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Doctorado Institucional en Ingenieŕıa y Ciencia de
Materiales (DICIM)

“Seguimiento de la mirada utilizado como instrumento para la
evaluación del campo visual”

“Eye tracking used as an instrument for visual field evaluation”

Tesis que para obtener el grado de
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Abstract

Perimetry is a fundamental test used for the monitoring and detection of glaucoma as
well as some retinal diseases and brain injuries. The objective of this test is to evaluate
the extension and condition of the visual field (VF) using visual stimuli such as cards,
spheres, lights, fingers, etc. For years, Standard Automated Perimetry (SAP) has been
the most widely used perimetry method by ophthalmologists for the VF evaluation.
However, due to the subjectivity of the test as the main drawback faced by SAP, new
paradigms has been proposed for the evaluation of the VF, which seek to maintain a
balance between the evaluation time and the precision of the results. Eye Movement
Perimetry (EMP) is a proposed paradigm that has shown advantages over SAP by using
the patient’s gaze paths as responses during the evaluation. However, the reliability of
the EMP results depends on the correct acquisition, manipulation and interpretation
of gaze paths. Nowadays, most of research in EMP is focused on showing the clinical
feasibility of the paradigm and the advantages of the paradigm over SAP, while very
little research is focused on the processing and analysis of gaze paths.

In this thesis we propose a paradigm for the VF evaluation based on EMP and
machine learning techniques. The proposed paradigm is designed to evaluate the cen-
tral thirty degrees of VF using the staircase strategy and the visual patterns C30-2 or
C24-2. Using machine learning techniques for trajectory analysis, the paradigm is able
to determine which of the visual stimuli presented during the assessment were seen
and which were not seen, allowing reconstruction of the subject’s monocular VF. To
validate the paradigm, a series of monocular evaluations were performed on 20 young
participants. The results obtained were compared with a ground truth, obtained an
average accuracy index > 96.5%.
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Resumen

La perimetŕıa es una prueba esencial para la detección y seguimiento del glaucoma
aśı como también algunas enfermedades de la retina y lesiones cerebrales. El objetivo
de esta prueba es evaluar la extensión y la condición del campo visual (VF, por sus
siglas en inglés) utilizando est́ımulos visuales como tarjetas, esferas, luces, dedos, etc.
Por años, la perimetŕıa automática estandar (SAP, por sus siglas en inglés) ha sido
el método más utilizado por los oftalmólogos para la evaluación del VF. Sin embargo,
debido a la subjetividad de la prueba como el principal problema que enfrenta SAP,
se ha generado la necesidad de desarrollar nuevos métodos para la evaluación del VF
que permitan mantener un balance entre el tiempo de evaluación y la precisión de
los resultados. La perimetŕıa de movimiento ocular (EMP, por sus siglas en inglés) es
uno de los métodos propuestos para la evaluación del VF que ha mostrado ventajas
sobre SAP al utilizar los movimientos oculares del paciente como respuestas durante
la evaluación. Sin embargo, la confiabilidad de los resultados de EMP depende de
una correcta adquisición, manipulación e interpretación de las trayectorias visuales.
Actualmente, la mayoŕıa de las investigaciones referentes a EMP están enfocadas en
resaltar la viabilidad cĺınica del método y sus ventajas sobre SAP, mientras que muy
pocas investigaciones se centran en el procesamiento y el análisis de trayectorias.

En esta tesis presentamos un método para la evaluación del VF basado en EMP
y técnicas de aprendizaje de máquinas. El método propuesto está diseñado para eva-
luar los treinta grados centrales del VF utilizando la estrategia de umbral en escalera
y los patrones visuales C30-2 o C24-2. Utilizando técnicas de aprendizaje de máqui-
nas, nuestro método es capaz de determinar cuáles de los est́ımulos utilizados durante
la evaluación fueron o no vistos, permitiendo aśı realizar una reconstrucción del VF
monocular del sujeto. Para validar el método, se realizó una serie de evaluaciones mo-
noculares con 20 participantes jóvenes. Los resultados obtenidos fueron comparados
con los resultados proporcionados por un experto, obteniendo aśı ı́ndices de precisión
> 96,5%.
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Chapter 1

Introduction

The eyesight is a complex system that allows some living beings to acquire informa-
tion from the environment through images. Thanks to this sophisticated and complex
sense, humans and some animals have developed abilities increasing their opportunity
to survive. Perhaps for humans, the eyesight is the most dominant sense in their lives.
It makes most activities easier, such as driving, walking, reading, cooking, working, etc.
than using only the touch or a combination of other senses. However, rarely people care
about their visual system until a damage (often irreparable) in their visual field (VF)
begins to appear. The VF is the total area than a person can see when stares in a fixed
point. According to the last statistics from the World Health Organization (WHO),
at least 2.2 billion people have a vision impairment, where at least half of these cases
could have been prevented [1]. The main causes of vision impairment until 2023 were
age-related macular degeneration, cataract, diabetic retinopathy, uncorrected refrac-
tive errors and glaucoma [1], where the majority of these can generate total or partial
irreversible blindness.

For years, different ophthalmologic tests and devices have been developed to evalu-
ate, monitor or diagnose different visual impairments. One of these tests used for more
than 150 years, is the perimetry, whose goal is to evaluate the people’s VF using dif-
ferent techniques and stimuli such as spheres, fingers, lights color cards or cards with
patterns. Nowadays, Standard Automated Perimetry (SAP) is considered as the gold
standard for VF assessment and as a useful test for diagnosing and monitoring cer-
tain neurological and ophthalmological diseases [3] [4] and has remained without major
changes for approximately 50 years [5]. In this test, whose average evaluation time per
eye is between 4 to 6.5 minutes, a device called campimeter is used to strategically
project light stimuli over a hemispherical screen with a uniform luminous background.
During the VF evaluation, the patient must simultaneously perform two tasks: 1) stare
at a reference stimulus at all times while peripheral stimuli are presented in different
positions and with different intensities for short times, and 2) press a button when a
peripheral stimulus is perceived. Once the test is finished, the campimeter shows a
reconstruction of the patient’s VF with the values of the sensitivities perceived during
the evaluation.

Collaboration between patient and technician is essential for reliable results in SAP.
However, SAP is limited by large test-retest variability and exposed to different factors
that may affect its reliability, such as patient motivation, patient motricity, patient
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fatigue, and technician performance [6, 7]. Perhaps, the most difficult and tiring task
in SAP is to maintain the gaze on the reference stimulus for long periods of time, as
it is an unnatural task for people. Studies by Kosnik et al. [8] and Demirel et al. [9]
have supported this fact, concluding that fixing the gaze on a reference point for long
periods affects the patient’s performance during the test and the reliability of his results.

In order to solve some problems faced by SAP, methods based on Visual Evoked Po-
tential (VEP) [10–13] or Eye Movement Perimetry (EMP) (see the section 2.3)
have been proposed as new alternatives to evaluate the people’s VF. Nevertheless,
the difficulty of obtaining and/or processing the acquired signals in a robust way are
weaknesses of these methods that should be improved.

In this thesis we proposed a methodology based on EMP and machine learning in
order to evaluate the VF. This methodology attempts to reduce the subjective responses
taking decisions according to the gaze trajectories obtained during the evaluation.

1.1 Thesis goals

To develop threshold test for the evaluation of the VF based on EMP and machine
learning methods in order to produce reliable results from a low-cost portable setup.

1.1.1 Particular goals

1. To implement a VF evaluation base on FASTPAC threshold strategy for the 30◦

central using the standard clinical patterns C24-2 and C30-2.

2. To detect the blind spot during the test.

3. To generate a reconstruction map of the VF from the gaze path analysis.

4. To validate the prototype system.

1.2 Thesis organization

This thesis is organized as follows:

� Chapter 2 presents the basic concepts and techniques used in this thesis.

� Chapter 3 presents a description of the methodology implemented for the VF
evaluation.

� Chapter 4 presents the results, conclusions of the paradigm implemented.

� Chapter 5 present the discussion of the results as well as some ideas for future
work.

� Appendix A presents a description of the machine learning techniques imple-
mented in Chapter 3.

� Apendix B shows the visual maps obtained for each participant during the
validation of the methodology.
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� Apendix C shows a list of publications and participation in conferences about
our work.
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Chapter 2

Preliminary concepts

2.1 The visual field

The VF is a fundamental concept to understand the perimetry’s goal. According
to [14, 15] the VF corresponds to the total area than a person can see when focuses
the vision on a static reference point. When this area corresponds only to one eye, the
VF is said to be monocular. On the other hand, when this area corresponds to the
combination of both left and right monocular VF, it is said to be binocular or total.
Figure 2.1 shows the monocular and binocular VF.

Figure 2.1: A 2D representation of the VF. The area under the green shape corre-
sponds to the right monocular VF, whereas the area under the blue shape corresponds
to the left monocular VF. The total VF is represented in yellow. (b) Average limits of
the VF and blind spot location for the right eye.

The VF has been studied for many centuries. Perhaps the pioneer in quantifying
its extension was Ptolemy around 150 BC who noticed that it was a roughly circle
shape [5, 16]. However, in 1510 Leonardo Da Vinci contributed to this quantification
by reporting that the temporal field was 90◦ [16]. Later in the early 1800s, Thomas
Young reported the monocular VF size as 50◦ upwards, 70◦ downwards, 60◦ in the
nasal direction and 90◦ to temporal direction, where Johannes Purkinje around the
1820s refined those limits reported by Young [5, 16]. At present, the extension of the
monocular VF reported in the literature taking as its origin the center of the macula has
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on average the following measurements: 60◦ upwards, 70◦ downwards, 60◦ in the nasal
meridian and 90◦ to temporal meridian as shown in Figure 2.2; however these limits
may vary slightly from person to person [14,15]. In the monocular VF a particular zone
called the blind spot, which corresponds to the retinal area without photoreceptors,
is the unique natural blind zone. This elliptic-shape zone with horizontal width of
6◦ − 10◦ and a height of 10◦ − 20◦ is positioned between 12◦ − 20◦ and slightly below
the temporal meridian as shown in Figure 2.2 [17, 20].

Figure 2.2: Average limits of the VF and blind spot location for the right eye.

The visual sensitivity across the VF is variable across the field and also is different
for each person. This non-linear sensitivity is high in the first 10◦ and it decreases
beyond this. The reason for this is related to the distribution of rods (photoreceptors
responsible for vision at low light levels) and cones (photoreceptors responsible for
high spatial acuity and the color vision) in the retina as shown in Figure 2.3. A useful
analogy to understand the VF behaviour is the Traquair’s island of vision in a sea
of darkness: “Like an island arising out of the ocean, there is a shore that marks
the absolute limit of vision. Just as an island rises from the shore to some inland
prominence or hill, visual sensitivity increases as one proceeds from the peripheral
boundary of vision to a peak at the fovea” [17]. According to this comparison, the
blind spot could be seen as a deep pit in the island where the sensitivity in its border is
low. Studies performed by Jaffe G. et al. [21] and Johnson C. et al. [22] have shown that
sensitivity in the VF decreases with the age, where changes in the ocular media, linear
reduction in pupil diameter and neural losses in the retino-geniculostriate pathway are
some of the main causes [17].
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Figure 2.3: The distribution of rods and cones.

2.2 Manual and automated perimetry

The perimetry’s goal is to detect anomalies in the VF by measuring the visual sensitiv-
ity in different positions. These anomalies are detected with the help of visual stimuli
such as lights, color cards, fingers or spheres, which can be static or kinetic during the
evaluation. To detect these anomalies, two types of perimetry can be used: manual
and automated; each with its advantages and disadvantages listed below.

-Manual perimetry

Manual perimetry requires an operator to present the stimuli, monitor the patient’s
fixation and record his/her response if the latter is necessary. The Goldmann perimetry
is the most common device used in manual perimetry; nevertheless, the VF evaluation
can be done without it (e.g. by confrontation or tangent screen). During the evaluation,
the patient must stare at a static reference while a stimulus is moved slowly from a blind
zone in the periphery to the center of the VF. When the patient sees the stimulus, the
stimulus’ position is recorded by pressing a button and the process is repeated again in
a new peripheral position. This interaction between patient and specialist is performed
as many times as necessary evaluating the area of interest of the VF. At the end of the
test, as shown in Figure 2.4, the recorded positions are interpolated forming isopters
which represent the limit of the area where a specific stimulus can be seen.

� Advantages

1. Given that the specialist monitors the patient’s fixation, the responses given
by the patient can be discarded if him/her is distracted, re-evaluating those
discarded positions.

2. The test can be customized according to the interest area to be evaluated
by the specialist.

3. If a suspicious visual defect is detected during the evaluation, the specialist
can go back and evaluate it in detail.

4. It can better detect visual defects outside the 30◦ central and some residual
defects than the automatic perimetry.
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� Disadvantages

1. The results of the evaluation and its execution depend from the specialist’s
skills.

2. Knowledge of anatomy and visual diseases are required for the specialist to
perform the test.

3. It requires more time and attention from the patient to perform the VF’s
evaluation.

4. It is a subjective test.

Figure 2.4: Real results of the evaluation of the VF using manual perimetry. Note how
the isopters indicate an approximation of the patient´s healthy visual area. Source:
An Atypical Case of Foster Kennedy Syndrome - Scientific Figure on ResearchGate.
Available from: https://www.researchgate.net/figure/Goldman-visual-field-of-the-left-
eye-showing-a-nasal-deficit-with-an-excluded-blind-spot fig2 49687733.

-Automated perimetry

Automatic or computerized perimetry is performed by a computerized device that
uses standard techniques and strategical fixed positions to evaluate the VF. These
techniques and positions help reduce the patient-operator interaction, but demand
additional concentration from the patient. SAP or white on white perimetry (because
white stimuli are projected on a white background) is considered as the gold standard
for the VF evaluation. SAP is performed by a device called campimeter, where the
Humphrey field analyzer is the most used device in the clinical field; however, other
devices such as Octopus, Topcon and Dicon can perform the automated perimetry.

Like the manual perimetry, the patient must stare at a static reference at all times.
However, unlike manual perimetry, in which a stimulus is moved from a non-seeing area
to a seeing area, SAP uses static light stimuli (sometimes changing its light intensity)
that flicker for a few milliseconds. Every time the patient detects a stimulus, he/she
presses a button to record his/her response. At the end of the test, the device gives
different results such as numerical map of sensitivities, grayscale map and deviation
maps as shown in Figure 2.5.
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Figure 2.5: Sample right eye visual field (HFA, SITA Standard 24-2) from
one glaucomatous participant (aged 66) illustrating placement of the periph-
eral stimuli in an area of relatively normal performance (within the norma-
tive 95% confidence limits for the total deviation plot). Source: Psychophysi-
cal Measurement of Neural Adaptation Abnormalities in Magnocellular and Par-
vocellular Pathways in Glaucoma - Scientific Figure on ResearchGate. Available
from: https://www.researchgate.net/figure/Sample-right-eye-visual-field-HFA-SITA-
Standard-24-2-from-one-glaucomatous-participant fig1 8544315.

� Advantages

1. Anyone with a basic knowledge of the device can run the test.

2. It is standardized and provides quantitative results.

3. It gives more precision in the 30◦ and 10◦ central than manual perimetry.

4. It uses standardized strategies and patterns that reduce the patient-operator
interaction.

� Disadvantages

1. It is difficult to perform in children or adults with impaired cognitive skills.

2. It does not have flexibility to evaluate specific defects or areas.
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3. It requires greater concentration on the part of the patient, and in some
cases a longer evaluation time.

4. It is a subjective test.

5. A specialized device is required to perform the test.

2.2.1 Suprathreshold and threshold strategies

The visual threshold at a specific location on the retina is the luminance value at
which a stimulus has a 50% probability of being detected [16,17]. As mentioned in the
previous section, the goal of perimetry is to measure visual sensitivity in VF to detect
visual abnormalities. In perimetry, there are two strategies to locate and/or monitor
the visual anomalies: suprathreshold strategy and threshold strategy.

-Suprathreshold strategies

Suprathreshold strategies, used as a screening test, make it possible to locate decreases
in visual sensitivity within the VF by means of static light stimuli. These stimuli
have an intensity value above the visual threshold, so that a person with a healthy
VF should see them without any problem. The intensity values of the stimuli are
automatically selected by the campimeter from an internal database; however, if the
specialist considers it necessary to modify the intensity value given by default, he/she
can do it.

There are three suprathreshold strategies to evaluate the VF: 1) using a single
intensity value, 2) threshold related, and 3) two-level suprathreshold or three zone.

� Using a single level: This strategy, as shown in Figure 2.6 (a), implements
stimuli with an unique intensity value during the VF evaluation (a common
intensity value is 24 dB, but it can be changed by the specialist). At the end
of the test, the reconstruction of the VF indicates which stimuli were seen and
which were not seen. Nevertheless, when implementing this strategy, some central
visual defects may be unnoticed. The reason for this is due to the use of stimuli
with light intensity values too large for the central visual threshold, so that the
stimuli used in this zone have a high probability of being seen by the patient due
to a higher visual sensitivity in the central area.

� Threshold related: Unlike the previous strategy, in which a constant intensity
is used to evaluate VF, the threshold related technique uses light stimuli that
exceeds the visual threshold by 2 dB to 6 dB as shown in Figure 2.6 (b). Similar to
the results of previous strategy, the results of threshold related strategy indicate
whether the stimulus was seen or not seen. However, it does not always detect
early abnormalities in the VF.

� Two-level suprathreshold or three zone: This technique is based on the
previous technique to evaluate the VF. Nevertheless, it takes the technique a
step further by classifying the patient’s responses as: normal, relative defect, and
absolute defect. A normal classification corresponds to a stimulus seen by the
subject during the test. On the other hand, if a stimulus is not seen with the
initial light intensity, then a stimulus is presented in the same position with the
maximum light intensity that the perimeter can provide. If this new stimulus
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is seen, then it is classified as a relative error, otherwise, it is classified as an
absolute error. Figure 2.7 shows a representation of this technique where the
green area exemplifies a patient’s VF and the dash line represents the healthy
visual threshold.

(a)

(b)

Figure 2.6: Some suprathreshold techniques. (a) Single level technique. The VF is
evaluated with the same intensity (red dash line) in all the strategical positions. Notice
how the intensity of the light used in the central areas far exceeds the vision threshold
in the center of the VF. (b) One-level suprathreshold strategy. The intensity of the
stimuli used during the evaluation (yellow area) is between 2-6 dB above the visual
threshold (green dash line).
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(a) (b)

(c) (d)

(e)

Figure 2.7: Two-level threshold technique classifications. (a) Stimulus seen so it is
classified as normal threshold. (b) and (d) Stimulus not seen the first time. (c) Relative
defect (stimulus seen with the maximum luminous intensity). (c) Absolute defect
(stimulus not seen with the maximum luminous intensity).
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-Threshold strategies

The threshold strategies use static stimuli with varying light intensity to determine
the patient’s visual threshold. These techniques allow the detection of early scotomas,
even within the central 10◦ of the VF. However, threshold strategies require more time
to perform the evaluation than the suprathreshold strategies.

� Bracketing strategy or double crossing: This technique, considered as a
standard technique in static threshold perimetry and used in most glaucoma clin-
ical trials [23], has a simple algorithm but takes about 10-15 minutes of evaluation
per eye, whose evaluation time is longer than the other threshold strategies.

As shown in Figure 2.8, the campimeter begins with a luminous intensity below
to the visual threshold (infrathreshold stimulus), and increases its intensity in
steps of 4 dB until the patient can see the stimulus (here the first crossing). The
stimulus then decreases in intensity in 2 dB steps until the patient cannot see
it (here the second crossover). The last value recorded as ”seen” by the patient
is considered the visual threshold at that position; however, campimeters like
Octopus consider the visual threshold as the average value between the last seen
and not see luminous intensity (the intensity value of the second crossing).

� Staircase strategy: This strategy, also know like FASTPAC strategy (Carl Zeiss
Meditec, Inc., Dublin, CA), reduces approximately the evaluation time by 36%
compared to the bracketing strategy. As shown in Figure 2.9, the visual threshold
approximation begins with an unseen stimulus (infrathreshold) that increases its
luminous intensity in 3 dB steps until the patient can see it. This luminous
intensity that the patient sees is considered the visual threshold. However, the
process can also be reversed; that is, to start with a suprathreshold stimulus
and decrease its luminous intensity in 3 dB steps until the patient cannot see it.
In this case, the visual threshold is considered to be the last sensitivity to light
perceived by the patient.

� SITA Algorithms: The Swedish Iterative Threshold Algorithms (SITA), which
are based on Bayesian models, were developed to reduce evaluation time without
compromising the reliability of the results. At present, SITA algorithms are the
most used by specialists, displacing the classic bracketing strategy and FASTPAC
strategy. There are two SITA algorithms: SITA standard and SITA fast. The
former is analogous to bracketing strategy and the latter is analogous to FAST-
PAC strategy. The SITA standard algorithm, which is based on the bracketing
strategy, uses 4 dB increments / decrements for the first threshold crossing and
2 dB decrements / increments for the second threshold crossing. On the other
hand, SITA-fast uses 4 dB steps to estimate the visual threshold instead of 3
dB steps as the FASTPAC strategy does. Both algorithms reduce the evaluation
time by about a half, compared to their analog strategies, which in turn reduces
the patient’s fatigue during the evaluation.
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Figure 2.8: Bracketing strategy. The strategy begins with an initially invisible stimulus
that increases its intensity until the patient sees it (image on the left). Subsequently,
the stimulus is shown by slowly reducing its intensity until the patient cannot see it
(right image). The last light intensity seen by the patient is considered the visual
threshold.

(a) (b)

Figure 2.9: Staircase strategy. (a) Visual threshold computed from a infrathreshold
stimulus. (b) Visual threshold computed from a suprathreshold.

2.2.2 Visual patterns used in SAP

In theory, visual sensitivity can be measured across the entire VF, however this is
impractical and time consuming. In practice, different position grids or patterns are
used to evaluate different areas of the VF. Patterns such as C30-2, C24-2, C10-2 and
the macular pattern, are used to evaluate the central 30◦ using the threshold strategy;
out of these, the patterns C30-2 and C24-2 are the most used because they allow better
detection of glaucoma defects and some neurological diseases. Figure 2.10 shows the
distribution of the positions for the C30-2 and C24-2 patterns, where the first uses 76
positions with a distance between positions of 6◦, whereas the second uses 54 positions
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to evaluate the VF. On the other hand, patterns such as C-40, C-64, C-76 and C-
Armaly are used with suprathreshold strategy to explore the central 30◦; out of these,
C-76 is perhaps the most widely used due to its similar distribution to the C30-2
pattern. Patterns like 60-4 and the nasal step pattern are used to evaluate beyond
the central 30◦, whereas patterns such as CC-60, CC-81, CC-120, CC-135, CC-246 and
CC-Armaly are available to explore the complete VF if it is required by the specialist.

(a) (b)

Figure 2.10: The most used patterns to evaluate the central 30◦. (a) Pattern C24-2
used to evaluate the right eye. (b) Pattern C30-2. The separation between positions
in both patterns is 6◦.

2.3 Eye movement perimetry

EMP is a paradigm proposed to solve some problems faced by SAP such as loss of
fixations or the excess of subjective responses. Unlike traditional VF evaluation used
in SAP, where the eye movements are restricted and a button is used to record the
person’s responses, EMP gives eye movement freedom in order to obtain saccadic eye
movements (SEM) during the evaluation, where these ocular movements are used as a
response during the VF evaluation. Perhaps the first research in SEM dates back to
the 1970s, where eye movements began to be analyzed under certain visual stimuli and
conditions [31, 32]. However, in the early 1980s, the EMP paradigm began to appear
when Jernigan [33] combined SEM and perimetry by evaluating oculomotor responses
as an index of perception using a tangent screen and eye tracking technology (biometric
model 200 eye movement monitor).

Thanks to technological advancement in eye tracking, devices like video-based Eye
Trackers (ET) have proven to be a popular choice for detecting and recording eye
movements. These portable and non-invasive devices, depicted in Figure 2.11, contain
an infra-red light source used to generate a corneal reflection while a speed camera
records the person’s eyes or face to be processed in real time. Using computer vision
algorithms to detect the center of the pupil and the corneal reflection from each frame,
the gaze’s position is estimated over a limited area. This technological advantage in
eye tracking has allowed to contribute to the EMP, where this paradigm was forgotten
for a time (possibly due to the difficulty of data acquisition and the inaccessibility of
the devices for it).
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Figure 2.11: Eye tracker

In 1995, Kim et al. [24] collected gaze trajectories from healthy participants and
glaucoma patients incorporating an ET to the perimeter. In general, the study results
showed similarities with the SAP results, with differences mostly shown in the sensi-
tivity threshold of 4 dB or less. Fourteen years later, Murray et al. [25] proposed a
method called Saccadic Vector Optokinetic Perimetry (SVOP) to evaluate the VF in
children. SVOP implements a suprathreshold strategy using the C-40 pattern, where
the system was validated using data from both healthy and unhealthy children and
adults. The results of SVOP were compared with the equivalent Humphrey Field Ana-
lyzer C-40 suprathreshold test, obtaining an average percentage of points agreeing with
a normal visual field of 99.2% and 99.1% for healthy adults and children, respectively,
and 98.8% of points in agreeing with Humphrey results for adults with unhealthy VF.
In 2016 a new validation of SVOP was presented [26], where indices such as sensitivity,
specificity and accuracy were computed from: 1) analysis of the overall VF pattern,
and 2) analysis of the VF points. For the first analysis, the results were 90.9%, 88.5%,
and 89.0% for sensitivity, specificity and accuracy respectively; while for the second
analysis, the results were 69.1%, 96.9%, and 95.0% for sensitivity, specificity and accu-
racy, respectively. On average, SVOP reported shorter execution times than SAP for
those participants without visual defects (1.37 minutes for adults and 1.5 minutes for
children) but for those participants with visual defects, SVOP required longer times
than SAP with a mean of 2.4 minutes. In 2018 Murray et al. [27] presented a new
version of SVOP using a threshold strategy and a C24-2 pattern. SVOP was compared
with SAP C24-2 SITA fast, obtaining similar mean threshold values with a correlation
coefficient of 0.95; as well as sensitivity and specificity values of 97.7 % and 77.9 %
respectively to identify normal versus abnormal visual fields with SVOP [28]. In 2019
Jones et al. [29] proposed a portable system called Eyecatcher, which implements a
suprathreshold strategy based on a modified C24-2 pattern. The results of Eyecatcher
were compared with SITA standard C24-2 using the Humphrey Field Analyzer. Eye-
catcher reported consistent results and better evaluation times than SAP. A year later,
Jones [30] presented a new Eyecatcher version based on C24-2 pattern and a similar
threshold algorithm used by the Humphrey Field Analyzer. In this new Eyecatcher
version, Jones et. al. reported similar results to SITA standard detecting spatial
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differences in sensitivity across the normal VF.
These studies have demonstrated the advantages of EMP over SAP, which are: 1)

EMP guarantees the concentration of the patient during the test by allowing to detect
when fixation on the reference stimulus is lost, and implementing actions to counter
these events. 2) EMP can be implemented as an economic and portable system because
the minimum system requirements are a CPU, an screen (i.e a computer screen or a
tablet), and a low-cost ET, and 3) the method is implemented by software, so it can
be easily configurable according to the requirements. Nevertheless, EMP weaknesses
such as evaluation time or robust trajectory analysis need to be improved.
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Chapter 3

Visual Field evaluation

In this chapter, we describe the equipment and the methodology used for the VF’s
evaluation: 1) test paradigm, 2) data analysis, and 3) reconstruction of the VF.

3.1 Prototype system

The prototype system developed for the VF evaluation, which is shown in Figure 3.1,
consist of a laptop (windows 7 under 64-bits and intel core i3), an ET (Tobii 4C; Tobii
Technology, Stockholm, Sweden) with a operation range between 50 cm - 90 cm and an
image sampling rate of 90 Hz, a monitor (23” with 16:9 aspect ratio and a resolution of
1920×1080@60 Hz), an additional keyboard used for the interaction of the participants
with the system during the evaluation, a chin rest, and a dark cabin. In order to cover
the largest possible evaluation area during the test, the distance between the screen
and subject was 51 ±1 cm, which was constantly monitored with the ET.

(a) (b)

Figure 3.1: Prototype setup. (a) Lateral view. (b) Frontal view.
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3.1.1 Software used

Tobii Eye Tracking Core software v2.13.4.7864 x86, Processing and R languages were
used to develop the test. The first software was used to configure the ET’s parameters
and calibrate the device. The second one was used to create the graphical environment
for the test and for data manipulation during the evaluation, and the last one was used
for data processing and analysis. To perform the communication between Processing
and the ET, an external library (GazeTrack: Eye-tracking for Processing (Tobii EyeX
and 4C) 2.0.4 developed by Augusto Esteves) was used. Additional to the graphical
test development, a graphical user interface was developed. The interface, shown in
Figure 3.2, collects the basic personal data allows the configuration of the test, also
provides the technician with certain graphical information that allows monitoring of
patient performance during the test.

Figure 3.2: Graphical user interface. Basic personal information (yellow zone). Basic
configuration area (green zone). Monitor area (red zone).

3.2 Test paradigm

Similar to SAP, the proposed EMP paradigm displays peripheral stimuli to calculate
the intensity threshold over the different positions in the VF while the person is looking
at a static reference stimulus, located on the center of the screen. The paradigm is
based on the FASTPAC strategy and the popular C24-2 and C30-2 patters. During the
evaluation, an ET is used to record and monitor eye movements at all times. However,
the only ET data stored for analysis corresponds to the set of gaze positions (i.e., the
gaze trajectory) acquired during the time period in which each peripheral stimulus is
displayed.
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Figure 3.3: Algorithm used to evaluate the VF.
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Additionally, and as reference to compare the ocular responses under the same experi-
mental conditions, an emulation of SAP test is simultaneously carry out, so the person
is instructed to perform the following actions: “stare at the reference stimulus at all
times and if you perceive a peripheral stimulus, just follow it with the gaze and record
your response pressing a button1”.

The test begins displaying a static orange reference stimulus (a circle with a similar
size used in SAP, Goldman size III) at the center of the computer screen over a black
background. If the person maintains the gaze at the reference stimulus for a period
of 1.5 seconds, a peripheral gray stimulus with a given intensity is displayed for 200
milliseconds. During this time, the subject can record his/her responses and at the
end of it, the peripheral stimulus disappears and a new peripheral stimulus with other
intensity value is ready to be shown once the person looks at the reference stimulus
again for the established time (1.5 seconds). This ensures that the person is always
looking at the reference stimulus when the peripheral stimulus is presented. The pro-
cedure, shown in Figure 3.3, is repeated with each of the positions of the VF pattern
until the visual threshold has been determined for all positions using the button or
when a maximum number of seven repetitions is performed at each position.

Unlike SAP, where the technician must monitor the patient’s fixation on the refer-
ence stimulus at all times and alert the patient when this instruction is not followed,
our paradigm automatically detects fixation losses on the reference stimulus and pauses
the evaluation waiting until the subject redirects his gaze towards the reference stimu-
lus. In order to motivate this, an animation is used if a loss of fixation on the reference
stimulus is detected for more than 3 seconds. The animation, which is depicted in
Figure 3.4, consists of a large colorful circle placed on the center of the screen, which
gradually decreasing in diameter until it matches with the reference stimulus.

3.2.1 Visual field evaluation area and sequence

During the evaluation, the patterns C24-2 and C30-2 are available to be used. However,
the size of screen and the distance between participant and the screen determine the
total area to be evaluated. According to the set-up used, in average, the maximum
extension of the VF to be evaluated corresponds to ±21◦ along the horizontal direction
and ±15◦ along the vertical direction, which makes it impossible to evaluate some
peripheral stimuli in the VF patterns used2.

Blind spot location is routinely measured during the VF evaluation to accurately
interpret test results and reduce diagnostic errors [34]. In addition to the above, SAP
uses the blind spot location to monitor fixation losses during the evaluation (Heijl-
Krakau method [35]) or as a reference stimulus during the evaluation. In order to
accurately locate the blind spot, a grid of 20 peripheral stimuli with a separation of 2
degrees between them and covering a range of 11◦ to 19◦ on the temporal and 1◦ to 7◦

over inferior temporal was used. Figure 3.5(a) shows, for the right eye, the maximum
extension of the VF evaluated with a total of 63 peripheral stimuli.

Threshold strategies, such as FASTPAC, require starting with an infra-threshold or
supra-threshold intensity (called the initial intensity) and slowly varying this intensity

1For practicality, the button corresponds to the space key on the participant’s keyboard.
2Using the C30-2 and C24-2 patterns in our paradigm, practically the same positions within the

VF are evaluated due to the limited evaluation area. For this reason, from now on we will only refer
to the C24-2 pattern for reference.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4: Screenshots of the animation used when a loss of fixation on the reference
stimulus is detected. (a) Detection of a loss of fixation. (b) Start of animation after
a loss of fixation for 3 seconds from its start. (c) Animation after 1000 milliseconds.
(d) Animation after 1500 milliseconds from its start. (e) Animation after 2000 from
its start. (f) End of the animation after 2500 milliseconds from its start.

(increasing or decreasing it, depending on the approach) to find the visual thresholds
during the evaluation. If the initial intensity is far enough from the visual threshold, the
evaluation time will increase. During the test, each of the 63 positions are simulated in
random order with a maximum number of seven repetitions to decrease the evaluation
time required to find the visual thresholds. However, seven repetitions may not be
enough in some peripheral positions to find the visual threshold; especially if the initial
intensity used in that positions is far from this. Based on the knowledge about the
behavior of visual intensities in a healthy VF (high visual sensitivity in the center
and a non-linear decrease in the periphery), a simple strategy was implemented. This
strategy consists in evaluating the VF sequentially by zones from the center to the
periphery. To do this, the visual pattern used was divided into four zones as shown in
Figure 3.5(b). For each zone z = 1, 2, 3 and 4, the initial intensity used to calculate
the visual thresholds is defined by the following expression:
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(a) (b)

Figure 3.5: Evaluation area and classification. (a) Positions evaluated in the VF. (b)
Zones of the pattern C24-2. In both panels, (a) and (b), the green circles represent the
evaluated positions while the red circles represent the non-evaluated positions.

initial intensityz = min(V Tz−1)− 3 dB, (3.1)

where V Tz={visual thresholds registered in the zone z} and V T0 ≡ {approximation
of the minimum visual threshold}. That is, the initial intensity used in each zone
corresponds to an intensity 3 dB below the minimum visual threshold recorded in the
previous zone.

3.2.2 Initial settings

Before each VF evaluation, two necessary tasks were performed for each subject: 1)
carry out a calibration process of the ET to guarantee its correct operation during the
test, and 2) compute the approximation of the minimum visual threshold.

The ET calibration is a quick and easy process that involves looking at seven
evenly spaced small circles on the monitor until they disappear. The seven circles are
separated into three groups: 1) one circle on the center of the screen, 2) three circles
located at the top and bottom of the screen (2 near the top corners and one on the
bottom center), and 3) two circles placed near the bottom corners of the screen and
one on the center of the top of the screen. Each group is used in order, and none
of the items in the following groups are used until all the items in the current group
are used. Figure 3.6 shows the position of the seven circles used in the calibration
process as well as the elements of each of the groups. After this process, the ET
calibration is verified using nine equispaced circles on the screen (3 at the top, 3 at
half the height of the screen, and 3 at the bottom), where the software verifies that
the gaze position obtained by the ET is as close as possible to the 9 circles. If there is
a large error between the estimated position and the circles, the calibration process is
repeated. Once the calibration process is complete, the approximation of the minimum
visual threshold is computed using an animation. The animation, depicted in Figure
3.7, shows a gray ring positioned at the gaze coordinates calculated by the ET on a
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black background. The ring starts with an infra-threshold intensity value and slowly
increases its intensity until the subject can perceive it. As soon as the person perceives
the ring, he/she must register the value by pressing the space key. This value registered
corresponds to the approximation of the minimum visual threshold.

Figure 3.6: Positions of the circles used in the calibration process. The number next
to the circle indicates the group to which it belongs.

(a) (b)

(c) (d)

Figure 3.7: Some frames of the animation used to calculate the minimum visual thresh-
old. (a) Frame in time= 1000 milliseconds. (b) Frame in time= 2500 milliseconds. (c)
Frame in time= 4000 milliseconds. (d) Frame in time= 5500 milliseconds.

23



3.2.3 Participants and experimental protocol

To validate the system, a cohort of twenty participants (13 women and 7 men), aged 19
- 43 years (µ = 26± 5 years) were recruited at Facultad de Ciencias de la Universidad
Autónoma de San Luis Potośı. For three weeks, all the participants voluntary con-
ducted three sessions (one session per week on the same day and time), where in each
session both VFs were evaluated. None of the participants had known VF deficits like
glaucoma, cataracts, or any other similar ocular or neurological impairments. However,
participants with low myopia and/or astigmatism were included (60% of them), so the
use of corrective glasses was allowed during the test.

The protocol used during the sessions was the following:

� First session. Before performing the test, the goal of the experiment and the use
of the information obtained from the test were explained to the participants. All
the participants that accepted to take part in the experiment voluntarily signed a
consent form and all their questions were answered. Next, all the test instructions
were given using an illustrative video and a training period was provided to help
them become familiarized with the test. At the end of the training period, a
short break of 5 minutes was given. After the break, one of the participant’s eyes
was randomly selected and covered with a patch, to then sit down and place the
participant inside the black cabin at a distance of 50 ±1 cm from the screen and
start the VF evaluation process. At the end of the evaluation of the first eye, the
subject took a 5 minute break and then the other eye was evaluated.

� Second and third sessions. Before performing the test, the instructions were
given again and a practice test was given if the participant considered it necessary.
As in the first session, the order of the eyes to be evaluated was randomly selected
and short breaks of 5 minutes were given before each monocular evaluation.

During the VF evaluation process, short breaks were made every 2 minutes, pausing
the test and restarting it after this time without the need to recalibrate the ET. How-
ever, the participants had the flexibility to pause the test at any time if they deemed it
necessary. Figure 3.8 summarizes the protocol implemented during the VF evaluation.

3.3 Data analysis

The gaze path analysis in EMP is an important process that ensures the reliability
of the results. In some EMP prototypes, the decision rule to determine which stimuli
were observed during the evaluation is based on a static threshold; that is, a stimulus
is considered seen if a given feature of the gaze path (i.e., the distance to the stimulus)
exceeds a static threshold. However, this decision rule is inefficient since it does not
consider the behavior of the gaze path, which contains the information necessary to
correctly classify which of the stimuli were seen. Here the gaze path analysis based on
two machine learning techniques is described, as well as their performance.
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Figure 3.8: Protocol used for the VF evaluation.

3.3.1 Feature extraction

The extraction and correct selection of features are the most important processes in
machine learning since from these, the model used will be able to classify the data cor-
rectly. The fixation either near or on the peripheral stimulus alone doest not guarantee
that the intensity used to showing that stimulus corresponds to the visual threshold.
For example, Figure 3.9 shows the minimum distance of each trajectory and its asso-
ciated peripheral stimulus. Under a threshold-based classification, those stimuli below
the established threshold (i.e., the dashed line) would be classified as seen stimuli.
However, a person who cannot initially sees the peripheral stimulus may be tempted
to search for it on the screen and possibly find it, thus misclassifying the stimulus as
seen due to the short distance between it and the gaze position. To prevent the above,
it is necessary to obtain more information about the gaze path behaviour in order to
guarantee a correct classification. A useful feature corresponds to the direction of the
gaze trajectory, which will remain stable in the case of the stimuli being seen, or highly
variable if the person scans the screen for some stimulus. Based on the above, a periph-
eral stimulus is considered as seen if its associated gaze path meets two requirements:
1) the direction of the gaze path is close to the direction of the peripheral stimulus,
and 2) the person performs a fixation on or sufficiently near the peripheral stimulus.

For the n peripheral stimuli used in the test (Figure 3.5(a)), each of them can be

defined as a vector P⃗Si ∈ ℜ2 with its respective magnitude and direction |P⃗Si|, θPSi
,

where the subscript i = 1, 2, 3, ..., n indicates the number of the peripheral stimulus.
On the other hand, a gaze path GPi,j = {P⃗k = (xk, yk) |k = 1, 2, 3, ..., 26} is a finite set
of twenty six gaze positions as shown in figures 3.10(a) or 3.10(b), where the subscripts
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Figure 3.9: Scatter plot of the minimum distance between the gaze position and the
peripheral stimuli.

i, j refer to the gaze path j of the stimulus i with j = 1, 2, 3, ...,≤ 7 (remember that a
stimulus i is shown a maximum of 7 times, so that each peripheral stimulus would have
a maximum of 7 associated gaze paths). Applying least squares regression on the 2D
positions of a path, as shown in figures 3.10(c) or 3.10(d), we calculate the straight line

that best fits them. This straight line can be characterized by a direction vector L⃗Ri,j,
whose angle denoted as θLRi,j

, corresponds to the angle3 of the straight line computed
using least squares regression. This direction vector provides an approximation of the
gaze path direction from which one can compute the angular difference between the
gaze path and the peripheral stimulus as

△ θi,j = abs(θLSi,j
− θPSi

), (3.2)

which is the first feature to be estimated.
In order to compute the second feature, the minimum distance between each element

of GPi,j and P⃗Si, computed as

di,j = min
k

{|P⃗Si − P⃗k|}, (3.3)

provides information about how close is the person’s gaze to the peripheral stimulus.
That is, a small value of di,j indicates that the person fixed the gaze on or near the
peripheral stimulus at some point across the trajectory.

Figure 3.11 shows a scatter plot of the two features computed from the evaluation
of the right eye of a subject. Notice how both features, di,j and ∆θi,j, help to better
identify the seen stimulus (swarm of points in the scatter plot near the origin) from not
seen stimuli (swarm of points in the scatter plot far from the origin), this compared
with the single feature shown in Figure 3.9.

3To maintain the same reference units with respect to the visual pattern, the directions of the
vectors will be expressed in degrees.
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(a) (b)

(c) (d)

Figure 3.10: Feature extraction. (a),(b) Examples of gaze paths.(c),(d) Estimation of
the gaze path direction using least squares regression.

3.3.2 Gaze paths classification using machine learning

There are different machine learning techniques to classify data such as Nearest Neigh-
bour, Support Vector Machines, Discriminant Analysis and others, each with its ad-
vantages and complexity over the others. In order to classify the peripheral stimuli in
two classes according to the behaviour of the associated gaze path: Class 1={stimuli
seen} and Class 2={stimuli not seen}, two techniques were implemented. This sec-
tion briefly describes the two implemented classifiers; for more details, please consult
Appendix A. The first technique, is the combination of two classifiers: k-means and
Bayes classifier [18] (from here on we will refer to this combination of classifiers as
KBC) whose structure is shown in Figure 3.12.
The idea of this classifier is to first perform a pre-classification of the data into the
two desired classes using the k-means classifier, and then regroup the data based on
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Figure 3.11: Scatter plot of minimum absolute distance vs. angle difference.

Figure 3.12: KBC diagram.

Bayesian decision theory. That is, once that k-means separated the data in the two
classes desired as shown in Figure 3.13(a), each class is assumed to have a Gaussian
distribution with a given mean vector and covariance matrix (Class 1 ∼ N1(µ1,Σ1)
and Class 2 ∼ N2(µ2,Σ2)). Under this consideration, the elements of the class are
iteratively reclassified making use of the Mahalanobis’ distance, whose metric considers
the mean and covariance matrix, both of which are computed at each iteration until
convergence. Figure 3.14 shows the process diagram for KBC, while Figure 3.13(b)
shows the data classified using iteratively the Bayes classifier. Notice how the darkgreen
data, initially classified as seen by K-means, were adjusted using the Bayes classifier.
The advantage of KBC is that no prior database is necessary to perform the data
classification; instead, an ad-hoc model is trained for each subject and each test, as a
result, the classifier can adapt to different ages of the population. On the other hand,
under this configuration the classifier has the disadvantage that it is not possible to
classify the information in “real time”, which could increase the evaluation time as a
consequence of over-evaluated positions.

The second technique applied to classify the gaze path corresponds to an Artificial
Neural Network (ANN) [19]. The architecture of the ANN, as shown in Figure 3.15(a),
consists of two inputs, two hidden layers with four neurons each, and one output, all
with a sigmoid activation function. The ANN was trained with 1000 epochs using the
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cross entropy loss function and gradient descent method with a learning rate of 0.01
and momentum of 0.8 in the back propagation process. The database used to train the
ANN consist of 1484 gaze paths that were obtained from four additional subjects who
did not complete the three experimental sessions.

(a) (b)

Figure 3.13: Data classification using KBC. (a) Initial classification using K-means.
(b) Final classification using Bayes classifier. The red points correspond to the Class
1 and the green points correspond to the Class 2.

Figure 3.14: Diagram of the proposed KBC process.

Figure 3.15(b) shows the classification of the data used for the KBC example in
Figure 3.13 into the two desired classes using the ANN. For this example, notice the
slight difference in the results between ANN and KBC, where ANN separates better
the two classes than KBC.
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(a)

(b)

Figure 3.15: Classification using ANN. (a) ANN structure. (b) Data classified.

3.3.3 The ground truth

All the gaze paths obtained from the participants during the three session were visu-
ally analyzed and manually classified one by one, having a total of 16179 gaze paths
(µper test = 143.82 ± 25.83). According to the behaviour of the gaze paths from the
reference stimulus to the peripheral stimulus, each of them was assigned to one of the
following three sets: Type 1={direct gaze paths between stimuli}, Type 2={fixations
on the reference stimulus or gaze paths where the peripheral stimuli were not seen},
and Type 3={gaze paths with dubious behaviour }. This classification, considered as
the ground truth, labels the peripheral stimulus in one of the following classes: Class
1 (stimuli seen), Class 2 (stimuli not seen) and a new class, Class 3={Stimuli whose
classification is uncertain}.

Analysis of Type 3 gaze paths

The particular behavior of the trajectories included in the Type 3 set makes it difficult
to determine whether the peripheral stimulus was seen or not due to the subjectivity
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of its interpretation. In order to provide a better understanding of the behavior of
the participants’ gaze during the evaluation, an analysis of these trajectories in search
of any relationship between them and the position of the peripheral stimuli was per-
formed. To do the above, the different gaze paths that are included in this set were
divided in two new sets: Subtype 1={gaze paths with broken behavior} and Subtype
2={straight-line gaze paths}. As shown in Figure 3.16, Subtype 1 trajectories are those
in which the trajectory reaches or nearly reaches the peripheral stimulus; however, one
or more abrupt changes in direction characterize this type of gaze trajectories. On
the other hand, Subtype 2 gaze paths are characterized by having a direction similar
or close to that of the peripheral stimulus, but the participant never performs a fixa-
tion on it. Instead, fixation is within the area of a circular’s crown with origin in the
peripheral stimulus and radii of approximately 30% to 50% of the magnitude of the
vector representing the peripheral stimulus.

Figure 3.16: Examples of Type 3 gaze paths. The blue crosses represents the gaze path,
the orange circle and the white circle represent the reference and the peripheral stimuli
respectively, the yellow arrow corresponds to the expected direction, and finally, the
red arrow corresponds to the estimated direction.

Subtype 1 and Subtype 2 trajectories were quantified according to VF’s area where
its associated peripheral stimulus appeared. To simplify this, the quantification was
performed only in two areas: 1) the central area, which includes all the stimuli of the
zones 1,2 and 3, and 2) the peripheral area that includes the remaining positions (see
Figure 3.5 (b)).

3.3.4 Gaze path analysis versus the ground truth

In order to perform a comparison between the gaze path analysis and the ground truth,
the common classification indices such as sensitivity, specificity, accuracy and error rate
were computed. Taking into account Type 3 gaze paths, the quantification of these
indices were performed under two scenarios: 1) Type 3 gaze paths are considered as
not seen, and 2) Type 3 gaze paths are left out of the analysis, that is, approximately
6% of the data per test are not used to test the classifiers.
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3.4 Reconstruction of the visual field

Unlike the SAP reconstruction map, where visual thresholds are represented in gray
scale, visual thresholds computed from gaze path analysis are represented by a heat
map that covering a color palette ranging from blue to red. These two colors, represent
the minimum and maximum intensity values used during the test respectively. The
heat map was selected because it is easier to visualize the different visual thresholds
and their behavior in the VF map than with gray scale, where for the latter, it is
necessary some experience to distinguish the different shades of gray. In addition to
the color palette used, the positions not evaluated were represented in black dotted
lines, while the dark-gray color was reserved to represent those VF positions where the
participant could not see the intensity threshold used during the evaluation. These
dark-gray positions should not be necessarily interpreted as blindness, rather that the
intensity used in those positions was not sufficient to cross the visual threshold. In
addition to the heat map, two additional maps are shown: 1) a numeric map with the
visual threshold values used (in dBs) to render the heat map, and 2) a symbolic map
that indicates whether the estimated visual thresholds are correct or incorrect based
on the ground truth (false positives, false negatives, true positives and true negatives).
For the numerical map, the single values correspond to the visual thresholds computed,
the values in parentheses correspond to the intensity thresholds that the participant did
not see (or in the case of machine learning techniques, these intensities were classified
as not seen), and the acronym N.E (not explored) corresponds to the C24-2 positions
that were not evaluated. On the other hand, the symbolic map uses dots for represent
the correct visual thresholds estimated (true positives and true negatives) according
to the ground truth, the symbol plus represent the false positives, while minus sign
is used to represent the false negatives. Like the numeric map, unexplored positions
are represented as N.E. However, there are some positions where it was not possible to
verify the visual threshold since the trajectories belong to the Type 3 set; these positions
are represented as N.C (not computed). Figure 3.17 summarizes the symbology used
in the reconstruction maps.
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(a)

(b)

Figure 3.17: Symbology used in the reconstruction maps. (a) Symbology used in the
heat map. (b) Symbology used in the numerical and/or symbolic maps.
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Chapter 4

Results and discussion

4.1 Results

The results in this chapter show summarize statistical values of the gaze paths analysis.
If you need details about a participant’s reconstruction maps, see Appendix B.

4.1.1 Visual maps

Figures 4.1 to 4.5 show VF reconstruction maps of the right eye of a male participant.
These reconstructions, which were obtained from the implemented machine learning
techniques and also from SAP emulation, correspond to the three sessions performed
by the participant. The order of the VF reconstruction maps is as a follows: 1) heat
maps, 2) numerical map without the blind spot grid, 3) numerical map for the blind
spot grid, 4) symbolic map without the blind spot grid, and 5) symbolic map for the
blind spot grid.

From the heat maps or numerical maps is easy to see 1) the great similarity between
the visual thresholds computed using the machine learning techniques and the manual
responses, 2) the expected behavior of a healthy VF: greater visual sensitivity on the
center of the VF and a decreased visual sensitivity on the periphery, and 3) the correct
blind spot location. However, slight variations on the visual thresholds computed
were found in each session. Such variations may be due to several factors such as:
1) classification errors obtained from the implemented machine learning techniques, 2)
missed responses from the participant, 3) willingness and cooperation of the participant
during the evaluation, and/or 4) the participant’s experience in becoming familiar with
the test.

Based on the threshold values from the ground truth, the figures 4.4 and 4.5 show
the classification errors between the visual thresholds computed from the gaze path
analysis and visual thresholds values of the ground truth. Here, it is easy to observe
the correct value of the visual thresholds in the center of the VF (positions with a dot)
and slight classification errors in some peripheral positions: false positives and/or false
negatives represent by the plus and minus symbols respectively. Compared to SAP
emulation, note how KBC and ANN correctly provide lower nasal visual thresholds
during the first session. Similarly, note how ANN correctly detects visual thresholds
in the third session. The above shows the control that the paradigm has during the
evaluation by reducing the subjective responses of the SAP emulation.

34



S
A
P
e
m
u
la
ti
o
n

K
B
C

A
N
N

Session1 Session2 Session3

F
ig
u
re

4.
1:

R
ec
on

st
ru
ct
io
n
s
of

th
e
V
F
of

th
e
ri
gh

t
ey
e:

h
ea
t
m
ap

s.

35



S
A
P
em

u
la
ti
o
n

K
B
C

A
N
N

Session1 Session2 Session3

F
ig
u
re

4.
2:

R
ec
on

st
ru
ct
io
n
s
of

th
e
V
F
of

th
e
ri
gh

t
ey
e:

n
u
m
er
ic
al

m
ap

s.

36



S
A
P
em

u
la
ti
o
n

K
B
C

A
N
N

Session1 Session2 Session3

F
ig
u
re

4.
3:

R
ec
on

st
ru
ct
io
n
s
of

th
e
V
F
of

th
e
ri
gh

t
ey
e:

n
u
m
er
ic
al

m
ap

s
of

th
e
b
li
n
d
sp
ot
.

37



S
A
P
em

u
la
ti
o
n

K
B
C

A
N
N

Session1 Session2 Session3

F
ig
u
re

4.
4:

R
ec
on

st
ru
ct
io
n
s
of

th
e
V
F
of

th
e
ri
gh

t
ey
e:

d
iff
er
en
ce

ag
ai
n
st

gr
ou

n
d
tr
u
th
.

38



S
A
P
em

u
la
ti
o
n

K
B
C

A
N
N

Session1 Session2 Session3

F
ig
u
re

4.
5:

R
ec
on

st
ru
ct
io
n
s
of

th
e
b
li
n
d
sp
ot

fo
r
th
e
ri
gh

t
ey
e:

d
iff
er
en
ce

ag
ai
n
st

gr
ou

n
d
tr
u
th
.

39



However, for the first and last session we identified some positions within 9◦ whose
visual threshold was impossible to calculate because Type 3 gaze trajectories were
found in these positions (positions with N.C). For this particular participant, a total
of 3 positions were identified.

4.2 Type 3 gaze path analysis

Figure 4.6 shows, for each session and eye, the average percentage of Type 3 gaze
paths detected in the ground truth. For these average percentages, the proportion
of subtype 1 gaze paths are present in dark colors, while for subtype 2 gaze paths,
their representation is given in light colors. For all sessions, the average percentage
of type 3 gaze paths was less than 2.80% for the left eye and 3.20% for the right eye.
Nevertheless, it should be noted that the percentage decreases for both eyes throughout
the sessions. This decrease may be the result of experience gained by the participant
in each session.

(a) Left eye (b) Right eye

Figure 4.6: Average percentage of Type 3 gaze trajectories found in the ground truth,
for each eye and each session.

According to the analysis performed for this type of trajectories, Figure 4.7 shows,
for each session and eye, the average percentage of stimuli with Type 3 gaze paths
reported as seen in SAP emulation. We consider this quantification necessary because
by comparing two paradigms such as SAP and ours, we can identify classification errors
and correctly quantify the accuracy of the results in our paradigm. Results shown in
the Figure 4.7, indicate that, on average, between 60% and 80% of the stimuli with
Type 3 gaze paths were reported as seen by the participants in each session. This
average percentage suggests that the participant perceived most of these stimuli, but it
is not clear whether the stimuli were perceived when the participant was staring at the
reference stimulus or at some unrelated point in the screen. For instance, Subtype 1
trajectories can be explained by the user scanning the screen trying to find the stimulus,
and then changing the scanning direction when stimulus is found. For this reason, we
perform the subsequent evaluation considering the two scenarios described in Section
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3.3.4: one scenario where Type 3 stimuli are considered not seen, and another scenario
where they are considered ambiguous and are removed from the testing data sets.

Figure 4.7: Percentage of Type 3 gaze path reported as seen in SAP emulation.

Table 4.1 shows, for each session, the mean percentage of Subtype 1 and Subtype
2 gaze paths according to the area in which they were found (for details about this
quantification see the section 3.3.3). The quantification shows that, throughout the
sessions carried out by the participants, Area 2 reported an increase of Subtype 1 gaze
paths. For the left eye, an increase of 36.48% was obtained between the first session
and the last session ; while for the right eye the increase was 13.66%. On the other
hand, Subtype 2 gaze paths do not shown a progression; instead, they show fluctuating
values in both eyes across the sessions.

Subtype 1 gaze paths

Right eye Left eye
Area 1 (%) Area 2 (%) Area 1 (%) Area 2 (%)

Session 1 63.39 36.61 58.24 41.75
Session 2 51.19 48.81 47.30 52.79
Session 3 26.92 73.07 44.58 55.41

Subtype 2 gaze paths

Left eye Right eye
Area 1 (%) Area 2 (%) Area 1 (%) Area 2 (%)

Session 1 39.89 60.11 38.54 61.46
Session 2 61.73 38.27 26.85 73.15
Session 3 16.67 83.33 51.67 48.83

Table 4.1: Mean percentage of Subtype 1 and Subtype 2 gaze paths according to the
area in which they were found.
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Left eye

Sensitivity (%) Specificity (%) Accuracy (%)
SAP emulation KBC ANN SAP emulation KBC ANN SAP emulation KBC ANN

Session 1 82.15 96.87 99.28 93.98 96.18 94.33 88.03 96.38 96.65
Session 2 87.85 97.44 99.43 94.11 96.38 94.81 90.32 96.68 96.97
Session 3 91.17 99.17 99.47 95.05 97.68 96.33 93.33 98.37 97.83

µ 87.06 97.83 99.39 94.38 96.74 95.16 90.56 97.14 97.15

Right eye

Sensitivity (%) Specificity (%) Accuracy (%)
SAP emulation KBC ANN SAP emulation KBC ANN SAP emulation KBC ANN

Session 1 80.81 97.95 99.00 93.83 94.20 92.73 86.99 95.97 95.74
Session 2 87.03 98.01 99.59 94.76 95.53 95.34 90.99 96.52 97.18
Session 3 91.85 98.39 99.68 95.91 97.92 96.80 93.96 98.10 97.99

µ 86.56 98.12 99.42 94.83 95.88 94.96 90.65 96.87 96.97

Table 4.2: Sensitivity, specificity and accuracy considering Type 3 gaze paths as not
seen.

Left eye

Sensitivity (%) Specificity (%) Accuracy (%)
SAP emulation KBC ANN SAP emulation KBC ANN SAP emulation KBC ANN

Session 1 82.15 96.87 99.28 97.10 98.40 97.58 89.53 97.56 98.44
Session 2 87.85 97.44 99.43 96.74 98.94 98.53 91.70 98.08 98.99
Session 3 91.17 99.17 99.47 96.59 99.28 98.81 94.08 99.20 99.09

µ 87.06 97.83 99.39 96.81 98.87 98.30 91.77 98.28 98.84

Right eye

Sensitivity (%) Specificity (%) Accuracy (%)
SAP emulation KBC ANN SAP emulation KBC ANN SAP emulation KBC ANN

Session 1 80.81 97.95 99.00 96.88 97.50 97.02 88.39 97.76 98.04
Session 2 87.03 98.01 99.59 97.29 98.04 98.49 92.30 97.98 98.95
Session 3 91.85 98.39 99.68 97.99 99.75 99.60 95.10 99.11 99.60

µ 86.56 98.12 99.42 97.38 98.43 98.37 91.93 98.28 98.86

Table 4.3: Sensitivity, specificity and accuracy leaving out Type 3 gaze paths from the
analysis.

4.3 Comparison between the gaze path analysis and

the ground truth

Tables 4.2 and 4.3 show the mean percentage of sensitivity, specificity and accuracy
of the results obtained from the SAP emulation, KBC and the ANN under the two
scenarios described in section 3.3.4. For the first scenario, the results yielded accuracy
values between 90.5% and 97.5%, whereas for the second scenario, accuracy results
slightly improved with values between 91.5% and 99.0%. For both eyes, ANN was
the method with the highest sensitivity and accuracy values in both scenarios, while
for specificity values, KBC was better than the other methods. Figure 4.8 shows the
percentage error rates for SAP emulation, KBC and ANN. From this figure it is easy to
see a clear advantage of the machine learning techniques with respect to SAP emulation,
where ANN was the best-performing method. Taking the SAP emulation error rate as
reference, ANN decreased this error rate between a 67.5% and 70% in both eyes for
the first scenario, whereas for the second, ANN decreased approximately an 85.6% the
error rate in both eyes.
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(a) (b)

Figure 4.8: Percentaje of error rates for space key, KBC and ANN. a) Scenario 1 results.
b) Scenario 2 results.

4.4 Test time

Figure 4.9 shows the mean percentage of test time per session. For the right eye,
results show a slight increment of 0.5 minutes from the first to the last session, whereas
for the left eye, the time practically was the same during the three sessions. That
is, from the first session to the third the increment only was 0.09 minutes. However,
neither increment is significant, as the standard derivation is much lager than the
differences. On average, the test time for the three sessions in both eyes is 7.2 minutes.
Some investigations such as that Roggen et al. [37] or Bengtsson et al. [36] reported
average evaluation times of 6.1 and 7.05 minutes respectively when implementing SITA
Standard test with healthy people using the C30-2 pattern. Although the current
evaluation time of the paradigm proposed in this thesis is close to the evaluation time
of the mentioned investigations, one should take into account two factors: on one
hand, due to the limitations of the eye-tracker system, the proposed system evaluates
a smaller area than a clinical campimeter, with a smaller number of positions (e.g.,
64 positions vs. 76 positions in the C30-2 pattern); because this, the proposed system
could take 1 or 2 minutes longer than SITA Standard test to evaluate the VF. On the
other hand, the proposed system allows the person to take small rests (e.g., close the
eyes or look elsewhere) during the test, which could artificiality increase the evaluation
time, but would result in a less tiring test overall.

Figure 4.9: Average test time per session corresponding to the left and right eyes.
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4.5 Discussion

4.5.1 Reconstruction of the VF

We present a threshold paradigm for the VF’s evaluation based in EMP and machine
learning techniques. The paradigm, which was implemented and validated with twenty
young healthy participants, yielded similar results to those described for a healthy VF,
that is, 1) a decrease of visual acuity from the center of the VF towards the periphery,
and 2) a correct approximation of the position of the blind spot. Despite the fact that
most of the reconstructions maps fulfil the above description, all of them had slight
variations in the visual thresholds computed between sessions and paradigms. Some
studies performed by Junoi et al. [6], Stewart et al. [38], Phillip et al. [39] or Gardiner
et al. [40] have proven that the results of the SAP test are different for the same person
regardless of whether these results correspond to evaluations with a difference of weeks,
hours or even minutes. These studies have attributed the visual thresholds differences
to different factors involved in the test such as the conditions in which the test was
carried out (i.e. the technician’s experience conducting the test, lighting conditions,
strategy used, time of day the assessment was performed or the time of the year), the
physical and health conditions of the patient (i.e., age, the pupil size of the patient or
illnesses like diabetes or ocular hypertension) and/or the patient’s experience with the
test.

In some VF reconstruction maps obtained from KBC and ANN, we detected some
positions in the three central degrees where the calculated visual thresholds were differ-
ent than expected, that is, positions classified as unseen. Based on the ground truth,
we found that most gaze paths from these central positions correspond to fixations
on the reference stimulus. Nevertheless, the participants recorded the visual threshold
values at those positions in SAP emulation. Figure ?? shows the VF reconstruction
for a participant where the positions (3◦ nasal, 3◦ upper) and (3◦ nasal, 3◦ bottom)
shows the behavior mentioned. Note that despite not having estimated the expected
visual thresholds in the positions mentioned (a visual threshold represented by shades
of green), KBC and ANN classifiers correctly classify these positions as unseen due
to the participant’s fixation on the reference stimulus. Studies in EMP performed by
Murray et al. [25], [26] or Jones et al. [29] have reported similar behaviors when the
three central degrees are evaluated. These behaviors are due to the difficulty that some
people have in generating a gaze path from the reference stimulus to the peripheral
stimuli due to the short distance between them; another factor could be the low tem-
poral and spatial resolution of the ET used in this study. In our case, this phenomenon
occurred for 18 participants in at least one session. Studies performed by Jones et
al. [29], Brandao et al. [41] or Rumelhart et al. [42] have proposed new VF patterns
or modifications to the current patterns by eliminating or relocating the stimuli used
to evaluate the three central degrees. However, these new patterns may not be able to
identify visual defects in this area in a timely manner.
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(a) (b)

(c) (d)

(e)

Figure 4.10: Examples of VF reconstructions where there are differences in visual
thresholds within the central three degrees. (a) Reconstruction of VF from SAP em-
ulation. (b) Reconstruction of VF from KBC. (c) Reconstruction of VF from ANN.
(d) Gaze path for central stimulus at position 3◦ nasal and 3◦ upper, (e) Gaze path for
central stimulus at position 3◦ temporal and 3◦ upper.

45



During the gaze trajectory analysis, the blind spot was not fully found in four par-
ticipants in at least one session. This behavior was identified for both eyes; however
the phenomenon was more common in the left eye than the right eye. For the left
eye, the analysis shows that neither SAP nor machine learning techniques identified
the blind spot of three participants during the first session, while for the right eye,
this phenomenon appeared in one participant. Table 4.4 shows the participants and
the sessions in which it was not possible to locate the blind spot (for more details see
Appendix B). Most of the missed blind spot locations in these participants are due to
errors in the classification according to the ground truth. However, for the first session
of subjects 3 and 11, we found that all stimuli used to find the blind spot were seen. We
believe that the reason for the above is due to an incorrect alignment between the sub-
ject and the screen during the evaluation, since in the following sessions it is possible to
estimate the position of the blind spot in these subjects. On the other hand, subjects
7 and 9 generated uncertainty in the first session when detecting the blind spot. For
subject # 7, the only invisible position (temporal 18, inferior 1) was labeled as a false
positive, while the participant fully saw the stimuli in the neighboring positions. On
the other hand, subject # 9 generated Type 3 gaze paths in some of the positions of
the grid used to locate the blind spot, generating uncertainty in its location. Although
there is documentation indicating that the blind spot presents absolute and relative
scotomas, as well as slight variations in the size and position of the blind spot [20], [34]
or [44] , adjustments in the methodology are necessary to guarantee the correct esti-
mation of the blind spot in people (for example, incorporating a fast process with few
stimuli to estimate the position of the blind spot before the test and thus modify the
position of the grid used in the evaluation).

Left eye
First session Second session Third session

Participant SAP emulation KBC ANN SAP emulation KBC ANN SAP emulation KBC ANN
3 × × × ✓ ✓ ✓ ✓ ✓ ×
7 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
9 × × × ✓ ✓ ✓ ✓ ✓ ✓
11 × × × ✓ ✓ ✓ ✓ ✓ ✓

Right eye
First session Second session Third session

Participant SAP emulation KBC ANN SAP emulation KBC ANN SAP emulation KBC ANN
3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
7 × × × ✓ ✓ × × ✓ ✓
9 ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓
11 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 4.4: Participants for whom the blind spot was not located. The red cells with an
‘×’mark indicate the reconstruction map where the blind spot was not located. The
white cells with a check mark indicate the reconstruction maps where the blind spot
was located.

Detection of suspicious abnormal positions in the VF was found in four participants:
participant # 6, participant # 8, participant # 12 and participant # 17. Some visual
thresholds in SAP emulation, KBC and ANN reconstruction maps, positioned in 15◦

upper and between the 15◦ nasal and temporal were impossible to compute either one
or both eyes during the three sessions. Reconstructions maps in Figure 4.10 shows, for
the participant #12, the upper area (positions in dark gray) where the values of the
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visual thresholds were not computed. Note that for sessions 2 and 3, visual thresholds
in 15◦ upper and between 9◦ nasal and 9◦ temporal were not computed. Although
the positions in (3◦ nasal, 15◦ superior), and (3◦temporal, 15◦ superior) in the first
session were not evaluated, the rest of the positions without estimated visual threshold
in the 15◦ upper are the same as in sessions 2 and 3. Given this situation, we consider
necessary to clinically evaluate the participants to rule out or validate said anomalies
in the VF. On the other hand, the participant # 10 generated contrasting results in the
three sessions due to the notable differences between the reconstruction maps for both
eyes. Figure 4.11 shows the VF reconstruction maps of the right eye for this particular
participant. Note how KBC and ANN reconstruction maps contain several dark-grey
areas outside of the blind spot compared to reconstruction maps for the SAP emulation.
On the surface, these contrasting differences could be interpreted as a concerning visual
impairment given the large number of dark-gray positions. Based on our analysis for
this atypical participant, Table 4.5 summarizes the total of positions evaluated in both
VFs during the three sessions, as well as the total of positions with no visual threshold
computed during the evaluations. In average, we found that 61 positions of the right
VF and 62.33 positions of the left VF were evaluated. Of these values we found that
32.02% of the positions evaluated for the right VF, and 23.57% for the left VF were
impossible to determine the visual threshold value using KBC; whereas for ANN, the
right and left VF percentages were 36.73% and 24.11% respectively. According to the
ground truth, the stimuli in these positions were classified correctly as not seen, where
it was quantified that at least 48.67% of them the participant fixated his gaze on the
reference stimulus instead of generate a gaze path to peripheral stimuli. This behavior
of the participant may be caused by different situations: difficulty in performing both
task simultaneously during the evaluation, ocular mobility deficiencies, ET detection
problems caused by the corrective glasses used by the participant, and others. However,
these assumptions need to be tested to determine the causes that yielded these results.
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Left eye

KBC ANN
Visual thresholds not computed Visual thresholds not computed

Session
Total of positions
evaluated

Positions classified
as unseen (%)

Fixations performed
on reference stimulus
(%)

Positions classified
as unseen (%)

Fixations performed
on reference stimulus
(%)

1 62 22.58 42.85 22.58 42.85
2 62 33.87 47.61 35.48 45.45
3 63 14.28 55.55 14.28 66.66
µ 62.33 23.57 48.67 24.11 51.65

Right eye
KBC ANN

Visual threshold not computed Visual threshold not computed

Session
Total of positions
evaluated

Positions classified
as unseen (%)

Fixations performed
on reference stimulus
(%)

Positions classified
as unseen (%)

Fixations performed
on reference stimulus
(%)

1 58 24.13 100 22.41 100
2 63 39.68 48 55.55 65.71
3 62 32.25 55 32.25 55
µ 61 32.02 67.66 36.73 73.57

Table 4.5: Quantification of VF positions with no computed visual threshold for an
atypical participant.

4.5.2 Analysis of gaze paths

The Type 3 gaze paths identified in the ground truth provided interesting information
about the behavior of the visual system during the evaluation. This type of gaze
paths occurs in less than 4% of the total number of stimuli evaluated in each session,
where broken gaze paths were the most common in both eyes. As the participants
gained experience in conducting the evaluation, it was observed that Subtype 1 gaze
trajectories usually occurred in areas such as the periphery or near the blind spot
where the stimuli require higher visual intensities to be detected. On the other hand,
for Subtype 2 gaze paths the behavior was different. For the left eye it was observed
that these gaze paths tend to be found more frequently in peripheral areas of the VF,
while for the right eye the behavior is the opposite; that is, Subtype 2 gaze paths are
usually found more in central areas of the VF. We hypothesize that the concentration
of this type of gaze paths towards one or several specific areas should be the same in
both eyes; however, to verify this hypothesis, it is necessary to carry out further tests
that involve more than three sessions, so this verification will remain pending as future
work.

According to the results shown in Figure 4.7 at least 60% of stimuli with Type 3
gaze paths were recorded as seen by the participants, where based on the results in
Figure 4.6, these responses are likely related to stimuli seeking and also related to the
evaluation of the central three degrees of VF as mentioned above. In order to reduce
this percentage, it is necessary to detect this type of trajectories in real time, so that
the corresponding positions can be reassessed in order to compute the correct visual
threshold. However, the implementation of this decision rule may increase the evalua-
tion time in our paradigm, so it may be necessary to investigate different alternatives
that allow a balance between evaluation time and accuracy results. A possible solution
based on the results shown in Table 4.3 is to discard the peripheral positions with
Type 3 gaze paths and estimate the visual threshold values using information from
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their neighbours. Going a step further, we could apply the same idea to reduce eval-
uation time; that is, during the evaluation we could discard some peripheral positions
and estimate their visual thresholds values using the information from the neighbours.

4.5.3 Comparison between machine learning techniques and
SAP emulation

The common indices used to measure the classifiers performance showed that KBC and
ANN were better than SAP emulation with accuracy percentages between 96% and 99%
for KBC and ANN, while the accuracy values for SAP emulation were between 90% and
92%. From the two machine learning techniques implemented, ANN was slightly better
than KCB, showing accuracy differences for the fist and second scenarios of 0.01% and
0.56% for the left eye, and differences of 0.10% and 0.58% for the right eye. The
superiority of machine learning techniques represent an decrease in the error rate with
respect to SAP emulation between 66% and 70% if Type 3 gaze paths are included in
the analysis, and between 78% and 86% if Type 3 gaze paths are not included. Murray
et al. [26] have reported indices of sensitivity, specificity and accuracy of 69.1%, 96,9%
and 95.0% respectively; however, their methodology is different from ours. Specifically,
they perform SAP and EMP tests separately using different devices, which modifies
the experimental conditions. Therefore, it is difficult to make a comparison between
our paradigm and their paradigm.

4.5.4 Limitations

In EMP paradigms where a computer screen or any other display device is used to
display peripheral stimuli, the VF area to be evaluated and the estimation of visual
thresholds are conditioned by the technical specifications of these devices. For example,
the size of the screen used and the distance between the subject and the monitor
determine the evaluation area, while the technologies in screens such as LCD, LED
and their variations, determine the range of luminance that will be used during the
evaluation. Similar to some EMP studies such as [25–30], our paradigm was unable
to fully evaluate the thirty central degrees and use the same range of sensitivities that
SAP uses. However, these limitations did not prevent us from evaluating the central
fifteen degrees and detecting the blind spot.

Compared against SAP using the SITA Standard C24-2 test, which is one of the
most common test used by the ophthalmologists, the mean evaluation time for our
paradigm is larger than of the SAP test. On average, the test time for SAP is 6.5
minutes per eye, while for our paradigm, the evaluation time was 7.2 minutes. In spite
of this difference of time, a quick survey performed by the participants showed that
none of them found the test exhausting, thanks to the short breaks allowed during the
evaluation.
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Chapter 5

Conclusions

At present, EMP is a developing paradigm whose qualities make it very attractive for
VF evaluation, enabling portable, configurable and low-cost implementations capable
of providing better control during the evaluation.

In this thesis, a paradigm based on EMP and machine learning for the VF evaluation
was presented and validated. The paradigm was designed to estimate visual thresholds
at each evaluated position within the central thirty degrees using the C30-2 or C24-2
patterns, as well as to identify the blind spot within this area. Nevertheless, due to the
size of the screen used during the experimental stage, the evaluation area was reduced,
evaluating in average the central fifteen degrees of the VF. Despite the above, we were
able to locate the blind spot and estimate most of the visual thresholds within this
area. The reconstruction maps obtained from each participant were satisfactory and
showed the behavior described for a healthy VF; that is, a gradual increase of the visual
sensitivity from the periphery to the VF center, as shown in figures 4.1 y 4.11.

An important contribution of the paradigm proposed was the gaze paths analysis
using machine learning techniques, yielding mean accuracy results greater than 96.5%.
This percentage represents an error rate reduction between 67% and 86% compared to
methodologies that depend on a subjective patient’s response, such as SAP .

Thanks to the visual analysis of the gaze paths for the creation of the ground truth,
we were be able to find visual behaviors that were not initially considered. These
behaviors, which correspond to the Type 3 gaze paths and the fixations performed
by the participants on the reference stimulus when the central three degrees were
evaluated, are of great importance in the visual analysis of the gaze paths due to the
impact they can have on the results. Although KBC and ANN were able to correctly
classify the most stimuli in the central three degrees, Type 3 gaze path detection will
have to be considered in future versions of the proposed system.

The evaluation time is one of the disadvantages of our paradigm with respect to
SAP. In our case, the average time is 7.2 minutes while the average test time for SAP is
6.5 minutes. Although, the participants who supported the validation of our system did
not report inconveniences or negative comments about the evaluation time (perhaps
due to the short breaks given during the evaluation), it is necessary to validate our
paradigm with children and elderly people. The foregoing, with the aim to identify
the necessary factors that may help to improve our paradigm by an adequate balance
between precision and evaluation time.

Despite some problems that our paradigm faces, in this thesis we show a low-cost
alternative for the VF evaluation with satisfactory results. Although EMP is currently
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far from replacing SAP, the constant improvements in Eye Tracking technology as
well as new machine learning techniques will allow the development of more robust
and accurate tests based on EMP which, together with SAP, may allow the timely
identification of visual impairments.

5.1 Future work

Based on the experience obtained in this work, this section presents some ideas that
could be developed in the future.

5.1.1 Methodology modifications

There are various modifications in the methodology that could be performed in order
to improve or solve some limitations identified in this work.

1. Increasing the evaluation area. By positioning the reference stimulus on the
screen corners, the VF can be evaluated by zones, in this way the evaluation
area can be expanded without the need to modify the size of the screen size or
incorporate two or more screens into the system. Some studies in EMP [25–28]
constantly move the reference stimulus during the evaluation. While it may be
true that these methodologies increase the evaluation area, it is not clear if these
studies consider factors such as the participant’s head position, or the angle and
position of the eye during the evaluation, both of which have a influence in the test
and need be considered. To solve the problem, it could be convenient to adjust
the position of the screen during the evaluation through a mechanical system,
taking the position of the subject as a reference. This could greatly simplify the
system by avoiding the incorporation and synchronization of new sensors used to
determine the person’s position, as well as the reduction of calculations to adjust
the position of the peripheral stimuli in real time during the evaluation.

In the validation stage, a high percentage of people who could not perform a
saccadic movement in the central three degrees was identified due to the short
distance between stimuli. A possible way to solve this problem could be to
estimate an approximation of the visual thresholds in the three central degrees
based on the visual threshold values of the neighboring locations and the initial
threshold (similar to a labelling problem in image analysis). The approximation
of these values can not only be used in the central three degrees, we could also
implement the same idea in some positions in the central thirty degrees to reduce
the number of positions to be evaluated, and therefore reduce the time during
the evaluation.

2. Gaze path analysis. The extraction, selection and preprocessing of features
from a database is one of the most important processes in machine learning, as
it often determinates whether or not the prediction model will provide reliable
results. In order to improve our system, we need find new features that help
identify the three types of gaze paths mentioned in this work. For example,
one could experiment with the latency and the number of saccadic movements
under the following hypothesis: if a stimulus is seen, one would expect to observe
a fast response time of the subject (perhaps in the fist half of the total time
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of the peripheral stimulus), as well as a single saccadic movements towards the
peripheral stimulus. Conversely, if some stimulus is not seen, one would expect
to observe longer reaction times (or no reaction time in case of a fixation) with
one or more saccades in direction to other than the peripheral stimulus, whereas
for Type 3 gaze paths, the last saccadical movement would be in the direction of
the peripheral stimulus.

The incorporation of real-time gaze paths analysis is a necessary and important
step to perform decisions during the evaluation, for example, when a Type 3 gaze
path is detected. To do this using machine learning, it is necessary to implement
supervised techniques, so it becomes necessary to improve the database for this
purpose. The aim is to create a database that covers a wide sector of people;
that is, from youth to older adults with and without visual impairments. Among
the different supervised machine learning techniques that one could implement
are Naive Bayes, Support Vector Machine (SVM), Random Forest and others.
According to the results, ANN could be a good option, however it is necessary
to modify the architecture in order to detect the Type 3 gaze paths. An in-
teresting technique that should be considered is Convolutional Neural Network
(CNN). This deep learning technique, which has become prominent in image pro-
cessing, combines the feature extraction and the classification process by using a
full connected network with convolution stages, subsampling stages and a fully
connected ANN in its architecture. Figure 5.1 shows the basic architecture of
a CNN. So, if one can manipulate the gaze path as an image, one could train
a CNN for gaze path classification with the advantage that we would not have
to worry about the extraction and selection of features for the prediction model,
since the technique does this during the training.

Figure 5.1: Basic architecture of a CNN. In practice, it is common to use two or
more convolution and subsample stages to obtain better feature maps and to reduce
computational load during CNN training.
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5.1.2 Validation with children and elderly people

In order to improve the paradigm, it is necessary validate the system with children
and elderly people with and without visual impairments. In this way, it is possible to
identify and solve some problems that cannot be identified in a healthy young adult
population, as well as to acquire information correlated with the study population,
such as the evaluation time or the precision of the tests.
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Appendix A

Machine learning techniques

This chapter describes the classifiers used during the gaze path analysis. For a better
understanding of some techniques implemented, their descriptions are generalized for
the two class case. However, these techniques can be adapted to n classes.

A.1 KBC classifier

Before explaining the KBC classifier, we define the following variables for a better
understanding of the classifier.

� Dq = (∆θi,j,di,j): corresponds to the peripheral stimulus q to be classified ac-
cording to the computed features of its gaze path.

� t: refers to the class number. In our particular case t=1,2, where 1 = stimulus
seen, and 2 = stimulus not seen.

� Ct: corresponds to the centroid of class t.

� Distq,Cet : indicates the distance between Dq and Ct.

� Clt: indicates the class t.

� Lq corresponds to the label of Dq.

KBC consist of two classifiers: K-means and Bayesian classifier, whose description
is as follows.

K-means is one of the most widely used clustering algorithms due to its good per-
formance and easy implementation. This iterative and unsupervised algorithm groups
data with similar features into r clusters using the minimum distance between the cen-
ter of each cluster and the data as the decision rule; that is, the data is assigned to the
closest cluster based on the metric used. Commonly, the used metric in the algorithm is
the Euclidean metric; however, metrics such as Minkowski or the Manhattan distance
can also be implemented. Once all the data is assigned to a cluster, the position of
the center of each cluster is updated and the process of assigning data to the nearest
cluster is repeated again. The algorithm stops until the position of the center of each
cluster does not change significantly after its update. For the algorithm to work, the
user must provide the total number of clusters into which the data will be separated,
where each cluster is assigned a centroid that must be initialized at the start of the
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algorithm. However, it is important to consider that the initial values of the centroids
may have a significant impact in the classification of the data as shown in Figure A.1,
where for the same data set (black circles), the two defined centroids represented as
red and green diamonds generated clusters with different elements.

To classify m data points into one of the two classes using the K-means algorithm,
the process can be summarized in the following steps:

1. Initialize the centroids as Ct|t=1 = (0, 0) and Ct|t=2 = (0.8, 0.8). These centroids
are chosen empirically, according to the expected behavior of the gaze paths: for
a peripheral stimulus that was seen (class t = 1), the gaze path should have a
small distance to the stimulus and a small angular difference.

2. For each datum Dq, compute the distance between it and the centroids as

Distq,Ct = |Ct −Dq|. (A.1)

3. Label Dq based on nearest centroid as

Lq = t if Distq,Ct < Distq,Cu , for t ̸= u. (A.2)

4. Update the positions of the centroids as

Ct =

∑
q|Lq=t Dq∑
q|Lq=t 1

. (A.3)

5. Repeat the steps 2-4 until the positions of the centroids are almost the same after
the update.

On the other hand, a Bayesian classifier (also known as Naive Bayes classifier) is
probabilistic classifier based on the Bayes theorem, where considering the features of
the data as independent variables, the objective is compute the probability that Dq

belongs to Clt; that is

P (Clt|Dq) =
P (Clt) p(Dq|Clt)

p(Dq)
, (A.4)

From the above expression, P (Clt) (known as prior probability) corresponds to a
probabilistic weight assigned to each class t. In our particular case, these weights are
considered equally likely; that is, P (Clt|t=1) = P (Clt|t=2) = 0.5. On the other hand,
the denominator, p(Dq), corresponds to a scalar value that guarantees that

2∑
t=1

P (Clt|Dq) = 1. (A.5)

With this in mind and for data classification purposes, such values can be omitted from
the expression without affecting the decision rule. Therefore, the above expression can
be rewritten as

P (Clt|Dq) ∝ p(Dq|Clt). (A.6)
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(a) (b)

(c) (d)

Figure A.1: Different classification of data in two classes (red or green) according
to the initialization of the centroids (diamonds). (a) Initialization of centroids as
centroid1 = (0.51, 0.84) and centroid2 = (0.81, 0.24). (b) Classification of the data
into two classes according to the initial position of the centroids shown in part (a). (c)
Initialization of the centroids as centroid1 = (0.230.55) and centroid2 = (0.44, 0.89).
(d) Classification of the data into two classes according to the initial position of the
centroids shown in part (c).

An advantage of this classifier is that it can be represented as a set of discrimi-
nant functions ht(Dq), where considering that each class has a multivariate Gaussian
distribution the equation A.6 can be rewritten as

P (Clt|Dq) ∝ ht(Dq) =
e−

1
2
(Dq−µt)TΣ−1

t (Dq−µt)

(2π)α/2(det
∑

t)
1/2

, (A.7)

where (Dq − µt)
T Σ−1

t (Dq − µt) is known as the Mahalanobis distance squared.
From the expression A.7, µt is the mean of the data belonging to Clt (in our par-
ticular case these values initially correspond to the values of the last update of the
position of the clusters in K-means; that is, µt = Ct), Σt is the covariance matrix of
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Clt, Σ
−1
t and detΣt correspond to the inverse and the determinant of the covariance

matrix, respectively, and finally (Dq − µt)
T is the transpose of Dq − µt.

With this in mind, the decision rule of the Bayesian classifier is the following:

Lq = t if ht(Dq) > hu(Dq) for t ̸= u. (A.8)

Once all the data (Dq) have been labeled according to the decision rule expressed
by A.8, the Bayesian classifier is applied iteratively until convergence, updating the
values of µt and Σt in each iteration.

A.2 Artificial Neural Networks

An Artificial Neural Network (ANN) is a machine learning technique whose structure
and name are inspired by the human brain. ANNs are designed to mimic the mech-
anisms of the brain, which contains millions of neurons designed to receive, process
and transmit information. In the case of ANNs, the neuron’s counterpart is called
perceptron or node, which is the minimum expression for the ANN’s development.

A perceptron, as shown in Figure A.2, is formed by n inputs, n weights, a bias, an
activation function, and an output. The perceptron sums all the inputs multiplied by
a weight plus the bias. This weighted output is passed through the activation function
that provides a non-linear output on the perceptron, allowing discrete and non-linear
problems to be solved. This process is described by the following expressions:

α = WX + bias, (A.9)

y = f(α), (A.10)

where y is the output of the perceptron, α corresponds to the weighted sum of the
perceptron, W = [w1, w2, ..., wn] and X = [x1, x2, ..., xn]

T are vectors of weights and
inputs respectively, bias is an adjustment parameter and it act as an input node that
always produces a constant value, and f(α) is the activation function, where the func-
tions most used are Sigmoid, Tanh and ReLU as shown in the equations A.11-A.13 ;
however variations of ReLU such as LReLU, PReLU or GELU are other examples of
activation functions.

Figure A.2: Example of a perceptron.
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f(α) =
1

1 + e−α
(Sigmoid function). (A.11)

f(α) =
eα − e−α

eα + e−α
(Tanh function). (A.12)

f(α) = max(0, α) (ReLU function). (A.13)

Therefore, an ANN consists of several perceptrons connected to each other and grouped
in layers, where the outputs of a given layer are used as inputs of the next layer. In this
way, introducing the input values to the ANN, a prediction is obtained in the output
with an error value respect to the expected output value. Figure A.3 shows the general
architecture of one of the most widely used ANNs, where an ANN with one input layer,
one inner layer and one output layer is called as a shallow neural network, while an
ANN with more than one inner layer it is called as deep neural network.

Figure A.3: Architecture of an ANN.

To compute the output in the ANN it is necessary to sequentially compute the
outputs of its l layers 1. Therefore, the equations A.9 and A.10 can slightly modified
as

αk = WkXk +Bk, (A.14)

Yk = fk(αk). (A.15)

Where

1Since the input layer is not a layer composed of perceptrons, the expression for the calculation of
the output layers applies only to the internal layers and the output layer of the ANN.
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Wk =


w1,1 w1,2 w1,3 · · · w1,n

w2,1 w2,2 w2,3 · · · w2,n

w3,1 w3,2 w3,3 · · · w3,n
...

...
...

. . .
...

wm,1 wm,2 wm,3 · · · wm,n

 ,

Xk = [x1, x2, x3, · · · , xn]
T , and Bk = [bias1, bias2, bias3, · · · , biasm]T

correspond to the weight matrix, the input vector and the vector of bias respectively
for the layer k = 1, 2, 3, · · · , l of the ANN. Wk is a weight matrix of size m× n, where
m is the total number of perceptrons in the layer k, and n is the total number of inputs
for each perceptron; that is, the rows of the matrix correspond to the n weights of
each perceptron. Depending on the number of perceptrons in the output layer, the
output Yk will either be a column vector of size m or a single value if there is only one
perceptron in the output layer.

Similar to other supervised machine learning algorithms, ANN seeks to minimize
a given error measure between the expected output and the model output during
its training. To do this, ANN must adjust the values of the weights and biases of
each perceptron. The way to adjust those values is done through the backpropagation
algorithm [43] and gradient descent algorithm, where the first algorithm computes the
gradient of the error with respect to the weights and biases, and the second algorithm
uses those gradients to minimize the ANN output error.

Therefore, based on Figure A.3, the update of the weights and biases is as follows:
Starting with the last layer we have the following partial derivatives:

∂C

∂Wl

=

(
∂C

∂Yl

)(
∂Yl

∂αl

)(
∂αl

∂Wl

)
, (A.16)

∂C

∂Bl

=

(
∂C

∂Yl

)(
∂Yl

∂αl

)(
∂αl

∂Bl

)
. (A.17)

Where C corresponds to the cost function used to compute the error in the ANN output,
being the mean square error and the cross entropy some of the functions commonly
implemented. By comparing the equations A.16 and A.17, it is easy to see that only
the last partial derivative of the product is different. Therefore, both expressions can
be rewritten as

∂C

∂Wl

= δl

(
∂αl

∂Wl

)
= (δl)

(
Xl

T
)
, (A.18)

∂C

∂Bl

= δl

(
∂αl

∂Bl

)
= δl. (A.19)

Where δl =
(

∂C
∂αl

)
=

(
∂C
∂Yl

)(
∂Yl

∂αl

)
indicates how the error in the ANN output varies

with respect to the weighted sum of each of the perceptrons in the layer l.
Now, continuing with the l − 1 layer we have the following partial derivatives:
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∂C

∂Wl−1

=

(
∂C

∂Yl

)(
∂Yl

∂αl

)(
∂αl

∂Yl−1

)(
∂Yl−1

∂αl−1

)(
∂αl−1

∂Wl−1

)
, (A.20)

∂C

∂Bl−1

=

(
∂C

∂Yl

)(
∂Yk

∂αl

)(
∂αl

∂Yl−1

)(
∂Yl−1

∂αl−1

)(
∂αl−1

∂Bl−1

)
. (A.21)

Similar to what was done in the last layer, the expressions A.20 and A.21 can be
rewritten as

∂C

∂Wl−1

= δl−1

(
∂αl−1

∂Wl−1

)
= (δl−1)

(
Xl−1

T
)
, (A.22)

∂C

∂Bl−1

= δl−1

(
∂αl−1

∂Bl−1

)
= δl−1. (A.23)

Where δl−1 =
(

∂C
∂αl−1

)
= Wl

T δl ⋆ f
′(αl−1)

2 indicates how the error in the ANN output

varies with respect to the weighted sum of the each perceptrons in the layer l − 1.
Repeating the procedure described with the rest of the layers, it is observed that for
any layer k ̸= l the partial derivatives of the error with respect to the weights and
biases are expressed as

∂C

∂Wk

= δk

(
∂αk

∂Wk

)
= (δk)

(
Xk

T
)
, (A.24)

∂C

∂Bk

= δk

(
∂αk

∂Bk

)
= δk. (A.25)

Where δk = Wk+1
T δk+1 ⋆ f

′(αk).
Once partial derivatives are computed for all layers, the weights and biases are

updated as

Wk(new) = Wk + β

(
∂C

∂Wk

)
(A.26)

Wk(new) = Wk + β

(
∂C

∂Bk

)
(A.27)

where β is a numerical value between 0 and 1 indicating how fast the weights and
biases are updated. The process described above (calculation of partial derivatives and
update of values) is iteratively repeated until convergence is determined (e.g. when a
given number of iterations is reached or when the norm of the derivatives is small).

The method for train an ANN can be summarized as follows:

2The symbol ⋆ will be used to indicate the element-wise matrix product.
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1. Initialize randomly the weights and biases of the ANN.

2. Compute the output for the last ANN layer iteratively using the expressions A.14
and A.15.

3. Compute the partial derivatives for the last layer using the equations A.18 and
A.19.

4. Compute the partial derivatives for the rest of the layers using the equations A.24
and A.25.

5. Update the weights and biases according to the equations A.26 and A.27.

6. Repeat the steps 2-5 until convergence criteria is met.
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Appendix B

Experimental validation results:
visual maps

This appendix compiles all the VF reconstruction maps of each participant who helped
in the validation of the paradigm described in this thesis. For more details see the
CD-ROM attached to this thesis.
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Appendix C

Published works

The compilation of products generated from this work are listen as follows.

� Congress presentation:

1. Mart́ınez-González, E.A., Alba, A., Méndez, M.O. and Fernández- Wong J..
“Desarrollo de una prueba de concepto para la evaluación del campo visual
mediante seguimiento de la mirada”. 41◦ Congreso Nacional de Ingenieŕıa
Biomédica (CNIB). Oct, 2018. León, Gto.

2. Mart́ınez-González, E.A., Alba, A., Méndez, M.O. et al. “Eye tracking
en la evaluación del campo visual”. 2do Encuentro Nacional de Ingenieŕıa
Biomédica, Electrónica y Telecomunicaciones (ENIBET). Oct, 2018. Uni-
versidad Autónoma de San Luis Potośı.

3. Mart́ınez-González, E.A., Alba, A., Méndez, M.O. et al. “Eye tracking:
una herramienta para la evaluación del campo visual”. 3er Encuentro Na-
cional de Ingenieŕıa Biomédica, Electrónica y Telecomunicaciones (ENI-
BET). 2019. Universidad Autónoma de San Luis Potośı.

� Research articles:

1. Mart́ınez-González, E.A., Alba, A., Méndez, M.O. et al. Developing a visual
perimetry test based on eye-tracking: proof of concept. Health Technol. 10,
437–441 (2020). https://doi.org/10.1007/s12553-019-00366-9

2. Mart́ınez-González, E.A., Alba, A., Arce-Santana, E. et al. “A novel sys-
tem for the automatic reconstruction of visual field based on eye track-
ing and machine learning”. Multimed Tools Appl 82, 27193–27215 (2023).
https://doi.org/10.1007/s11042-023-14464-4
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Developing a visual perimetry test based on eye-tracking:
proof of concept

Eduardo A. Martínez-González1,2 & Alfonso Alba1,2 & Martín O. Méndez1,2 & Jorge Fernández-Wong3
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Abstract
Computerized Perimetry (CP) is one of the clinical tests commonly used to evaluate peripheral vision and monitor the progress of
eye diseases such as glaucoma. The aim of CP is to determine retinal sensitivity using luminous stimuli of variable intensity at
different positions of the visual field. In modern campimetry devices, patients must respond to each perceived stimulus by
pressing a button; however, this characteristic makes the test more susceptible to spurious and erroneous interpretations due to
tiredness, lack of concentration, or device design flaws. This work presents an alternative paradigm for automatically assessing
stimulus perception through a low-cost eye tracker and a computer monitor. We tested the preliminary version of the paradigm
among eight subjects and obtained favorable results. In conclusion, our eye-tracking paradigm tool could help design more
reliable visual field tests using low-cost portable equipment.

Keywords Computerized Perimetry . Eye tracker . Glaucoma . Visual field

1 Introduction

Human body deterioration is a natural and inevitable process,
which negatively affects the health and lifestyle of most peo-
ple. The sense of sight, which involves complex processing of
signals in the nervous system, is one of the systems that are
commonly affected by senescence [1]. According to 2017
statistics from the World Health Organization (WHO), ap-
proximately 253 million people suffer from visual disability,
36million ofwhich are completely blind.Adults aged 50 years
or older account for a high percentage of the blind people, thus
suffering mostly from cataracts (35%), refractive correction
errors (21%) and glaucoma (8%) [2]. Similarly to many de-
generative diseases, glaucoma is incurable and characterized
by a gradual loss of the visual field, with no other symptoms

such as pain. However, multiple clinical tests are nowadays
available to diagnose, evaluate, and monitor the progress of
glaucoma and other diseases of the retina and the optic nerve.
One of these tests is computerized campimetry (CC) or com-
puterized perimetry (CP) [1].

CC employs luminous stimuli of variable size and intensity,
located at different points within the visual field. The goal of
the test is to evaluate the sensitivity of the retina to the differ-
ent light intensities by asking the subject to respond to the
stimuli by pressing a button each time a stimulus is perceived.
Under this paradigm, CC demands a considerable amount of
concentration from patients, who must also focus their sight
toward a specific area (usually the centre of the screen) during
the test. After a fewminutes, patients often become easily tired
and/or distracted, which may lead to spurious responses and
thus unreliable results.

An eye-tracker (ET) is a device that registers gaze location
within a certain area, often using an infrared light source and a
high-speed camera. Currently, ETs are successfully used in
different areas of research and entertainment [3]. In the med-
ical field, they have been used for a wide range of purposes,
including the assessment of visual adaptability of glaucoma
patients in daily activities such as walking [4], determining the
impact of cataracts in eye sensibility [5], or proposing new
campimetry paradigms to overcome the difficulty that some
people have in fixating their gaze in the central luminous
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A novel system for the automatic reconstruction
of visual field based on eye tracking and machine
learning
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Abstract
Eye movement perimetry (EMP) is a paradigm developed to assess the visual field
without the necessity of suppressing the natural eye movements during the test. Unlike
the standard automated perimetry (SAP) where the patient’s responses are recorded using
a button, EMP uses the natural eye movements reflex as responses during the evaluation.
The reliability of EMP depends on correctly determining whether a stimulus is seen or not
which, in turn, depends on an adequate analysis of the eye movement data. However,
many studies in EMP have focused on characterizing eye movements and only a few
authors have documented their methods to determine whether a peripheral stimulus was
seen during the test. Furthermore, many of them use static thresholds to perform the
classification, but it is not clear how these threshold values were obtained. Based on the
foregoing, we develop a threshold test based on FASTPAC C24-2 and EMP for the visual
field assessment. Our method uses two machine learning techniques: (1) cascaded K-
Means and Bayesian classifiers (KBC) and (2) an Artificial Neural Network (ANN) to
classify whether a stimulus was seen or not. Our method was validated with twenty
healthy participants (13 women and 7 men) aged 19–43 years (µ = 26 ± 5 years), where
the participants performed both an EMP test and an SAP emulation test. Results were
compared with gaze trajectories annotations performed by an expert, obtaining accuracy
values between 96.8% and 98.9% for KBC and ANN, and values between 90.5% and
92% for SAP emulation.

Keywords Machine learning . Eyemovement perimetry . Eye tracker . Visual field assessment
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