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Resumen 
Este trabajo se centra en el desarrollo de materiales basados en arcillas 

naturales y en la fabricación de estructuras monolíticas de carbono con porosidad y 

geometrías de canales controladas por impresión 3D, aplicados para eliminar 

contaminantes farmacéuticos del agua. Se estudió la adsorción de tetraciclina, 

trimetoprima y clorfenamina en varias arcillas, destacando la bentonita por su alta 

capacidad de adsorción gracias a su estructura laminar y propiedades de 

hinchamiento. La adsorción de trimetoprima y tetraciclina está gobernada por difusión 

superficial, y la de clorfenamina por difusión en el volumen del poro. En la adsorción 

binaria de tetraciclina y cadmio se encontraron efectos competitivos y sinérgicos en 

función del pH de la solución. La organobentonita híbrida mostró altas capacidades de 

adsorción según la carga iónica y naturaleza hidrofóbica del fármaco. Los resultados 

indicaron que las interacciones electrostáticas son el principal mecanismo de 

adsorción y que la velocidad de adsorción se debe al transporte externo de masa.  

Se diseñaron y fabricaron innovadores adsorbentes monolíticos de carbono con 

diferentes texturas porosas y geometrías avanzadas de canales mediante impresión 

3D. Las variables de síntesis analizadas incluyeron la relación resorcinol/catalizador, 

el agente activante (CO2 y H2O), tiempos de activación y geometrías de canales. Estas 

variables se evaluaron en la adsorción de sulfametoxazol. Los monolitos de carbono 

mostraron una integración óptima de alta resistencia mecánica con geometrías de 

canales avanzadas controladas y replicadas fielmente por la impresión 3D, con una 

macroestructura porosa de baja resistencia al flujo. Las variables de síntesis afectaron 

significativamente la morfología, logrando una estructura porosa jerárquica con alta 

área superficial, superando la capacidad de adsorción de muchos materiales 

adsorbentes existentes. Las geometrías de canales influyeron drásticamente en las 

curvas de ruptura: monolitos de canales rectos, hexagonales y romboidales tuvieron 

tiempos de ruptura tempranos por efectos de canalización, mientras que los de red 

interconectada mostraron mayores tiempos de ruptura, mitigando estos efectos gracias 

a la turbulencia y mezclado, confirmados por simulaciones CFD. 

 

Palabras clave: adsorción, fármacos, arcillas, monolitos de carbono, impresión 3D. 



Abstract 
This work focuses on the development of clay-based materials and the 

fabrication of carbon monolithic structures with controlled porosity and channel 

geometries using 3D printing, aimed at removing pharmaceutical contaminants from 

water. The adsorption of tetracycline, trimethoprim and chlorphenamine on various 

clays was studied, with bentonite showing high adsorption capacity due to its laminar 

structure and swelling properties. The adsorption of trimethoprim and tetracycline is 

governed by surface diffusion, while chlorphenamine adsorption is controlled by pore 

volume diffusion. Binary adsorption of tetracycline and cadmium revealed competitive 

and synergistic effects depending on solution pH. Hybrid organobentonite exhibited 

high adsorption capacities based on the ionic charge and hydrophobic nature of the 

drug. Results indicated that electrostatic interactions are the primary adsorption 

mechanism, and that adsorption rate is due to external mass transport. 

Innovative carbon monolithic adsorbents with different porous textures and 

advanced channel geometries were designed and fabricated using 3D printing. The 

synthesis variables analyzed included resorcinol/catalyst ratio, activating agents (CO2 

and H2O), activation times and channel geometries. These variables were evaluated in 

sulfamethoxazole adsorption. Carbon monoliths showed optimal integration of high 

mechanical strength with advanced channel geometries, faithfully replicated by 3D 

printing, and a porous macrostructure with low flow resistance. Synthesis variables 

significantly affected morphology, achieving a hierarchical porous structure with high 

surface area, surpassing the adsorption capacity of many existing adsorbent materials. 

Channel geometries drastically influenced breakthrough curves: monoliths with 

straight, hexagonal and rhomboidal channels had early breakthrough times due to 

channeling effects, while interconnected network channel showed longer breakthrough 

times, mitigating these effects through turbulence and mixing, confirmed by CFD 

simulations. 

 

Keywords: adsorption, pharmaceuticals, clays, carbon monoliths, 3D printing. 
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Water is essential for life and ecosystems across the planet. It is the most 

important natural resource and also one of the most vulnerable. In recent years, the 

development of human activities has led to the emergence of new contaminants known 

as emerging contaminants (ECs). ECs include pharmaceutical compounds, personal 

care products, endocrine disruptors, dyes and agricultural chemicals. These 

contaminants can enter the environment through discharges of hospital, industrial and 

domestic wastewater. ECs are transported to wastewater treatment plants, 

continuously released into surface and groundwater systems, and detected in a wide 

range of concentrations, from ηg/L to μg/L (Chaturvedi et al., 2021). 

It is known that ECs can cause sexual disorders in marine organisms, 

neurological, reproductive and immunological alterations in animals, cancer, the 

development of antibiotic-resistant bacterial genes, and congenital heart disease, 

among other toxic effects (Gogoi et al., 2018). However, precise information on the 

toxic effects of ECs in water systems is limited.  

One category of ECs that has gained priority is pharmaceuticals (Ahuja, 2021). 

Pharmaceuticals are widely used in the diagnosis, treatment, cure and prevention of 

various diseases in humans and animals due to their different physicochemical and 

biological properties. Most pharmaceuticals experience transformations in the body 

when ingested, resulting in the release of a large number of metabolites into surface 

and groundwater systems during wastewater treatment and cause irreparable harm to 

humans and ecosystems (Bexfield et al., 2019).  

Currently, wastewater treatment plants play a crucial role in removing various 

contaminants, such as suspended particles, dissolved organic compounds, nutrients, 

and pathogens. These plants employ different treatment stages involving processes 

like sieving, coagulation/flocculation, centrifugation, sedimentation and biological 

treatments. However, current conventional technologies have limitations in reducing 

the concentrations of pharmaceutical compounds present in wastewater. To address 

this challenge, recent years have seen the development and implementation of more 

effective and specific treatment technologies. Among these technologies are methods 
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such as chlorination, ozonation, adsorption, advanced oxidation processes and visible 

light photodegradation. 

Adsorption processes have been widely used and stand out as a promising and 

effective alternative for removing pharmaceuticals from wastewater. This technology 

offers a wide range of significant advantages, marking it an attractive option compared 

to other treatment techniques. Key advantages include ease of operation, low cost, 

reproducibility, high efficiency and the absence of toxic byproduct generation. 

Additionally, it offers flexibility in utilizing a wide range of adsorbent materials, from 

natural micrometric materials to advanced nanostructured synthetic materials (Cooney, 

1998). 

The aim of this thesis is to develop clay-based adsorbent materials and to 

fabricate nanostructured carbon monolith adsorbents with controlled porosity and 

channel geometries using 3D printing technology combined with sol-gel polymerization, 

both for the removal of pharmaceutical compounds from water. The study will focus on 

the effect of the chemical, textural and swelling properties of natural clays with distinct 

structural arrangements on the adsorption capacity of pharmaceutical compounds, as 

well as the impact of operational parameters on adsorption capacity. Furthermore, for 

the first time, the mass transport mechanisms controlling the overall adsorption rate of 

pharmaceutical compounds on natural clays will be elucidated by obtaining kinetic data 

under different experimental conditions.  

In addition, hybrid materials will be prepared by intercalating organic molecules 

of cationic surfactants within the interlayer space of the clays to modify their surface 

chemistry and provide additional functional properties that enable the adsorption of 

pharmaceuticals in aqueous solution. 

Furthermore, the fabrication of integral monoliths of carbon xerogels is proposed 

by combining sol-gel polymerization and 3D printing technology to be applied as 

adsorbents in continuous adsorption systems. The effect of synthesis conditions and 

channel geometry will be investigated to obtain monolithic structures with an 

appropriate and highly controlled chemical composition, porous structure and channel 

geometries for adsorption purposes. 
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2.1 Water contamination 
Water is essential for sustaining life and ecosystems worldwide, making it one 

of the most crucial yet vulnerable natural resources. Recent official figures estimate 

that each person consumes approximately 227 liters of water per day, contributing to 

the alarming rise of water pollution, a pressing global environmental concern (Vasilachi 

et al., 2021). 

Water pollution can stem from both natural factors and various anthropogenic 

sources, including industrial dischargers, agricultural runoff, untreated sewage, oil 

spills, and chemical releases, among others. These pollutants can adversely impact 

water quality, aquatic ecosystems, and human health. 

In recent years, human activities have given rise to the emergence of new 

organic pollutants known as “emerging contaminants”. This term is used when there is 

limited information available about the extent and frequency of the risks these 

contaminants pose to human health and the environment (Lofrano et al., 2020). 

Generally, emerging contaminants encompass a broad range of human-produced 

organic compounds considered essential for modern society but can pose long-term 

dangers to ecosystems and human health when present in water. According to the 

2016 Global Burden of Diseases, Injuries, and Risk Factors Study (GBD), an estimated 

1.3 million deaths were linked to 12 synthetic substances present in environment 

(Naghavi, 2017). In 2021, during the 5th United Nations Environment Assembly 

(UNEA5), environmental pollution was categorized as one of the top global challenges, 

alongside biodiversity loss and climate change. Consequently, it is evident that urgent 

action is required to address this global issue and implement effective measures to 

protect our ecosystems and ensure the health of future generations. 

  

2.2 Emerging contaminants 
Emerging contaminants (ECs), as defined by the United States Geological 

Survey (USGS), are synthetic chemicals that are not regularly monitored in the 

environment but have the potential to cause adverse effects on ecology and human 

health.  
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According to the database of the Network of Laboratories, Research Centers, 

and related organizations for monitoring emerging environmental substances 

(NORMAN network), over 700 compounds of emerging concern have been identified. 

These compounds are classified into different categories depending on their use and 

origin: 

i) Persistent Organic Pollutants (POPs). 

ii) Pharmaceuticals and Personal Care Products (PPCPs). 

iii) Endocrine-Disrupting Chemicals (EDCs). 

iv) Agricultural chemicals (herbicides, pesticides). 

These contaminants enter the environment through various pathways, such as 

hospitals, industrial facilities, and households. Subsequently, they are transported to 

wastewater treatment plants and continuously released into surface and groundwater 

systems. This is because wastewater treatment plants are not designed to remove 

these contaminants due to their low concentrations, wide variety and different physical 

properties that pose when are present in water (Lin et al., 2020; Parida et al., 2021; 

Riva et al., 2019; Taheran et al., 2018). 

The presence of ECs has been detected in surface water systems (rivers and 

lakes), groundwater, drinking water, wastewater, and effluents from wastewater 

treatment plants, with concentrations ranging from nanograms per liter (ηg/L) to 

micrograms per liter (μg/L) (Chaturvedi et al., 2021; López-Pacheco et al., 2019; 

Sharma et al., 2019). They have been found in areas where they have never used, as 

some ECs are persistent and bio accumulative.  

The lack of information on the origin, behavior, impact, and risks of ECs in the 

environment poses a significant challenge for governments worldwide in terms of 

controlling and regulating these contaminants. Currently, there are no laws establishing 

maximum concentrations of ECs in surface and groundwater, drinking water, and the 

environment. However, some countries have implemented strategies to observe, 

identify, control and monitor the presence of ECs. For example, the European Union 

has stablished different directives and regulations for the control of pesticides 

(Regulation (EC) No. 1107/2009), pharmaceuticals (Directive 2001/82/EC), and 
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industrial chemicals (Regulation (EC) No. 1907/2006). It has also listed 45 priority 

compounds and set environmental quality standards for water systems, in addition to 

adding another 10 to the contemporary monitoring list (Decision (EU) 2015/495). 

In recent decades, advances in environmental ecotoxicology have shown that, 

even at low concentrations in water sources, ECs pose a potential risk to ecosystem 

integrity. ECs have been reported to cause sexual disorders in marine organisms 

(Azizi-Lalabadi and Pirsaheb, 2021), neurological, reproductive, and immunological 

disturbances in animals (Furian et al., 2022), cancer (Lei et al., 2015), the development 

of antibiotic-resistant bacterial genes (Chaturvedi et al., 2021), congenital heart disease 

(Gorini et al., 2014), among other toxic effects. However, precise information on the 

toxic effects of ECs in water systems remains limited and is linked to the complex 

physicochemical characteristics of ECs, resulting in unpredictable behaviors when 

present in the environment (Gogoi et al., 2018; Wilkinson et al., 2017). 

The United Nations General Assembly adopted the 2030 Agenda for 

Sustainable Development, recognizing the importance of preventing, controlling, and 

managing ECs to protect marine biodiversity (Goal No. 14), terrestrial life (Goal No. 

15), water quality (Goal No. 6), and to promote responsible consumption and 

sustainable production (Goal No. 12). 

 

2.3 Contamination by pharmaceutical compounds 
Currently, a category of ECs that has gained priority is that of pharmaceuticals 

(Ahuja, 2021). Pharmaceuticals are widely used in the diagnosis, treatment, cure, and 

prevention of various diseases in humans and animals, owing to their diverse 

physicochemical and biological properties. These drugs encompass a wide range of 

substances, including non-steroidal anti-inflammatory drugs, antihistamines, 

antibiotics, antiepileptics, β-blockers, and more. 

Most pharmaceutical compounds undergo transformations in the body when 

ingested, leading to the release of a large number of metabolites into surface and 

groundwater systems (Bexfield et al., 2019; Zhou et al., 2019). These metabolites may 

undergo additional transformations during wastewater treatment (Ramírez-Morales et 
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al., 2020). Moreover, they can be degraded by photolysis or hydrolysis, generating 

degradation by-products with similar or even higher toxicity than the original 

compounds, posing a risk to humans and ecosystems (Hossain et al., 2018; Nantaba 

et al., 2020; Serwecińska, 2020). Therefore, reducing the concentrations of 

pharmaceutical compounds in water systems is of paramount importance. 

Although information on the potential toxic effects caused by the presence of 

pharmaceutical compounds in water is still limited, studies have reported that water 

contamination with these compounds can lead to the development of antibiotic-

resistant bacterial genes (Amarasiri et al., 2020), genotoxic effects (Phong Vo et al., 

2019), hormonal disorders (Schaefer and Zito, 2023), and disruptions in the 

reproduction, growth, and mortality of aquatic organisms (Nkoom et al., 2019).  

 

2.3.1 Antihistamines 
Antihistamines are widely used medications for treating allergic diseases. 

However, their applications have also been discovered in the treatment of 

inflammatory, autoimmune, and neurological disorders (Pearlman, 1976). Since their 

introduction to the market in the 1940s, more than 45 classes of antihistamines have 

been developed, including notable ones such as chlorpheniramine, ranitidine, 

cetirizine, loratadine, and diphenhydramine. Unfortunately, their presence has been 

frequently observed in various water bodies worldwide (Kristofco and Brooks, 2017). 

For instance, Guruge et al. (2019) found chlorpheniramine in surface waters in Sri 

Lanka, with concentrations of 1.36 ηg/L. Other studies reported the presence of 

chlorpheniramine in the effluent of a wastewater treatment plant in Australia, with 

concentrations of 4.9 ηg/L (Roberts et al., 2016). The presence of antihistamines in 

water has proven to be a serious environmental risk, especially for aquatic life 

(Berninger et al., 2011; Isidori et al., 2009; Schaefer and Zito, 2023; Teixeira et al., 

2017). One study found that chlorpheniramine induces hormonal disruptions and other 

negative effects, such as central nervous system depression and dangerous 

hyperpyrexia (Schaefer and Zito, 2023). Moreover, most antihistamines in water have 

been found to have the ability to generate toxic by-products, such as nitrosamines, 
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particularly N-nitrosodimethylamine (NDMA). This substance forms during 

disinfection/oxidation treatment in wastewater treatment plants (Lv et al., 2015; White 

and Hernandez, 2021) and has been classified as a Category B2 carcinogenic 

compound by the United States Environmental Protection Agency (USEPA). 

 

2.3.2 Antibiotics 
Antibiotics constitute a class of drugs with a significant impact on the quality of 

water systems. Due to their potent ability to inhibit and eliminate bacterial growth, these 

substances are widely used to treat infectious diseases in both humans and animals. 

Global antibiotic consumption is estimated to range between 100,000 and 200,000 tons 

annually (Milić et al., 2013; Ngigi et al., 2020). Some commonly used antibiotics include 

trimethoprim, sulfamethoxazole, tetracycline, metronidazole, ronidazole, and 

ciprofloxacin.  

Most antibiotics exhibit low absorption in the human body, meaning that 

approximately 80 % of the antibiotic is released in its active form or as a metabolite into 

water systems. These substances are transported through sewer networks and 

discharged into surface and groundwater systems. Antibiotic concentrations in various 

water bodies worldwide have been shown to exceed safe levels by up to 300 times 

(Vasilachi et al., 2021). For instance, concentrations of trimethoprim in surface water 

have been detected ranging from 0.5 to 27.43 ηg/L (Chernova et al., 2021; Letsinger 

et al., 2019; Zhang et al., 2018), and in effluents from wastewater treatment plants, 

concentrations range from 33 to 788 ηg/L (Biel-Maeso et al., 2018; Chernova et al., 

2021). On the other hand, tetracycline has been found in different water bodies at 

concentrations ranging from 0.11 to 1300 μg/L (Chernova et al., 2021; Gao et al., 2012; 

Lin et al., 2009; Zhang et al., 2018). Hospital waste also represents a significant source 

of water pollution (Halling-Sørensen, 2000; Jjemba, 2006; Lofrano et al., 2020). 

The presence of antibiotics in water can lead to mutagenic reactions, giving rise 

to new antibiotic-resistant bacterial genes. These genes can spread to other bacterial 

strains, affecting the growth and reproduction of aquatic species (Brain et al., 2004; 

Lützhøft et al., 1999; Yılmaz and Özcengiz, 2017). Additionally, antibiotics can inhibit 
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crop growth (Farkas et al., 2007) and have detrimental effects on human health 

(Amarasiri et al., 2020), rendering them potentially hazardous contaminants. 

 

2.3.3 Nonsteroidal anti-inflammatories 
Nonsteroidal anti-inflammatory drugs (NSAIDs) are a common group of 

medications used to treat inflammations and musculoskeletal pain, such as rheumatoid 

arthritis, fever, headaches, colds, toothaches, etc. In recent years, they have also been 

frequently used to treat infections caused by Covid-19 (Micallef et al., 2020; 

Wojcieszyńska et al., 2022). Due to their low cost, accessibility, and availability as over-

the-counter medications, NSAIDs are widely consumed globally, raising concerns 

about river and lake pollution (Madikizela and Ncube, 2021; Rastogi et al., 2021). 

Currently, there are more than 100 NSAID compounds, with ibuprofen, 

naproxen, diclofenac, and acetaminophen being prominent among them. These 

compounds are released from various pollution sources and are found in significant 

concentrations in surface water and the effluents of wastewater treatment plants. For 

example, diclofenac has been detected in surface water at concentrations ranging from 

1.0 to 51.4 ηg/L, while acetaminophen at concentrations of 31.5 to 902 ηg/L (Chernova 

et al., 2021; Kondor et al., 2020; Letsinger et al., 2019; Zhang et al., 2018). 

Furthermore, diclofenac and acetaminophen have been located in effluents from 

wastewater treatment plants at concentrations of 38 to 1020 ηg/L and 17 to 441 ηg/L, 

respectively (Biel-Maeso et al., 2018; Chernova et al., 2021). 

While the presence of NSAIDs in water bodies is widely acknowledged, 

information on their ecotoxicological risk is still limited. A study by Sathishkumar et al. 

(2020) revealed that diclofenac causes adverse effects on the reproduction of griffon 

vultures, as well as cardiotoxic, hepatotoxic, nephrotoxic, neurotoxic, genotoxic, and 

hematotoxic effects in mammals. It has also been observed to affect the liver, kidneys, 

and gills of fish, as well as cytotoxicity and genotoxicity in plants, and a decrease in the 

survival and reproduction of invertebrate organisms. On the other hand, 

acetaminophen has been found to alter the genetic code and cellular function in both 
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humans and aquatic animals, depending on the level of exposure to the contaminant 

(Phong Vo et al., 2019). 

 

2.3.4 Antiepileptics 
Epilepsy is one of the most common neurological disorders, characterized by 

frequent seizures, loss of consciousness, and gastrointestinal dysfunction (Kwan and 

Brodie, 2001). According to the World Health Organization (WHO), over 50 million 

people worldwide are affected by epilepsy. Antiepileptic medications are used to treat 

seizures associated with epilepsy, but they are also employed for other conditions such 

as migraines, chronic neuropathic pain, and mood disorders, leading to a significant 

increase in their consumption in recent years (Carmland et al., 2022; Ho et al., 2021; 

Parikh and Silberstein, 2019). 

Carbamazepine, gabapentin, lamotrigine, and primidone are the antiepileptics 

most frequently detected and found in elevated concentrations in rivers and lakes 

worldwide (Anim et al., 2020; Challis et al., 2018; Ebele et al., 2020; Kondor et al., 2020; 

Park and Lee, 2018; Sanz-Prat et al., 2020; White et al., 2019). In a study, Kondor et 

al. (2020) reported high concentrations of carbamazepine in the Danube River, with 

value of 47.6 ηg/L. Generally, carbamazepine has been detected in various water 

bodies at concentrations ranging from 3.0 to 72.01 ηg/L (Chernova et al., 2021; Zhang 

et al., 2018). Additionally, it has been found in effluents from wastewater treatment 

plants at concentrations of 21 to 657 ηg/L (Biel-Maeso et al., 2018; Chernova et al., 

2021). 

Antiepileptics, especially carbamazepine, are contaminants that rise significant 

environmental concerns due to their toxic effects on aquatic ecosystems. Numerous 

studies have been reported that carbamazepine has severe effects on aquatic 

organisms, including impacts on the reproduction rate, growth, and mortality of 

planktonic crustaceans, algae, and invertebrates (Nkoom et al., 2019; Zhang et al, 

2012; Zind et al., 2021). Additionally, genetic alterations and acute toxic effects have 

been observed in rainbow trout exposed to this compound (Li et al., 2010, 2011), 

increased mortality of zebrafish embryos and larvae (da Silva Santos et al., 2018; Pohl 
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et al., 2019), as well as morphological changes in cnidarians (Quinn et al., 2009). On 

the other hand, little research has been conducted on the toxic effects of antiepileptics 

on human health. Some authors have examined the effects of carbamazepine on 

human health when present in water, and although it is concluded that carbamazepine 

does not pose a potential risk to human health, continued monitoring of its behavior is 

necessary due to the adverse effects it may have when consumed for medical purposes 

(Cunningham et al., 2010; Houeto et al., 2012). For example, Abuzneid et al. (2022) 

reported that the ingestion of carbamazepine by 23-year-old patient led to the 

development of Stevens-Johnson syndrome and toxic epidermal necrolysis, which are 

skin reactions causing high fever and ulcers in the mouth and face. Additionally, 

carbamazepine has been found to cause congenital malformations when consumed 

during pregnancy (Andrade, 2018; Jentink et al., 2010; Jones et al., 1989; Sutcliffe et 

al., 1998). 

 

2.4 Methods for the removal of pharmaceutical compounds from water 
solutions 

Currently, wastewater treatment plants play a crucial role in eliminating various 

contaminants, such as suspended particles, dissolved organic compounds, nutrients, 

and pathogens. These plants employ different treatment stages involving processes 

like screening, coagulation/flocculation, centrifugation, sedimentation, and biological 

treatments. However, current conventional technologies have limitations in reducing 

concentrations of pharmaceutical compounds in wastewater (Rout et al., 2021). To 

address this challenge, there has been ongoing work in the development and 

implementation of more effective and specific treatment technologies. Notable among 

these technologies are methods such as chlorination, ozonation, adsorption, advances 

oxidation processes, and visible light photodegradation (Ahmed et al., 2021; Kavitha, 

2022; Krakkó et al., 2022; Liu et al., 2019; Obradović et al., 2022; Wang et al., 2023). 

These innovative technologies have shown promise in the removal of pharmaceutical 

compounds and other persistent contaminants in wastewater, undergoing continuous 

research and development.  
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Ozonation relies on ozone as strong oxidizing and disinfecting agent to degrade 

organic contaminants. Recently, catalytic and photocatalytic ozonation techniques 

have been proposed to enhance the formation of hydroxyl radicals, favoring the 

degradation and mineralization of pharmaceutical compounds (Issaka et al., 2022). A 

study by Li et al. (2022) investigated the degradation of trimethoprim through catalytic 

ozonation using a ceramic membrane functionalized with manganese-iron binary 

oxides (Mn/FeOx). The results showed a 98.6 % removal of trimethoprim. However, 

the study also detected the formation of hard-to-mineralize intermediate products, 

achieving only around 50 % mineralization of trimethoprim. 

Chlorination involves the use of free chlorine and chlorine dioxide (ClO2) to 

degrade active organic compounds (Crain and Gottlieb, 1935). In a recent study, 

simultaneous or multicomponent chlorination of sulfamethoxazole, acetaminophen, 

and diclofenac in acidic, neutral, and alkaline solutions was investigated. The study 

revealed that degradation capacity depended on the solution pH, decreasing in the 

order of sulfamethoxazole > diclofenac > acetaminophen in acidic solution, 

sulfamethoxazole > acetaminophen > diclofenac in alkaline solution. Additionally, the 

study discovered the formation of unknown dimers, sulfamethoxazole-acetaminophen 

and sulfamethoxazole-diclofenac, as degradation byproducts during simultaneous 

chlorination (Liu et al., 2019). These findings highlight the complexity of chlorination 

processes and their effects on the formation of undesirable byproducts, which may 

have significant implications for the safety and effectiveness of pharmaceutical 

compound removal through this method.  

Visible light photodegradation is an emerging technology for water treatment 

capable of completely breaking down organic contaminants in aqueous solutions. In 

this process, an oxidant is used to break down pharmaceutical compounds into short-

chain organic acids, inorganic acids, and CO2, generating hydroxyl radicals (Kavitha, 

2022). A study by Guo et al. (2021) evaluated the photocatalytic activity of tubular 

hollow graphene carbon nitride decorated with copper phosphide nanoparticles 

(Cu3P/HTCN) in the visible light photodegradation of tetracycline. The results 

demonstrated that Cu3P/HTCN exhibited high photocatalytic efficiency in tetracycline 
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degradation, achieving a 96.9 % efficiency in just 40 minutes. Despite the advantages 

of visible light photodegradation in removing pharmaceutical compounds from water 

(Kutuzova et al., 2021; Li et al., 2019; Xu et al., 2021), this technology still faces 

challenges requiring through study before large-scale implementation. These 

challenges include the cost of photocatalysts, chemical stability, infrastructure needed 

for identification and analysis of degradation byproducts, large-scale reactor design, 

and environmental efficacy. These factors limit its implementation compared to other 

water treatment technologies. 

Advanced Oxidation Processes (AOPs) are innovative and highly effective 

strategies for wastewater treatment. These processes accelerate the degradation rate 

of organic contaminants and promote mineralization by generating intense hydroxyl 

radicals (Glaze et al., 1987; Klavarioti et al., 2009; Legrini et al., 1993; Malato et al., 

2009). Examples of AOPs for the oxidation of organic contaminants include 

photocatalysis using titanium dioxide (TiO2) and zinc oxide (ZnO) (Panwar et al., 2022), 

solar-assisted electrooxidation (Ding et al., 2021), ozone-based electrochemical 

processes (Bavasso et al., 2022), hydrogen peroxide (Wang et al., 2023), UV 

chlorination photolysis (Guo et al., 2022), and Fenton processes (Dargahi et al., 2021). 

Numerous studies have been conducted on the use of these advanced oxidation 

processes for the removal of pharmaceutical compounds from aqueous solutions. For 

instance, Nguyen et al. (2022) investigated the degradation of antibiotics cephalexin 

and tetracycline using novel Ni-doped TiO2-based photocatalysts. The results showed 

that the photocatalytic degradation of cephalexin and tetracycline reached 91.6 % and 

82.5 %, respectively, and after 5 reuse cycles, the degradation capacity remained 

above 75 %. In another study, the degradation of acetaminophen by ultrasound-

assisted electro-Fenton using iron oxide nanoparticles as a catalyst (HNPs) was 

reported. The photocatalytic activity of HNPs was found to be superior to other 

photocatalysts prepared with different transition metals. For example, at an initial 

concentration of 20 mg/L of acetaminophen, degradation reached 98.9 %, decreasing 

by at least 14 % after the fourth reuse cycle (Ghanbari et al., 2021). Despite the high 

degradation capacity of pharmaceutical compounds demonstrated by advanced 
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oxidation processes (AOPs), concerns arise due to the formation of degradation 

byproducts that may be more toxic than the original pharmaceutical. Liu et al. (2016) 

identified the presence of at least 31 degradation byproducts of oxytetracycline, 

generated through reaction mechanisms including hydroxylation, secondary alcohol 

oxidation, demethylation, decarbonylation, and dehydration. This raises issues about 

the potential environmental impact of these toxic byproducts. Additionally, AOPs face 

limitations in water with high organic content and turbidity, which hinders the 

penetration of UV radiation (Homem and Santos, 2011). Furthermore, the high 

consumption of chemicals in AOPs can lead to significant secondary contamination 

concerns and increased treatment costs in the medium term (Martínez-Huitle and 

Ferro, 2006). 

Adsorption processes emerge as a highly promising and effective alternative for 

the removal of pharmaceuticals from wastewater. This technology presents several 

advantages, making it an appealing choice when compared to other treatment 

techniques. Noteworthy features include ease of operation, cost-effectiveness, 

reproducibility, high efficiency, and the absence of toxic byproduct generation (Sophia 

A. and Lima, 2018). Moreover, it offers flexibility in utilizing a broad range of adsorbent 

materials, ranging from natural micrometric substances to advanced nanostructured 

synthetic materials (Carrales-Alvarado et al., 2020; García-Reyes et al., 2021; Maggio 

et al., 2022; Moral-Rodriguez et al., 2020; Ortiz-Ramos et al., 2022). 

 

2.4.1 Adsorption 
Adsorption is a surface process involving the accumulation of a substance, 

called the solute, on the surface of a typically porous solid. The substance adhering to 

the solid is known as the adsorbate and can be an ion or a molecule, while the solid 

where adsorption occurs is termed the adsorbent (Cooney, 1998). 

Adsorption of the adsorbate onto the surface of the adsorbent can occur due to 

physical or chemical interactions and is classified as either physical adsorption or 

chemical adsorption. Physical adsorption arises from molecular interactions between 

the solid surface and the adsorbate molecules. These interactions can be electrostatic, 
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van der Waals forces, hydrogen bonding, or London dispersion forces. Due to these 

weak interactions, the adsorbate can move freely on the surface, rendering the 

adsorption reversible. In contrast, chemical adsorption involves a strong chemical 

interaction between specific active sites on the adsorbent and adsorbate molecules. In 

this case, the chemical interaction typically involves the formation of chemical bonds, 

resulting in irreversible adsorption. Additionally, the heat of adsorption in chemical 

adsorption is high, exceeding 40 kJ/mol, similar to that of chemical reaction (Leyva-

Ramos, 2010). 

Liquid-phase adsorption is influenced by various factors affecting interactions 

between the adsorbate and the adsorbent, including: 

i) Morphology and textural properties of the adsorbent: The adsorption capacity 

depends on the textural and morphological properties of the adsorbent, such as 

specific surface area, pore volume and diameter, and pore size distribution. 

These properties impact the availability and accessibility of the area where 

adsorption occurs. 

ii) Surface charge and zero-point charge. The adsorbent in an aqueous solution 

can acquire a charge on its surface, which can be positive, neutral, or negative, 

depending on the solution pH. Studying the distribution of surface charge and 

the zero-point charge of the adsorbent is crucial for understanding adsorption 

mechanisms.  

iii) Concentration and type of active sites. The adsorbent material has functional 

groups on its surface that can donate or accept protons depending on the 

solution pH. Proton-donating sites are acidic, while proton-accepting sites are 

basic. The concentration and type of active sites are fundamental characteristics 

for adsorbing cations or anions. 

iv) Nature of the adsorbate. The adsorption capacity is strongly influenced by the 

physicochemical properties of the adsorbate, such as concentration, molecular 

size, polarity, solubility, composition, and chemical speciation.  

v) Liquid phase characteristics. Properties of the liquid phase, such as pH, 

temperature, ionic strength, and solvent type, affect the adsorption capacity. In 
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particular, the pH of the solution plays a crucial role since the surface charge of 

the adsorbent depends on the pH. Furthermore, for compounds that ionize in 

aqueous solution by donating or accepting protons, the adsorption capacity 

varies considerably with pH. 

vi) Presence of other substances. The presence of additional contaminants can 

harm, not affect, or enhance the adsorption capacity of the organic compound 

under study. When an additional adsorbate hinders the adsorption of the target 

adsorbate, a competitive or antagonistic effect occurs. Conversely, when the 

presence of another adsorbate promotes adsorption capacity, a cooperative or 

synergistic effect takes place. Finally, when the adsorption capacity is unaffected 

by the presence of another adsorbate, the multicomponent adsorption system is 

said to have a non-interactive effect. 

 

2.5 Adsorbent materials 
Activated carbon stand out as the primary adsorbent material widely used in 

industrial wastewater treatment (Perrich, 1981). However, ongoing research is 

exploring numerous natural and synthetic adsorbent materials for the removal of 

pharmaceutical contaminants from aqueous solutions. These materials include natural 

soils (Rodríguez-López et al., 2022), natural clays (Ortiz-Ramos et al., 2022), 

organoclays with Gemini surfactants (Guo et al., 2019), magnetic biocarbonized 

materials (Dai et al., 2020), magnetite-doped graphene oxides (Lin et al., 2019), metal-

organic frameworks (Cheng et al., 2022), molecularly imprinted polymers (Cantarella 

et al., 2019), carbon xerogels (Moral-Rodriguez et al., 2020), and carbon nanotubes 

(Carrales-Alvarado et al., 2020).  

In general, the activity and capacity of an adsorbent material depend on its 

physicochemical properties, influenced by the nature of the raw material, the separation 

process, and the synthesis parameters used. There are certain key characteristics that 

an adsorbent material should possess: 

i) Low cost and abundant availability. 

ii) Ease of synthesis and manipulation. 
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iii) Chemical, thermal and mechanical stability. 

iv) Appropriate chemical, texture, and particle size properties. 

v) High adsorption capacity and rate. 

vi) Easy regeneration and reusability. 

 

2.5.1 Natural clays 
Clays are a category of hydrated phyllosilicates that constitute a significant 

portion of the fine-grained fraction found in rocks, sediments, and soils. These natural 

materials are predominantly composed of silicon, aluminum, oxygen, and hydrogen 

(Domínguez and Schifter, 1992). They are characterized by negative surface charges 

and a colloidal structure, providing them with chemical stability and expansive capacity. 

These properties enable clays to retain and trap metallic cations and certain organic 

compounds on their surface (Chaari et al., 2019; Padilla-Ortega et al., 2013). 

The structure of clays is marked by an organized arrangement of tetrahedral (T) 

and octahedral (O) layers. Each layer consists of tetrahedra formed by a cation 

coordinated with four oxygen atoms. These tetrahedra are connected through three 

shared corners with adjacent tetrahedra, creating a two-dimensional hexagonal lattice 

pattern along the crystallographic directions a and b (T-layer). The tetrahedron contains 

a silicon (SiO4)4- or aluminum (AlO4)5- atom at its center (Figure 2.1). On the other hand, 

the octahedral layer is composed of octahedra formed by a cation coordinated with six 

oxygen and hydroxyl atoms. These octahedra are connected sharing oxygens and 

hydroxyls at the edges of one octahedron with those at the edges of another 

octahedron. The octahedra exhibit two different topologies based on the position of the 

hydroxyl group, cis and trans. As a result, the octahedral layer can display a hexagonal 

or pseudohexagonal structure (O-layer) (Figure 2.2). The central cation in each 

octahedron can be aluminum, iron, or magnesium, resulting in the following chemical 

composition: [(Al/Fe)On (OH)m] o [(Mg/Fe)On (OH)m]-. In these formulas, n + m = 6 

(Brigatti et al., 2013). 
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Figure 2.1. Tetrahedral sheet of clays. 

 

 
Figure 2.2. Octahedral sheet of clays. 

 

The T and O sheets in clays can join through the oxygen atoms at the vertices 

of the tetrahedra and octahedra, forming a planar arrangement of laminar structures. 

The combination of one T sheet with the one O sheet results in T:O or 1:1 lamellar 

block, known as bilaminar structures. Alternatively, two T sheets can join with one O 

sheet to form T:O:T or 2:1 trilaminar structures. The clay structure can be dioctahedral 

or trioctahedral, depending on how the octahedral and tetrahedral sheets are joined. In 

a dioctahedral structure, two-thirds of the octahedral sites are occupied by trivalent 

atoms such as Al3+ or Fe3+. In trioctahedral sheets, all octahedral sites are occupied by 

divalent atoms such as Mg2+ and Fe2+ (Velde, 1992). 

The formed lamellar blocks can be electrically neutral or negatively charged. 

Electrical neutrality occurs when: i) the octahedral sheet contains trivalent cations (Al3+ 

or Fe3+) in two octahedral sites and a vacancy in the third octahedron; ii) all octahedral 

sites are occupied by divalent cations (Mg2+ or Fe2+); and iii) the tetrahedral sheet 

contains Si4+ in all tetrahedral sites. On the other hand, the negative charge in clays is 
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due to i) the substitution of Si4+ by Al3+ in tetrahedral sites; ii) the substitution of Al3+ or 

Fe3+ by lower charged cations in octahedral sites, usually Mg2+ of Fe2+; and iii) the 

presence of vacancies. These substitutions are known as isomorphic substitutions, as 

they do not alter the morphology of the lamellar block (Brigatti et al., 2013). 

Clays, especially those with a 2:1 layered structure such as smectites, 

vermiculites, and micas, are characterized by their charge variability, enabling the 

occupation of spaces between each laminar block by exchangeable cations. In addition 

to this characteristic, clays possess other distinctive properties:  

i) Laminar structure on a nanometric scale: Bilaminar blocks 1:1 (T:O) have an 

approximate thickness of 0.7 nm, while trilaminar blocks 2:1 (T:O:T) have a 

thickness close to 1 nm (Moore and Hower, 1986). 

ii) Capacity to exchange cations. 

iii) Hydration, plasticity, and swelling. 

iv) Different types of surfaces: external surface, edge surfaces, and interlayer space 

surface. 

v) Surface modification: Clay surfaces are easily modifiable, allowing the creation 

of hybrid materials with additional functionalities.  

Bentonite is a natural clay primarily found in the form of montmorillonite and 

belongs to the smectite group (Figure 2.3). Its 2:1 layered structure comprises an 

octahedral sheet, primarily containing trivalent Al3+ cations (dioctahedral structure), 

situated between two tetrahedral sheets of Si4+. Isomorphous substitutions of cations 

in the sheets generate an excess of negative charge, balanced by exchangeable and 

hydratable cations such as Na+, Ca2+, K+, and Mg2+ present in the interlayer space, 

forming weak bonds. Hydration of interlayer cations can occur in two ways: inner-

sphere hydration and outer-sphere hydration. In inner-sphere hydration, the cation 

interacts with the clay surface on one side and with water molecules on the other side. 

In contrast, in outer-sphere hydration, the cation is fully surrounded by water molecules 

interacting with the clay surface through hydration water.  

The capacity of bentonite to adsorb cations is attributed to its Cation Exchange 

Capacity (CEC), expressed in units of centimoles of positive charge per kilogram of 
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clay (cmol(+)/kg). CEC exhibits the following characteristics: i) it is reversible; ii) it is 

stoichiometric; and iii) it shows selectivity of one cation over another.  

 
Figure 2.3. Trilaminar structure 2:1 (T:O:T) of a bentonite clay. 

 

Concerning the removal of pharmaceutical compounds by adsorption on natural 

clays, there is a lack of significant studies in this area. Most research has concluded 

that natural clays do not exhibit a high adsorption capacity for pharmaceutical 

compounds. For instance, Thiebault and Boussafir (2019) studied the adsorption of 

diazepam on montmorillonite and found a low adsorption capacity of 10.2 mg/g at pH 

= 7.5. In another recent study, Vallova et al. (2022) investigated the ability of 

montmorillonite to adsorb the analgesics paracetamol, diclofenac, and ibuprofen. The 

results showed that the clay failed to completely remove the analgesics from the 

aqueous solution, obtaining adsorption capacities of 3.9, 18.0 and 15 mg/g for 

paracetamol, diclofenac, and ibuprofen, respectively. These studies conclude that the 

negative and hydrophilic surface of natural bentonite inhibits the adsorption capacity of 

pharmaceutical compounds. However, it is important to note that previous research has 

demonstrated that bentonite can adsorb tetracycline through electrostatic attraction, 

cation exchange, and complexation, achieving a high adsorption capacity of 283.5 mg/g 

at pH = 3 (Ortiz-Ramos et al., 2022). Similar results were obtained in a study by Wu et 
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al. (2019), where the adsorption of the antibiotic ciprofloxacin on montmorillonite was 

investigated.  

These findings suggest that, although natural clays generally have limitations in 

the adsorption of pharmaceutical compounds, specific mechanisms and particular 

conditions can influence their adsorption capacity. Further research is needed to 

understand and optimize the adsorption capacity of natural clays for pharmaceutical 

compounds, as well as to explore possible surface modifications that may enhance 

their effectiveness in removing these compounds.  

 

2.5.2 Organoclays 
Organoclays are highly innovative and of  great interest, obtained by modifying 

natural clays with organic compounds. This surface modification provides them with 

new functionalities, making them applicable in various fields such as rheological control 

agents, paints, cosmetics, refractory varnishes, and thixotropic fluids (de Paiva et al., 

2008). In recent years, organoclays have been found to exhibit a remarkable adsorption 

capacity for organic molecules in aqueous solutions (Martín et al., 2019; Martinez-

Costa et al., 2018; Shah et al., 2018; Shen and Gao, 2019; Tariq et al., 2022). This 

discovery has opened up new opportunities for their application in the removal of 

pharmaceutical contaminants from wastewater.  

The synthesis of organoclays is based on reactions involving clays and organic 

compounds and can occur through two different reaction routes: i) solid-state reactions 

and ii) cation exchange reactions. In the first case, organic molecules can be 

intercalated into dry clay without the use of solvents, thanks to ion-dipole interactions, 

where the polar groups of the organic compound interact with the interlayer cations 

(Garikoé and Guel, 2022; Lagaly et al., 2013). In the second case, interlayer cations 

are exchanged for cationic surfactants, such as quaternary ammonium salts, in an 

aqueous solution (Leyva-Ramos et al., 2021). Additionally, in some cases, other types 

of organic compounds such as Gemini surfactants (Shen and Gao, 2019), amino acids 

(Imanipoor et al., 2021), phospholipids (Liu et al., 2017), and even polymeric 

macromolecules (Kausar et al., 2019) can be used to achieve clay modification.  
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Cation exchange reactions with cationic surfactants enable the preparation of 

organoclays, modifying the surface nature of the clay from hydrophilic to hydrophobic 

and organophilic, simultaneously generating positively charged anionic sites on its 

surface. Cationic surfactants consist of a quaternary ammonium group attached to an 

organophilic chain and are represented by the general formula (CH3)3NR+, where R 

can be an alkyl chain or a benzyl group. Among the most commonly used surfactants 

for organoclay preparation are hexadecyltrimethylammonium bromide (HDTMA), 

dodecyltrimethylammonium bromide (DDTMA), and benzyltrimethylammonium 

bromide (BTMA) (Leyva-Ramos et al., 2021; Martinez-Costa and Leyva-Ramos, 2017). 

Their chemical structures are illustrated in Figure 2.4. 

 
Figure 2.4. Chemical structures of the cationic surfactants HDTMA (a), DDTMA 

(b) and BTMA (c).  

 

The structural arrangement of organoclays is primarily determined by the 

packing density of interlayer cations and the length of the alkyl chain of the cationic 

surfactant. However, other factors such as surface geometry and the cation exchange 

capacity of the clay can also influence this structure. As a result, organoclays can adopt 

various structural configurations, including monolayers, bilayers, pseudotrimolecular 

layers, and paraffin-like structures. Figure 2.5 illustrates some of these structural 

configurations (Lagaly et al., 2013).   

The structural configuration of organoclays can be determined by measuring the 

basal spacing (d001) of the organoclay, which is influenced by the length of the cationic 

surfactant chain, as shown in Figure 2.6. According to Lagaly et al. (2013), a monolayer 

arrangement will form when the alkylammonium chains are short (nc < 6), while a 

bilayer will form when the alkylammonium chains are long (nc > 7). In both cases, the 
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alkylammonium chains are arranged parallel to the clay layers. The d001 distance in a 

monolayer is generally 1.35 nm, and the interaction occurs at the negatively charged 

cationic sites of the clay layers, attributed to electrostatic attraction and cation 

exchange. The bilayer has a d001 value of 1.77 nm and interacts with the previously 

adsorbed monolayer through van der Waals interactions between the alkyl chains of 

the cationic surfactant (Leyva-Ramos et al., 2021). As the length of the alkyl chain 

increases (nc > 14), a transition to a pseudotrimolecular structural configuration occurs, 

along with an increase in the d001 value. In this case, the positive group (CH3)3N+ is 

located near to the cationic sites of the clay layer, and the chains arrange in a “twisted” 

trimolecular arrangement. The pseudotrimolecular structure typically exhibits a d001 

value of 2.15 nm. Increasing the length of the alkyl chain and the cationic surfactant/clay 

ratio has been observed to make organoclays more hydrophobic (Martinez-Costa and 

Leyva-Ramos, 2017). Finally, the paraffin-like arrangement is found in quaternary 

ammonium surfactants that contain two or more long alkyl chains, such as 

phospholipids (Wicklein et al., 2010). 

 
Figure 2.5. Structural arrangements of organoclays: monolayer (a), bilayer (b), 

pseudotrimolecular layer (c) and inclined paraffin-like structures (d, e). (Lagaly et 

al., 2013). 
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Figure 2.6. Variation of basal space, d001, with cationic surfactant alkyl chain 

length, nc, due to monolayer, bilayer, and pseudotrimolecular layer formation 

(Lagaly et al., 2013). 

 

Several studies have investigated the adsorption of pharmaceutical compounds 

on organoclays, yielding varied results. For instance, De Oliveira et al. (2017) examined 

the adsorption of diclofenac on organomontmorillonite modified with two different 

surfactants: benzyldimethyltetradecylammonium bromide (BDTA) and 

hexadecyltrimethylammonium bromide (HDTMA). They found that the adsorption 

capacity of diclofenac varied slightly depending on the surfactant used. Materials 

prepared with BDTA and HDTMA showed diclofenac adsorption capacities of 56.3 and 

44.4 mg/g, respectively. However, another study obtained a much higher diclofenac 

adsorption capacity of 361.3 mg/g on HDTMA-modified bentonite (Martinez-Costa et 

al., 2018). Both works concluded that adsorption is attributed to electrostatic attraction 

between the anionic species of diclofenac and the anionic and positively charged sites 

of organoclays. In another recent investigation, the adsorption of paracetamol on 

organobentonites modified with different surfactants, both anionic (sodium dodecyl 

sulfate and dodecyl benzene sulfonic acid) and cationic (dodecyltrimethylammonium 
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bromide and dodedcylpyridinium chloride), was studied. The adsorption capacity was 

found to depend on the type of ionic surfactant used. The organoclay modified with 

dodecyltrimethylammonium bromide showed the highest paracetamol adsorption 

capacity of 32.4 mg/g, while the adsorption capacities decreased in the following order: 

dodedcylpyridinium bromide > sodium dodecyl sulfate > dodecyl benzene sulfonic acid 

(Çalışkan Salihi et al., 2023). The hydrophobic effect on the surfactant chains in the 

clay was found to play a significant role. 

While numerous studies have concluded that organoclays exhibit high 

adsorption capacities for pharmaceutical compounds (França et al., 2020; Imanipoor 

et al., 2021; Malvar et al., 2020; Saitoh and Shibayama, 2016; Vallova et al., 2022; 

Zhang et al., 2021), contradictory results have also been obtained where the organic 

modification of the clay does not increase or even decreases the adsorption capacity. 

For example, Yang et al. (2020) analyzed the adsorption of tetracycline on 

organovermiculite modified with the surfactant dodecyl dimethyl betaine (DDB) and 

found that the adsorption capacity did not significantly increase with organic 

modification. At pH = 7, the adsorption capacities were 8.8 and 11.1 mg/g for natural 

vermiculite and organovermiculite, respectively. Another study investigated the 

simultaneous adsorption of sulfamethoxazole and trimethoprim on HDTMA-modified 

organobentonite and found that the organobentonite exhibited high individual 

adsorption capacity for sulfamethoxazole but not for trimethoprim. The individual 

adsorption capacities were 55.7 and 8.7 mg/g for sulfamethoxazole and trimethoprim, 

respectively (Martínez-Costa et al., 2018). 

Despite numerous studies on the adsorption of pharmaceutical compounds on 

organoclays, the reasons why organoclays inhibit or decrease the adsorption capacity 

for certain pharmaceutical compounds have not been thoroughly investigated. 

Therefore, further research in this field is crucial to better understand the adsorption 

mechanisms and optimize the use of organoclays in pharmaceutical compound 

removal from water.  
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2.5.3 Carbon xerogels 
Carbon gels are nanostructured materials with highly controlled chemical 

composition and porous structure. These materials are formed by the carbonization of 

an organic gel, commonly synthesized through the sol-gel method (Pekala, 1989). They 

have found extensive use in various applications (da Cunha et al., 2021; Elmouwahidi 

et al., 2021; Haye et al., 2020; Prokić et al., 2022; Yang et al., 2020; Zainol et al., 2021). 

The sol-gel method involves the polymerization of a hydroxylated benzene derivative 

(such as resorcinol, phenol, cresol, among others) and an aldehyde (such as 

formaldehyde, furfural, among others) in the presence of a solvent (water, ethanol, 

methanol, acetone). Once the solvent is removed, the resulting solid organic polymer 

is called organic gel. Resorcinol, formaldehyde, and water are the most commonly used 

reagents by various authors (Gaikwad et al., 2019; Ibarra Torres et al., 2021; Job et al., 

2005; Li et al., 2019; Lu et al., 2018; Ptaszkowska-Koniarz et al., 2018). 

The synthesis of carbon gels through sol-gel method consists of three stages 

(Figure 2.7): i) polymerization, ii) drying of the solvent-saturated gel, and iii) 

carbonization with or without activation of the gel. In the first stage, resorcinol (R) and 

formaldehyde (F), dissolved in a reaction medium, undergo addition and condensation 

polymerization in the presence of a catalyst. The addition and condensation 

polymerization mechanisms are depicted in Figure 2.8. During this stage, a suspension 

of colloidal solid particles (sol) forms, which tend to grow and create a three-

dimensional polymeric network of interconnected spherical particles (gel) with suitable 

chemical characteristics and porosity. Synthesis parameters, such as the nature, ratio, 

and concentration of reagents, catalyst, solvent, and pH of the reaction medium, are 

crucial for controlling the meso and macroporosity of the gel. The catalyst plays a 

fundamental role in polymerization, as its nature determines the pH of the reaction 

medium. Alkali metal carbonates (Li2CO3, Na2CO3, K2CO3, Rb2CO3, Cs2CO3, Fr2CO3) 

are the most commonly used as catalysts in this method (Alegre et al., 2019; Eckert et 

al., 2022; Medina et al., 2021; Moral-Rodriguez et al., 2020; Shouman and Fathy, 2018; 

Yang et al., 2020). 
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Figure 2.7. Stages of synthesis of carbon gels by the sol-gel method (Arenillas et 

al., 2019). 

 

The drying of the solvent-saturated gel is a crucial stage in synthesis, as it plays 

a determining role in preserving the porosity of the final organic gel. Capillary forces 

generated between the solvent and the pore walls can lead to the collapse of the porous 

structure of the gel. In the literature, three conventional drying methods have been 

reported: supercritical drying, subcritical drying, and freeze-drying, which differ in the 

pressure and temperature conditions used to remove the solvent (Gizli et al., 2022; Job 

et al., 2005). Depending on the drying method employed, the final organic gel may 

receive different designations. In the case of supercritical drying, an aerogel is 

obtained, while subcritical drying results in a xerogel, and freeze-drying leads to a 

cryogel. These designations reflect the specific characteristics of each gel in terms of 

its porosity and structure. 

Supercritical drying is widely employed by various researchers as one of the 

most common methods. It involves the use of CO2 under elevated pressure and 

temperature conditions to remove the solvent (Bakos et al., 2018; Jayaseelan et al., 

2018; Li et al., 2019; Liu et al., 2021; Sam et al., 2020; Wang et al., 2022). In the case 
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where water is the solvent, it is necessary to replace it first with an organic solvent 

(acetone, methanol, etc.) due to the high solubility of CO2 in water. During the drying 

process, CO2 replaces the organic solvent and is removed in gas form, minimizing 

capillary forces and preserving much of the original porosity of the gel. The resulting 

organic gel is known as an aerogel. On the other hand, freeze-drying involves drying 

the organic gel under cryogenic conditions (Babić et al., 2004; Okay and Lozinsky, 

2014). In this case, the solvent is frozen and then removed by sublimation. Similar to 

supercritical drying, if the solvent is water, it must be exchanged first with an organic 

solvent to prevent the formation of ice crystals that could significantly impact the 

porosity of the gel. After solvent removal, the organic gel is referred to as a cryogel. 

Although these two drying methos are highly effective in preserving the porosity of the 

final organic gel, they are also expensive and challenging to handle, limiting their 

application on a large scale.  

In contrast, subcritical drying is a straightforward and cost-effective method for 

obtaining organic xerogels on a large scale. It relies on the direct evaporation of the 

solvent under normal pressure and temperature conditions. Although a liquid-vapor 

interface forms during the drying process, which can potentially lead to collapse of the 

gel structure due to surface tension, it has been demonstrated that, under controlled 

operating conditions, it is possible to minimize such collapse and obtain organic 

xerogels with very well-controlled porosity (Bailón-García et al., 2020; Castelo-Quibén 

et al., 2019; Medina et al., 2021; Moral-Rodriguez et al., 2020; Pérez-Cadenas et al., 

2009; Segovia-Sandoval et al., 2020; Vivo-Vilches et al., 2018). 

The carbonization of the organic xerogel constitutes the final stage of synthesis 

and plays a fundamental role in developing the microporosity of the carbon xerogel. In 

this stage, the xerogel undergoes an initial thermal stabilization process to eliminate 

water residues or unreacted reagents present during synthesis. Thermal stabilization 

occurs at temperatures ranging from 100 to 200 °C, resulting in a hydrophilic xerogel 

with elevated oxygen content. Carbonization involves exposing the organic xerogel to 

an inert gas stream, such as N2, He, or Ar, at elevated temperatures ranging from 600 

to 1000 °C, using a slow heating ramp. During this process, a significant amount of 
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oxygen is removed, resulting in a thermally stable nanostructured carbon xerogel with 

well-developed microporosity, without altering the structural design established during 

the sol-gel polymerization.  

 
Figure 2.8. Polymerization mechanisms of resorcinol and formaldehyde (Arenillas 

and Fernández, 2022). 
 

The carbon xerogel can undergo an activation process, either chemical or 

physical, to increase its microporosity and, consequently, its specific surface area. 

Chemical activation involves impregnating the carbon xerogel with activating chemicals 

such as H3PO4, KOH, ZnCl2, NaOH, among others, followed by thermal treatment at 
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temperatures ranging from 400 to 850 °C. This process has certain disadvantages, 

including the use of high concentrations of activating agent, the need for additional 

washes to recover the activating agent, and the possibility of partial material dissolution. 

On the other hand, physical activation is the most commonly used method and is based 

on controlled thermal treatment of the carbon xerogel with oxidizing agents such as 

CO2 or water vapor. This treatment is carried out at temperatures ranging from 700 to 

900 °C. 

The sol-gel polymerization is a technique that allows obtaining carbon xerogels 

in various forms, such as microspheres (Bailón-García et al., 2014), films (Espinosa-

Iglesias et al., 2015), pellets (Moral-Rodriguez et al., 2020), monoliths (Morales-Torres 

et al., 2012), and microbeads (Eskenazi et al., 2018). Monolithic carbon xerogels offer 

numerous advantages compared to other forms, such as low pressure drops, especially 

at high fluid flows, a larger exposed external surface area, greater accessibility to active 

sites, and a reduction in mass transport limitations. Therefore, these novel and highly 

promising materials are very interesting for a wide range of applications, including 

catalysis, adsorption, and energy storage.   

Integral carbon xerogel monoliths are nanostructured porous materials, 

characterized by a single structure composed of thin, vertical, parallel channels 

separated by walls and a complex network of macropores that reduce flow resistance. 

However, existing technology has limited the geometry of these channels. Traditionally, 

extrusion has allowed the development of monoliths with straight channel geometry, 

resulting in laminar fluid flow through the channels and limited contact between the fluid 

and active sites (Morales-Torres et al., 2012; Moreno-Castilla and Pérez-Cadenas, 

2010). To improve this aspect, the design of complex or tortuous channels has been 

explored, inducing turbulent fluid flow within the channels and significantly increasing 

contact between the fluid and the active sites of the monolith (Chaparro-Garnica et al., 

2021a, 2021b). This has sparked great interest in the development of new technologies 

that allow designing and shaping channels with complex, specific, and highly controlled 

geometries.  
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The combination of 3D printing technology with sol-gel polymerization offers an 

innovative strategy for synthesizing integral carbon xerogel monoliths with a controlled 

channel configuration. In this method, 3D printed templates with a suitable architectural 

design of channels are used, which are placed in molds during the first stage of the sol-

gel polymerization. During the carbonization process, the template is removed from the 

xerogel structure, resulting in the formation of the carbon monolith and the shaping of 

channels with the designed geometry.  

The adsorption of pharmaceutical compounds on carbon xerogels has been the 

subject of limited research. Nevertheless, some studies have yielded promising results. 

Moral-Rodriguez et al. (2020) investigated the impact of the resorcinol/catalyst molar 

ratio (R/Cat) on the adsorption of diclofenac in aqueous solution using carbon xerogel 

pellets. They observed that the highest adsorption capacity was achieved with an R/Cat 

ratio of 500, reaching an adsorption capacity of 184.6 mg/g at pH = 7. This material 

exhibited a larger volume and mesoporous area, favoring π-π dispersive interactions. 

In another study, Segovia-Sandoval et al. (2020) explored the adsorption of 

metronidazole on hybrid materials of carbon xerogels and graphene (CX-GO). They 

found that the adsorption capacity of CX-GO for metronidazole significantly increased 

with the increment of graphene content. The maximum adsorption capacity was 160 

mg/g in CX-1.0GO, where the number indicates the graphene oxide content. This 

increase in adsorption capacity was attributed to the rise in the BET area, promoting π-

π dispersive interactions. Carabineiro et al. (2012) compared the adsorption capacities 

of activated carbons (AC), carbon xerogels (CX), and carbon nanotubes (CNT) for 

ciprofloxacin adsorption. They found that the maximum adsorption capacity was 

obtained in AC (230 mg/g), followed by CNT and CX in decreasing order. This decrease 

in adsorption capacity is directly related to the BET area of the carbonaceous materials.  

Until now, there has been a notable absence of studies exploring the application 

of 3D printing technology for the fabrication of carbon monolith adsorbents with 

precisely controlled channel morphologies, specifically designed for the removal of 

pharmaceutical compounds from water. This unexplored field represents an 

exceptionally intriguing area of research, distinguished by its low cost, straightforward 
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handling, and potential for industrial scalability, particularly in the context of continuous 

adsorption systems. The novelty of this research direction not only underscores its 

scientific significance but also emphasizes its practical appeal, offering a promising 

platform to address water pollution challenges associated with pharmaceutical 

contaminants.  

 

2.6 Objectives 
2.6.1 General objective 

The aim of this thesis is to develop clay-based adsorbent materials and to 

fabricate nanostructured carbon monolith adsorbents with controlled porosity and 

channel morphologies using 3D printing technology combined with sol-gel 

polymerization, both for the removal of pharmaceutical compounds from aqueous 

solutions.  

 

2.6.2 Specific objectives 
The objectives are described as follows: 

i) Investigate the influence of structural characteristics and nature of diverse raw 

clays (sepiolite, vermiculite, bentonite, halloysite, phlogopite and kaolinite) on 

their adsorption capacity for tetracycline from aqueous solutions. 

ii) Examine the impact of the chemical, textural, and swelling properties of 

bentonite on the adsorption of trimethoprim and chlorphenamine from water.  

iii) Elucidate the mass transport mechanisms controlling the overall adsorption 

rates of three pharmaceutical compounds, trimethoprim, tetracycline and 

chlorphenamine on natural bentonite clay. 

iv) Analyze the binary adsorption of tetracycline and cadmium (II) on natural 

bentonite clay under different solution pH conditions and elucidate the binary 

adsorption mechanisms. 

v) Synthesize hybrid clay-based adsorbents through a cation exchange reaction 

with hexadecyltrimethylammonium bromide and investigate the impact of 

surface chemistry on the adsorption capacity for several pharmaceuticals, 
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including carbamazepine, tetracycline, sulfamethoxazole and chlorphenamine, 

each possessing different chemical properties.  

vi) Optimize the synthesis conditions of carbon xerogels to achieve synthetic 

materials with tailored morphology and well-defined pore size distributions, 

specifically designed for the removal of sulfamethoxazole from water. 

vii) Design and fabricate integral carbon xerogel monoliths with precisely 

engineered channel geometries, utilizing a combination of sol-gel polymerization 

with 3D printing technology, for the efficient removal of sulfamethoxazole from 

water. Furthermore, evaluate the impact of synthesis conditions on adsorption 

performance. 

viii) Investigate the effect of CO2 and H2O activation time on the chemical and 

textural properties of carbon monoliths and evaluate its influence on the 

adsorption of sulfamethoxazole from aqueous phase. 

ix) Explore the effects of diverse channel geometries on breakthrough curves for 

the adsorption of sulfamethoxazole from aqueous solutions and corroborate the 

results with Computational Fluid Dynamics (CFD) calculations. 
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3.1 Preparation and synthesis of clay-based materials and carbon monolithic 
structures 

3.1.1 Clay minerals preconditioning 
Calcium bentonite was sourced from a mineral deposit in San Luis Potosi, 

Mexico. Vermiculite was supplied by Virginia Vermiculite Company, Louisa, Virginia, 

USA. Phlogopite was obtained from RENAGO in Oaxaca de Juarez, Oaxaca, while 

kaolinite, sepiolite and halloysite were provided by Synerplus, Sepiolsa and Merck, 

respectively. All clay minerals were ground and sieved to -200 +400 mesh sizes. The 

preconditioning of the clay is described in Chapter 4, Section 4.4.2. 

 

3.1.2 Preparation of clay samples with different uptakes of pharmaceuticals 
adsorbed 
Clay samples were saturated with pharmaceuticals at various adsorption levels. 

The nomenclature and specifications of these prepared samples are detailed in 

Chapter 5, Table 5.2.  

 

3.1.3 Synthesis of hybrid hexadecyltrimethylammonium bromide-modified 
organobentonite 
Organobentonite was prepared through a cation exchange reaction between 

bentonite and the cationic surfactant hexadecyltrimethylammonium bromide. The 

detailed methodology is outlined in Chapter 8, Section 8.2.1. 

 

3.1.4 Synthesis of nanostructured carbon xerogels 
Nanostructured carbon xerogels were synthesized through sol-gel 

polymerization of resorcinol and formaldehyde, with Cs2CO3 as a catalyst. The 

synthesis involved varying the resorcinol/catalyst ratios to modulate gel porosity. A 

detailed synthesis method is provided in Chapter 9, Section 9.2.1. 
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3.1.5 Design of 3D geometries using Computer-Aided Design (CAD) 
Detailed prototypes of 3D CAD models were developed using Solid-Works 

software to accurately represent the channel geometries of monoliths. The design 

methodology is detailed in Chapter 11, Section 11.2.1. 

 

3.1.6 Fabrication of 3D-printed carbon monoliths 
A hybrid method that combining sol-gel polymerization with advanced 3D 

printing technology was used to fabricate 3D-printed carbon monoliths. This innovative 

hybrid method is discussed in Chapter 10, Section 10.2.2. 

 

3.1.7 Activation of 3D-printed carbon monoliths using CO2 and H2O 
The 3D-printed carbon monoliths were activated using CO2 and H2O at 850 °C. 

The activation procedures are detailed in Chapter 11, Section 11.2.3.  

 

3.2 Characterization techniques 
The characterization of clay-based materials and 3D-printed carbon monoliths 

involved techniques such as CO2 adsorption, N2 adsorption, Hg intrusion porosimetry, 

SEM, XRD, FT-IR, thermogravimetric analysis, XPS, Zeta potential, helium 

pycnometry, cation exchange analysis, determination of acidic and basic sites, point of 

zero charge and stress-strain experiments. Each technique is discussed in the chapters 

of this thesis. 

 

3.3 Adsorption tests 
Adsorption tests were conducted in both batch and continuous operations. 

Experimental adsorption data were collected using a batch adsorption system, a stirred 

tank batch adsorber for suspended particles and a monolithic packed bed adsorbed. 

The operating conditions included pH, temperature, ionic strength, initial concentration, 

stirring speed, volumetric flow rate, and the channel geometries of the 3D-printed 

monoliths. Detailed descriptions of each operation are provided in the corresponding 

chapters. 
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4.1 Introduction 
Human, industrial and agricultural activities contribute significantly to 

environmental pollution. Nowadays, great concern has been arisen due to the 

occurrence and detection of various toxic organic compounds of anthropogenic origin 

in water resources. These new chemicals, known as emerging pollutants or 

contaminants of emerging concern, have commonly used as personal care products, 

drugs, pesticides, hormones, among others. These compounds are continuously 

discharged into water resources, causing persistence and bioaccumulation, and can 

pose a hazardous threat to human beings and the environment (Wilkinson et al., 2017). 

Tetracycline (TC) is a wide-spectrum antibiotic having high activity toward an 

ample variety of microorganisms. TC is also commonly employed to stimulate the 

growth rate and boost the feed efficiency of animals because of its low cost (Chopra 

and Roberts, 2001; Gao et al., 2012). TC has been detected in surface waters (rivers, 

lakes and seawater), groundwater, drinking water, sediments and wastewater and 

sludge (Xu et al., 2021). The concentrations of TC in surface waters and effluents from 

wastewater treatment plants fluctuated from 0.0011 to 110 μg/L and 0.001 to 3170 

μg/L, respectively (Xu et al., 2021).  

Diverse removal processes have been examined for eliminating TC in water 

solutions, inclusive of advanced oxidation processes. The heterogeneous 

photocatalysis of TC was achieved using TiO2 (Maroga Mboula et al., 2012), and the 

results showed that TC was partially mineralized, generating by-products with low 

biodegradability and less toxicity than TC. Furthermore, the TC ozonation in a water 

solution was also investigated in the pH range of 2.2-7, and it was found that the 

aromatic rings and the dymethylamino group of the TC produced recalcitrant by-

products during the ozonation. After 2 h, the degradation percentage of TC was 40 % 

(Khan et al., 2010). In a recent study, TC was photodegraded by UV irradiation and a 

new sulfate radical, UV/peroxymonosulfate; however, after irradiation, the solution’s 

toxicity significantly increased due to the formation of various toxic by-products (Ao et 

al., 2019). 
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Among the alternative and promising methods for treating contaminated 

aqueous effluents, adsorption has attracted much consideration because of its 

outstanding features like simple and economical process, high removal efficiency, and 

without generating noxious by-products (Yu et al., 2016). Different adsorbents, varying 

from natural minerals to advanced nanostructured materials, have been applied in this 

separation method. 

In several works, different carbonaceous materials were synthesized and 

applied for adsorbing TC. Gao et al. (2012) applied graphene oxide for adsorbing TC 

from water, and the results revealed that the adsorption occurred by physical and 

chemical interactions, and the maximum mass adsorbed of TC was 313 mg/g. Ji et al. 

(2009) analyzed the TC adsorption onto multiwalled carbon nanotubes (MWCNTs), and 

the results showed that TC was adsorbed on MWCNTs by the π-π dispersive 

interactions, resulting in the maximum capacity of 100 mg/g. Furthermore, Rivera-Utrilla 

et al. (2013) determined the adsorption capacity of granular activated carbon towards 

TC to be 375.4 mg/g, and the primary adsorbing mechanism was the electrostatic 

interactions between the TC species in solution and the carbon surface.   

Among the natural adsorbents, clay minerals have several outstanding 

characteristics: mesoporous structure, negatively charged surface, specific surface 

area, hydration, swelling, high cation exchange capacity and chemical stability, which 

favors the adsorption of a wide variety of pollutants. Bentonite is a raw clay mainly 

composed of montmorillonite (Na0.6(Al3.4Mg0.6)Si8O20(OH)4 that belongs to the smectite 

group. Its trilaminar structure (2:1) is formed by one Al3+ octahedral sheet placed 

between two Si4+ tetrahedral sheets. The negatively charged surface of bentonite is 

mainly counterbalanced by Ca2+, K+, Na+ and Mg2+, designated as exchangeable 

cations (Leyva-Ramos et al., 2021). 

The TC adsorption on clay minerals has been studied in few works; however, 

the TC adsorption on bentonite has not been analyzed thoroughly, and neither has the 

mechanisms of TC adsorption been explained. Some studies have shown that 

montmorillonite exhibited a reasonable affinity towards TC. The sodium and calcium 

montmorillonites have been applied for removing TC (Parolo et al., 2013), and at pH = 
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3, the calcium montmorillonite presented a maximum mass of TC adsorbed of 315.5 

mg/g. Zhao et al. (2012) determined the montmorillonite capacity for adsorbing TC to 

be 250 mg/g at pH = 5.5. Iron-intercalated montmorillonite was synthesized to remove 

TC and presented a maximum mass of TC adsorbed of 290 mg/g at pH = 5. This high 

capacity was due to the increment in the pore volume and specific surface area, 

originated by intercalating of iron-(hydr)oxide in the montmorillonite interlaminar space 

(Wu et al., 2016). Current studies claim that high affinity of TC can be ascribed to the 

TC intercalation in the interlaminar space of montmorillonite; however, detailed studies 

refer to the interactions between TC and bentonite, and the adsorption mechanisms at 

acid and neutral conditions are even scarcer.  

Chapter 4 presents the TC adsorption upon various raw clay minerals, including 

diverse structural characteristics, and the raw bentonite (Bent) exhibited the highest 

adsorption capacity towards TC. The characterization of Bent and TC adsorbed onto 

Bent was carried out by various analytical techniques. The solution ionic strength, 

temperature, and pH influence in Bent capacity for adsorbing TC was also analyzed 

thoroughly. Furthermore, the reversibility of the TC adsorption on bentonite was 

examined in detail. The adsorption mechanisms of TC on bentonite in acid and neutral 

aqueous medium were also explained in detail.  

 

4.2 Experimental methodology 
4.2.1 Materials 

The calcium bentonite (Bent) was obtained from a mineral deposit in San Luis 

Potosi, Mexico. Virginia Vermiculite Company, Louisa, Virginia, USA, supplied 

vermiculite (Verm). The phlogopite (Phlo) was provided by the company RENAGO 

located in Oaxaca de Juarez, Oaxaca. Synerplus, Sepiolsa (Spain) and Merck supplied 

the kaolinite (Kaol), sepiolite (Sep) and halloysite (Hal), respectively. 

The chemical structure TC is illustrated in Figure 4.1 (a), and Table 4.1 lists its 

physicochemical characteristics. TC can exist in four distinct species in aqueous 

solution, and the speciation diagram of TC is affected by the pH and is displayed in 

Figure 4.1 (b). This figure shows that the TC cationic species (TC+) predominates at 
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pH lesser than 3, the neutral or zwitterionic species (TC±) prevails in a pH interval from 

3 to 7, and the anionic species (TC- and TC2-) are predominant at pH higher than 7. 

 

Table 4.1. Physicochemical properties of TC. 

Pharmaceutical 
compound 

Family 
Molecular 
structurea 

Molecular 
sizea  
(nm) 

Log Db pKac 

Tetracycline 

(TC) 

M.W. = 444.44 

Antibiotics 

 

X = 1.38 

Y = 0.81 

Z = 0.69 

-1.30 
3.32,  

7.78,  

9.58 
a Determined by Density Functional Theory (DFT) using B3LYP method. 
b Distribution coefficient at pH = 7. 
c Dissociation constants (Chopra and Roberts, 2001). 

 
Figure 4.1. Chemical structure of TC (a) and speciation diagram of TC (b) as a 

function of solution pH. 

 

4.2.2 Clay minerals preconditioning 
The clay minerals were ground in an analytical mill, IKA, A 11 basic model, and 

sieved using -200 +400 mesh sizes, corresponding to a mean particle size of 0.056 

mm. Afterward, the ground clays were rinsed various times with deionized water, 

separated from the washing medium by decantation, dried for 24 h at 110°C and placed 

in sealed containers. 
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4.2.3 Characterization of bentonite and bentonite with TC adsorbed 
The clay mineral samples were designated as Bent, B-TC (pH 3) and B-TC (pH 

7), referring to raw bentonite and bentonite saturated with TC at pH of 3 and 7, and the 

corresponding loading of TC was q = 257.2 and 153.3 mg/g, respectively. The 

physicochemical properties of clay mineral samples were determined by various 

analytical techniques. The chemical composition of Bent expressed as a weight 

percentage of the constituent oxides is presented in Table 4.2 (Martinez-Costa and 

Leyva-Ramos, 2017). 

The textural characteristics were evaluated using the N2 adsorption-desorption 

isotherm, appraised in an N2 physisorption analyzer, Micromeritics, ASAP 2020 model. 

The Brunauer, Emmett and Teller (BET) method was employed to evaluate the specific 

surface area, SBET (Brunauer et al., 1938). Besides, the area of the mesopores, Smeso, 

was computed by the t-plot method. The Barret-Joyner-Halenda (BJH) procedure was 

applied to estimate the pore size distribution and the total accumulated pore volume 

(Barrett et al., 1951). The total volume of the pores, Vp, and the volume of the 

mesopores, Vmeso, were assessed from the pore size distribution by the computational 

procedures recommended by Rouquerol et al. (1998). The average pore diameter, Dp, 

was estimated using the following equation (Rouquerol et al., 1998): 

Dp = 
4 × Vp

SBET
 (4.1) 

The clay mineral morphology was examined in a scanning electron microscope, 

JEOL, model JSM-6610LV. The procedure suggested by Ming and Dixon (1987) was 

utilized to determine the cation exchange capacity (CEC). The procedure consists of 

the following steps: i) Saturation of the bentonite with Na+ cations, ii) Exchange of Na+ 

cations by NH4+ cations, and iii) Determination of Na+ cations released from the 

bentonite to the solution. The crystalline phases of a sample were identified in a Rigaku 

diffractometer, model DMAX 2000, under operating conditions of Cu-Kα radiation (λ = 

0.15406 nm), 30 mA and 30 kV. The diffractometer was programmed to carry out a 

scan from 4 to 45 ° (2θ) and using a step of 1.8 °/min. The coexisting phases were 
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identified by comparing their standards compiled by the International Center of 

Diffraction Data (ICDD). 

The thermogravimetric analysis of the Bent, B-TC (pH 3) and B-TC (pH 7) was 

conducted in a Perkin Elmer analyzer, Pyris Diamond, TGA/DTA model, and the 

operating conditions were temperature range 25-1000°C and a heating rate of 

10°C/min. The Zeta potential of Bent surface in water solution was determined in a 

Zetameter, Zetasizer 4 model, following the next procedure. Bent dispersions (0.01 g 

of particles/50 mL) were prepared in 50 mL centrifuge vials by adding Bent and the 

solutions of constant ionic strength (0.01 N) in the pH interval from 2 to 12, fixed by 

mixing appropriate aliquots of 0.01 N HCl and NaOH solutions. The vials containing the 

dispersions were set in a water bath at 25°C, and the pH was adjusted daily. The 

dispersions were mechanically stirred. After eight days, an aliquot (1 mL) was taken to 

quantify the Zeta potential of the Bent. Moreover, the Zeta potential of B-TC (pH 3) and 

(pH 7) was determined as a function of the uptake of TC adsorbed on Bent, using TC 

concentrations from 15 to 120 mg/L. 

 

4.2.4 Quantification of TC concentration in water samples 
A UV-Vis spectrophotometry procedure was implemented to assess the TC 

concentration in aqueous samples. The sample absorbance was ascertained in a 

Shimadzu spectrophotometer, 2600 model, set up at the specific wavelength of 357. 

The TC concentration was calculated using calibration curves prepared from TC 

standard solutions having concentrations from 0.6 to 42 mg/L and pH of 7, 5 or 3. 

 

4.2.5 Technique for conducting the adsorption equilibrium experiments 
In this work, a stock solution of TC (300 mg/L) was prepared by dissolution of a 

certain mass of TC (2.19 g) using a solution having a constant ionic strength of 0.01 N 

and pH of 3, 5, or 7. 1 L, which was made by mixing the proper volumes of 0.01 N HCl 

and NaOH solutions fixed with deionized water. 

A batch adsorber consisting of a centrifuge vial (50 mL) was utilized to conduct 

the TC adsorption experiments on the clay (Figure 4.2). The TC solutions of known 
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initial concentration, 30-250 mg/L, were formulated by adding a given aliquot of the TC 

stock solution into a volumetric flask (50 mL) and then diluting using the solution with a 

constant ionic strength (I = 0.01 N) and a particular pH. Later, 40 mL of these solutions 

were added to, named batch adsorbers, containing a certain mass of the clay. The 

solution temperature was kept constant by placing the adsorber in a thermostatic bath, 

and the adsorber was placed in a rotary shaker for stirring the solution for 40 min every 

day. The pH was determined daily and maintained constant by supplementing drops of 

NaOH and HCl solutions (0.01, 0.1 and 1 N). In the adsorption runs, it was noticed that 

the solution pH diminished when the initial pH was 7 but increased when the initial pH 

was 3 or 5. Thus, the solution had to be kept constant because the adsorption 

equilibrium depended on the solution pH. The initial volume of the solution was 

considered constant because the supplemented volume was invariably less than 2.0 % 

of the initial volume. 

 
Figure 4.2. Batch adsorbers. 

 

In preliminary runs, the solution was sampled at predetermined times, and the 

TC concentration in each sample was determined. Equilibrium was assumed to be 

reach when the TC concentrations of two consecutive samples did not change 

significantly. The results of the preliminary runs showed that 7 days were enough to 

attain equilibrium. After eight days, once equilibrium was achieved, the dispersions 

were centrifuged at 2500 rpm during 10 min. Subsequently, an aliquot (5 mL) was 
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filtered to determine the TC concentration. Then, the uptake adsorbed of TC was 

computed from the succeeding equation: 

q = 
V
m (Co - Ce) (4.2) 

where Ce and Co are the TC equilibrium and initial concentrations, mg/L; m is the 

amount of clay mineral, g; q is the mass adsorbed of TC, mg/g; V is the TC solution 

volume, L. 

 

4.2.6 Technique for performing the desorption equilibrium experiments 
Once equilibrium was attained, according to the conditions outlined previously, 

the desorption experiments were carried out. The Bent equilibrated with TC was 

extracted from the solution and subsequently transferred to another adsorber holding 

a solution without TC (40 mL) with a particular ionic strength and pH. The pH was 

measured and adjusted daily, as described above. Upon reaching desorption 

equilibrium (eight days), a 5 mL aliquot was filtered to quantify the concentration of TC. 

The amount of TC not desorbed was assessed from the following equation: 

qd = qo - 
V
m Ced (4.3) 

where Ced is the concentration of TC at equilibrium in the desorption experiment, qo is 

the uptake of TC adsorbed starting the desorption experiment, mg/g; qd represents the 

uptake of TC that did not desorb in the desorption run, mg/g. 

 

4.2.7 Procedure for determining the amounts of cations adsorbed during 
adsorption of TC 

The method consisted of two steps. In this first one, the Bent was allowed to 

equilibrate with the solution without TC. A solution (pH of 3 or 7, I = 0.01 N) volume was 

poured into a batch adsorber, and the Bent dosage was 30 mg/40 mL (pH = 3) and 50 

mg/40 mL (pH = 7), soon afterward, the adsorber was partially submerged in a 

thermostatic bath, mechanically shaken, and adjusting the solution pH to maintain it 

constantly. After 8 days, the pH was determined, and the solution was sampled (1 mL) 

to quantify by Atomic Absorption spectrometry the exchangeable cation concentrations 
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(Na+, K+, Ca2+ and Mg2+) in the solution before TC adsorption. In the second step, the 

adsorption of TC was carried out by supplementing an aliquot of a TC solution with a 

specific concentration to make the initial TC concentration equal to 250 mg/L in the 

adsorber solution. Promptly, the pH was measured and designated as pHin, and the 

concentrations of the exchangeable cations were corrected due to adding the aliquot, 

and these concentrations were designated as Ci0. After eight days in contact, the 

solution's final pH (pHfn) was registered, and the final concentrations of cations, Cif, and 

TC in this solution were quantified. 

The equivalents of cations adsorbed or desorbed were determined by 

performing an equivalents balance, similar to the mass balance represented by 

Equation (4.2). The overall uptake of TC adsorbed due to various mechanisms as well 

as the uptakes of H+ and exchangeable cations adsorbed were computed by the 

succeeding equations (Salazar-Rabago and Leyva-Ramos, 2016). 

QTC = 
qe × 100
EWTC

 (4.4) 

QH+  = 
(10-pHin  - 10-pHfn) × 1000 × V × 100

m  (4.5) 

Qi = 
(Ci0 - Cif) × 1000 × V × 100

m  (4.6) 

where Cif and Ci0 are the final and initial concentrations of the exchangeable cation i, 

eq/L; EWTC is the equivalent weight of TC, 444.44 g/eq; QTC is the uptake of TC 

adsorbed on Bent, cmol(+)/kg; QH+ and Qi are the uptakes of H+ and exchangeable 

cation i adsorbed by ion exchange, cmol(+)/kg; pHfn and pHin are the final and initial pH 

values of the solution, and V represents the TC solution volume in the adsorber, L. It is 

essential to mention that QH+ and Qi would be positive if the H+ and exchangeable 

cations were adsorbed on Bent, whereas they would be negative if the H+ and 

exchangeable cations were desorbed from Bent. 

The total uptake of cations (exchangeable cations and H+) adsorbed during the 

adsorption of TC on Bent was computed as follows: 

QT,Cat = QH+  + �Qi (4.7) 
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4.3 Results and discussion 
4.3.1 Cation exchange capacity, chemical composition, textural characteristics 

and morphology of bentonite 
The CEC, chemical composition and textural properties of Bent are registered 

in Table 4.2. The CEC of Bent was determined to be 75.2 cmol(+)/kg. This CEC value 

is within the CEC interval for bentonite reported in the literature, 70-140 cmol(+)/kg 

(Borden, 2001; Wang et al., 2010). As seen in Table 4.2, the weight percentage of the 

constituent oxides showed that the mineral clay used in this work is calcium bentonite 

due to the content of CaO (3.26%). 

 
Table 4.2. Chemical composition and textural properties of Bent and B-TC (pH 3). 

Chemical composition of Bent 
(% weight) 

 Textural properties and CEC 
Property Bent B-TC (pH 3) 

SiO2 65.70  SBETa (m2/g) 45 13 

Al2O3 19.60  Vpb (cm3/g) 0.087 0.063 

Fe2O3 3.73  Dp (nm) 7.8 19.7 

K2O 2.88  Smesoc (m2/g) 32 13 

CaO 3.26  Vmesod (cm3/g) 0.075 0.046 

MgO 3.73  CECe (cmol(+)/kg) 75.2 - 

Na2O 0.79     
a Specific surface area determined by the BET method. 
b Total pore volume evaluated by the BJH method. 
c Mesoporous area calculated by the “t-plot” method. 
d Mesoporous volume obtained by the BJH method. 
e CEC evaluated by the method proposed by Ming and Dixon (1987). 

 

The Dp, SBET, Vp and Vmeso of Bent were 7.8 nm, 44.5 m2/g, 0.087 cm3/g and 

0.075 cm3/g, correspondingly. These values agree with those reported for raw 

bentonites (Moma et al., 2018; Moraes et al., 2011). The SBET, Vp and Vmeso for B-TC 

(pH 3) decreased to 13 m2/g, 0.063 cm3/g and 0.046 cm3/g, correspondingly, and Dp 

increased from 7.8 to 19.7 nm, after the TC adsorption on Bent. The significant 
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decrease in SBET, Vp and Vmeso can be attributed to the filling up and blocking off the 

mesopores by the TC molecules adsorbed. 

Figure 4.3 depicts the N2 adsorption-desorption isotherms on Bent and B-TC 

(pH 3), and the two isotherms are of type IIb, characteristic of clays or aggregates of 

platy particles. According to the IUPAC classification, both isotherms show a hysteresis 

loop of type H3, characteristic of mesoporous materials (Sing, 1985). The mesoporous 

structure of this type of clays is due to the interparticle spaces produced by the 

disorderly arrangement of the clay sheets (Domínguez and Schifter, 1992). The B-TC 

(pH 3) displays a narrower hysteresis loop, indicating that its mesopores were 

obstructed after the TC adsorption on the pore surface of Bent. 

 
Figure 4.3. Adsorption-desorption isotherms of N2 on Bent and B-TC (pH 3) at -196.15 °C. 

 

The cumulative pore volume percentage for Bent and B-TC (pH 3) are displayed 

in Figure 4.4. As seen in this figure, the Bent and B-TC (pH 3) are mainly composed of 

mesopores because the mesopore volume represents 86 and 73 % of the total pore 

volume, respectively. The mesopore volume of B-TC (pH 3) was reduced after 

adsorption of TC, suggesting that TC adsorption is mainly occurring in the mesopores. 

This result also explains why the Dp of B-TC (pH 3) is higher than the Dp of Bent.  
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Figure 4.4. The cumulative pore volume percentage of Bent and B-TC (pH 3). 

 

Figure 4.5 (a) shows an overall view of Bent and B-TC (pH 3) particles by SEM. 

Morphology of clay can be observed in detail at higher magnifications (areas selected 

by yellow and red dashed lines). Bent shows flatty particles stacked randomly typical 

of an open-textured Ca-montmorillonite, Figure 4.5 (b) and (c). The morphology 

changed in B-TC (pH 3), exhibiting bigger particle sizes and adsorbed TC formed dense 

agglomerates on the external surface of Bent and empty spaces between randomly 

stacked flatty particles. The SEM analysis confirmed that the adsorption of TC partially 

took place on the external surface of Bent particles and spaces between particles. 

 

4.3.2 Zeta potential distribution 
Figure 4.6 (a) depicts the zeta potential distribution of Bent vs. the pH. In the pH 

interval tested, the Bent presented a negative surface charge, exhibiting more negative 

zeta potential while increasing the solution pH. The negative charge of Bent is attributed 

to negative charge deficiency caused by isomorphic substitutions of Si4+ for Al3+ and 

Al3+ for Mg2+ or Fe2+ in the octahedral and tetrahedral sheets, correspondingly 

(Domínguez and Schifter, 1992). 
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Figure 4.5. SEM images of Bent and B-TC (pH 3) recorded at 500X (a), 3000X (b) 

and 5000X (c). 

 

Furthermore, Figure 4.6 (b) displays that the initial concentration of TC 

influences the zeta potential at pH = 3 and 7. The TC initial concentration influenced 

Bent surface charge because the TC adsorbed on Bent surface can balance the 

surface charge of Bent. Consequently, the uptake adsorbed of TC on Bent grew by 

(a)

50 µm 500xBent 50 µm 500xB-TC (pH 3)

(b)

5 µm 3000xBent 5 µm 3000xB-TC (pH 3)

5 µm 5000xBent 5 µm 5000xB-TC (pH 3)

(c)



Chapter 4  
 

 

52 
 

incrementing the initial concentration and was calculated as explained in Section 4.2.5. 

As seen in Figure 4.6 (a), at pH = 3, the negative surface charge shifted towards less 

negative values or even positive, while the TC initial concentration or the mass of TC 

adsorbed raised. In contrast, at pH = 7, there was no significant difference in surface 

charge of Bent for higher TC initial concentrations. Variations in surface charge can be 

visualized clearly by calculating the Zeta potential difference Δ(ZP) as a function of the 

uptake of TC adsorbed (q). The Δ(ZP) was calculated applying the following equation: 

∆(ZP) = (ZP)B-TC - (ZP)Bent (4.8) 

where (ZP)B-TC is the zeta potential of bentonite saturated with TC (B-TC), mV, and 

(ZP)Bent is the zeta potential of Bent, mV. Figure 4.6 (b) shows the Δ(ZP) vs. q, and as 

shown in this figure, at pH = 3, the Δ(ZP) increased linearly, augmenting the mass of 

TC adsorbed. On the contrary, at pH = 7, the Δ(ZP) showed no significant change as a 

function of q. 

  
Figure 4.6. Zeta potential distribution of Bent as a function of TC initial 

concentration (a) and Zeta potential difference of Bent as a function of the uptake of 

TC adsorbed (b) at T = 25 °C and pH of 3 and 7. 

 

The behavior of Δ(ZP) at pH = 3 revealed that the adsorption mechanism of TC 

on Bent depends significantly on the electrostatic attractions since TC+ is attracted to 

negatively charged surface and adsorbed on the cationic sites of Bent, balancing the 

negative charge of the surface. On the contrary, at pH = 7, the slight variation of Δ(ZP) 
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showed no contribution of electrostatic attractions in the adsorption mechanism of TC. 

Thus, the adsorption of the TC± and TC- species at pH = 7 may be caused by non-

electrostatic interactions, like hydrophobic interactions, formation of coordination 

complexes or hydrogen bonding (Flores et al., 2017; Ibrahim et al., 2018; Porubcan et 

al., 1978; Undabeytia et al., 1999; Yamamoto et al., 2018). 

 

4.3.3 X-ray diffraction testing 
 The XRD patterns of Bent, B-TC (pH 7) and B-TC (pH 3) are shown in Figure 

4.7. The principal reflections in the XRD pattern of Bent show the crystalline plane with 

the (001) Miller index at 5.89 ° (2θ) and the reflections at 19.72, 23.51 and 34.74 ° (2θ) 

which corresponded to the montmorillonite (JCPDS 13-0135) (X. Wang et al., 2015; Y. 

Wang et al., 2019), corroborating that Bent is mainly composed of montmorillonite. The 

X-ray pattern of Bent also contains quartz and feldspar reflections, constituting the 

secondary crystalline compounds in Bent. Besides, the possible coexistence of illite 

was detected at 9.8° (2θ) (Elgamouz et al., 2019). 

The plane (001) related to the basal reflection was 1.50 nm in Bent. Usually, the 

thickness of the 2:1 laminar configuration of the montmorillonite is 0.96 nm (Moore and 

Hower, 1986). Therefore, the interlayer space in basal reflection (001) observed for 

Bent, 0.54 nm, is related to the presence of two H2O molecules (0.25 nm) between the 

sheets and associated with the hydration of the interlaminar Ca2+ cation. The estimated 

basal reflection (001) for B-TC (pH 7) and B-TC (pH 3) were 1.62 and 1.89, 

corresponding to interlayer spaces of 0.66 and 0.93 nm, correspondingly. According to 

the TC molecular size (Table 4.1), the interlayer space for the B-TC (pH 3) sample is 

wide enough to corroborate that the TC molecules are intercalated in the interlayer 

space of Bent and oriented parallel over their XZ or XY cross-sectional area, or slightly 

tilted. This result agrees with other studies (Parolo et al., 2013; Wu et al., 2016). 

In the B-TC (pH 7) sample, the interlayer space was slightly smaller than the 

shortest dimension (Z) of the TC molecule. However, it has been reported that the 

increment in interlaminar space caused by the adsorption of organic molecules can be 

at least 0.1 nm lesser than the smallest dimension of the adsorbed molecule (Greene-
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Kelly, 1955), suggesting that the TC± and TC- species, despite their electric charge, can 

be partially intercalated in the interlayer space in a tilted orientation over their XY cross-

sectional area. Some authors have reported that the intercalation of nitrobenzene, 

pyridine and benzoic acid can be in the interlayer space of montmorillonite, even though 

these compounds are neutral species (Farmer and Mortland, 1966; Lu et al., 2010; 

Yariv et al., 1966). The TC adsorbed on Bent was confirmed only in B-TC (pH 3) due 

to the identification of its main reflection at about 8.5 ° (2θ), recalling that the B-TC (pH 

3) is the sample with the highest amount of TC adsorbed. 

  
Figure 4.7. X-ray patterns obtained for Bent, B-TC (pH 3) and B-TC (pH 7) (a). 

Enlargement of the area depicting the (001) reflection of Bent (b). 

 

4.3.4 Infrared spectroscopy analysis 
Figure 4.8 (a) displays the infrared spectra for Bent, B-TC (pH 3), B-TC (pH 7) 

and TC samples in the wavenumber range of 400-4000 cm-1. The spectrum of Bent 

shows an absorption band at 514 cm-1 due to bending vibrations (δ) of the (Al-O-Si) 

bond, followed by a very strong band comprising the region between 1071-900 cm-1, 

corresponding to the stretching vibrations (ν) of the (Al-O-Al) and (Si-O-Si) bonds in 

Bent. The band at 3616 cm-1 is associated with vibrations of the structural ν(OH) groups 
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of Bent, while the other around 3400 cm-1 represents the -OH groups coordinated by 

hydrogen bonding δ(O-H). Alabarse et al. (2011) found out that the ν(O-H) vibration of 

interlayer water is shown at 1631 cm-1. 

  
Figure 4.8. FT-IR spectra of Bent, B-TC (pH 3), B-TC (pH 7) and TC (a). The 

amplification of the spectra selected by the blue dashed line showing the TC bands (b).  

 

The absorption bands of the TC spectrum are at 1643, 1509 and 1222 cm-1, 

Figure 4.8 (b), and designated as Amides I, II and III, corresponding to vibrations of the 

bonds ν(C=O), δ(N-H) and ν(C-N) about the amide group. The vibrations of the ν(C=O) 

bond of the A and C rings (See Figure 4.1 (a)) are displayed at 1601 and 1576 cm-1, 

respectively. The band at 1448 cm-1 matches to skeletal vibrations ν(C=C), while those 

located between 1430 and 1230 cm-1 are assigned to the ν(C-C), δ(C-C), ν(amine, N-

H), δ(amine, C-N) and ν(C-O) bonds (Kang et al., 2011). 

The TC bands in the B-TC (pH 3) and B-TC (pH 7) confirmed TC adsorption on 

Bent. The bands of the δ(C-N) (1393 cm-1) and ν(N-H) (1322 cm-1) bonds of the 

dymethylamino group shifted towards longer wavenumbers in B-TC (pH 3). Besides, 

the ν(O-H) band of interlaminar water showed a shift from 1631 to 1624 cm-1. This shift 

is related to the interaction between the group -NH(CH3)2+ (TC+ species) with the 
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negative surface of Bent, and the coordination of the polar groups of TC+ with the 

hydration water of the clay by hydrogen bonds. B-TC (pH 7) showed a displacement of 

ν(N-H) band from 1322 to 1325 cm-1 attributed to a weak electrostatic attraction 

between the -NH(CH3)2+ group (TC± species) with the negative surface of Bent. 

Similarly, the ν(C=O) band of the C-ring of TC moved to lower wavenumbers (1538   

cm-1), and its intensity decreased also. This distortion can be related to the resonance 

of the double bond C=O of the C ring of the TC- species with the oxygen bound in C12 

(See Figure 4.1 (a)), causing a high electronic density that leads to a negative charge 

on the resonant ring. It has been reported that this negative charge is usually stabilized 

by the formation of coordination complexes with highly polarizable divalent cations 

(Lambs et al., 1988). The interlaminar water ν(O-H) band shifted from 1631 to 1615  

cm-1, suggesting the formation of outer-sphere coordination complexes among the TC- 

species and the hydration sphere of the interlaminar Ca2+ cation. These results agree 

with different adsorption studies of organic compounds on montmorillonite, which is the 

main component of Bent (Farmer and Mortland, 1966; Lu et al., 2010; Parfitt and 

Mortland, 1968; Yariv et al., 1966). 

 

4.3.5 Thermogravimetric analysis 
The thermogravimetric analysis (TGA/DTG) of Bent, B-TC (pH 3) and B-TC (pH 

7) samples are presented in Figure 4.9. The TGA curve of Bent, Figure 4.9 (a), displays 

a mass loss of around 6.1% from 25 to 200°C, associated with the water adsorbed onto 

the external surface and in the interlayer space of Bent. Subsequently, another mass 

loss of approximately 4.8% is observed between 200 and 1000°C, corresponding to 

dehydroxylation reactions in the octahedral sheet of Bent (Guggenheim and Koster van 

Groos, 2001). The overall mass loss from 25 to 1000°C was 10.9%, confirming the high 

thermal stability of Bent. 

The TGA curves of B-TC (pH 7) and B-TC (pH 3) are shown in Figures 4.9 (b) 

and 4.9 (c), respectively, and a mass loss of 5.5% for B-TC (pH 7) and 3.8% for B-TC 

(pH 3) is observed between 25 and 200°C associated to the water adsorbed on the B-

TC. In the range 200-1000°C, a mass loss of 10.2 and 13.9% is noticed for B-TC (pH 
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7) and B-TC (pH 3), respectively, confirming the decomposition of the TC adsorbed and 

dehydroxylation reactions (Cervini et al., 2016). The TC decomposition in both samples 

mainly occurred at 316.4°C. Assuming that the mass loss caused by dehydroxylation 

of the structural -OH groups of Bent (4.8%) is the same as those for B-TC (pH 7) and 

B-TC (pH 3); thus, the decomposition of the TC was 5.4 and 9.1%, respectively. The 

mass adsorbed of TC on B-TC (pH 7) and B-TC (pH 3) was q = 153.3 and 257.2 mg/g, 

respectively, then only 37.1 and 38.9% of the mass of TC adsorbed was decomposed 

in B-TC (pH 7) and B-TC (pH 3). This finding reveals that the TC adsorbed did not 

completely decompose in the temperature range used in this work. The partial 

decomposition of TC adsorbed is explained, recalling that part of TC intercalated in 

Bent interlayer space and Bent structure protected TC molecules thermally. 

 
Figure 4.9. TGA (red line) and DTG (black dashed line) curves obtained for Bent (a), 

B-TC (pH 7) (b) and B-TC (pH 3) (c).  
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4.3.6 Adsorption isotherms of TC 
The experimental data for the TC adsorption equilibrium onto raw clays were 

interpreted using the Radke-Prausnitz (R-P), Freundlich and Langmuir mathematical 

models expressed by the succeeding equations: 

q = kCe
1/n (4.9) 

q = 
qmKCe

1+KCe
 (4.10) 

q = 
aCe

1+bCe
β (4.11) 

where k (mg1-1/n L1/n/g) is a parameter associated with adsorption capacity, qm (mg/g) 

represents the maximum mass of TC adsorbed, K (L/mg) is a parameter associated 

with the heat of adsorption, and a (L/g), b (Lβ/mgβ) and β are constants of the R-P 

isotherm. 

Table 4.3 lists the average percentage deviations (%D) and the parameters for 

each isotherm. The parameters were assessed employing a nonlinear least-squares 

optimization procedure and the Rosenbrock-Newton algorithm, and %D was appraised 

with the succeeding relationship: 

%D = �
1
N��

qi,exp - qi,pred

qi,exp
�

N

i=1

�  × 100 % (4.12) 

where N is the number of experimental data points; qi,exp is the uptake adsorbed of TC 

evaluated experimentally, mg/g; qi,pred is the uptake adsorbed of TC computed using 

the adsorption isotherm, mg/g. 

In 12 out of 15 cases of the experimental conditions presented in Table 4.3, the 

%D obtained for the Langmuir and R-P isotherms were smaller than those for the 

Freundlich model. Besides, 9 out of 15 cases, the parameter β of the R-P model is β = 

1, so the R-P isotherm transforms into the Langmuir isotherm model. For this reason, 

Langmuir isotherm was chosen for predicting the experimental data. 
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Table 4.3. Adsorption isotherm parameters and average percentage deviation for the 

adsorption of TC on raw clays.  

Natural 
clays 

pH 
I  

(N) 
T  

(°C) 

Freundlich  Langmuir  Radke-Prausnitz 
K  

(mg1-1/n L1/n/g) 
n %D  

qm  
(mg/g) 

K  
(L/mg) 

%D  
a  

(L/g) 
b  

(Lβ/mgβ) 
β %D 

Sep 3 0.01 25 10.75 2.83 3.8  60.53 0.061 6.0  8.30 0.418 0.77 0.9 

Verm 3 0.01 25 5.93 3.31 5.7  26.45 0.069 13.9  8.23 0.980 0.78 7.0 

Phlo 3 0.01 25 0.97 1.78 9.5  21.33 0.015 5.4  0.33 0.015 1.00 5.4 

Hal 3 0.01 25 7.00 2.75 4.7  39.56 0.068 16.0  46.91 6.239 0.65 5.3 

Kaol 3 0.01 25 2.42 2.28 10.6  21.26 0.041 13.9  1.59 0.249 0.75 13.3 

Bent 3 0.01 25 36.15 2.14 16.0  367.50 0.037 4.2  13.00 0.035 1.00 5.0 

 5 0.01 25 30.28 2.12 20.3  334.52 0.032 10.7  10.81 0.034 0.99 10.7 

 7 0.01 25 22.83 2.14 14.5  243.70 0.034 4.2  7.03 0.027 1.00 4.2 

 3 0.05 25 40.35 2.38 20.0  344.31 0.038 3.5  12.98 0.038 1.00 3.5 

 3 0.10 25 35.58 2.31 21.9  340.07 0.032 7.3  11.13 0.033 1.00 7.5 

 3 0.50 25 9.38 1.44 8.9  428.14 0.011 3.4  4.51 0.011 1.00 3.5 

 7 0.05 25 18.10 1.87 17.5  290.56 0.023 8.8  7.07 0.025 1.00 9.3 

 7 0.10 25 17.30 1.91 18.1  264.81 0.023 9.8  6.21 0.023 1.00 9.8 

 7 0.01 15 17.94 2.07 5.6  230.01 0.025 6.5  11.69 0.244 0.70 3.5 

 7 0.01 35 21.33 1.87 18.3  317.34 0.027 9.2  8.61 0.027 1.00 9.2 

 

4.3.7 Comparing the adsorption capacity of TC on various raw clays 
At pH = 3 and T = 25°C, the adsorption isotherms of TC onto Sep, Bent, Phlo, 

Hal, Verm and Kaol are displayed in Figure 4.10 (a). Also, Figure 4.10 (b) shows an 

amplification of the adsorption isotherms in the uptake of TC adsorbed range from 0 to 

70 mg/g. The experiments were performed at pH = 3 to favor the adsorption on acidic 

clays because the predominant species of TC was the cationic species (TC+) in the 

water solution. The results showed that Bent exhibited the maximum mass adsorbed 

of TC, 283.5 mg/g, and the capacities diminished as follows: Bent >> Sep > Hal > Verm 

> Kaol ≈ Phlo. For a TC equilibrium concentration of 100 mg/L, the Bent adsorption 

capacity towards TC was 5.40-fold higher than that for Sep and up to 22.5-fold larger 

than that for Phlo. 

The highest capacity of Bent for adsorbing TC can be related to their structural 

arrangement, the swelling capacity, the degree of isomorphic substitution, and the 

residual charges in its structure. Verm and Phlo have a similar laminar structure like 

Bent; however, the Mg2+ and K+ ions are the main interlayer cations in these clays 
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(Domínguez and Schifter, 1992). These cations promote higher residual charges, 

generating strong bonds between the interlaminar ions and the clay sheets, diminishing 

the adsorption of TC. Even though Kaol is considered a swelling clay, it presented low 

TC adsorption capacity due to the large molecular size of TC. On the other hand, Sep 

and Hal cannot swell because of their fibrous and tubular structures, hindering that the 

molecules of TC can access the Sep channels or the interior of the Hal tubular structure. 

  
Figure 4.10. Effect of the type of raw clay on the adsorption isotherms of TC at pH = 3 

and T = 25 °C (a). Amplification in the uptake of TC adsorbed range from 0 to 70 mg/g 

(b). The lines represent the best-fit isotherm. 

 

Table 4.4 shows the TC mass adsorbed on different materials, and the Bent 

used in this work presented a maximum mass adsorbed of 283.5 mg/g, which is larger 

than the capacities found for other raw clays and even comparable or superior to 

carbon-based adsorbents. Furthermore, Bent presents outstanding advantages such 

as low cost and abundance, making Bent a very effective adsorbent for eliminating TC 

from aqueous solutions. 

 

4.3.8 Influence of solution pH upon the capacity of bentonite for adsorbing TC 
Figure 4.11 depicts the solution pH effect upon the TC adsorption onto Bent at 

25 °C and pH of 3, 5 and 7. No adsorption runs were carried out at pH > 7 since it was 

observed that TC was partially mineralized in alkaline media. The maximum adsorption 
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capacity was 183.1, 263.8 and 283.5 mg/g for pH of 7, 5, and 3, correspondingly, so 

that the capacity for adsorbing TC notably diminishes by incrementing pH, and the 

highest uptake of TC adsorbed was at pH = 3. According to the results, the affinity of 

Bent towards the species of TC decreases as follows: TC+ > TC± > TC-. At pH = 3, TC+ 

is the predominant species, and Bent surface is negative so that the adsorption 

capacity is favored by electrostatic attractions among TC+ and the negative surface 

charge of Bent. Moreover, the contribution of electrostatic attraction to the adsorption 

of TC± and TC- on Bent is not significant at pH = 7 because the net charge of these 

species is 0 and -1, respectively, and the Bent surface is negatively charged. Hence, 

the species TC± and TCH- would not be attracted or repelled from the surface of the 

clay, suggesting that the adsorption of both species on Bent is mainly due to other 

mechanisms. 

 

Table 4.4. Adsorption capacities of several adsorbent materials towards TC.  

Adsorbents 
Maximum 

adsorption capacity  
(mg/g) 

Experimental 
conditions 

Reference 

Commercial 

activated carbon 
471.1 pH = 7-8, T = 25°C Rivera-Utrilla et al. (2013) 

Granular activated 

carbon 
375.4 pH = 7-8, T = 25°C Rivera-Utrilla et al. (2013) 

Graphene oxide 313.0 pH = 3.6, T = 25°C Gao et al. (2012) 

Bentonite 283.5 pH = 3, T = 25°C This work 
Montmorillonite 250.0 pH = 5.5, T = 25°C Zhao et al. (2012) 

MOF graphite oxide 

pellets 
228.0 pH = 4, T = 25°C Yu et al. (2018) 

Rectorite 140.0 pH = 4-5, T = 25°C Chang et al. (2009) 

Multi-walled carbon 

nanotubes 
100.0 pH = 5.8, T = 25°C Ji et al. (2009) 

Nano sheet layered 

double hydroxide 
98.04 pH = 3, T = 10°C Soori et al. (2016) 

Illite 32.0 pH = 5-6, T = 25°C Chang et al. (2012) 
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Figure 4.11. Effect of the solution pH on the adsorption isotherms of TC on Bent at  

T = 25 °C. The lines represent the Langmuir isotherm. 

 

4.3.9 Analysis of cations exchanged during adsorption of TC 
This analysis was performed by a two-step procedure described above. The 

amount of each exchangeable cation (Qi) and H+ (QH+) adsorbed or desorbed on the 

clay during the TC adsorption on Bent at pH 3 and 7 are given in Table 4.5. At pH = 3, 

the Qi values were negative, indicating that the exchangeable cations were desorbed 

from the Bent to the solution, and the opposite occurred with the H+. Li et al. (2010) 

noted similar trends for the adsorption of TC on smectite. At pH = 3, the TC+ and H+ 

competed for the same adsorption sites, and this tendency was found by Zhao et al. 

(2012) for the TC adsorption onto montmorillonite. The total uptake of exchangeable 

cations and H+, QT,Cat, was -57.39 cmol(+)/kg, almost the same as the uptake of TC, 

QTC, of 57.9 cmol(+)/kg, which is lower than the CEC of Bent (75.2 cmol(+)/kg). Thus, 

the adsorption of TC+ and H+ on TC was essentially due to the cation exchange of the 

exchangeable cations. Wang et al. (2010) reported similar results for the ciprofloxacin 

adsorption on montmorillonite. 

 

0 20 40 60 80 100 120
Concentration of TC at equilibrium, mg/L

0

50

100

150

200

250

300

350

U
pt

ak
e 

of
 T

C
 a

ds
or

be
d,

 m
g/

g  pH = 3
 pH = 5
 pH = 7



 Removal of tetracycline from aqueous solutions by adsorption on raw Ca-bentonite. Effect of operating 
conditions and adsorption mechanism 

 

63 
 

Table 4.5. Exchangeable cations and H+ concentration at the beginning and the end of 

the adsorption of TC on Bent and uptake of TC adsorbed on Bent. 

Species 

B-TC (pH = 3)  B-TC (pH = 7) 
QTC = 57.9 cmol(+)/kg  QTC = 35.18 cmol(+)/kg 

Ci0×105 
(eq/L) 

Cif×105 
(eq/L) 

Qi 
(cmol(+)/kg) 

 Ci0×105 
(eq/L) 

Cif×105 
(eq/L) 

Qi 
(cmol(+)/kg) 

Mg2+ 

Ca2+ 

K+ 

Na+ 

H+ 

9.93 

25.15 

8.12 

937.9 

100 

13.98 

41.77 

12.10 

1025 

31.62 

-5.35 

-21.93 

-5.25 

-115.1 

90.27 

 6.87 

16.99 

8.52 

934.9 

0.010 

1.07 

4.89 

6.04 

1013.9 

0.012 

4.66 

9.72 

2.00 

-63.41 

-0.0025 

QT,Cat   -57.39    -47.03 

TC 57.50 13.7   53.90 10.1  

 

At pH = 7, the uptakes of the Mg2+, Ca2+ and K+ cations were positive, confirming 

that these cations were adsorbed on the surface of Bent. In contrast, the uptakes of 

Na+ and H+ (QH+) were negative, showing that both cations were desorbed from the 

Bent surface; however, QH+ was insignificant. The value of QT,Cat was -47.03 

cmol(+)/kg, while the uptake of TC adsorbed was 35.18 cmol(+)/kg. According to the 

speciation diagram (Figure 4.1 (b)), at pH = 7, the species of TC present in water 

solution were the anionic species TC- (16.6%) and the zwitterionic species TC± (83.6%), 

but the cationic group –NH(CH3)2+ of TC- and TC± can interact with the negatively 

charged Bent surface (Parolo et al., 2013). Furthermore, at pH > 6, the species of TC 

present in the solution can be affected by the concentration of Mg2+ and Ca2+. The 

reduction of the Mg2+ and Ca2+ concentrations in the solution can also be ascribed to 

forming outer-sphere coordination complexes between the TC- and Ca2+ and Mg2+ such 

as Ca(TCH)2 and CaTC(TCH)- (Lambs et al., 1988; Parolo et al., 2013). Other works 

have described the occurrence of these complexes in the adsorbing mechanism of TC 

on montmorillonite (Parolo et al., 2013; Zhao et al., 2012). 
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4.3.10 Variation of the adsorption capacity of bentonite with the ionic strength  
The importance of the solution ionic strength (0.01, 0.05, and 0.1 N) in the 

adsorption of TC on Bent at pH = 7 and 3 and 25°C is illustrated in Figure 4.12. As 

noticed in Figure 4.12 (a), the mass of TC adsorbed diminishes by incrementing the 

solution ionic. Incrementing the ionic strength from 0.01 to 0.1 N resulted in an 11.4% 

reduction of the uptake of TC adsorbed at an equilibrium concentration of 60 mg/L. 

Additional experiments at a higher ionic strength of 0.5 N revealed that the adsorption 

diminished 34.74% from 0.01 N to 0.5 N. At pH = 7, the mass of TC adsorbed did not 

show a significant change by rising the solution ionic strength (See Figure 4.12 (b)). 

  
Figure 4.12. Effect of the solution ionic strength on the adsorption isotherms of TC 

on Bent at T = 25 °C and pH = 3 (a) and pH = 7 (b). The lines represent the 

Langmuir isotherm. 

 

These studies showed a competition among the TC+ species and Na+ ions in 

solution for the available adsorption sites and further confirmed that electrostatic 

attractions and cation exchange have an essential role in the uptake of adsorbed of TC 

on Bent at pH = 3. There is no crucial decrease in the mass adsorbed at lower ionic 

strength since the concentration of Na+ cations cannot compete significatively for 

adsorption sites. In contrast, at a higher Na+ concentration, the TC adsorption 

diminishes. At pH = 7, the Bent adsorption capacity does not depend on the 
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concentration of Na+ ions, confirming the presence of weak electrostatic interactions in 

the adsorption mechanism of the TC± species. 

 

4.3.11 Variation of the bentonite adsorption capacity with temperature 
The influence of temperature upon the capacity of Bent for adsorbing TC is 

presented in Figure 4.13. The Bent adsorption capacity towards TC raises incrementing 

the temperature; for an equilibrium concentration of 100 mg/L, the uptake adsorbed of 

TC was 231.8, 187.8, and 164.7 mg/g at 35, 25, and 15 °C, sequentially, indicating a 

decrease in adsorption capacity of about 1.40 times, while the temperature reduces 

from 35 to 15°C. 

 
Figure 4.13. Effect of the temperature on the adsorption isotherms of TC on Bent at  

pH = 7. The lines represent the Langmuir isotherm. 

 

The isosteric heat of adsorption was appraised with the succeeding relationship: 
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�
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where Ce1 and Ce2 denote the concentrations of TC at the temperatures T1 and T2, 

correspondingly, both at the same mass of TC adsorbed, mg/L; T is the solution 

temperature, K; R is the ideal gas constant, 8.314 J/mol K; (∆Hads)q stands for the 

isosteric heat of adsorption of TC onto Bent for a given mass of TC adsorbed, J/mol. 

For a mass of TC adsorbed of 172.8 mg/g, the TC equilibrium concentrations 

were Ce1 = 38.2 mg/L (T1 = 308.15 K) and Ce2 = 113.4 mg/L (T2 = 288.15 K). The 

(∆Hads)q was 40.3 kJ/mol, indicating that TC adsorption on Bent is endothermic. 

Chemical adsorption is characterized by having high heat of adsorption similar to those 

for chemical reactions (> 40 kJ/mol) (Leyva-Ramos, 2010). The results demonstrate 

that adsorption of TC on Bent at pH = 7 occurs by physical and chemical interactions. 

 

4.3.12 Desorption of TC adsorbed on bentonite 
The reversibility of TC adsorbed on Bent was analyzed by conducting adsorption 

runs at pH = 3 and subsequently desorbing at pH = 3 and 7. At pH = 3, the experimental 

data for adsorption equilibrium data are shown in Figure 4.14, denoted by the letter A 

and followed by the experiment number. Likewise, the experimental data for desorption 

equilibrium are represented as D3 and D7, where 3 and 7 are related to the desorption 

pH and preceded by the desorption experiment number. 

The adsorption process could be considered reversible when the desorption 

equilibrium data were on the adsorption isotherm. As shown in Figure 4.14, the 

desorption equilibrium data for pH = 3 is over the adsorption isotherm at pH = 3. On the 

other hand, the desorption equilibrium data for pH = 7 were relatively close to the 

adsorption isotherm (pH of 7). 

The desorption percentage, %Des, was computed from the succeeding 

equation: 

%Des = 
qo - qd

qo - qd,rev
 × 100 % (4.14) 

where qo and qed are the uptakes of TC adsorbed at the start, and the termination of 

the desorption experiment and the uptake of TC adsorbed at the desorption equilibrium 

supposing that the adsorption is reversible is denoted as qd,rev. The adsorption could 
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be considered reversible if the %Des was equal to 100%. Contrarily, the adsorption 

would be irreversible when %Des was less than 100%. The qd,rev was computed by 

solving the Langmuir isotherm and Equation (4.3) representing the desorption mass 

balance. 

 
Figure 4.14. Adsorption isotherm of TC on Bent at pH = 3 and T = 25 °C; and 

desorption isotherm of TC at pH of 3 and 7. The lines represent the Langmuir 

isotherm. 

 

Table 4.6 lists the qo, qd, qd,rev and %Des, and the %Des values vary from 72.0 

to 100% and 8.50 to 27.4% for pH of 7 and 3, respectively. At pH = 3, the average 

%Des was 11.99%, revealing that the adsorption was essentially irreversible and 

mainly due to chemical adsorption. Moreover, at pH = 7, the adsorption was reversible 

for concentrations at equilibrium lower than 10 mg/L because the %Des values were 

very close to 100%. Nevertheless, for concentrations bigger than 10 mg/L, %Des varied 

between 70 and 90%, indicating that desorption was irreversible. The partial desorption 

of the TC by raising the solution pH corroborated that the chemical and physical 

mechanisms were involved in the TC adsorption at pH = 7. 
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Table 4.6. Desorption percentages of TC from Bent at T = 25 °C. 

Exp. 
No. 

qo 
(mg/g) 

Desorption at pH = 7  Desorption at pH = 3 
qd 

(mg/g) 
qd,rev 

(mg/g) 
%Des 

 qd 
(mg/g) 

qd,rev 
(mg/g) 

%Des 

1 11.98 10.57 11.39 ~100.0  11.88 11.62 27.4 

2 35.44 33.35 33.56 ~100.0  35.33 34.64 10.0 

3 58.78 55.10 55.34 ~100.0  58.64 56.84 7.1 

4 98.11 91.86 91.02 88.1  97.75 94.39 9.7 

5 130.6 117.8 115.3 84.0  129.9 122.9 9.3 

6 176.97 152.64 143.2 72.0  175.56 160.3 8.5 

 

4.3.13 Adsorption mechanisms of TC on bentonite 
The adsorption of TC on Bent depends on the solution pH because of the 

changes experienced by the chemical groups of the TC molecule and the surface 

charge of Bent. At pH = 3, where the TC+ species predominates, adsorption occurs 

onto Bent external surface and in the interlaminar space, and it is governed by 

electrostatic attractions, followed by the cationic exchange between interlaminar 

cations, particularly Ca2+, and the TC+ species (Figure 4.15 (a)). Also, there is 

interaction through hydrogen bonding between the polar groups of the adsorbed TC 

molecule and the hydrated water of the exchangeable cations, which were not released 

from the interlayer space of Bent. At pH = 7, the coexisting species TC± and TC- can 

be adsorbed by physical and chemical mechanisms. In the first mechanism, adsorption 

occurs onto the Bent external surface and in the interlaminar space and is promoted by 

weak physical interactions between the -NH(CH3)2+ group of the TC± species and the 

negative charge of Bent. Herein, TC± orients as closely as possible to the cationic sites 

of Bent. The second mechanism involves forming outer-sphere coordination complexes 

between the TC- species and the internal sphere of hydration of the interlaminar Ca2+ 

ion. At this point, the ionization of the phenolic-diketone group causes a high electron 

density, allowing that the positive charge of the Ca2+ ions can be partially shared with 

the anionic TC- species. Through electronic delocalization on the chelating ring, the 

coordination complex stabilizes the electronic density, avoiding the repulsive forces and 



 Removal of tetracycline from aqueous solutions by adsorption on raw Ca-bentonite. Effect of operating 
conditions and adsorption mechanism 

 

69 
 

allowing the adsorption via forming cationic bonding between the TC- species and the 

cationic sites of Bent Figure 4.15 (b). 

 
Figure 4.15. Adsorption mechanisms of TC on Bent at pH = 3 (a) and pH = 7 (b). 

 

4.4 Conclusions 
The capacity of the raw clays for adsorbing TC from water is strongly influenced 

by its structural arrangement, swelling capability, nature of interlayer cations, and the 

TC molecular size. Bent showed the highest adsorption capacity, while the uptakes of 

TC adsorbed on Sep, Hal, Verm, Kaol, and Phlo fluctuated from 10 to 60 mg/g. The 
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uptake of TC adsorbed on Bent was significantly influenced by the solution pH. At T = 

25°C and pH of 3, the maximum mass adsorbed of TC was 283.5 mg/g, where TC+ is 

the dominant species. The effect of the ionic strength revealed the presence of 

electrostatic and non-electrostatic mechanisms. The TC adsorption on Bent is 

endothermic, and the desorption of TC is partially reversible, proving that physical and 

chemical mechanisms can explain the TC adsorption. 

The characterization of TC adsorbed on Bent revealed that adsorption occurred 

onto both the external surface and in the interlayer space of Bent. At pH = 3, the 

adsorption of TC+ is governed by cation exchange and electrostatic attractions, and 

basal space (001) was 1.89 nm, indicating a parallel and inclined orientation of the TC+ 

species in the interlayer space. Otherwise, at pH = 7, the adsorption of TC± species 

was carried out by weak electrostatic attractions, whereas the TC- species was 

adsorbed by outer-sphere coordination complexes of the type Ca2+-TC. Likewise, the 

basal reflection (001) was 1.62 nm, confirming the partial intercalation of the TC± and 

TC- species within the interlaminar space of Bent. 
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