral Brain Tissue Classification with Hybrid Schemes of Linear Unmixing and
Artificial Intelligence

methodologies, with median values above 95%. However, greater variability was observed in the TT and

HT classes. Among the classifiers, the LU-based scheme exhibited the highest sensitivity for the TT class,

with a median of 31.2%, followed by the NN hybrid method (22.3%) performing better than the SVM-

based approach (21.6%). The RF and SVM hybrid methods had sensitivities below 5%. In the HT class, the

SVM-based, NN, and SVM hybrid methods displayed sensitivities of approximately 90%, with the latter

exhibiting the least variability. On the other hand, the LU-based and RF hybrid methods had medians lower

than 82%.

The specificity information produced by the classifiers is depicted in Figure 6.5B using boxplots. Re-

garding the TT, HT, and BG classes, all methodologies presented similar behavior with medians exceeding

95%. However, the LU-based scheme displays slightly higher variability in the TT class with respect to the

comparison methods. In contrast, for the NT class, there is a high variability, where the LU-based scheme

exhibiting the highest specificity with a median of 88.8%. It is followed by the SVM-based, NN, RF, and

SVM hybrid methods with specificities of 87.3%, 84.4%, 79.9%, and 76.6%, respectively.

Figure 6.5C illustrates the F1-score results, which present a similar behavior among the five methods

in the NT, HT, and BG classes, akin to the specificity results. However, the most significant outcome is

observed in the TT class. Both the NN and RF hybrid methods achieved F1-scores of 84.0% and 82.4%

respectively, representing a substantial increase compared to the SVM-based and LU-based schemes with

F1-scores of 21.6% and 31.3% respectively. This improvement is particularly relevant in applications where

accurately identifying regions belonging to the TT and NT classes is crucial. The MCC index results are

presented in Figure 6.5D, where a similar level of variability is shown among the comparison methods.

However, in contrast to the previous metrics, both the SVM-based and LU-based schemes outperformed the

hybrid methodologies, exhibiting approximately 5% higher medians in the NT, HT, and BG classes. For the

TT class, the SVM-based and LU-based schemes achieved medians of 63.1% and 64.2% respectively. Con-

versely, the hybrid methods showed a significant decrease in performance, with medians below 28% across

all cases. The NN hybrid method demonstrated a moderately acceptable range of results. These findings

align with the overall trend observed in Figure 6.3, where the accuracy in estimating the TT class was low.

Nonetheless, the NN hybrid method exhibited the best performance specifically for this class. Figure 6.6

presents the classification maps obtained from the state-of-the-art methodologies under comparison. Specif-

ically, Figures 6.6B to 6.6D represent the NN hybrid, LU-based, and SVM-based methods, respectively. In

this case, the results by the NN hybrid method are highlighted, given its superior performance both qual-

itatively and quantitatively when compared to the SVM and RF variants. Overall, the classification maps

generated by the three methods exhibited high similarity. However, the NN hybrid method produced maps

with a reduced level of granularity compared to the SVM-based results, though not reaching the same level

of uniformity as observed in the LU-based results.

It should be noted that the NN hybrid method achieved lower classification errors in the TT class

compared to the other methods. Nonetheless, certain classification errors were observed between the BG
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Figure 6.6: A comparison of classification maps produced by three different methods: the NN hybrid
method, the SVM-based approach, and the LU-based approach. The regions labeled in green, red, blue,
and black represent the NT, TT, HT, and BG classes, respectively. The images displayed include: A) syn-
thetic RGB images with the tumor area outlined in yellow, B) the NN hybrid method, C) the LU-based
approach, and D) the SVM-based approach.

and TT classes (P020-01), HT class (P015-01), and NT class (P008-01 and P008-02). The LU-based scheme

showed less vulnerability to this situation. However, it does exhibit classification errors in the HT class by

misclassifying regions belonging to NT and TT as HT. Moreover, the SVM-based and NN hybrid methods

also presented this type of errors, albeit to a lesser extent, with a greater prevalence in subjects P008-01 and

P015-01.

6.2 Hybrid Brain Tumor Classification Scheme of Histopathology Hyperspectral Images
Using Linear Unmixing and Deep Learning

The second proposed hybrid approach is depicted in the diagram of Figure 6.7. It consists of seven

steps and is specifically designed for the histopathology database described in Subsection 3.3.2.1. The

methodology begins by preprocessing and partitioning the raw HS image (Figure 6.7A and B), as discussed

earlier. Then, the preprocessed HS image undergoes the SU stage (Figure 6.7C), where abundance maps and

characteristic end-members are derived. This stage is described in detail in the subsequent section. Notably,

the SU stage enables the identification of regions on the histological slide that are devoid of tissue and

therefore irrelevant for tissue classification. These regions, along with their corresponding abundance maps
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and end-members, were eliminated (Figure 6.7D). The remaining end-members are then concatenated into

a single vector (Figure 6.7E). These resulting elements serve as the input for training, validating, and testing

both level-zero and level-one NNs using a transfer learning approach (Figure 6.7F), which is thoroughly

explained in Section 6.2.2. Finally, the performance of the level-one NN is evaluated using classification

metrics (Figure 6.7G).

Figure 6.7: The general schematic of the hybrid scheme proposed for the processing and classification of

histopatology HS images.

6.2.1 Spectral Unmixing

The SU stage serves as an intermediary step between the preprocessing phase and the DL classifier.

Its purpose is to estimate abundance maps and characteristic end-members from the HS image. The end-

members represent distinct components in the HS image, while the abundance maps indicate the proportion

of each component present at each pixel. To perform the SU stage, the EBEAE algorithm was employed.

The initialization method for the end-members was the N-FINDR scheme [134]. The hyperparameters of

EBEAE were set as follows: a similarity weight (ρ) of 1, an entropy weight (µ) of 0, an error threshold (ε)

of 1× 10−6, and a maximum number of iterations (maxiter) of 10. The LU process assumed the presence
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of four characteristic components (N = 4). These hyperparameters were manually tuned following the

guidelines outlined in [5] and [84].

6.2.1.1 End-members Identification

To address the issue of histological samples containing areas without tissue and direct transmission of

light from the microscope, two possible approaches can be considered. The first approach involves segment-

ing the HS image to extract the regions with direct light transmission. Alternatively, the second approach

involves performing SU on the entire HS image, followed by the removal of the end-member representing re-

gions with a flat spectral signature. In this study, the second approach to simplify the preprocessing stage was

adopted. This phenomenon is evident in Figure 6.7C, particularly in the spectral signature of end-member

3, which exhibits uniform information across nearly all bands due to the sum-to-one restriction imposed by

the EBEAE algorithm. Considering that HS images typically contain 275 bands, this end-member can be

identified by:

p∗ = arg min
∀p̃∈P

∥∥∥∥p̃− 1

275
1

∥∥∥∥ , (6.2)

where P = {p1, . . . ,pN} represents the set of estimated end-members by EBEAE. Consequently, the

end-member p∗ corresponds to the spectral signature of regions within the HS image that lack cellular

tissue information. As a consequence, this particular end-member is discarded during the DL classification

process. Furthermore, an ordering stage is implemented for the estimated end-members within each HS

image. This step involves selecting a reference HS image randomly for each fold and employing its end-

member order as a guide for the remaining images, using the Euclidean distance as a measure of similarity.

Subsequently, the ordered end-members are concatenated to form an augmented vector that contains the

spectral information, as illustrated in Figure 6.7E. Consequently, each HS image, with dimensions of 1004×
800× 275, is represented by a single vector of dimension 3× 275 = 825. This process of feature extraction

is based on the assumption that the concatenated spectral components from tumorous and non-tumorous

tissue samples contain distinct information that is relevant for classification. Another key consideration in

choosing only end-members and discarding the abundance maps is that only one global label is available

for each image. Consequently, the spatial properties of each class are unknown, posing challenges in their

utilization. Using only end-members yielded excellent error metrics with low complexity. It is worth noting

that in our initial experiments, classifiers trained with abundance maps produced significantly lower results

compared to models trained with end-members.

6.2.1.2 Data Augmentation

The size of the database directly influences the outcome of the classification process. In general, en-

larging the database can enhance the performance of a NN up to a certain threshold, beyond which the

improvements become negligible. By incorporating a larger database, the NN can access a broader range
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of examples, facilitating the learning of robust features and promoting better generalization to unseen data

[195, 196]. Nonetheless, the quality of the data is as crucial as its quantity. A sizable database with low-

quality data may not yield superior results compared to a smaller database comprising high-quality data.

Hence, it is essential to ensure that the database is both representative and accurately labeled to avoid biases

and errors during the classification process [196]. The SU methodology yielded 494 feature vectors, each

corresponding to an HS image from the database under study. These vectors were utilized for training, vali-

dating, and testing the DL classifier. Figure 3.5 illustrates the distribution of the four folds for the learning

process, with approximately 310 HS images allocated for training (Fold 1: 325, Fold 2: 327, Fold 3: 263,

and Fold 4: 325), 50 for validation (Fold 1: 60, Fold 2: 43, Fold 3: 43, and Fold 4: 53), and 120 for test-

ing (Fold 1: 109, Fold 2: 124, Fold 3: 146, and Fold 4: 115). However, the limited size of this database

poses a challenge for effective learning by the DL classifier. To address this limitation, data augmentation

was employed to augment the database, ensuring a more successful learning process. To achieve this, a

reformulation of the SU stage was performed. The spatial pixels of each HS image were randomly divided

into ten subsets, and SU was applied to each subset to extract their characteristic spectral signatures. These

signatures were then concatenated, resulting in feature vectors of dimension 825. Consequently, for each

HS image, ten feature vectors were generated to characterize it. Furthermore, up to 20 random subsets were

evaluated for each HS image, but no improvements were observed during the initial classification tests. As a

result, the data augmentation step produced a total of 4940 vectors, representing the entire database, through

the concatenation of spectral signatures. These augmented feature vectors were subsequently employed

for training, validating, and testing the DL classifier. This data augmentation step proved instrumental in

providing more consistent training with reduced variation when classifying HS images.

6.2.2 Deep Learning Classifier

To enhance the robustness and accuracy of the proposed methodology, a DL classification stage was

implemented using an ensemble of NNs. This approach aimed to decrease variability and improve overall

performance through transfer learning [197, 198]. The choice of NNs for the ensemble was based on their

adaptability and robustness in learning characteristic patterns of each class in the training data, as com-

pared to SVM and RF, as observed in a previous study [199]. NNs are outstanding at capturing complex

nonlinear relationships between input data and output labels, making them well-suited for the classification

of histological brain samples. The ensemble strategy employed in our methodology is reminiscent of the

RF approach, where multiple decision trees are combined using a voting scheme to mitigate the impact of

overfitting.

To construct the ensemble, three identical level-zero NNs were combined. This choice was based on

experimental findings that demonstrated stable classification performance with three level-zero NNs, as

increasing the number of NNs did not yield significant improvements. The architecture of each level-zero
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NN, illustrated in Figure 6.8, and it consisted of an input layer with 825 features and four hidden layers

with 1000, 200, 100, and 20 neurons, respectively. This hierarchical structure facilitated effective learning

within the network. The determination of the number of layers and neurons per layer was also conducted

experimentally, prioritizing simplicity while maximizing performance. Each internal layer in the level-zero

NNs utilized the LeakyReLu activation function with a slope of 0.1 for negative values. Additionally, L2

regularization of 0.0002 and a dropout stage of 50% were included to mitigate overfitting during the learning

process. The output layer employed a sigmoid activation function, as the classification task was binary. The

binary crossentropy cost function was employed for weight adjustment [200]. The uniform variance scaling

method was utilized for weight initialization in all layers of both the level-zero NNs and the ensemble,

aiming to reduce result variability [201]. During training, a minibatch size of 100 elements and a learning

rate of 0.001 were utilized. The number of epochs was set to 500 for the level-zero NNs and 100 for the

level-one NN. As described earlier, the input data for the level-zero NNs consisted of the training sets from

each fold in Figure 3.5C, incorporating only the concatenated end-members of each HS image, resulting in

a dimension of 825. Once the NNs were trained, they were saved and integrated into the ensemble network

or level-one network.

Figure 6.8: Architecture for the proposed structure of the level-zero NNs, consisting of three neural net-
works.

The level-one network, also known as the NNs ensemble, utilizes the three pre-trained level-zero net-

works in a transfer learning approach, where the weights of the level-zero NNs are frozen during the training

of the level-one network. Figure 6.9 illustrates the general architecture of the ensemble, where the outputs

of the level-zero NNs are discarded after the four hidden layers (illustrated in Figure 6.8), following the

transfer learning methodology. Consequently, the outputs of the three level-zero networks form a vector of

60 input elements in the ensemble. This vector is then processed by a NN consisting of three hidden layers

with 300, 200, and 32 neurons, respectively. Each hidden layer utilizes the LeakyReLu activation function
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with a slope of 0.1 for negative values. L2 regularization of 0.0002 and a dropout stage of 50% are applied

to prevent overfitting. Similar to the level-zero networks, the binary crossentropy cost function is used to

adjust the weights of the level-one network. To optimize performance, the architecture of the level-one

NNs is kept simple. The initial hidden layer is composed of 300 neurons to enhance representability and

interconnection across layers, allowing effective integration of data from the three level-zero NNs. This

selection ensures optimal information flow throughout the network. The output layer employs a sigmoid

activation function, producing a bounded output between zero and one, which is rounded to generate the

final classification result. The ensemble outputs a binary value, where zero represents non-tumor class and

one represents tumor. This output is verified against the labels provided by clinical experts.

Figure 6.9: Architecture of the ensemble network, also referred to as the level-one NN.

6.2.3 Results

The results obtained by the proposed methodology are described in this section. The evaluation in-

volved training independent classifiers for each fold in Figure 3.5C. The preprocessing and SU stages were

conducted in MATLAB R©, and the resulting data per patient was saved for future use. The DL classifier, on

the other hand, was trained and evaluated in Python using TensorFlow modules [202]. The entire process

was executed on a computer equipped with a 4.2 GHz Intel Core i7 quad-core processor and 16 GB of RAM.

For the training of the level-zero NNs, two different strategies were employed for comparison purposes.

The first approach involved randomly dividing the training data into three subsets, known as training with

data division (DD), where each subset was used for training a level-zero NN. In the second approach, all

available data (AD) was used to train each NN. The training of the level-one NN was performed using the

assigned data for each fold. Both strategies yielded promising results, with an average accuracy of 91% for

DD training and 94% for AD. However, it is important to note that using the training data from Figure 3.5C

for both the level-zero and level-one NNs could lead to overfitting, particularly in the level-zero networks
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trained by AD. Therefore, the evaluation of the NNs was conducted using a combination of validation and

test data to mitigate this potential condition.

6.2.3.1 Validation Results

The results obtained from the validation sets in Figure 3.5C for each fold in both training approaches

are summarized in Table 6.1. Overall, both proposals exhibited a similar behavior, but the NNs trained with

DD show slightly better performance across five metrics: (i) accuracy at 91%, (ii) sensitivity at 72%, (iii)

specificity at 95%, (iv) precision at 80%, and (v) F1-score at 75%. On the other hand, the NNs trained

with AD achieved slightly lower scores in all metrics, albeit by a small margin. In terms of STD, the NNs

trained with DD presented lower variability in all metrics, with the most significant difference observed in

terms of specificity. When analyzing the validation results individually, it is observed that Fold 1 performed

relatively poorer in both cases, with 74% accuracy for NNs trained with DD and 57% accuracy for NNs

trained with AD. In contrast, the best results were obtained in Fold 2, where both approaches reached 100%

accuracy across all metrics. Fold 3 also presented high performance, with NNs trained with DD achieving

99% accuracy and NNs trained with AD 97% accuracy. This pattern suggests that Folds 2 and 3 are better

suited for accurate detection of both classes, while Folds 1 and 4 reached lower classification performance.

Table 6.1: Quantitative evaluation of the validation set in each fold using the hybrid classification scheme,
with the best results highlighted in bold. Two training approaches, namely DD and AD, were employed in
the experiment.

NNs with DD NNs with AD
Fold Acc. Sen. Spe. Prec. F1 Acc. Sen. Spe. Prec. F1

Fold 1 0.74 0.29 0.85 0.33 0.31 0.57 0.25 0.64 0.15 0.19
Fold 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Fold 3 0.99 1.00 0.98 0.96 0.98 0.97 1.00 0.95 0.89 0.94
Fold 4 0.89 0.58 0.98 0.90 0.70 0.87 0.47 0.99 0.90 0.62
Avg. 0.91 0.72 0.95 0.80 0.75 0.85 0.68 0.90 0.74 0.69
STD. 0.12 0.35 0.07 0.31 0.32 0.20 0.38 0.17 0.39 0.37

6.2.3.2 Test Results

The classification results for the test set for each fold in Figure 3.5C are presented in Figure 6.10. The

results for NNs with DD and AD are compared in terms of various metrics. Initially, it is observed that

the results obtained with both approaches are highly similar across all metrics. This similarity is further

confirmed when examining the average metrics across all folds. On average, the accuracy between both

approaches differed by only 3%, with NNs trained with DD achieving an accuracy of 85% ± 9% (mean ±
STD) and NNs trained with AD of 88%± 7%.

The similarity between the approaches extends to the sensitivity and F1-score metrics as well. The

NNs with DD obtained an average sensitivity of 77% ± 21% and an average F1-score of 79% ± 21%,
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whereas the NNs trained with AD achieved an average sensitivity of 78% ± 17% and an average F1-score

of 80% ± 16%. Similarly, there is only a 3% difference in the precision metric, with NNs trained with DD

achieving 81% ± 18% and NNs trained with AD 84% ± 11%. The specificity metric also showed a 3%

difference between the two approaches, with NNs with DD achieving 89%±14% and NNs trained with AD

92% ± 6%. Overall, the NNs trained with AD demonstrated slightly superior performance in the proposed

metrics for the test sets, as well as during the training stage.

Figure 6.10: Quantitative results of the test set in each fold employing the hybrid classification scheme with
two distinct training approaches: DD and AD.

Finally, Figure 6.11 illustrates the classification results for each patient evaluated using the NNs trained

with AD. It can be observed that only four patients (P4, P6, P10, and P12) achieved an accuracy lower

than 80%, while two patients (P2 and P5) obtained accuracies between 80% and 90%. The remaining

patients obtained a performance greater than 90% in terms of accuracy. Similar trends are observed in

other performance metrics. Upon analyzing the cases with lower performance, it was found that patients

P4, P6, P10, and P12 were classified using the models trained with the data from Folds 2 and 4. However,

these models demonstrated good performance in the other patients, with Fold 2 being the one with the lowest

performance across all metrics. It is important to note that specificity can only be calculated for patients with

both types of classes (P1 to P8), resulting in a sensitivity of 100% for patients P9 to P13. The overall high

performance observed in the performance metrics suggests that our proposed methodology holds potential

as a computer-aided detection system for identifying images with tumor presence.
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Figure 6.11: Classification results per patient in the test set using the NN trained with AD. Patients P9 to

P13 have only tumor class samples, making it impossible to calculate the specificity metric for these cases.

Table 6.2 presents the comparison of the NNs approach with AD to two state-of-the-art methodologies

using the same database and artificial intelligence techniques [1, 2]. The first method is a SVM-based

approach trained with a superpixel scheme [1], specifically utilizing results at the image level. The second

method is a patch-based CNN [2]. Both algorithms were trained using the same database, except for patient

P6, where an annotation error was discovered during the implementation of the CNN. These errors were

rectified in both the SVM work with superpixels [1] and this dissertation work. Consequently, to ensure

a fair comparison, patient P6 was excluded from the calculation of the overall performance metrics. The

hybrid classification scheme achieved an average accuracy that was 3% higher than the CNN-based approach

and 6% higher than the SVM with superpixels, while also exhibiting a reduced STD. Similar trends were

observed in the specificity metric, with the proposed approach achieving 82%±33% compared to 78%±34%

and 77%±16% for the SVM-based and CNN-based approaches, respectively. Regarding sensitivity results,

the SVM-based approach reached the best performance with 91% ± 22%, followed by the CNN-based

approach with 88% ± 13%, and finally the proposed methodology with 83% ± 24%. The SVM-based

approach consistently excelled in sensitivity as it was optimized with respect to this metric [1]. However, the

proposed methodology in this study maintained a balanced performance between sensitivity and specificity

at an overall level.

In addition to the performance results, the hybrid classification scheme offers significant advantages in

terms of reduced data size and computational time. This trend is evident when examining the input data

requirements for each methodology, as shown in Table 6.3. The CNN-based approach utilizes 49,565 image

patches with dimensions of 87 × 87 pixels and 275 spectral bands, requiring approximately 768 GB of

memory. On the other hand, the SVM-based approach uses 426,260 superpixels with 275 bands, which

required approximately 0.87 GB of memory space. In contrast, the proposed hybrid classification scheme

dramatically reduced the amount of data needed for classification. It only required 4,940 vectors, each with

875 elements, totaling 22.9 MB of memory. This represents a reduction of×38 compared to the SVM-based

scheme in [1]. Consequently, the proposed approach significantly reduces memory usage and computational
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Table 6.2: Evaluation and comparison of outcomes among the hybrid classification scheme, a superpixel
SVM-based approach [1], and a CNN-based methodology [2], with emphasis on bold-highlighting the top-
performing results.

Hybrid Classification Scheme SVM-Based Approach [1] CNN-Based Approach [2]
Patient Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

P1 0.92 0.86 0.94 1.00 1.00 1.00 0.93 0.91 0.96
P2 0.88 0.91 0.86 0.94 0.83 1.00 0.89 0.99 0.83
P3 0.97 0.88 1.00 1.00 1.00 1.00 0.85 0.91 0.80
P4 0.79 0.16 0.98 0.79 1.00 0.73 0.57 0.57 0.58
P5 0.81 0.72 0.83 0.68 1.00 0.63 0.69 0.81 0.64
P6* 0.78 0.29 0.90 0.90 0.50 1.00 - - -
P7 0.98 1.00 0.97 0.35 1.00 0.10 0.66 0.71 0.63
P8 0.96 1.00 0.94 0.96 0.83 1.00 0.96 0.96 0.96
P9 0.95 0.95 NA 0.95 0.95 NA 0.99 0.99 NA
P10 0.75 0.75 NA 0.25 0.25 NA 0.89 0.89 NA
P11 1.00 1.00 NA 1.00 1.00 NA 0.92 0.92 NA
P12 0.70 0.70 NA 1.00 1.00 NA 0.92 0.92 NA
P13 0.98 0.98 NA 1.00 1.00 NA 0.99 0.99 NA
Avg. 0.89 0.83 0.82 0.83 0.91 0.78 0.86 0.88 0.77
STD. 0.10 0.24 0.33 0.27 0.22 0.34 0.14 0.13 0.16

Metrics marked as NA indicate that they are not applicable due to the absence of both classes in these patients.
* Data for the CNN-based approach is not available, and therefore, not included in the calculation of the mean (Avg) and STD.

Table 6.3: Comparative analysis of training duration, inference time, and storage requirements among the
hybrid classification scheme and two prior methods: a superpixel SVM-based approach [1] and a CNN-
based methodology [2].

Method
Training Time

(minutes)
Inference Time per

image (seconds)
Storage size

CNN-based Approach [2] NA 72 768 GB
SVM-based Approach [1] ≈ 240 1440 0.870 GB

Hybrid Classification Scheme
AD proposal 7

18 0.023 GB
DD proposal 4

NA = data not available for the CNN-based approach.

overhead for data classification.

This advantage is further demonstrated in the training time for each methodology, as shown in Table

6.3. The SVM-based approach needed 4 hours for training, whereas our AD and DD proposals for zero-

level NNs took approximately 7 and 4 minutes, respectively. Notably, the CNN-based approach [2] required

more powerful processing equipment, as the training time exceeds one day. Regarding inference times

(Table 6.3), the proposed hybrid classification scheme achieved the lowest value compared to the CNN-

based approach, taking only 25% of the inference time of the DL scheme. Similarly, compared to the

SVM-based method, the difference is even more significant, with the hybrid scheme requiring only 1.25%

of the time. These improvements are attributed to the lower complexity of the proposed hybrid classification

scheme. In fact, the optimization of the NNs ensemble involved a total of 3,229,925 trainable parameters.

Among these parameters, 1,048,320 correspond to each level-zero NN, while the level-one NN has only
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84,965 parameters.

Additionally, in analyzing the evaluation of HS images, the primary complexity lies in the SU stage,

which has a complexity of O
(
maxiter ·K · (L+N4)

)
, where L represents the number of spectral bands

and K is the number of pixels to be analyzed in the HS image. This stage can be considered the bottleneck

in the hybrid scheme. Similarly, the main limitation of the SVM-based approach is the bottleneck caused

by the superpixel generation process. Although the superpixel algorithm can be highly parallelized, the

current implementation in [1] is iterative, resulting in long inference times. Furthermore, the original paper

that used this algorithm for HS histological data mentions an overestimation of the number of superpixels

per image, which further increased the computational time required for superpixel generation. Nonetheless,

both the proposed hybrid scheme and the comparison methods are amenable to parallelization, which would

significantly reduce training and inference times.

6.2.3.3 Performance Evaluation

The results obtained from the hybrid scheme demonstrate the successful classification of HS images

based solely on their spectral characteristics, without apparent overfitting. Moreover, the proposed approach

presented significant improvements compared to CNN- and SVM-based methods [1, 2], which utilize both

spatial and spectral information. It should be noted, however, that there might exist a CNN architecture

capable of achieving similar results for this specific application. Nevertheless, the design of such a CNN

model, fine-tuning of hyperparameters, and the learning process would pose significant challenges when

applied to the studied database, especially when compared to the simplicity and effectiveness of the proposed

hybrid classification scheme.

Although the hybrid classification scheme has shown excellent results, it does have some limitations.

One major limitation is the small number of patients in the database and the class imbalance between tumor

and non-tumor samples, as only eight patients had data from both classes. Although data augmentation

partially compensates for this limitation, there is a limit to the improvement in classification performance

by dividing spectral signatures into subsets. Moreover, the histological variability among GB-type tumors

needs to be considered. To address these limitations, it is recommended to increase the number of patients

in future studies.

Another limitation is the computational time required for the SU stage. The LU process for the entire

database takes approximately 12 hours and 19 minutes, translating to about one and a half minutes per HS

image. However, by performing a random downsample of one-tenth of the information in each HS image,

consistent classification with good accuracy can still be achieved, reducing the computational time to just

2 hours and 24 minutes for the SU stage, equivalent to approximately 18 seconds per HS image. Further

research is needed to determine the minimum sample reduction ratio that allows for good classification

results. Overall, these limitations highlight areas for improvement and future research to enhance the hybrid
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classification scheme’s performance and efficiency.

6.2.3.4 Qualitative Analysis

Figure 6.12: Qualitative outcomes of two HS images labeled as A) Tumor and B) Non-tumor are depicted.
The figures illustrate the original RGB image (left image in the bottom row), the end-members (center of
the bottom row), and the abundance maps estimated by SU (top row). Additionally, a synthetic RGB image
(right image in the bottom row) is generated using the abundance maps of end-members 1, 2, and 4, which
are assigned to the respective RGB channels.
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While the hybrid classification methodology successfully identified tumor tissue in histological sam-

ples, it has a limitation regarding spatial classification, as it does not provide pixel-by-pixel annotation.

However, the SU stage, as discussed in Section 6.2.1, allows the identification of characteristic spectral

signatures and their concentrations through abundance maps. Therefore, after the classification process,

the abundance maps can be utilized to identify spatial structures within the HS image. This property is

demonstrated in Figure 6.12, which presents the RGB image, end-members, abundance maps, and a syn-

thetic RGB image generated using the abundance maps corresponding to specific end-members. In this

case, end-member 3, representing the direct transmission of microscope light, is not considered for the syn-

thetic RGB image. Figure 6.12 provides two examples of correctly classified HS images, with Figure 6.12A

representing tumor tissue and Figure 6.12B representing the non-tumor class.

A detailed analysis of the HS images revealed significant features, as indicated by the results of the SU

stage and the original/synthetic RGB images. Firstly, the RGB images show distinguishable characteristics

between the tumor and non-tumor classes. The tumor tissue image showed higher color intensity and a

coarse texture, whereas the non-tumor tissue image displayed lower color intensity and a smoother texture.

Secondly, the shapes of the end-members are quite similar between both classes, with slight spectral varia-

tions. End-member 1 is the most similar for both classes, hence the necessity for three distinct end-members

in the training process to provide discriminative features during the classification stage. The abundance maps

illustrate the concentration zones of each end-member, with the second end-member capturing structures re-

lated to cell nuclei, while end-members 1 and 4 highlight external structures such as blood vessels, gray

matter, and white matter. Additionally, the abundance map of end-member 4 in the non-tumor case (Figure

6.12B) exhibited lower concentrations compared to the tumor condition (Figure 6.12A). These abundance

maps offer insights into the spatial distribution of different components, enabling the identification of rele-

vant patterns and features not readily visible in RGB images. Consequently, these patterns and abundance

maps can be utilized in classification tasks. However, it is important to note that these observations are

specific to the studied example. Nonetheless, synthetic RGB images provide an accurate representation of

cellular structures, and in combination with the abundance maps from the SU stage, they can be valuable in

future studies for pixel-wise classification.

6.3 Classification of Brain Tissues in Hyperspectral Images Using Vision Transformers

The ViT architecture, originally described in [6], was utilized in this proof of concept. A brief descrip-

tion of the ViT architecture will follow. The ViT primarily comprises position encoding embedding, linear

mapping, transformer encoder, learnable layer, and normalization layer. The transformation of HS images

x ∈ RH×W×C into flattened 2D patches xp ∈ RN×(P 2·C) occurs, where H and W represent the spatial

dimensions, C signifies the number of bands, P denotes the size of each 2D patch, and N = H ·W/P 2

represents the number of patches. Furthermore, a latent constant vector of size D is employed uniformly
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across all layers of the transformer. This vector is leveraged to map the flattened patches to dimensions D

using a trainable linear projection along with the patch embeddings, thereby ensuring consistent patch order,

regardless of resolution. Subsequently, positional encoding is applied to the patch embeddings, enabling the

inclusion of spatial information in the classification process. Additionally, a learned class token is appended

to the patch embeddings with positional encoding, providing global representation. The transformed input

is then passed through the transformer encoder, and classification is performed through regression using a

multi-layer perceptron in the header.

In this proof of concept, both training and evaluation were conducted at the pixel level instead of patch

level. This decision was made as dividing the data into patches did not yield significant improvements.

Moreover, increasing the number of patches to two or more resulted in smoothed classification maps with

a loss of important details. The general diagram of the architecture and the input data are illustrated in

Figure 6.13, where, unlike the original architecture in [6] (shown in Section 8), where intensity values are

sequentially and orderly inputted to the transformer, in this proof of concept, the input data are the spectral

values of each pixel. This allows for a comparison between spectral intensities, which, due to the structure

of the transformer, enables a contextual comparison between spectral signature values.

Figure 6.13: Diagram of the vision transformer architecture for spectral signature input.

The quantitative and qualitative results of ViT on the experimental brain cancer HS image database,

described in Section 3.3.2.2, are presented in this section. The images P008-01, P012-01, and P020-01

were specifically analyzed. ViT’s results were compared with labeled pixels using standard metrics such as

accuracy, sensitivity, precision, and F1-score. The evaluation was conducted on the PyTorch platform using

a computer equipped with an Intel Core i7 quad-core 4.2 GHz processor and 16 GB of RAM.

As a proof-of-concept, ViT was trained using both intra and inter-patient approaches. In the intra-patient
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perspective, with 20% of the labeled data per class and the remaining as a validation set. In the inter-patient

approach, where the labeled data from all patients served as the validation and training set without consid-

ering the information of the analyzed image. For this approach, 40% and 60% of the data were allocated to

each set. The training percentages were selected in intervals of 5% to ensure sufficient representative infor-

mation for correct classification of each class and to maintain stable accuracy performance during training.

In both approaches, the test set consisted of pixels labeled by the clinical expert within the image of interest.

The intra-patient training stage was set up with 200 epochs for each image, using the Adam optimizer,

a minibatch size of 32, and a learning rate of 0.001 with a decay factor of 0.9 after every tenth of the total

number of epochs. Similarly, the inter-patient training stage was configured with 20 epochs for each image,

a minibatch size of 128, the Adam optimizer, and a learning rate of 0.0005 with the same decay factor as in

the intra-patient case. For comparison, this work also used the methodology proposed in [3], which includes

a DL framework (DLF) with an inter-patient approach.

Table 6.4: Performance metrics of the ViT model in both the intra-patient and inter-patient approaches, as
well as the DLF methodology [3]. The best result for each image in the inter-patient approach is emphasized
in bold.

Image ID
Accuracy per class Overall

Accuracy
Precision Sensibility F1 score

NT TT HT BG
ViT in Intra-patient Approach

P008-01 0.997 0.938 0.969 1.000 0.978 0.977 0.977 0.977
P012-01 0.992 0.995 0.999 0.994 0.996 0.997 0.997 0.997
P015-01 0.985 0.999 1.000 0.992 0.997 0.997 0.997 0.997

ViT in Inter-patient Approach
P008-01 0.881 0.997 0.551 1.000 0.840 0.860 0.841 0.839
P012-01 0.985 0.961 0.927 0.998 0.953 0.961 0.953 0.955
P015-01 0.780 0.519 0.922 1.000 0.805 0.881 0.805 0.812

DLF Methodology [3] (Inter-patient Approach)
P008-01 0.761 0.257 0.612 0.998 0.639 0.707 0.640 0.639
P012-01 0.993 0.698 0.947 0.987 0.951 0.955 0.951 0.950
P015-01 0.989 0.916 0.684 0.945 0.811 0.911 0.811 0.833

The results presented in Table 6.4 demonstrate that in the intra-patient case, despite the presence of

unbalanced data, the ViT model achieves accuracy values above 0.90 for each class, with an overall accuracy

of 0.97. These high accuracy results, along with the precision, sensitivity, and F1-values, indicate that

the classification model is robust and highly efficient. On the other hand, in the inter-patient scheme, the

overall accuracy of ViT is similar to the DLF methodology [3], except for the P008-01 image, where an

improvement of up to 20

A closer analysis of the metrics reveals that the DLF methodology is clearly affected by the class im-

balance, resulting in lower accuracy values for the TT and HT classes (classes with fewer labeled pixels).

In contrast, the intra-patient approach shows a higher average F1-score (87%) and performs better in classi-

fying the data compared to the DLF methodology (81%), which is more influenced by the class imbalance.
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These findings indicate that the ViT model can be a promising and effective choice for the classification of

brain cancer HS images.

The resulting classification maps in Figure 6.14 demonstrate that ViT correctly identified the rubber

rings (background) in all cases, even though they were not fully considered in the ground-truth. Similarly,

the consistent structures are identified for the remaining classes, aligning with what is shown in the RGB

reference image. Notably, the regions classified as tumor closely follow the approximate borders delimited

by the clinical expert.

The main difference among the studied strategies lies in the background area. The ViT in the inter-

patient approach exhibits larger background areas compared to the intra-patient one, while the DLF method-

ology produces a larger division that distinguishes between the parenchymal region and the background.

Despite these differences, all three approaches generate similar classification maps, as depicted in Figure

6.14, with the highest similarity observed between the inter-patient approach and the DLF methodology.

The ViT in the inter-patient approach shows a higher number of coincidences with the ground-truth,

particularly in the HT class. However, the DLF methodology generates more uniform classification maps

with fewer errors among the NT, TT, and HT classes, albeit with some loss of detail in the HT class. When

comparing the DLF methodology with the inter-patient approach, the labeled tumor region in the latter case

is closer to the area defined by the expert.

The results demonstrated the viability of ViTs as a proof-of-concept by achieving classification accura-

cies above 93% for all classes in the intra-patient approach, even with a limited amount of training data (20%

of labeled pixels). In the inter-patient approach, the performance results exceeded 80% for all classes, with

clear delineation among different tissue classes, surpassing the average performance of the DLF methodol-

ogy. However, the inter-patient approach exhibited lower performance in certain classes, indicating a need

to modify the training characteristics to address this issue.

Notably, the inter-patient training process was more challenging, requiring approximately three hours

per image compared to approximately 15 minutes in the intra-patient case. The evaluation time for each

image was around 7 minutes. Unfortunately, there were no available computational times for comparison

with the DLF methodology [3]. These findings suggest that models utilizing transform-type architectures

hold promise for tissue classification tasks and surgical guidance applications.
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Figure 6.14: Qualitative classification results for each image are displayed in the following manner: the first
column showcases a synthesized RGB image with the tumor region highlighted by a yellow boundary, while
the second column exhibits the ground-truth image containing pixels labeled by the clinical expert (green
for non-tumor, red for tumor tissue, blue for healthy tissue, and black for background). The remaining
three columns present the classification maps generated by ViT using the intra-patient and inter-patient
approaches, as well as the DLF methodology [3].
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Chapter 7

Conclusions

This dissertation presents a comprehensive study of proposals for classification and SU in HS images.

These methodologies include several formulations and novel techniques, which were evaluated on synthetic,

real, and experimental HS images from different biomedical and remote sensing contexts. The research fo-

cuses primarily on reflectance calibration, blind linear and nonlinear unmixing, and hybrid classification

methods. The results demonstrate the effectiveness of the proposed techniques in preserving spectral signa-

tures, improving classification accuracy, and reducing computational time. This is presented in a condensed

form in Table 7.1, which summarizes the main conclusions obtained in the development of each chapter,

and their contributions are analyzed in detail below.

In the first instance, in Section 4.5, a methodology called Extended Blind End-member and Abundance

Estimation with Spatial Coherence (EBEAE-SC) was introduced as a BLU algorithm applicable to biomed-

ical imaging and remote sensing. EBEAE-SC showcased its remarkable ability to perform quantitative anal-

ysis with minimal prior information. It enabled the estimation of concentration maps with spatial coherence

by incorporating internal abundances within the optimization process. The flexibility of its hyperparameters

(N, ρ, λ, ν, τ ) allowed the methodology to adapt effectively to different applications. Similar to the original

formulation EBEAE, the selection of hyperparameters (N, ρ) relied on prior knowledge about the dataset,

such as the number of components or end-members present and the expected spectral similarities. On the

other hand, the hyperparameters (λ, ν, τ ) influenced the balance between nominal and internal abundances

and effectively reduced the impact of noise in the measurements using TV theory. This fine-tuning approach

of hyperparameters ensured a better fit to the ground-truth information while preserving crucial structures

and edges in the abundance maps, leading to substantial improvements in estimation accuracy, particularly

in high-noise scenarios compared to cutting-edge BLU methods. Moreover, EBEAE-SC exhibited a lower

computational cost than other methodologies examined in test scenarios, resulting in an excellent quality-
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Table 7.1: Overall summary of the main conclusions of each chapter presented in the dissertation.

Chapter Title Chapter Essential conclusions of the dissertation

1 Introduction
• Demonstrate the utility of HSI in the medical field, showcasing the ability
of these techniques to detect various pathologies and tumors.

2 Methodological Background • Expone the most prominent HS image analysis strategies in the state of the art.

3
Databases for HS Image Analysis:
Description and Preprocessing

• The characteristics of the databases used in the thesis, along with the
preprocessing required to standardize spectral signatures, are described.

4 Spectral Unmixing

• Theoretical foundations of LMM and NMM are established, providing
a solid basis for understanding these approaches.
• The theoretical framework of EBEAE is detailed, and the fundamental principles
of HS data classification through unmixing techniques are presented.
• Formulations for the proposed models are developed, yielding noteworthy results
in terms of accuracy and computational efficiency.
• Results obtained through EBEAE-SC have demonstrated a significant reduction
in estimation granularity, leading to a decrease in overall estimation error and
superior performance compared to traditional methods.
•The formulation of NEBEAE has shown its capacity to outperform previously
reported non-linear methods in the literature, achieving improved performance
in both global terms and processing time.
• The LU-based classification proposal has proven its ability to generate
competitive results when compared to ML methods, all while consuming fewer
computational resources.
• The calibration proposal is evaluated in an experimental scenario in conjunction
with NEBEAE, showing an increase in the utilized metrics.

6
Advancing HS Brain Tissue
Classification with Hybrid Schemes
of LU and Artificial Intelligence

• An innovative calibration proposal for hyperspectral data is introduced,
effectively reducing the adverse effects of the standard method and resulting
in a significant performance boost in controlled and experimental classification
scenarios.

7
Advancing HS Brain Tissue
Classification with Hybrid Schemes
of LU and Artificial Intelligence

•Two proposals were developed that combine LU with various ML techniques.
These proposals use abundance maps and end-members as features introduced
into the classifier. The results obtained show similarities to methodologies
previously published in the literature while improving the processing time and
memory efficiency required to store the features.
• Attention-based techniques for HS image classification were explored, and the
results demonstrated superior performance in a proof-of-concept compared to
reference methods.

time processing relationship, making it a highly practical and advantageous choice for various applications.

Following the development of the EBEAE-SC method, this dissertation introduces a nonlinear variant

of EBEAE (Section 4.6), which is based on a multilinear mixing model. This new approach exhibits robust

performance when dealing with various types and levels of noise, all while maintaining a low computa-

tional burden. The validity of this formulation is illustrated through its application to synthetic datasets and

comparison with advanced remote sensing methods, showcasing its superior computational efficiency with

improvements ranging from 1.6 to 1117 times faster than the comparison methods. When applied to VNIR

HS images for intraoperative brain tumor detection, the proposed method exceeds its linear counterpart and

effectively highlights crucial tissue characteristics. NEBEAE significantly reduces the overall estimation

error and improves accuracy by an average of 2% in classification tests. Additionally, the nonlinear interac-

tion maps provide valuable information on important tissue features, particularly in hypervascularized tissue
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areas.

Subsequently, in Section 4.7, this work introduces two novel methods that use the EBEAE algorithm

to classify in vivo brain tissue through intraoperative HS images. These innovative approaches outperform

conventional supervised SVM-based techniques in terms of computational efficiency while providing com-

parable or even improved classification performance. Moreover, both methods demonstrate reduced vari-

ability in classification results and offer significantly simpler processes compared to other existing strategies,

resulting in a remarkable training speed improvement of more than 420 times compared to the benchmark

method used. A noteworthy advantage of these methods is their enhanced precision in identifying the BG

class, particularly evident in Method B, which also shows improved sensitivity and F1-score for detecting the

TT class compared to the methods proposed in the existing literature. Combining these overall advantages

with the immense potential for parallelization in the proposed techniques and the utilization of snapshot HS

cameras (capable of capturing both spectral and spatial information in one shot), the possibility of real-time

classification results during clinical procedures becomes achievable. This advancement has the potential to

significantly improve surgical outcomes, leading to improved patient results and overall quality of life.

In Chapter 5, a new formulation for reflectance calibration in HS images was introduced, which com-

pensates for unwanted effects in the image acquisition stage. The results of the developed reflectance cal-

ibration method demonstrated its effectiveness in preserving the shape of the spectral signatures, limiting

their amplitudes (in the range of 0 to 100%), and improving the separability among the different classes

present in the HS image. These properties are especially crucial in medical applications, where an accurate

identification of various classes is sought. This application was illustrated in Section 5.2, where the impact

of calibration on the classification of medical HS images was analyzed using a nonlinear unmixing algo-

rithm. The results of the PC showed a reduction in the variability of spectral signatures within the same

class, which resulted in a 22% improvement in the initial classification tests a 6% improvement in the inter-

patient tests. This variability reduction was reflected in the performance of the inter-patient strategy, which

simulates real-world scenarios where labeled information from new patients is not available. The applica-

tion reflects the ability of the proposed formulation to uniformly adjust spectral signatures despite physical

variations present at the time of capture.

In Chapter 6, two new hybrid classification methods were introduced to address the tissue classification

problem in brain tissue HS images. These methods combine EBEAE and EBEAE-SC with popular ML

approaches, such as NNs, SVMs, and RFs. The primary goal of the first proposed method (Section 6.1) is

to classify tissues in vivo intraoperative brain tissue HS images. It leverages linear unmixing to generate

abundance maps, which serve as feature vectors for ML classifiers. The extended basis function used in this

approach allows for better differentiation between the classes of interest, thus improving the overall classi-

fication performance. Remarkably, the hybrid method employing NNs achieved the most promising results

(75.9±13% average accuracy), outperforming other state-of-the-art methods. It demonstrated superior per-

formance in reducing classification errors for specific tissue classes, mitigating granularity issues present
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in SVM-based approaches, and overcoming oversmoothing challenges associated with LU-based schemes.

Moreover, the proposed hybrid approach retains a higher level of detail in the resulting classification maps.

The flexibility of this hybrid approach is a significant advantage, enabling adaptation to various scenarios

by adjusting control parameters or even considering different classifiers to optimize the results. However, it

is essential to note that handling multiple control parameters may require careful tuning to achieve the best

outcomes.

Meanwhile, the second hybrid classification proposal focused on the identification of GB tumor-affected

tissue in histopathological HS images (Section 6.2). The methodology involved using SU as a feature ex-

traction by the estimated end-members, which were then input into an ensemble of deep NNs for binary

classification. The results showcased the effectiveness of the proposed method compared to two state-of-

the-art approaches [1, 2]. The proposal achieved an average accuracy and specificity of 89% and 82%,

respectively, with reduced variance. However, the comparison methods outperformed the proposed one in

terms of sensitivity (average of 83%). Furthermore, this approach significantly reduced the computational

cost during classification, leading to shorter learning and inference times without compromising perfor-

mance. These specific results open possibilities for the proposed approach to be applied in clinical settings

to identify regions in brain histological samples for further analysis by a pathologist.

The dissertation concludes with an exploration of the application of ViTs to classify HS images from in

vivo brain tissue (Section 6.3). ViTs demonstrate promising results in intra-patient classification with limited

training data, achieving high accuracy (above 93%) across all classes. However, inter-patient classification

also shows relatively good performance (above 80%), albeit with some classes performing less effectively.

This issue can be addressed by adjusting the training process, which involves a higher computational cost.

For each scenario, parameter optimization takes approximately three hours, while intra-patient training only

requires about 15 minutes per patient. The evaluation time for both approaches is around 7 minutes per

assessment. These findings indicate that transformer-based architectures like ViTs could be suitable for

tissue classification tasks and surgical guidance applications.

In conclusion, this dissertation provides a comprehensive examination of various methodologies for

classification and spectral unmixing in HS images. These methodologies encompass a wide array of novel

techniques and formulations, which were rigorously evaluated across synthetic, real, and experimental HS

images sourced from different biomedical and remote sensing contexts. Overall, this research contributes

significantly to the field of HS image analysis, offering practical insights into the applicability of these

methodologies across various domains and holding the potential to improve surgical outcomes and patient

care. Moreover, while successfully attaining the primary objective and specific goals set forth, this research

is at a preliminary stage of exploration, generating novel avenues for further investigation. Nevertheless, it

is important to acknowledge and address several limitations inherent to this project. The subsequent section

outlines these identified limitations and offers potential directions for future development.
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7.1 Limitations

Despite the promising results of the different methodologies presented in this work, each proposal has

certain limitations. One general limitation is the relatively small size of some databases used for evalua-

tion, which affects the generalization of the classification results. Additionally, the databases have another

limitation, namely, the imbalanced distribution of classes within the labeled dataset, which can lead to an

overfitting problem in classes with a larger number of data points.

In particular, each method developed in this work has specific limitations. Initially, the calibration with

normalization correction achieves the intended goal of reducing variability. However, there are still open

issues associated with this proposal. The main limitation arises from the use of a flat surface as the white

reference. In contrast, the surfaces to be analyzed often have textures and a certain level of volume, resulting

in an inconsistency between the white reference and the surface being analyzed.

On the other hand, both proposed unmixing methods EBEAE-SC and NEBEAE share similar limita-

tions, with the main one being the proper selection of their hyperparameters. This limitation extends to

hybrid methods, where significant computational time is required for this stage, potentially hindering real-

time applications. Additionally, hybrid classification schemes may not be suitable for all types of brain

tumors since these algorithms were designed for a specific case and histological and spectral variability

among different tumor types must be considered. Finally, the proof-of-concept using the transformer, de-

spite showing promising results, is limited by the use of the standard ViT architecture, which restricts its

performance on HS data.

Regarding the databases, they have limitations that are directly related to their acquisition process. For

example, in the acquisition of the in vivo brain tissue database and within the context of limitations asso-

ciated with the PC method, challenges arise related to the capture environment. These challenges include

variations in ambient lighting, degradation of the illumination source, and differences in depth within the

area of interest. These factors can have adverse effects on the interactions of captured light. Additionally,

in the surgical environment, there are often accumulations of blood, gauze, medical instruments, and other

materials that can affect the spectral information and the analysis within the image. While, in the case of

histopathology image databases, a physical challenge arises when attempting to increase the level of mag-

nification for HS image capture. This challenge is linked to the characteristics of the objectives used in

optical microscopes, as their aperture decreases as magnification increases. In other words, as magnification

increases, the effective diameter of the objective decreases. This limitation in image capture restricts the

permissible bandwidth in the images and, in some cases, can affect the entire spectrum captured by HS

cameras. Additionally, it can potentially lead to optical aberrations due to the properties of the lenses used

in the objectives.

In clinical practice, there are multiple technical limitations, such as the characteristics of acquisition

platforms, camera properties, capture time, computing equipment for processing, and algorithmic perfor-
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mance issues. The latter problem has been successfully addressed in this dissertation with good results from

the developed proposals. However, it is important to note that technical limitations still require considerable

technological advancement. Additionally, more research and clinical trials are needed to obtain approval for

a HS surgical guidance platform by various health agencies. It is also worth mentioning that clinical experts

can often be resistant to changes in standard strategies. Despite these challenges, approaches to clinical

personnel have been fruitful and well-received. In the case of histopathological applications, there are fewer

technical limitations as the variables that can affect image capture are more controlled. However, in both the

histopathological and GB detection cases, it is essential to conduct more comprehensive studies to validate

both the acquisition platform and the proposed classification algorithms.

7.2 Future Work

To address the limitations and expand the contributions made in this work, several lines for future

research are identified:

• Expand the size of the databases used, along with extending the labeling of experimental HS im-

ages, to improve classification performance and enable the identification of different tissue types.

• Explore different optimization methods and hyperparameters tuning techniques to enhance the

adaptability and performance of the algorithms.

• Investigate the use of morphological postprocessing methods and spatial filtering algorithms to

reduce misclassifications.

• Propose approaches for algorithm parallelization using hardware accelerators such as GPUs or

FPGAs, to reduce computational time and enable real-time performance.

• Develop new variants of unmixing and ML algorithms for feature extraction and pixel-wise classi-

fication in HS images.

• Research image processing techniques for depth analysis and geometric perception alterations to

reduce variability when evaluating standard reflectance calibration.

• Implement the developed classification methods into APIs for surgical guidance devices.

• Rigorous and comprehensive clinical studies will be conducted to validate both the acquisition

platform and the proposed classification algorithms.

• Additional research will be conducted to address technical limitations and enhance clinical appli-

cability.

• Close collaboration with clinical professionals will continue to understand their needs and concerns.

• Examine probabilistic algorithms to overcome the physical challenge in the analysis of histological

samples using HSI.
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Furthermore, various cutting-edge techniques in the field of image processing will be explored to extrapolate

and adapt them to HS image analysis. Among the techniques under consideration are attention mechanisms,

graph architectures, deep residual learning, adaptive processes, and genetic algorithms, which have the

potential to significantly improve the performance of HS processing. The proposed future work aims to

overcome the identified limitations and establish a solid foundation for future lines of research and applica-

tions.
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Chapter A

Scientific Contribution

The present appendix aims to provide a detailed list of the work carried out during the doctoral pe-

riod, including: articles published in indexed journals, book chapters, and both national and international

conference papers. Additionally, it will present the works in which participation was taken throughout this

doctoral training process. Each of these works represents a fundamental pillar in the construction of knowl-

edge and the skills acquired during these years. Furthermore, this section offers readers an overview of the

achievements and the diversity of topics addressed on the journey towards obtaining the doctoral degree.

A.1 Articles

- R. Leon, S. Ortega, I. A. Cruz-Guerrero, D. U. Campos-Delgado, A. Szolna, J. F. Piñeiro, C.

Espino, A. J. O’Shanahan, M. Hernandez, D. Carrera, S. Bisshopp, C. Sosa, F. J. Balea-Fernandez,

J. Morera, B. Clavo, G. M. Callico, and H. Fabelo, “Hyperspectral Imaging Benchmark based

on Machine Learning for Intraoperative Brain Tumour Detection,” Submitted in NPJ Precision

Oncology, 2023, Manuscript ID: NPJPRECISIONONCOLOGY-03695-T, doi: 10.21203/rs.3.rs-

2956240/v1

- I. A. Cruz-Guerrero, D. U. Campos-Delgado, A. R. Mejia-Rodriguez, R. Leon, S. Ortega, H. Fa-

belo, R. Camacho, M. Plata, and G. M. Callico, “Hybrid Brain Tumor Classification Scheme of

Histopathology Hyperspectral Images Using Linear Unmixing and Deep Learning,” Submitted in

Healthcare Technology Letters, 2023, Manuscript ID: HTL-2023-08-0027.

- I. A. Cruz-Guerrero, D. U. Campos-Delgado, A. R. Mejia-Rodriguez, A. J. Jo, S. Ortega, H. Fabelo,

and G. M. Callico, “Multi and Hyperspectral Image Unmixing with Spatial Coherence by Extended

Blind End-member and Abundance Extraction,” J. Franklin Inst., 2023.
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- D. U. Campos-Delgado, I. A. Cruz-Guerrero, J. N. Mendoza-Chavarría, A. R. Mejía-Rodríguez,

S. Ortega, H. Fabelo, and G. M. Callico, “Nonlinear extended blind end-member and abundance

extraction for hyperspectral images,” Signal Processing, vol. 201, p. 108718, 2022,

https://doi.org/10.1016/j.sigpro.2022.108718.

- I. A. Cruz-Guerrero, R. Leon, D. U. Campos-Delgado, S. Ortega, H. Fabelo, and G. M. Callico,

“Classification of hyperspectral in vivo brain tissue based on linear unmixing,” Appl. Sci., vol. 10,

no. 16, Aug. 2020, doi: 10.3390/app10165686.

A.2 Book Chapters

- I. A. Cruz-Guerrero, R. Leon, A. R. Mejia-Rodriguez, D. U. Campos-Delgado, S. Ortega, H. Fa-

belo, and G. M. Callico, “Hyperspectral Imaging for Cancer Applications,” in Diagnosis and Treat-

ment of Cancer using Thermal Therapies, CRC Press, 2023, pp. 81–101,

doi: 10.1201/9781003342663.

- I. A. Cruz-Guerrero, D. U. Campos-Delgado, A. R. Mejia-Rodriguez, H. Fabelo, S. Ortega, and G.

M. Callico, “A hybrid approach to the hyperspectral classification of in vivo brain tissue: linear un-
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Machine Learning Methods

B.1 Random Forests

Random Forest (RF) is a supervised classification and regression algorithm, originally developed by

Breiman, that adopts a learning approach using random subsets of training data [203]. The algorithm in-

volves training multiple decision trees simultaneously to contribute collectively to the classification process,

helping to reduce data variance and improve accuracy. The classification is achieved through a voting mech-

anism, where each decision tree casts a vote, and the final class label is assigned based on the highest number

of votes [97, 204].

RF employs an ensemble strategy that includes two main methods: boosting and bagging. Boosting is

a sequential process in which each subsequent model attempts to correct the errors of the previous ones in

a particular sequence [203]. In contrast, bagging involves training each decision tree on different subsets of

data, meaning that each tree observes distinctive data during its training phase. When the results of all trees

in the forest are balanced, errors are balanced, leading to improved stability, accuracy, and reduced variance.

Consequently, bagging is used more frequently in practice [203].

The hyperparameters of the RF classifier are mainly inherited from the decision trees, which include

the maximum depth of the tree, the minimum number of samples required for node splitting, the minimum

number of samples for a final node, and the maximum number of final nodes or leaves [204]. Additionally,

the number of trees in the forest, the quality criteria (typically the Gini criterion), and the maximum number

of features considered to generate a split are also defined as hyperparameters for the RF classifier [203].

RF has proven to be an effective strategy for classifying high-dimensional data, such as HS images

and remote sensing data. RF combines the strength of multiple classifiers, resulting in improved accuracy

and stability [205]. Compared to other classification algorithms, such as AdaBoost and SVM, RF has

presented faster computation times and comparable or even superior performance in various remote sensing
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applications [205].

B.2 Support Vector Machines

The Support Vector Machine (SVM) algorithm, developed by Vapnik in the late 1970s, is widely utilized

for classification tasks, particularly in image classification. The SVM serves as a linear binary classifier that

separates classes using an optimal hyperplane (Figure B.1) [97, 203]. During training, the SVM algorithm

utilizes the available data to compute support vectors, which are generated from the data points closest

to the decision boundary. These support vectors determine the optimal decision boundary, minimizing

classification errors and maximizing separation [203]. While the basic SVM algorithm is designed for linear

binary classification problems, real-world scenarios often require nonlinear class divisions. To address this,

several variants of SVM kernels have been developed. Nonlinear kernels, such as sigmoid, radial basis

function (RBF), and polynomial kernels enable improved separation of overlapping data. However, defining

the hyperparameters for these nonlinear kernels can be challenging [97].

Figure B.1: Example of linearly separable data classified by an SVM.

Extensions of SVM have also been proposed for multiclass classification. For example, the "one-versus-

the-rest" approach involves a single optimization process and requires fewer support vectors compared to

multiple stages of binary separation [97]. On the other hand, the Crammer-Singer method solves a dual

optimization problem with a set of constraints, allowing for multiple subproblems. Due to its characteristics,

the Crammer-Singer method is slightly more sensitive, but achieves a more accurate classification [206].

In the classification of HS images, SVM has gained prominence due to its strong theoretical foundation,

good generalization capability, low sensitivity to the curse of dimensionality, and the ability to find global

classification solutions [207, 208, 209]. SVMs have shown superior performance in terms of accuracy,

computational time, and stability of parameter settings when compared to other algorithms such as RBF,
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NNs, and KNN classifiers [207]. Experimental results have demonstrated the effectiveness of SVMs in

tasks such as spectral signature classification and tissue differentiation [207, 209]. These findings highlight

the versatility and potential of SVMs in a wide range of classification tasks, particularly in the analysis of

HS data.

B.3 Fully Connected Neural Networks

Neural Networks (NNs) are classification techniques that draw inspiration from biological neurons,

with multilayer NN being the architecture most commonly used. An NN consists of interconnected or fully

connected layers, each composed of neurons or perceptrons. The perceptron serves as the fundamental unit

of an NN [97, 204]. Within a perceptron, the bias term and weight components act as adjustable parameters.

While a perceptron functions as a linear classifier, the multilayer structure of interconnected perceptrons en-

ables the separation of complex nonlinear patterns within the feature space [210]. In a supervised approach,

the bias and weight components of the overall NN are modified to reproduce the desired outputs [210].

Figure B.2: Basic diagram of a fully connected neural network.

The basic structure of a NN consists of three layers: an input layer, a hidden layer, and an output

layer. These layers are interconnected, as depicted in Figure B.2. The training of an NN involves two

stages: forward propagation and backpropagation. In the forward propagation stage, the input data is passed

through the network, flowing through the internal layers until it reaches the output. At the output layer,

the estimation error is evaluated using a cost function [97, 204]. After calculating the estimation error, the

second stage, known as backpropagation, begins. In this stage, the weights and biases of each layer are

updated by iteratively computing the gradient of the cost function concerning each parameter [97, 204]. The

entire process of forward and backward propagation is referred to as a training epoch. Once an epoch is

completed, the process is repeated until a convergence condition is met [97, 204].

In addition, there is a set of parameters known as hyperparameters that play a critical role in controlling
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the speed and quality of the learning process [97, 211]. These hyperparameters need to be defined prior to

initiating the learning process and are further fine-tuned to achieve the optimal model for a given dataset.

In the field of HS classification, several common hyperparameters are encountered. Next, some of them are

described:

• Hidden layers and neurons: The number of hidden layers and neurons in each layer determines the

depth and complexity of the NN architecture, affecting its performance [212].

• Activation functions: These functions define how the inputs to a neuron are transformed into outputs

for the subsequent layer. Popular activation functions include sigmoid, rectified linear unit (ReLU),

and softmax functions [213].

• Loss functions: These functions, such as mean squared error (MSE) and cross-entropy loss, quan-

tify the discrepancy between the predicted output values and the ground-truth labels [214].

• Learning rate: The learning rate determines the step size at which the NN adjusts its parameters

during the optimization process [215].

• Number of epochs and batch size: Epochs refer to the number of times the network processes

the training data, while batch size specifies the number of input subsets used before updating the

network parameters [215].

The application of a NN in the HS classification requires careful consideration of these parameters. Due

to this property, NNs are typically designed based on the specific characteristics of the data to be classified

[210, 216]. By optimizing these hyperparameters to suit the database and the task at hand, the NN can

effectively leverage the inherent patterns within the HS data, leading to improved classification performance

[210].

B.4 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of ML model used to process and analyze visual

information, such as images and videos [97]. The basic architecture of a CNN consists of two well-defined

main stages: feature extraction and classification [93, 100, 189, 217], as shown in Figure B.3. The feature

extraction stage is typically located at the network input and is composed of filters that reduce the size of the

input data while retaining the characteristics of the relevant information [93, 98, 189]. This spatial reduction

helps capture invariances and enhances the network’s ability to generalize to unknown data. The feature

extraction stage involves a convolutional step, in which filters are applied to the input data, allowing the

extraction of relevant patterns [93, 99, 189, 217]. These filters can detect features such as edges, textures,

and spatially/temporally shaped characteristics. On the other hand, the classification stage assigns input data

to a specific label and is composed of fully connected layers [93, 99, 189, 217]. Together, these two stages

enable the classification of structures within different types of data, primarily images and videos.
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Figure B.3: Exemplification of a convolutional neural network.

In the literature, there are three main categories of CNN models used for the classification of HS data.

These models differ according to the type of analysis they perform: spectral features, spatial features, and

spectral-spatial features [93, 100, 189]. However, it is also common to employ only the feature extraction

stage or the convolutional stage to capture patterns and subsequently use another classifier. CNN for spectral

analysis uses the spectral information of each pixel in the HS image, achieved through convolutions with 1D

kernels [93, 100, 189]. This approach allows obtaining the main spectral features of the image, resulting in

per-pixel classification at the output. On the other hand, spatial analysis CNNs use convolutional stages with

2D kernels to extract structural features from each image throughout the spectrum [93, 100, 189]. In addition

to this, authors often employ dimensional reduction methods to decrease the complexity of the algorithms

without compromising the characteristic information within the data. Finally, the spectral-spatial CNN

models consider both the spectral and spatial information of the HS cube [93, 100, 189]. Several strategies

have been proposed in the state of the art, suggesting different architectures for conducting spectral-spatial

analysis. However, the direct strategy to implement this type of architecture is through the use of 3D kernels

in the convolutional stages, where the 3D filters are capable of extracting spatial-spectral feature volumes

[93, 189].

B.5 Auto Encoders

Autoencoder is another widely used ML technique for HS data analysis, whose main idea is dimen-

sionality reduction and feature extraction in an unsupervised manner [93, 217]. The main characteristic of
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these networks is their ability to transform input data from one domain to another, generating compressed,

expanded, or even equal-dimensional outputs to minimize the difference between the original data and the

reconstructions [93, 218]. This transformation is achieved through two main components: the encoder and

the decoder, which are connected by a bottleneck layer, generating the traditional architecture of this type

of network, as shown in Figure B.4 [93, 217, 218]. In addition, autoencoders are also used for data gener-

ation and anomaly detection tasks, but due to their characteristics, they are not typically used directly for

classification [93].

Figure B.4: Traditional representation of an autoencoder, composed of two main parts: an encoder and a
decoder.

B.6 Deep Belief Networks

Deep Belief Network (DBN) is a ML model used in HS processing, as it can automatically learn relevant

features and improve performance in HS image analysis tasks [219, 220]. The DBN is made up of multiple

layers of processing units, where the hidden layers form a structure of restricted Boltzmann machines (RBM)

[219, 220]. Additionally, the DBN is trained in an unsupervised manner, which means that it does not require

prior labels or annotations [219, 220]. This is especially useful in the case of HS data, where obtaining a

fully labeled training set can be costly and labor intensive [219, 220].
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B.7 Recurrent Neural Networks

Recurrent Neural Networks (RNN) are another variant of NNs commonly used in the evaluation of

HS information. Regardless, RNNs have recurrent connections in their architecture, which allow them to

store information from previous data, generating an internal memory [93, 189]. This structure makes RNN

a model capable of learning sequences with an internal memory state to produce an association between

incoming and previous data [189, 221]. This hidden state is updated as the network receives new data and

propagates through the recurrent layers, allowing the network to learn patterns along the sequence. This

memory feature enables RNNs to predict future events based on previous data [93, 189, 221]. In this case,

HS data can be treated as if they were video sequences, considering spectral bands as frames and applying

an RNN to model the dependencies between bands [189, 221]. This allows for the identification of spectral

features within the information of each pixel.

B.8 Residual Networks

Residual Networks (ResNet) are a type of ML architecture that stands out for incorporating residual

connections, which allow the flow of information between the layers of the network [222]. In the context

of HS images, ResNets are employed to tackle the challenges posed by the high data dimensionality and

complex spectral features [223]. These networks are capable of mitigating the performance degradation

problem that can occur in deep networks. Furthermore, ResNet architectures are easier to optimize compared

to other architectures due to their smaller number of parameters [217, 223].

B.9 Vision Transformers

Vision Transformers (ViTs) are a type of ML model used for image recognition and other computer

vision tasks. ViTs are based on the transformer architecture (see Figure B.5), which in turn relies on a pro-

cedure called attention that focuses on the context in sequential data. Initially, transformers were proposed

as methods for natural language processing (NLP) tasks such as automatic translation, language modeling,

and speech recognition [224]. The Transformer architecture was originally developed in [225] and is based

on the encoder-decoder model, which transforms a given sequence of elements into another sequence. The

main motivation behind Transformers was to enable parallel processing of words in a sentence, which was

not possible in models like RNNs that process words one by one.

ViTs take inspiration from the original transformer architecture and apply it to the field of computer

vision, as described by Dosovitskiy et al. in [6]. In this novel model, a standard transformer is directly

applied by dividing the image into patches, without focusing on individual pixels. The Transformer then

encodes the sequence of embeddings for these patches, transforming them into attention tokens to learn the

relationships between different patches of the image. This information is utilized for tasks such as image
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classification or other applications.

The advantages of ViTs have led to their integration in HSI analysis, surpassing CNNs in terms of

classification metrics, processing time, and computational cost [225, 226]. Promising results have been

demonstrated in various studies. For example, Bazi et al. [224] proposed the use of multihead attention

mechanisms, while Gao et al. [227] developed a new architecture called Transformer-iN-Transformer for

region-based analysis in HSI. Another approach by Hu et al. [228] introduced a computationally efficient

unsupervised contrastive learning model. Nonetheless, it is important to note that, while transformers have

shown excellent performance, most evaluations have been performed using synthetic high-resolution im-

ages, and limited studies have explored the use of transformers with experimental data.

Figure B.5: The Vision Transformer architecture [6].
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Performance Metrics

The performance of the methods studied in this dissertation will be compared to real datasets labeled by

clinical experts. Additionally, to evaluate the effectiveness of classifiers in scenarios with unbalanced data,

several metrics have been selected for quantitative analysis [229, 230]. These metrics include accuracy,

sensitivity, specificity, F1-score, and the Matthews correlation coefficient (MCC) [229, 230, 231]. These

metrics are based on the following variables to represent the possible outcomes in a binary classification

problem:

• True positive (TP): instances correctly classified as positive.

• False positive (FP): instances wrongly classified as positive.

• True negative (TN): instances correctly classified as negative.

• False negative (FN): instances wrongly classified as negative.

The aforementioned classification metrics are calculated as follows:

accuracy =
TP + TN

TP + FP + TN + FN
(C.1)

sensitivity =
TP

TP + FN
(C.2)

specificity =
TN

FP + TN
(C.3)

F1-score =
2× TP

2× TP + FN + FP
(C.4)

MCC =
1

2

(
1 +

TP × TN − FP × FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

)
(C.5)
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In classification tasks, accuracy, sensitivity, and specificity are commonly used metrics to assess preci-

sion in terms of positive and negative true values [229, 230]. On the other hand, the F1-score quantifies the

precision of a test, where a higher value indicates higher precision and sensitivity [229, 230, 231]. The MCC

is employed as a measure of classification quality, considering both true and false positives along with neg-

atives. The MCC is considered a balanced metric that can be applied even when classes have significantly

different sizes. Essentially, the MCC (normalized) serves as a correlation coefficient between the observed

and predicted binary classifications, producing a value ranging from 0 to 1 [229, 230, 231]. A coefficient

of 1 signifies a perfect prediction, 0.5 implies that there is no improvement over a random prediction, and 0

indicates complete disagreement between prediction and observation [231].
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