
Testing Software Defined
Networks with OpenDaylight

and Mininet

P. David Arjona Villicaña

Facultad de Ingenieŕıa
Universidad Autónoma de San Luis Potośı

Version 1.0

August 2024

Testing Software Defined Networks with OpenDaylight and Mininet©2024
by Pedro David Arjona Villicaña is licensed under CC BY-NC-SA 4.0

https://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1

Preface to version 1.0

This document started as a guide for my students on how to build and
test their own Software-Defined Networks (SDN). However, as I continued
working in this topic, I realized there is a broader need to show how to start
working and experimenting with this type of networks.

At the moment of writing this text, Mininet is the most used network
emulator, and OpenDaylight is one of the most stable, supported and used
SDN controllers freely available. The combination of these tools allows to
experiment how these type of networks work, and learn how to configure
them for specific scenarios. Hence, the main objective of this guide is to
help engineers learn how to use these tools and promote the use of SDN in
research and professional environments.

Although the activities in this document have been tested, the technology
moves fast and it is probable that, as this document ages, some of the
commands, programs and functionalities described here become obsolete. I
will try to update this document as much as possible, but I cannot make
promises that it will stay current forever. Such is the penalty of an evolving
world!

P. David Arjona Villicaña
San Luis Potosi, Mexico

August 2024

Contents

1 Introduction 1

1.1 Anatomy of the SDN network 1

1.2 Tools needed to implement an SDN lab 3

1.2.1 Mininet . 3

1.2.2 OpenDaylight . 4

1.2.3 VirtualBox . 4

1.2.4 Docker . 4

1.3 Practical considerations . 5

2 The First Experiment 7

2.1 About VirtualBox . 7

2.2 Mininet . 8

2.2.1 Mininet as a VM . 9

2.2.2 Mininet as a Docker container 9

2.3 Installing OpenDaylight and Java 10

2.3.1 Configuring JAVA HOME 11

2.4 OpenDayLight . 12

2.4.1 Downloading ODL . 12

2.4.2 First run . 13

2.4.3 First test . 13

2.5 curlx application . 16

3 Introduction to Docker 17

3.1 Obtaining an image and creating a container 17

3.2 Managing, stoping and restarting a container 18

3.3 Other useful commands . 18

4 Exploring ODL 21

4.1 ODL NETCONF/RESTCONF 21

I

5 ODL Cluster Configuration and Use 25
5.1 ODL cluster architecture . 25
5.2 Cluster configuration with Docker 26
5.3 ODL cluster testing . 28
5.4 Conclusions . 29

6 ODL Manual Configuration 31
6.1 The spine-leaf topology . 31
6.2 Configuring the Address Resolution Protocol 32
6.3 Configuring the IP paths . 33
6.4 Testing the flows . 33
6.5 Conclusions . 34

A JSON Example files 35
A.1 Flood example . 35
A.2 Transfer example . 36
A.3 ARP example . 37
A.4 Flow based on source IP address 38
A.5 Flow based on destination IP address 39

B Mininet Example Files 41
B.1 ODL cluster example . 41
B.2 Spine-leaf example . 42

Bibliography 46

II

Chapter 1

Introduction

Network administrators are responsible for ensuring that their network’s re-
sources are used in an efficient manner and are always available for their
organization’s needs. There are many tasks that need to be correctly com-
pleted in order to guarantee this level of service, and users do not hesitate to
complain when the efficiency of the network is not as expected. Therefore,
Information Technology departments spend a considerable amount of time
and resources making sure their network is in top condition.

Lately, a new technology has promised to ease and centralize network
administration and configuration, called Software Defined Networks or SDN.
This technology allows to separate the network elements’ control plane from
the data plane, which in turn allows faster management operations and
increases the configuration flexibility for the network. This introductory
Chapter explains what is SDN and how it works. It also provides a brief
description of the different tools that will be used in the rest of this guide.

1.1 Anatomy of the SDN network

The main objective of an SDN network is to separate the operations that
move packets around the network, from the administration and configuration
tasks that the network needs to work efficiently. In turn, this requires a new
network element, a controller, whose main task is to handle proper network
configuration at the same time as it controls how packets travel around the
network.

As shown in Figure 1.1, an SDN network architecture is divided in three
levels. The data plane is at the bottom. Switches, routers and other network
elements belong in this layer, which is responsible to move packets around

1

the network, following the configuration defined by the network adminis-
trator. As the name says, this is where the users’ data is processed and
moved.

Figure 1.1: SDN network architecture

The control plane sits at the middle of the SDN structure. Here, SDN
controllers are responsible for managing the network elements at the data
layer to make sure the network behaves as intended. When a switch does not
know how to handle a packet, it queries its controller for further instructions
on how to process it. Controllers are not only responsible for monitoring and
controlling the data plane, they also need to interact with the instructions
received from the application layer.

The control plane delivers instructions to the data plane using a south-
bound interface, which is mostly the protocol that will be used to commu-
nicate the controller to the network switches. Currently, the most used
southbound interface protocols are OpenFlow and NETCONF.

Originally, A single controller would be responsible to manage a com-
plete network. However, this is not a good solution in terms of security,
redundancy, and processing bottle necks. Therefore, the idea of creating

2

a cluster of controllers becomes necessary. This book takes this into con-
sideration and will provide instructions about how to create and configure
clusters using the OpenDaylight controller.

The application plane is the top layer of the SDN structure. This is
where network administrators should be able to use and implement different
applications that will be used to configure, monitor and manage the SDN
network in a more flexible and efficient manner than it is possible with
current network configuration tools. Currently, there is no predominant
technology for this layer.

The easiest way to experience and test an SDN is to implement a labo-
ratory using virtual systems and network emulators. This book will guide
the reader to create a virtual laboratory that allows it to test the functional-
ity offered by a network controller, OpenDaylight, and the Mininet network
emulator.

1.2 Tools needed to implement an SDN lab

The following chapters in this book will use a variety of tools to implement a
virtual SDN laboratory. This section offers a preview of the most important
technologies that will be introduced in more detail later on.

1.2.1 Mininet

Mininet is a network emulator which was originally developed to test and
experiment SDN networks. It is able to generate a network with individual
hosts, switches, and a default controller, all of which may get connected be-
tween themselves using different topologies. Mininet also allows to connect
its emulated network to an external controller, which then communicates
with the switches using the OpenFlow protocol.

This text will use Mininet to implement the data plane layer of an SDN
network. This means that the default controller will not be used and that
connection to external controllers is required for all future activities.

Mininet has its own official page [1] which includes comprehensive docu-
mentation and examples on how to install and use this tool. There are also
many pages in the web that provide different examples on how to employ
Mininet to implement different types of networks and tests. Therefore, this
document will not try to further explain the inner workings of this network
emulator.

3

1.2.2 OpenDaylight

OpenDaylight (ODL) is an SDN controller supported by the Linux Foun-
dation. It is an open source project and is programmed in Java. ODL has
a development and support community, which allows communication with
people interested in contributing to this project or in testing this controller
in their own networks. One of the most desirable features of this controller
is that it supports the implementation of clusters. A cluster is a group of
at least three controllers that may be used to manage a network. Clusters
provide redundancy and better availability for network administrators and
they will be covered in Chapter 5.

For more information on ODL, consult its main [2] and documentation
[3] pages.

1.2.3 VirtualBox

VirtualBox [4] is a computer virtualization tool developed by Oracle. It is
freeware, which means it may be used without the need to buy a license. This
tool allows to run almost any operating system in any computer as a virtual
machine (VM). The VM works as if it were an independent computer and it
has its own network interface and IP address. However, there are different
ways to use and configure this interface.

For this text, the main advantage of a VM is that it allows to install and
run software that was not designed to run on your native operating system or
that has the potential to reconfigure important settings. Another important
feature of VirtualBox, is that it allows to run more than one computer at
the same time, in the same hardware.

1.2.4 Docker

Docker [5] is a container tool developed by Docker Inc. Just like VirtualBox,
this tool is a freeware that allows to run Linux applications, just as if it were
a VM. However, a Docker container is not a VM, as it uses the same kernel
as a real Linux machine. This means that a container has some limitations
when compared to a VM. On the other hand, they are very light on the host
computer and thus, very fast.

In this text, Docker will be used similarly to VirtualBox, with the added
advantage that multiple containers may run in the same computer without
seriously impacting the overall performance of all these systems. An intro-
duction on how to use Docker and its most common commands are provided
at Chapter 3.

4

1.3 Practical considerations

In order to ease the implementation of the experiments described in here,
there are some practical considerations about the hardware and systems the
readers should use.

The first consideration is about the amount of memory needed. For
those using a VM, it is necessary to reserve at least 4 GB of RAM memory
for each virtualization. Some experiments, specially the ones in a cluster
configuration, may need up to 8 GB of memory to run correctly. Also,
having a multi-core processor is always recommended.

In terms of the system, Docker has had problems when installing in
non-supported Linux versions. Therefore, it is best to use the platforms
recommended at the Docker web site [5], which are Ubuntu, Debian, RHEL
and Fedora.

5

6

Chapter 2

The First Experiment

This Chapter provides the instructions needed to install and test an SDN
network using Mininet and OpenDaylight (ODL). Mininet will emulate a
network with hosts and switches, and ODL will provide instructions to the
switches, so they are able to control this network. This means that both of
these tools need to be running in different systems. This chapter describes
two different ways to implement such experiment, either by using virtual
machines or Docker containers.

Section 2.1 describes how to configure VirtualBox, which is the tool used
to implement an independent Linux system in your computer. While Section
2.2 explains the two options available to install Mininet and ODL. Section
2.3 describes the preliminary steps that are required for the system that
will run ODL, it is important to follow the recommendations in this section.
Then, Section 2.4 shows how to download, install and use ODL for the fist
time, which is the main objective in this chapter. Finally, Section 2.5 briefly
introduces curlx, which is a simple tool that allows better display of ODL
output in JSON format.

2.1 About VirtualBox

This guide will employ virtual machines (VM) using Oracle’s VirtualBox
software. There are other virtualization programs available, but they will
not be covered in here.

If you are using a Linux system, it may not be necessary to install Virtu-
alBox. However, regardless of your native system (Linux, Windows or Mac)
it is always recommended to run the experiments in this guide in a VM, in
order to prevent conflicts with your native operating system.

7

The experiments in this guide will require different systems to com-
municate between themselves, even if they are running in the same com-
puter. Therefore, it is recommended to use VirtualBox’s Ethernet network
adapter, instead of WiFi. Consider that VirtualBox supports Ethernet net-
work adapters only when they are available in the host system, which means
that if your machine does not have one, you will need to install it.

In order to support Ethernet communication between two VM, it is nec-
essary that their adapters are configured as Bridged Adapter. This allows
each VM to have its own IP address and communicate freely with other
computers, real or virtual, in the network. Before performing this configu-
ration, read Nakivo’s guide on how to use different VM network adapters
[6]. Also, it is recommended to enable the promiscuous mode. This funnily
named setting instructs the network adapter to pass all received packets to
the operating system, and it is needed when using a sniffer to analyze pack-
ets flowing through the network. These configurations are shown in Figure
2.1.

Figure 2.1: Recommended network adapter configuration

2.2 Mininet

Mininet is a very popular and well documented network emulator, and there
are many references that show how to use this tool. This book recommends

8

to read and follow the instructions from the official web page [1]. Specifically,
theGet Started andWalkthrough sections are good references on how to start
working with this tool.

The following subsections describe two different ways to implement an
SDN network using Mininet: Section 2.2.1 describes how to implement a
network using two independent VMs, while Section 2.2.2 does the same but
with Docker containers.

2.2.1 Mininet as a VM

The main advantage of installing Mininet and ODL in separate VMs is that
it is possible to employ the hardware resources of two different computers
to implement experiments. The computers will exchange information using
the network. Figure 2.2 shows this setup.

Figure 2.2: Setup using separate VMs in two different host systems

The easiest way to obtain Mininet in a VM is to download one of the
images provided at this tool’s web site [1]. Another option is to install
Mininet from source packages. The Get Started section of this web page has
information on how to complete either of these solutions.

When using this configuration, remember that the VM’s IP address is
usually displayed at start up, or it may be obtained from the terminal by
using either the ip addr or ifconfig commands.

2.2.2 Mininet as a Docker container

The main advantage of installing Mininet and ODL in two Docker containers
is that all the experiments can run in a single machine. The computers will

9

exchange information using Docker’s in-built network. Figure 2.3 shows this
setup.

Figure 2.3: Setup using Docker containers in a single host

Before trying to obtain Mininet in a container, read Chapter 3 for a
brief introduction on how to use Docker. Then, download and install the
Mininet image at the Docker hub page [7]. In order to obtain a container’s
IP address, use the commands included at Section 3.3

2.3 Installing OpenDaylight and Java

At the moment, there is no official ODL VM or container. This means that
it is necessary to create your own installation. Fortunately, this is not a
difficult task. For either setup, the first step is to download and install a
popular Linux distribution, like Ubuntu or Fedora. Then, it is necessary to
install and configure Java.

ODL runs over Apache Karaf [8], which is an application container that
provides support for terminal commands and for running other applications.
Karaf is included in the ODL running file. Therefore, it is not individually
installed.

Start the installation process by setting up one of the Linux distribu-
tions mentioned above, then install Java. At the moment of writing this
document, ODL requires Java release 17 or greater. If you need to sup-
port different Java versions or releases in the same system, the following

10

command may be used to switch between them:

$> sudo update -alternatives --config java

[sudo] password for myuser 1:

There are 2 choices for the alternative java (providing

/usr/bin/java).

Selection Path Priority Status

--

0 /usr/lib/jvm/java -17- oracle/bin/java 1091 auto mode

1 /usr/lib/jvm/java -11- oracle/bin/java 1091 manual mode

* 2 /usr/lib/jvm/java -17- oracle/bin/java 1091 manual mode

Press <enter > to keep the current choice [*], or type selection

number: 1

update -alternatives: using /usr/lib/jvm/java -11- oracle/bin/java

to provide /usr/bin/java (java) in manual mode

Once Java has been installed, the following two commands may be used
to verify the Java version that the system is currently using and its location,
which is usually /usr/bin:

$> java --version

java 11.0.13 2021 -10 -19 LTS

Java(TM) SE Runtime Environment 18.9 (build 11.0.13+10 -LTS -370)

Java HotSpot(TM) 64-Bit Server VM 18.9 (build 11.0.13+10 -LTS -

370, mixed mode)

$> which java

/usr/bin/java

2.3.1 Configuring JAVA HOME

ODL needs a JAVA HOME system variable to store Java’s location. There
are two ways to define this variable. The first and most immediate way is
to simply type the following command at the terminal:

$> export JAVA_HOME=/usr

Notice that the /bin part of the path has been omitted. The only prob-
lem with this method is that after loging out of this session, the variable
gets lost. In order to make it permanent, it is necessary to add the previous
command, as a single line, at the end of the .bashrc file, which is always in
the user’s home directory.

To verify that this variable has been declared correctly, simply type:

11

$> echo $JAVA_HOME

2.4 OpenDayLight

There is more than one way to install ODL. Since this chapter is oriented to
configure an easy-to-use lab environment, ODL will be installed from a tar.gz
file. Although installing and running is not very difficult, configuration and
testing may require more work than expected.

It is important to consider that if the VM option was selected (Section
2.2.1), ODL will most probably run from a user’s account and home direc-
tory; whereas for the Docker option (Section 2.2.2), ODL will run from the
root account, which has /root/ as its default home directory. The differences
between these two options are described in the following subsection.

2.4.1 Downloading ODL

At the ODL’s documentation page [3], select the Downloads section. Copy
the link for the latest Tar release. At the moment of writing this text, it
was 20.0.0 (Calcium version).

If you are running ODL in a VM, the easiest way to download this file
is opening a terminal at the system where it needs to be installed, and use
the wget command and the copied link to download the tar.gz file:

$> wget [Paste link from the ODL docs page]

If you are running ODL in a container, download the tar.gz file to the
host system using which ever method you prefer. Then, copy the file to the
Docker container using an instruction similar to the following:

$> sudo docker cp karaf -0.20.0. tar.gz odl -1:/ root/

Once the tar.gz file has been placed in the system and directory where
it needs to be installed, uncompress the file using the following command:

$> tar xzf [Downloaded file]

12

2.4.2 First run

To start running ODL, just move to the directory where it has been uncom-
pressed and run the following command:

$> cd [ODL directory]

$> ./bin/karaf

It usually takes more than 30 seconds for karaf to start and return a
command prompt, which is the command line interface (CLI) that may be
used to interact with ODL. The following command may be used to verify
which applications are already installed in ODL:

odl > feature:list -i

If this is the first time executing ODL, it is necessary to install the
OpenFlowPlugin features recommended for users at the OpenFlowPlugin
documentation:

odl > feature:install odl -openflowplugin -flow -services -rest

odl > feature:install odl -openflowplugin -app -table -miss -enforcer

odl > feature:install odl -openflowplugin -nxm -extensions

The logout command may be used to exit ODL.

2.4.3 First test

To perform this test, start ODL and run the following command to verify
that there are no connections active:

odl > ofp:show -session -stats

Then, use the following Mininet command to create the network shown
at Figure 2.4. This network has a simple tree topology with 3 switches and
4 hosts.

$> sudo mn --controller=remote ,ip=[IP addres for ODL],port =6653

--topo tree ,2 --switch ovsk ,protocols=OpenFlow 13

Run again the ofp:show-session-stats command an verify that ODL is
now connected to the three openflow switches. At this point ODL, is con-
nected to the network defined by Mininet, however the switches do not have

13

Figure 2.4: Network defined by the mn (Mininet) command

instructions on how to process the packets that need to traverse the net-
work. This can be verified when the pingall command fails at the Mininet
terminal:

mininet > pingall

In order to provide instructions for the switches so they know how to
route packets through the network, it is necessary to define flows at the
ODL controller, which then will be passed to the switches as instructions.
ODL defines flows using the JSON format, which can be uploaded as in-
dividual files. To upload this files to ODL, this guide employs the curl
command, however there are many other API testing applications that al-
low easy editing of outgoing commands and better visualization of incoming
JSON messages. One of such tools is curlx, which will be further described
at Section 2.5.

For the current experiment, it is necessary to define flows that instruct
switches s2 and s3 to flood incoming packets in every port to all their other
ports. For switch s1 it is necessary to define a flow that transfers packets
received at port 1 to port 2, and another flow that transfers packets in the
opposite direction, from port 2 to port 1. This configuration is shown at
Figure 2.5.

Appendix A.1 shows a JSON file example with instructions for packets
received at port 1 of switch s2 (openflow:2:1). The instructions say that
such packets need to be retransmitted (FLOOD) to the other ports in this
switch. This file should be uploaded to ODL using the following instruction:

curl -u admin:admin -X PUT -d "@[File with JSON instructions] "

-H "Content -Type: application/json" http ://[IP address for ODL]

14

Figure 2.5: Flows that need to be configured

:8181/ rests/data/opendaylight -inventory:nodes/node=openflow :2

/flow -node -inventory:table =0/ flow =201

Notice that the id at the file in Appendix A.1 and the flow parameter at
the previous instruction coincide. The same is true for the table id and table
parameters. Also, both use the same switch identifier, openflow:2. Consider
that as this flow only includes port 1 of switch s2, similar configuration
instructions need to be provided for ports 2 and 3, and for all the 3 ports of
switch s3.

Appendix A.2 shows a JSON file example with instructions for packets
received at port 2 of switch s1 (openflow:1:2). The instructions say that
such packets need to be sent to port 1 of this same switch. The command
for uploading this file is:

curl -u admin:admin -X PUT -d "@[File with JSON instructions] "

-H "Content -Type: application/json" http ://[IP address for ODL]

:8181/ rests/data/opendaylight -inventory:nodes/node=openflow :1

/flow -node -inventory:table =0/ flow =102

Another similar file is needed for transferring packets from port 1 to port
2 at switch s1.

After all the flows have been uploaded, use the following command to
verify that ODL correctly records them for each switch. The following ex-
ample is meant to work for switch s1 (openflow:1), at table 0:

curl -u admin:admin -X GET http ://[IP address for ODL] :8181

/rests/data/opendaylight -inventory:nodes/node=openflow :1

15

/flow -node -inventory:table=0

If everything looks correct, verify that all hosts can ping to each other
using the pingall Mininet command.

Finish the experiment by exiting from Mininet and running the following
command to clear all its variables:

$> sudo mn -c

Stop ODL by typing logout at the command prompt. ODL remembers
the flows that have been uploaded, so the next time ODL starts, it will use
the flows defined in the previous session.

If a flow needs to be deleted, use the following command as an example:

curl -u admin:admin -X DELETE http ://[IP address for ODL] :8181

/rests/data/opendaylight -inventory:nodes/node=openflow :1

/flow -node -inventory:table =0/ flow =101

2.5 curlx application

The curlx application is an extension to the curl command. One of its most
useful features is that it automatically formats JSON output in a readable
format. Therefore, this guide recommends to use curlx when the GET option
is used to retrieve information from the ODL controller.

For more information on how to download, install and use curlx, refer
to its official web page [9].

16

Chapter 3

Introduction to Docker

This Chapter lists and describes some of the most useful Docker commands
that will be used in this guide to implement SDN experiments. For more
detailed information on how to install and use Docker, refer to its official
web page [5].

3.1 Obtaining an image and creating a container

The first step to use Docker is to obtain an image, which is the file that
will be used to create a container. The Docker hub website [7] contains a
large number of images that can easily get downloaded into your system.
To donwload an image, use the following command:

$> sudo docker pull [image name]

To display all the images currently stored in your system use the com-
mand:

$> sudo docker images

In order to delete an image from the system, use the following command:

$> sudo docker image rm [image ID]

The next step is to create and start a container using the run com-
mand. This command has many different options. A very basic form of this
command is:

17

$> sudo docker run -t -d --name [container name] [image name]

The -d option allows the container to run as a background process, and
the -t option requests for a TTY terminal. For example, the command sudo
docker run -t -d –name sys-1 ubuntu:22.04 creates and runs a container
called sys-1 using the ubuntu:22.04 image file. There are many other options
that allow the user to define network configurations, display modes, system
resources the container is allowed to use and other settings.

3.2 Managing, stoping and restarting a container

Once you have a container up and running, it is possible to verify its status
using the following command:

$> sudo docker container ls

If you want to see all containers, even the ones that are not currently
running, use the -a option:

$> sudo docker container ls -a

The following command allows to see the ammount of memory and cpu
your running containers are using:

$> sudo docker stats

If you want to turn off one or more containers:

$> sudo docker container stop [list of containers to stop]

Finally, to restart a stopped container use:

$> sudo docker restart [container name]

3.3 Other useful commands

The following command displays the properties of a container:

18

$> sudo docker inspect [container name]

If you need to find the IP address of a running container use the following
command:

$> sudo docker inspect [container name] | grep -i ipaddress

To upload a file from your local system to a container use:

$> sudo docker cp [local file container name] :[container path]

For example, the command sudo docker cp conf.txt sys-1:/sbin/ uploads
a copy of the conf.txt file to the sys-1 container, at the sbin directory.

The following command starts a regular terminal for a container that is
currently running:

$> sudo docker exec -it [container name] bash

19

20

Chapter 4

Exploring ODL

This Chapter explores some of the functionality and commands that may
become useful when experimenting with OpenDaylight (ODL).

4.1 ODL NETCONF/RESTCONF

ODL supports the NETCONF and RESTCONF protocols to display, mod-
ify, and delete its configuration and settings. More information about the
NETCONF and RESTCONF protocols may be found at RFCs 6241 [10]
and 8040 [11] respectively. Particularly, the RESTCONF protocol allows
Web applications to access the configuration data originally developed for
NETCONF using the HTTP protocol.

An easy way to start interacting with RESTCONF is using ODL’s odl-
restconf-openapi feautre, which may be installed using the following com-
mand:

odl > feature:install odl -restconf -openapi

Then, it is possible to access ODL’s RESTCONF API page using a Web
browser and the following address:

http ://[ODL IP address] :8181/ openapi/explorer/index.html

When the page requests a username and password, use the default values:
admin/admin. As shown in Figure 4.1, the RESTCONF API page shows
the ODL modules that are currently installed.

By clicking on a module it is possible to consult the different RESTCONF
commands available. Figure 4.2 shows some of the commands previously

21

Figure 4.1: OpenDaylight RESTCONF API page

Figure 4.2: opendaylight-inventory module’s commands

22

used at Section 2.4.3. There are different types of commands: the GET
command allows to consult data from the controller, PUT and POST allow
to upload data, and DELETE allows for the removal of data.

There are two different ways to execute the commands listed in the
RESTCONF API page: The first one is simply using the same RESTCONF
API page. To do this, select a command and click the Try it out button.
Then fill the information requested by that particular command and click
on the Execute button. The page should display the result of executing the
command.

The second method is to simply use an external tool, like curl or cx, as
it has been previously done at Section 2.4.3. Remember that it is neces-
sary to include the username and password when using this method. The
following is an example for the GET command for /rests/data/opendaylight-
inventory:nodes/node={id}.

curl -u admin:admin -X ’GET ’ \

’http ://172.17.0.2:8181/ rests/data/opendaylight -inventory:

nodes/node=openflow :2? content=config ’ \

-H ’accept: application/xml ’

23

24

Chapter 5

ODL Cluster Configuration
and Use

OpenDaylight (ODL) allows for multiple controllers to manage the operation
of a network at the same time, in order to increase its redundancy and
resiliency. This is called a cluster configuration. This Chapter describes
how to perform such configuration using the ODL controller.

5.1 ODL cluster architecture

Information about ODL cluster configuration may be found at the Open-
Daylight documentation web page [3]. These pages recommend to define
clusters with at least three computers, since the algorithm sometimes needs
a majority to take decisions. Also, the information is contained in a shard,
which is a defined memory set that can be shared between the cluster’s
members.

The basic ODL cluster example shown at Figure 5.1 uses three Docker
containers to simulate the three required controllers. ODL cluster configu-
ration is an involved process and care is needed at the moment of editing
the configuration files.

The experiment described in this Chapter needs to run three Docker in-
stances and a network, which will be implemented in Mininet. Each Docker
instance will have a different IP address, which is usually in the 172.17.0.0/24
CIDR subnetwork and is reachable from the host computer. These addresses
are important because these processes need to communicate with each other
and the network.

25

Figure 5.1: Basic OpenDaylight cluster example

5.2 Cluster configuration with Docker

The following procedure describes how to configure an ODL cluster using
three Docker instances:

1. The following instruction downloads the most recent Ubuntu image,
which may be found at the Docker Hub page [7].

$> sudo docker pull ubuntu :22.04

2. Start running the Ubuntu image as three different Docker instances:
odl-1, odl-2 and odl-3.

$> sudo docker run -t -d --name odl -1 ubuntu :22.04

$> sudo docker run -t -d --name odl -2 ubuntu :22.04

$> sudo docker run -t -d --name odl -3 ubuntu :22.04

3. Download ODL’s latest Tar release (2.4) and copy this file into each
Docker instance.

$> sudo docker cp -q [Downloaded file] odl -1:/ root/

26

$> sudo docker cp -q [Downloaded file] odl -2:/ root/

$> sudo docker cp -q [Downloaded file] odl -3:/ root/

4. Verify the IP address for each ODL instance.

$> sudo docker inspect odl -1 | grep -i ipaddress

$> sudo docker inspect odl -2 | grep -i ipaddress

$> sudo docker inspect odl -3 | grep -i ipaddress

5. Log into each Docker instance by running the following commands in
different terminals.

$> sudo docker exec -it odl -1 bash

$> sudo docker exec -it odl -2 bash

$> sudo docker exec -it odl -3 bash

The following steps apply for each Docker terminal started above.

6. Run the apt update and apt upgrade commands at each Docker in-
stance.

7. Follow the instructions at Section 2.3 to install Java at each Docker
instance. Do not forget to define the JAVA HOME system variable.

8. Uncompress the Tar file, run ODL for the first time and install the
features listed bellow. Notice that, with the exception of the last one
(distributed datastore), these features are the same as in Section 2.4.2.

odl > feature:install odl -openflowplugin -flow -services -rest

odl > feature:install odl -openflowplugin -app -table -miss -

enforcer

odl > feature:install odl -openflowplugin -nxm -extensions

odl > feature:install odl -mdsal -distributed -datastore

9. Logout of ODL and start it again to apply changes.

10. Download clustering information from each Docker instance to verify
ODL is working correctly by using the following two commands:

curl -u admin:admin -X GET http ://[Docker instance IP address]

:8181/ jolokia/read/org.opendaylight.controller:type=

DistributedConfigDatastore ,Category=ShardManager ,

27

name=shard -manager -config

curl -u admin:admin -X GET http ://[Docker instance IP address]

:8181/ jolokia/read/org.opendaylight.controller:type=

DistributedOperationalDatastore ,Category=ShardManager ,

name=shard -manager -operational

11. Logout of ODL and follow the instructions in ODL’s Setting Up Clus-
tering page [12] for configuring files akka.conf and module-shards.conf.

12. Start ODL again to apply changes.

13. Verify that files akka.conf and module-shards.conf have been correctly
modified by downloading clustering information again (step 10).

This concludes the cluster configuration for ODL. The next step is to
test that the cluster is working. This is described at the following section.

5.3 ODL cluster testing

The following procedure describes how to test the basic ODL cluster con-
figured at Section 5.2. Therefore, the cluster needs to be running before
performing the following steps. This experiment uses Mininet to build a
small network with three switches and four hosts (Figure 5.2), and then
connects this switches to the three cluster’s controllers.

Figure 5.2: Network and flows to be tested

28

1. Start mininet by running the Python program at Appendix B.1.

$> sudo python3 [mininet file with py extension]

2. Run the pingall command and verify that, since no flows have been
uploaded, the pings do not work.

3. Review Section 2.4.3 and use curl to upload the same flows used there
into one of the controllers in the cluster.

4. Run the pingall command again and verify that the pings now com-
plete successfully.

5. Use the curlx application (Section 2.5) to verify that the uploaded
flows have been transfered to the other controllers in the cluster.

6. The following commands may be used to verify the cluster configura-
tion at each Docker instance:

curl -u admin:admin -X GET http ://[Docker instance IP address]

:8181/ jolokia/read/org.opendaylight.controller:Category=

Shards ,name=member -[instance number] -shard -default -

operational ,type=DistributedOperationalDatastore

curl -u admin:admin -X GET http ://[Docker instance IP address]

:8181/ jolokia/read/org.opendaylight.controller:Category=

Shards ,name=name=member -[instance number] -shard -topology -

operational ,type=DistributedOperationalDatastore

curl -u admin:admin -X GET http ://[Docker instance IP address]

:8181/ jolokia/read/org.opendaylight.controller:Category=

Shards ,name=name=member -[instance number] -shard -inventory -

operational ,type=DistributedOperationalDatastore

5.4 Conclusions

This Chapter has described how to use Docker containers and Mininet to
test ODL controller clusters. This is a more complex configuration than the
one explored in Chapter 2, with the added benefit that clusters increase the
resilience and availability of an SDN network.

29

Is is very important to remember that controllers in a cluster config-
uration will not work properly if they are run as a single controller.
In order to revert to a single configuration, the best solution is to create a
new ODL controller that is not configured for clustering.

30

Chapter 6

ODL Manual Configuration

This Chapter implements a simple experiment that shows how to configure
ODL to route packets through a spine-leaf network. This topology is used
to distribute traffic in data-centers and provides route diversity, which is
used to define data flows. The setup in the following sections has a more
customized approach, which means that it is necessary to configure the
protocols needed to facilitate node communication.

The first protocol that needs to be configured is the Address Resolution
Protocol (ARP), which allows to link the hosts’ IP addresses with their
corresponding MAC addresses. The configuration needed for this protocol
to work is described at Section 6.2. Then it is necessary to configure the
different flows that will be used to transfer IP packets. The steps needed to
establish this configuration is provided at Section 6.3.

6.1 The spine-leaf topology

A spine-leaf topology includes two different type of switches: the spine
switches, which connect to each of the leaf switches; and the leaf switches,
which also connect to the network hosts. Figure 6.1 is an example of the
simplest spine-leaf topology possible, which only has two spine switches, in
pink, and two leaf switches, in green. In this example, each leaf switch has
two hosts that will be used to define different packet flows between them.

The switches in this Chapter will be configured to support the following
four packet flows:

1. Packets originated at h1 will travel through switch s1.

2. Packets originated at h2 will travel through switch s2.

31

Figure 6.1: Spine-leaf topology (Note: smaller numbers represent switch’s
port numbers)

3. Packets originated at h3 will travel through switch s1.

4. Packets originated at h4 will travel through switch s2.

This means that switches s3 and s4 need to distribute traffic according to
the host’s source IP address, while switches s1 and s2 only need to transfer
traffic from one interface to the other, similarly to what was configured in
Section 2.4.3.

In this example, all hosts belong to the same local area network (LAN).
Therefore, the ARP protocol is needed to allow Ethernet to link each host’s
IP address to its corresponding MAC address. This is further described in
the following section.

6.2 Configuring the Address Resolution Protocol

To configure the Address Resolution Protocol (ARP) it is necessary to create
a flow that asks the switch to behave as a regular switch when an ARP packet
is received. The normal behavior of this protocol is to broadcast to all the
hosts in the network asking for the owner of the desired IP address. The
broadcast MAC address is ff:ff:ff:ff:ff:ff. When the owner of the
requested IP address receives the message, it answers with its own MAC
address. This means that the easiest way to support this protocol is to let
the switch propagate the ARP packet to all its ports. ODL labels this as
the NORMAL behavior.

In order to identify all ARP packets, Ethernet sets its type field to the
hexadecimal value 0806, which is equivalent to the 2054 decimal value. An

32

example of a flow instruction for handling this type of packets may be found
at Appendix A.3. Notice that besides the packet type, no other matching
criteria is used. This means that all ARP packets will be processed using
the normal behavior.

Since the ARP protocol normal behavior is to broadcast packets to all its
ports, loops and infinite cycles will be generated if all switches in the spine-
leaf topology broadcast ARP packets. Therefore, only one of the spine
switches needs to use this flow, since this automatically generates a tree
topology.

6.3 Configuring the IP paths

For this example, spine switches paths are very simple: they just need to
transfer packets received at port 1 to port 2, and packets received at port 2
to port 1. This is the same configuration used in Section 2.4.3 and included
at Appendix A.2. Therefore, each switch, s1 and s2, need to configure these
two transfer flows.

Leaf switches have a more complex configuration. For example, the flows
that s3 needs to support are:

1. Packets originated at IP address 10.0.0.1 (h1) will be sent to port 1.

2. Packets originated at IP address 10.0.0.2 (h2) will be sent to port 2.

3. Packets finishing at IP address 10.0.0.1 (h1) will be sent to port 3.

4. Packets finishing at IP address 10.0.0.2 (h2) will be sent to port 4.

Appendix A.4 is an example of the configuration file needed for the first
flow, while Appendix A.5 is an example for the third flow. Notice that the
third flow needs to have higher priority than the first one. This is because
if h1 sends a packet to h2, s3 needs to send this packet to port 3, instead of
port 1. For any other case, packets from h1 should be sent to port 1.

Similar flows to the previous four, need to be edited and uploaded to s4,
but for hosts h3 (ip address 10.0.0.3) and h4 (10.0.0.4). Once the flows for
the four switches have been configured, it is necessary to test thay they are
working as intended. This is described in the following section.

6.4 Testing the flows

The first step to testing the flows implemented in the previous sections, is
to use a Python program that asks Mininet to build the network shown in

33

Figure 6.1. An example of such program is provided at Appendix B.2. Once
this network has been created, it is possible to run the pingall command to
verify that the network is working. However, this does not demonstrate the
flows defined earlier are being followed. To verify this, it is necessary to use
the ovs-ofctl command and the following procedure:

1. Open a terminal from the same system that you are running Mininet
and type the following commands to display the flows currently defined
in all the network’s switches:

$> sudo ovs -ofctl --protocols=OpenFlow 13 dump -flows s1

$> sudo ovs -ofctl --protocols=OpenFlow 13 dump -flows s2

$> sudo ovs -ofctl --protocols=OpenFlow 13 dump -flows s3

$> sudo ovs -ofctl --protocols=OpenFlow 13 dump -flows s4

2. Record the number of packets counted at each flow in each switch.

3. From the Mininet terminal, run a ping between any of the hosts, and
let it ping for at least 10 times; then kill the ping using Ctrl+c. An
example of how to run a ping between h1 and h2 is:

mininet > h1 ping h2

4. Display again the flows in all the network’s switches and verify that the
desired flows have increased their packet count by the same number of
pings that have happened at step 3.

6.5 Conclusions

This Chapter has demonstrated how to define SDN flows based on the
packet’s IP addresses, and how to employ this to control the traffic in a
network. The spine-leaf topology used in this example is very simple, but
the reader should be able to extend it to larger and more complex topologies.

34

Appendix A

JSON Example files

A.1 Flood example

The following instructions are used to flood all packets received at port 1 of
switch openflow:2, to all ports of this same switch. This flow’s identifier is
201 and is stored at table 0:

{

"flow": [

{

"table_id": 0,

"id": "201" ,

"priority ": 4,

"cookie ": "4",

"match": {

"in -port": "openflow :2:1"

},

"instructions ": {

"instruction ": [

{

"order": 0,

"apply -actions ": {

"action ": [

{

"order": 0,

"output -action ": {

"output -node -connector ": "FLOOD"

}

}

]

}

}

35

]

}

}

]

}

A.2 Transfer example

The following instructions are used to transfer a packet that has arrived
at port 2 of switch openflow:1, to port 1 of this same switch. This flow’s
identifier is 102 and is stored at table 0:

{

"flow": [

{

"table_id": 0,

"id": "102" ,

"priority ": 4,

"cookie ": "4",

"match": {

"in-port": "openflow :1:2"

},

"instructions ": {

"instruction ": [

{

"order ": 0,

"apply -actions ": {

"action ": [

{

"order ": 0,

"output -action ": {

"output -node -connector ": "1"

}

}

]

}

}

]

}

}

]

}

36

A.3 ARP example

The following instructions match all packets received with an Ethernet type
equal to 2054 (decimal), or 0806 hexadecimal, to be treated as NORMAL
packets in the switch. The 2054 value is exclusive for ARP packets, and the
normal behavior is to broadcast the packet in all ports. This flow’s identifier
is simply ARP and is stored at table 0:

{

"flow": [

{

"table_id": 0,

"id": "ARP",

"priority ": 4,

"cookie ": "4",

"match": {

"ethernet -match": {

"ethernet -type": {

"type": 2054

}

}

},

"instructions ": {

"instruction ": [

{

"order ": 0,

"apply -actions ": {

"action ": [

{

"order ": 0,

"output -action ": {

"output -node -connector ": "NORMAL"

}

}

]

}

}

]

}

}

]

}

37

A.4 Flow based on source IP address

The following instructions match all packets received with a source IP ad-
dress equal to 10.0.0.1, and then send these to port 1. Since these are
regular IP packets, their Ethernet type must be equal to 2048 (decimal), or
0800 hexadecimal. Notice that the priority for this instruction is 8, which
is smaller than the priority for the destination IP address flow (A.5):

{

"flow": [

{

"table_id": 0,

"id": "301" ,

"priority ": 8,

"cookie ": "8",

"match ": {

"ipv4-source ": "10.0.0.1/32" ,

"ethernet -match": {

"ethernet -type": {

"type": 2048

}

}

},

"instructions ": {

"instruction ": [

{

"order ": 0,

"apply -actions ": {

"action ": [

{

"order ": 0,

"output -action ": {

"output -node -connector ": "1"

}

}

]

}

}

]

}

}

]

}

38

A.5 Flow based on destination IP address

The following instructions match all packets received with a destination IP
address equal to 10.0.0.1, and then send these to port 3. Since these are
regular IP packets, their Ethernet type must be equal to 2048 (decimal), or
0800 hexadecimal. Notice that the priority for this instruction is 9, which
is larger than the priority for the source IP address flow (A.4):

{

"flow": [

{

"table_id": 0,

"id": "411" ,

"priority ": 9,

"cookie ": "9",

"match": {

"ipv4-destination ": "10.0.0.1/32" ,

"ethernet -match": {

"ethernet -type": {

"type": 2048

}

}

},

"instructions ": {

"instruction ": [

{

"order": 0,

"apply -actions ": {

"action ": [

{

"order": 0,

"output -action ": {

"output -node -connector ": "3"

}

}

]

}

}

]

}

}

]

}

39

40

Appendix B

Mininet Example Files

B.1 ODL cluster example

The following python code is used to test ODL’s cluster at Section 5.3:

#!/ usr/bin/python

from mininet.net import Mininet

from mininet.node import Controller , OVSSwitch ,

RemoteController

from mininet.cli import CLI

from mininet.log import setLogLevel , info

def MyNet ():

net = Mininet(controller=RemoteController ,

switch=OVSSwitch)

c1 = net.addController(’c1’, controller=RemoteController ,

ip ="172.17.0.2" , port =6653)

c2 = net.addController(’c2’, controller=RemoteController ,

ip ="172.17.0.3" , port =6653)

c3 = net.addController(’c3’, controller=RemoteController ,

ip ="172.17.0.4" , port =6653)

h1 = net.addHost(’h1’) #, ip = ’192.168.1.10 ’)"

h2 = net.addHost(’h2’) #, ip = ’192.168.1.20 ’)"

h3 = net.addHost(’h3’) #, ip = ’192.168.2.40 ’)"

h4 = net.addHost(’h4’) #, ip = ’192.168.2.50 ’)"

s1 = net.addSwitch(’s1’ , protocols =" OpenFlow 13")

s2 = net.addSwitch(’s2’ , protocols =" OpenFlow 13")

s3 = net.addSwitch(’s3’ , protocols =" OpenFlow 13")

s3. linkTo(h1)

41

s3. linkTo(h2)

s2. linkTo(h3)

s2. linkTo(h4)

s1. linkTo(s2)

s1. linkTo(s3)

net.build()

c1.start()

c2.start()

c3.start()

s1.start([c1, c2, c3])

s2.start([c1, c2, c3])

s3.start([c3, c2, c1])

net.start()

net.staticArp ()

CLI(net)

net.stop()

if __name__ == ’__main__’:

setLogLevel(’info ’)

MyNet()

B.2 Spine-leaf example

The following python code is used to test the spine-leaf network topology at
Section 6.4:

#!/usr/bin/python

from mininet.net import Mininet

from mininet.node import Controller , OVSSwitch ,

RemoteController

from mininet.cli import CLI

from mininet.log import setLogLevel , info

def spineLeafNet(N=6):

Need to verify that N is an even number and larger than 3

if N<4:

info(’Error: N should be greater than 3 and even.’)

return False

else:

if N%2 == 1:

info(’Error: N should be even and greater than 3.’)

return False

net = Mininet(controller=RemoteController ,

switch=OVSSwitch)

42

c1 = net.addController(’c1’, controller=RemoteController ,

ip ="172.17.0.2" , port =6653)

The value of i needs to be increased by 1 because the

switch and host names should start on that number. A

value of 0 creates inconsistencies with OpenDaylight.

switchArray = []

for i in range(N):

switchArray.append(net.addSwitch(f’s{i+1}’,

protocols =" OpenFlow 13"))

hostArray = []

for i in range(N):

hostArray.append(net.addHost(f’h{i+1}’))

Connect spine switches (0,N/2) to leaf switches (N/2,N)

for i in range(N//2):

for j in range (N//2,N):

net.addLink(switchArray[i], switchArray[j])

Connect leaf switches (N/2+1,N) to 2N hosts

j = 0

for i in range(N//2,N):

#info(" Running loop " + str(i) + "," + str(j) + "\n")

net.addLink(switchArray[i], hostArray[j])

j += 1

#info(" Again t loop " + str(i) + "," + str(j) + "\n")

net.addLink(switchArray[i], hostArray[j])

j += 1

net.build()

c1. start()

for switch in switchArray:

switch.start ([c1])

net.start()

CLI(net)

net.stop()

if __name__ == ’__main__’:

setLogLevel(’info ’)

spineLeafNet ()

43

44

Bibliography

[1] “Mininet.” [On-line]. Available: http://mininet.org/, Nov. 2022.

[2] “OpenDaylight.” [On-line]. Available: http://www.opendaylight.org/,
May 2024.

[3] “Official OpenDaylight documentation page.” [On-line]. Available:
https://docs.opendaylight.org, Nov. 2022.

[4] “VirtualBox.” [On-line]. Available: https://www.virtualbox.org/, May
2024.

[5] “Docker.” [On-line]. Available: https://www.docker.com/, May 2024.

[6] M. Bose, “VirtualBox network settings: Complete guide.” [On-line].
Available: https://www.nakivo.com/blog/virtualbox-network-setting-
guide/, July 2019.

[7] “Docker hub page.” [On-line]. Available: https://hub.docker.com/,
Jan. 2023.

[8] “Apache Karaf page.” [On-line]. Available: https://karaf.apache.org/,
Nov. 2022.

[9] “curlx.” [On-line]. Available: https://www.curlx.dev/, May 2024.

[10] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, “RFC 6241:
Network Configuration Protocol (NETCONF).” [On-line]. Available:
https://datatracker.ietf.org/doc/rfc6241, June 2011.

[11] A. Bierman, M. Bjorklund, and K. Watsen, “RFC 8040: REST-
CONF Protocol.” [On-line]. Available: https://datatracker.ietf.org
/doc/rfc8040/, Jan. 2017.

45

[12] “OpenDaylight Documentation: Setting Up Clustering.” [On-line].
Available: https://docs.opendaylight.org/en/latest/getting-started-
guide/clustering.html, Feb. 2023.

46

	Introduction
	Anatomy of the SDN network
	Tools needed to implement an SDN lab
	Mininet
	OpenDaylight
	VirtualBox
	Docker

	Practical considerations

	The First Experiment
	About VirtualBox
	Mininet
	Mininet as a VM
	Mininet as a Docker container

	Installing OpenDaylight and Java
	Configuring JAVA_HOME

	OpenDayLight
	Downloading ODL
	First run
	First test

	curlx application

	Introduction to Docker
	Obtaining an image and creating a container
	Managing, stoping and restarting a container
	Other useful commands

	Exploring ODL
	ODL NETCONF/RESTCONF

	ODL Cluster Configuration and Use
	ODL cluster architecture
	Cluster configuration with Docker
	ODL cluster testing
	Conclusions

	ODL Manual Configuration
	The spine-leaf topology
	Configuring the Address Resolution Protocol
	Configuring the IP paths
	Testing the flows
	Conclusions

	JSON Example files
	Flood example
	Transfer example
	ARP example
	Flow based on source IP address
	Flow based on destination IP address

	Mininet Example Files
	ODL cluster example
	Spine-leaf example

	Bibliography

