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ABSTRACT 

Medically relevant arboviruses can be transmitted by Anophelinae (Anopheles genus) or 

Culicinae (Aedes and Culex genera) mosquitos. Ecological and socio-demographic factors such 

as urbanization, poverty, access to health systems and social inequality determine vector 

density and risk of disease transmission. Effective surveillance of vectors and arboviruses in “at 

risk” areas are crucial for guiding public health strategies. We developed a low-cost molecular 

approach to assess mosquito and arbovirus prevalence in the city of San Luis Potosí, Mexico in 

2021. Our results provide evidence of the centripetal expansion of mosquito populations 

originating in city outskirts post-rainy season. Culex was the most abundant genus (63.3%) 

followed by Aedes (26.6%) and Anopheles (4.7%). DENV was detected in mosquitoes seven 

weeks before the first local human report, highlighting the epidemiological utility of this strategy. 

Four different arboviruses were identified in FTA cards: DENV (6.5%), ZIKV (5.6%), CHIKV 

(1.6%) and WNV (3.2%).  
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INTRODUCTION  

Mosquito-borne diseases (MBD) are transmitted by members of the Culicidae family comprising 

43 genera and 3,500 species of mosquitos classified into the Anophelinae (Anopheles) and 

Culicinae (Aedes and Culex) subfamilies (1). Malaria is the most important MBD, causing 249 

million estimated cases during 2022 and 608,000 deaths in 85 countries, of which approximately 

94% (233 million) of the cases and 95% (580,000) of deaths occurred in the WHO African Region 

(2). The Anopheles genus includes 460 species, of which more than 100 can transmit 

Plasmodium falciparum, the etiologic agent of malaria (3). The Aedes genus contains several 

subgenera (Aedes, Stegomyia, etc.) and over 700 species (aegypti, albopictus, etc.) (4). The 

Culex genus includes over 20 subgenera and more than 1,000 species (annulirostris, 

erythrothorax, etc.) (5). Arboviruses (arthropod-borne viruses) are a diverse group of viruses 

transmitted through insect bites (mosquitoes, ticks, sand flies and midges). After mosquitoes 

ingest a blood meal from an infected host, arboviruses multiply in the insect’s mid-gut (extrinsic 



incubation period), resulting in high viral titers in the salivary gland which are then passed on to 

humans, where viral replication continues (intrinsic incubation). Most arboviral diseases are 

zoonotic, infections of animal vertebrates that can cause infection and disease in humans (6). 

The three main mosquito genera, Anopheles, Aedes, and Culex, can transmit Arboviruses (7). 

Dengue virus (DENV) is a flavivirus represented by four distinct serotypes transmitted by Aedes 

mosquitoes. It is the predominant arbovirus affecting humans, with 3.6 billion people at risk of 

transmission and hundreds of million clinical cases reported each year (8). Zika virus (ZIKV) is 

a flavivirus transmitted by Aedes aegypti and Ae. albopictus mosquitoes with ongoing epidemics 

in Latin America and the Pacific and currently perceived as one of the most serious public health 

threats (9,10). Chikungunya virus (CHIKV) is an Alphavirus transmitted by Aedes albopictus and 

Aedes aegypti which typically occurs in Africa and Asia but also affecting Europe and America 

since the year 2000 (11). West Nile virus (WNV) is, along with Dengue, Zika, Rift Valley fever, 

yellow fever, and Japanese encephalitis viruses, a Flavivirus that causes severe neurological 

disease in humans and horses of Africa, Europe, the Middle East, North America, and West Asia 

(12). A comprehensive list of the different mosquitoes of medical importance is provided in 

Appendix A. In 2021, 1.3 million cases of mosquito bite associated fever occurred in Latin 

America, 88.6% of which were due to Dengue, 10% to Chikungunya, and 1.4% to Zika. During 

2021, 6,746 human cases of Dengue were reported in Mexico, as well as 35 cases of Zika, 4 of 

Chikungunya, and none of West Nile Virus. Only 80 cases of Dengue occurred in the state of 

San Luis Potosi during that same year (13). Several environmental factors determine the survival 

and reproduction of mosquitoes, including temperature, humidity, and precipitation (14,15). 

Socio-demographic factors such as urbanization, poverty, access to health systems, and social 

inequality determine vector density and the risk of disease transmission (16–18). Impoverished 

rural communities have long been known to be at higher risk of MBD, given that unfavorable 

socioeconomic conditions converge with mosquito-favorable ecological conditions to cause 

disease (19). In addition, human factors such as diet, pregnancy, metabolic diseases, genetics, 

skin microbiota and human volatile footprint (lactic acid, CO2, ammonium, etc.) modulate 

mosquito attractiveness (20). Mexico’s current MBD surveillance system is largely based on the 

detection of human cases with limited monitoring of mosquito larvae in endemic regions (21). 

This approach precludes the implementation of timely vector control strategies, early 

identification of circulating arbovirus, and prompt risk communication, management, and 



response. Our research group addressed these challenges and set forth to develop a molecular 

mosquito and arbovirus surveillance strategy specially adapted for resource-limited and remote 

settings. This system relies on locally designed, adult mosquito, passive traps coupled to an 

ambient-temperature viral RNA preservation approach to provide PCR based diagnosis of 

mosquito genus and arbovirus. This manuscript summarizes the results of applying this system 

in the city of San Luis Potosí Mexico during 2021. 

 

MATERIALS AND METHODS 

Yoy mosquito trap 

A passive adult mosquito trap known as the “Yoy trap” (after the Tenek indian word for mosquito) 

was developed locally incorporating several design criteria (22–27). The trap is constructed from 

generic, recycled PET water bottles and tubing, and exploits female hematophagous mosquito 

chemical cues such as a dry-ice based CO2 generator, a chemical attractant, and a source of 

humidity to lure and retain live mosquitoes (28–30).  The trap incorporates a honey-soaked food-

coloring impregnated FTA® card to provide an alternate food source for trapped mosquitoes. 

Such cards allow mosquitoes to survive in captivity for more than 72 hours and preserve 

regurgitated viral RNA for up to 1 week at ambient temperature (31,32). By extending captive 

mosquito survival, the number of mosquitoes probing the FTA card in search of food and 

depositing viral RNA due to regurgitation increases. The mosquito collection performance of this 

trap was either comparable or surpassed that of commonly used mosquito collection traps tested 

(CDC light trap, SUNA, SMART, etc.) (33–35). 

 

Mosquito collection sites 

The metropolitan area of the city of San Luis Potosí is located near the geographic center of 

Mexico (22°9′4″N 100°58′34″W) at an altitude of 1,864 meters and has a population of 1’221,526 

inhabitants (See figure 1). Ten collection sites were chosen to sample city outskirts, suburban 

and urban locations, see Table 1. The city of San Luis Potosí has at least ten large water 

reservoirs capable of hosting mosquito populations, seven of which are year-round permanent 

bodies of water (San Jose dam, Cañada de Lobo dam, Mexquitic dam, San Antonio dam, 



Tangamanga Park lake, Tenorio basin and Rio Españita brook), four exhibit seasonal variations 

of water level (IMMSA basin, Tangamanga Park basin, Rio Santiago brook, Rio Santiago basin). 

Only two bodies of water exhibit a year-round steady water flow (San Jose dam and Rio 

Españita). Rio Españita brook is fed by Cañada de Lobos dam. IMMSA basin is a metallurgy-

polluted basin uninhabited by mosquitoes.  Single 10-liter Yoy mosquito traps were placed at 

each sampling site except at San Jose dam which was sampled with two traps.  

 

Mosquito collection 

Mosquito collections were conducted weekly from epidemiological week (EW) 16 to 23 and 

every fortnight from EW 25 to 46 of 2021. Traps were deployed on Mondays by 17:00 hours and 

retrieved on Tuesdays by 08:00 hours. Traps were sealed before transport and transported to 

our laboratory where they remained in a biocontained and secluded area under natural daylight 

cycles with an additional humidity supply for 48 hours. After 48 hours, mosquitoes were 

euthanized by placing the trap in a -80 °C freezer for 15 minutes.  

 

Assessment of mosquito feed rates and mosquito counts 

 The total number of mosquitos captured per trap was counted manually. The percent feed rate 

was assessed for each trap and sampling date through stereomicroscope observation of 

mosquitos with visible abdominal green food-coloring for a representative sample of 100 

collected mosquitos per trap. 

 

Mosquito genomic DNA extraction 

Genomic DNA from individual mosquitoes per trap was extracted using the phenol-chloroform-

isoamyl alcohol (PCI) method (36). After discarding mosquito abdomens, the remains were 

homogenized in 25 µl of cell lysis buffer (50 mM Tris, 5 mM EDTA, 100 mM NaCl and 1% SDS, 

pH 8.0) using a glass rod in a 1.5 mL microcentrifuge tube, supplemented with of 12.5 µl of 

Proteinase K (10 mg/ml) followed by 437 µl of lysis buffer and vortexed. Homogenate was 

centrifuged at 15,000 G for 30 sec, incubated for 1 hr at 55°C at 350 rpm, supplied with 500 µl 



of PCI, incubated for 10 min at 25 °C at 550 rpm, then centrifuged at 15,000 G for 5 min and the 

upper phase ultimately transferred to a new tube. PCI extraction of this supernatant was then 

repeated and transferred to a new microtube and precipitated with 14.5 µl of 5M NaCl (for a final 

concentration of 0.2 M) and 700 µl of -20°C 96% ethanol. This solution was left overnight at -20 

°C and then centrifuged at 15,000 G for 10 min, the supernatant discarded, and the pellet 

washed with 70% ethanol, incubated for 30 min at -20°C and then centrifuged at 15,000 G for 5 

min. Finally, the supernatant was discarded, and the pellet was allowed to air dry and then 

resuspended in 50 µl of 10mM Tris-HCl, pH 8.0, for 30 min at 40°C at 350 rpm and kept stored 

at 4°C until further use. 

 

Mosquito molecular taxonomy  

Identification of Aedes, Anopheles, and Culex mosquitoes was performed through a two-reaction 

endpoint sequence-specific primer PCR (PCR-SSP). The first PCR employed previously 

published primers (Mosq-F:5'-TgT-gAA-CTg-CAg-gAC-ACAT-3' and Mosq-R: 5'-TAT-gCT-TAA-

ATT-CAg-ggg-gT -3') to generate amplicons of 325 bp for Aedes mosquitos, a 500 bp for 

Anopheles mosquitos and 400 bp for Culex mosquitos (37). A second PCR geared towards 

better discriminating amplicon sizes of Culex and Aedes species included locally developed 

reverse oligonucleotides Aedes-R: 5'-gAg Agg gAg gCA CAC gTA TA-3' and Culex-R: 5'- gTC 

TTg AAT gTT TTg CCA gC-3' together with Mosq-F to generate a 125 bp amplicon for Aedes 

mosquitos and a 200 bp amplicon for Culex. Reaction components included 1x buffer, 2 mM 

MgCl2, 10 mM dNTPs, 300 mM each primer, 1 IU Taq DNA Polymerase (Vivantis Technologies 

Sdn. Bhd. Malaysia) in a final reaction volume of 25 µl. Amplification conditions included an initial 

94°C for 2 min, followed by 30 cycles of 30 sec at 94°C, 40 sec at 50°C and 45 sec at 72°C and 

a final step of 5 min at 72°C. Gel electrophoresis was performed on 3% agarose for 90 min at 

90 VDC (3.6 V/cm). PCR-based molecular taxonomical assignment was performed on a 

representative set of 48 mosquitoes per trap for logistical reasons. 

Arboviral RNA extraction from honey-impregnated FTA cards 

Flinders Technology Associates (FTA) cards recovered from each trap were placed in 1.5 ml 

microtubes, supplied with 500 µl of 10:1 TE buffer and vortexed (38). Microtube bottoms were 



pierced with a sterile hypodermic needle and then placed in a sterile test tube, centrifuged at 

3,000 G for 30 min and the eluent recovered. 200 µl of the eluent were placed in a new 

microtube, 1 ml of TRIzol (TRIzol Thermo Fisher Scientific Inc. Waltham, Massachusetts USA) 

was added and mixed by pipetting. The remaining eluent was stored at -80° C for future use. 

This mix was then supplied with 200 µl of chloroform, vortexed and incubated at room 

temperature for 5 min. This solution was then centrifuged at 15,600 G for 5 min and the upper 

aqueous phase was transferred to a new microtube to which 350 µl of 100% isopropanol was 

added to precipitate the RNA for 12 hours at -20°C. Samples were centrifuged at 15,600 G for 

5 min and washed with 70% ethanol with DEPC-treated water and the final RNA was then 

resuspended in 50 µl of DEPC-treated water. Samples were stored at -80°C until further use. In 

the case of viral RNA extraction from mosquito heads, pools of 10 heads were prepared in 1.5 

ml tubes and homogenized with 200 µl PBS and subsequently subjected to the same procedures 

described above for FTA cards.  

 

Arbovirus vRNA screening through RT-qPCR 

Arboviral RNA was detected using an EVA green based RT-qPCR with SCRIPT One-Step RT-

qPCR EvaGreenMaster kit (Jena Bioscience, Thuringia, Germany) in individual reactions. 

CHIKV sequences were detected using CHIKV-F (5´-AAg-CTC-CgC-gTC-CTT-TAC-CAA-3´) 

and CHIKV-R (5´-CCA-AAT-TgT-CCT-ggT-CTT-CCT-3´) to generate a 209 bp amplicon, DENV 

with DENV-F (5 ́-AAg-gAC-TAg-Ag-TTA-KAg-gAg-ACC-C-3 ́) and  DENV-R (5 ́-ggC-gYT-CTg-

TgC-CTg-gAW-TAg-Tg-3 ́) to generate a 111 bp amplicon, WNV with WNV-F (5 ́-CAg-ACC-

ACg-CTA-Cgg-Cg-3 ́) and WNV-R (5 ́-CTA-ggg-CCg-CgT-ggg-3 ́) to generate a 101 bp 

amplicon and ZIKV with ZIKV-F (5 ́-gAg-TgT-gAT-CCA-gCC-gTT-ATT-3 ́) and ZIKV-R (5 ́-CAg-

CCT-CCA-TgT-gTC-ATT-CT-3 ́) to generate a 105 bp amplicon (39). The CHIKV RT-qPCR 

reaction components consisted of 150 nM of each oligonucleotide, 1x ROX, 1x SCRIPT and 3 

µl of RNA in a final reaction volume of 10 µl. The DENV and ZIKV components consisted of 100 

nM of each oligonucleotide, 1x ROX, 1x SCRIPT and 3 µL of RNA for DENV and 1 µL for ZIKV 

in a final reaction volume of 10 µL. The WNV RT-qPCR reaction components consisted of 400 

nM of the forward and 200 nM of the reverse oligonucleotides, 0.5x ROX, 1x SCRIPT and 3 µL 

of RNA in a final reaction volume of 10 µL. Thermocycling (Applied Biosystems 7500) conditions 



for the four viruses consisted of 50 °C for 15 minutes, 95 °C for 3 minutes, followed by 40 cycles 

of 95 °C for 10 seconds and 60 °C for 60 seconds. Data was acquired during the annealing step. 

After amplification, amplicon size was assessed with a dissociation curve spanning from 60 to 

95 °C. 

 

Statistical analysis 

GraphPad Prism 8.0.1 was used for statistical analysis. For the analyses of two groups showing 

normality, student’s t-test was used treating a p < 0.05 as significant. Comparisons of groups 

having non-parametric data relied on either the Wilcoxon or Kruskal-Wallis test. To assess the 

normality of the data the D' Agostino & Person, Shapiro-Wilk and Kolmogorov-Smirnov tests 

were used, if two of the three tests exhibited a p > 0.05 the data was considered as having a 

normal distribution. 

 

 

RESULTS  

During mosquito collections, from April 19 (EW 16) to November 21 (EW 48) of 2021, the city of 

San Luis Potosí recorded a median daily temperature of 18°C (IQR 14, 22°C), a median daily 

humidity of 63.6% (IQR 40.8, 81.9%), and an average daily precipitation of 0.13 ± 0.51 cm 

(detailed weekly weather conditions are available on Appendix B). The rainy season for San 

Luis Potosí began on the second week of May (EW 19) and lasted until the first week of October 

(EW 40), see Figure 2. A total of 16,319 mosquitoes were collected, 98% (16,078) of them in 

the city outskirts. The San Jose dam (city outskirt site) yielded 60.6% (9893) of all mosquitoes 

collected, while suburban and urban sites represented only 2.8% (243) of the total. Mosquito 

collections per day were higher during the rainy season than during the dry season (1139 ± 

566.4 mosquitoes, vs 332.4 ± 384.8 mosquitoes, p=0.0025). Nearly 65% (10,558) of all 

mosquitoes were collected from June (EW 25) to September (EW 38), see Figure 3, panel A 

(appendix C provides detailed weekly mosquito collections). A total of 2804 (17.4%) mosquitoes 

were subjected to molecular taxonomical classification; 63.3% (1775) were found to be Culex, 

26.6% (745) Aedes, and 4.7% (133) Anopheles. Only 5.4% (151) of the mosquitoes collected 



failed to yield taxonomical results. On average, 3.33 ± 1.47 μg of total DNA was extracted from 

individual mosquitoes having an A260/280 and A260/230 index of 1.95 ± 0.07 and 2.27 ± 0.93, 

respectively. Non-target animals were trapped on 13 occasions (2 house flies, 1 grasshopper, 

and 10 land snails). Average weekly genus abundance was 24.9% ± 16.7 for Aedes, 4.4% ± 3.9 

for Anopheles and 65.5 ± 18.7 for Culex. Aedes abundance was statistically different between 

dry and wet season (13.8% ± 14.9 vs 30.1% ± 15.4, p=0.0452) as was that of Anopheles (1.5% 

± 1 vs 5.7% ± 4.1, p=0.0260) and of Culex (79.2% ± 14.7 vs. 59.2% ± 17.3, p=0.0261). 

Interestingly, Culex was more abundant during spring (April to May) in comparison to the rest of 

the year (90.4% ± 3.4 vs. 56.6% ± 12.6, p=<0.0001). The four collection sites located in the city 

outskirts exhibited similar mosquito population dynamics where Culex mosquitoes dominated 

from April to May (EW 16 to 20), see Figure 4.  Aedes mosquito population size remained high 

from the fourth week of May to the second week of August (EW 21 to 31), closely following local 

rainfall patterns. Anopheles mosquitoes exhibited a similar behavior but with fewer numbers.  

The two suburban collection sites exhibited an increase in mosquito populations after EW 25 

and seven weeks after the first rainfall. Arboledas site (which is closer to urbanized areas) 

exhibited a greater abundance of Aedes mosquitoes than the Rivera site (which is closer to rural 

areas) which had a higher abundance of Culex mosquitoes, see Figure 5. The three urban sites 

failed to yield significant numbers of mosquitoes during the sampling period. However, Aedes 

mosquitoes were the most abundant (between 67% and 78%) genus at urban sites. The 

abundance of mosquito populations is highly dependent on weather conditions. Therefore, 

fluctuations in weather patterns play a crucial role in influencing the prevalence and density of 

mosquitoes.   

A total of 124 FTA card samples, as well as 324 pools of mosquito heads, were screened for 

the presence of arboviral RNA (DENV, ZIKV, CHIKV, and WNV) through RT-qPCR. A total of 

21 FTA cards (16.9%) and 2 mosquito-head pool samples (0.62%) tested positive for 

arboviruses. Eight (6.5%) FTA cards were positive for DENV of which 6 corresponded to city 

outskirts (two traps were placed on San Jose dam and both were DENV positive), one 

corresponding to a suburban site, and another one to an urban site. Seven (5.6%) cards and 

two (0.61%) pools were positive for ZIKV vRNA, all corresponding to city outskirt sites. Two 

(1.61%) cards were positive for CHIKV vRNA corresponding to a suburban and an outskirt site. 

Finally, four (3.22%) FTA cards were positive for WNV vRNA, three corresponding to city outskirt 



sites and one corresponding to an inner-city site. In all, outskirt sites made up 81% of all arboviral 

detections, San Jose dam providing 28.6% (6/21) of all arbovirus-positive FTA cards, Rio 

Españita brook 23.8% (5/21), Tangamanga Park basin 19% (4/21) and CIACYT 9.5% (2/21). 

Arboledas housing complex contributed to all suburban site arboviral detections comprising 

9.5% of the total FTA cards found positive (2/21). Interestingly, the city center also contributed 

with 9.5% of arboviral detections. DENV was detected in FTA cards between EW 27 to 42, ZIKV 

from EW 16 to 29, CHIKV from EW 31 to 36 and WNV from EW 27 to 42. Arboviral detections 

did not correlate with mosquito population dynamics, genus abundance or collection sites 

(Figures 3 to 5). Based on the feeding ratio of mosquitoes during captivity, we estimate that 

nearly 3,923 (24.04%) of all collected mosquitoes contributed to the FTA card regurgitate and 

to the arboviral screening. 

 

DISCUSSION 

Local precipitation was the single most important weather variable determining mosquito 

population density (40). City outskirt sites provided the most informative data on mosquito 

population size and genus abundance, especially San Jose dam, which is by far the closest and 

largest perennial water reservoir having clean flowing water as well as stagnant water ponds, 

lush vegetation, and ample shade (41). That city outskirt sites, and the Rivera housing complex 

exhibited similar Culex genus abundance is likely due to the proximity of this suburban site to 

agricultural lands and its distance from densely inhabited areas. As is well known, Culex 

mosquitoes prefer natural stagnant water reservoirs and the proximity of the Rivera housing 

complex to the Tenorio basin (which was not sampled for logistical reasons) might also explain 

these similarities. The Aedes and Culex mosquito genus abundance seen in outskirt sites is very 

similar to previously published frequencies for other Mexican states in which 65% of mosquitoes 

were Culex and 33% Aedes (42). While mosquito population density showed an early surge in 

the city outskirts almost immediately after the first rainfall (April), the density of mosquito 

populations in suburban and urban sites only increased 8 weeks after the city outskirts surge 

(by the end of June). Analysis of mosquito population waves for each genus by sampling site 

revealed that Aedes mosquitoes were detected in city outskirts 3 weeks prior to suburban sites 

and 7 weeks before they were seen in urban sites (see Figure 6). Similarly, Culex mosquitoes 



were detected in city outskirts 4 weeks prior to suburban sites and between 8 and 12 weeks 

before urban sites. Although similar, Anopheles mosquitos were detected in city outskirts only 2 

weeks before being identified in suburban sites and 3 weeks before urban sites. 

Our observation of a high prevalence of Culex mosquitoes during winter months align with a 

study conducted in Florida, where a similar dominance of Culex was noted during colder months 

(43). A variety of Culex mosquito overwintering mechanisms has been known to enhance their 

resilience, enabling them not only to better withstand dry, and cold seasons but to easily adapt 

to less conspicuous effects of climate change (44). FTA card arboviral screening proved to be a 

logistically and technically efficient way to assess MBD burden by allowing the screening of 

between 25% and 50% of all mosquitoes collected (considering variations in feeding rates 

between traps). The use of FTA cards yielded greater analytical sensitivity at detecting arboviral 

RNA sequences than mosquito head pools, which were much more laborious to process. The 

prevalence of ZIKV, CHIKV, and WNV arboviral RNA in FTA cards was unexpected, as no 

human cases of these diseases have ever been reported in San Luis Potosi city. The 6.5% 

positivity seen for DENV is higher than that reported previously for the city of Merida, but this 

likely stems from methodological differences (42,45). The 5.6% positivity seen for ZIKV in our 

study is perhaps, an underestimation of true positivity, as a previous study carried out in 29 

Mexican states reported a 10.6% positivity in mosquito pools by using the high-resolution CDC 

Trioplex real-time RT-PCR (46). The frequency of the remaining arboviruses (CHIKV and WNV) 

among mosquitoes has not been established for other Mexican states other than in birds and 

bats (47,48).  Analysis of the temporal appearance of DENV, CHIKV, and WNV arboviral 

detections showed a gradual progression in which arboviruses were detected first in city 

outskirts, then in suburban areas and subsequently in the city’s interior. As such, DENV was 

detected by EW27 in an outskirt site, by EW 31 in a suburban site, and by EW 42 in the inner 

city. CHIKV was first detected in city outskirts by EW 31 and subsequently on suburban sites by 

EW 36. Finally, WNV was first detected in city outskirts by EW 27 and in the city center by EW 

42. Whether this phenomenon represents individual mosquito inward migrations or solely the 

propagation of arbovirus among mosquitoes of increasingly distant areas (from city outskirts) 

remains unknown. Although no cases of ZIKV, CHIKV, and WNV have been reported in the city 

of San Luis Potosi, 6 human cases of DENV infection were reported by the state public health 

laboratory as of EW 34 (personal communication). Our arbovirus surveillance approach 



successfully identified the presence of circulating DENV in local mosquitoes seven weeks before 

human cases manifested in the same city. This underscores the effectiveness of comprehensive 

molecular mosquito and arbovirus surveillance strategies, as outlined in this study, in furnishing 

real-time, high-resolution information. Such data is invaluable for guiding proactive public health 

measures and ensuring the effective management of emerging infectious diseases transmitted 

by mosquitoes. 

  

 

CONCLUSION 

The main objective of this study was to assess the reliability of an integrated vector and arboviral 

detection strategy based on robust molecular methods to serve as a public health guidance tool 

for assessing MBD risk and, ultimately, for the surveillance of MBD in resource-limited settings. 

In addition, our results provide an insight into the mosquito population dynamics as well as 

evidence of the circulation of four arboviral species in the city of San Luis Potosí. An ever-

increasing human population is likely to require more natural resources in the coming decades, 

further accelerating climatic change and disturbing natural habitats, all of which are likely to 

increase the frequency, severity, and distribution of MBD. Realtime mosquito and arboviral 

surveillance through tools such as that reported are likely to represent a major scientific 

contribution to public health capable of positively impacting the lives of the world’s most 

vulnerable and neglected populations. 
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Tables 

Table 1. Collection site information  

Site Type Collection site location 

Flowing 

water 

Stagnant 

water Vegetation Shade 

1 City outskirts San Jose dam Abundant Abundant Abundant Abundant 

2 City outskirts CIACYT None Moderate Abundant Abundant 

3 City outskirts Tangamanga Park basin None Abundant Abundant Some 

4 City outskirts Rio Españita brook Moderate Abundant Abundant Moderate 

5 Suburban Rivera housing complex Moderate Moderate Garden Some 

6 Suburban Arboledas housing complex None None Garden None 

7 Urban City center None None Flowerpots Moderate 

8 Urban FOVISSSTE housing complex None None Flowerpots None 

9 Urban Pavon housing complex None None Flowerpots None 

 

 

 

  



Table 2. Arboviral RNA detection by epidemiological week (EW) and collection site 

Arbovirus Date Site type Site Sample Mosquitos Abundant Feed rate 

DENV 

EW27 July 6 City outskirts Rio Españita brook FTA 6  50% 

EW29 July 20 City outskirts CIACYT FTA 322  Aedes 26% 

EW31 August 2 

City outskirts CIACYT FTA 336  Aedes 30% 

City outskirts San Jose dam FTA 1173  Culex 15% 

City outskirts Rio Españita brook FTA 37  Culex 54% 

Suburban Arboledas HC FTA 2  Aedes 50% 

Ew42 October 19 Inner city City center FTA 2  Aedes 50% 

ZIKV 

EW16 April 19 City outskirts Tangamanga Park  FTA 3  Aedes 67% 

EW17 April 26 City outskirts San Jose dam FTA 315  Culex 21% 

EW20 May 17 City outskirts Rio Españita brook FTA 16  Culex 13% 

EW21 May 24 City outskirts San Jose dam FTA 609  Culex 20% 

EW23 June 7 

City outskirts San Jose dam FTA 354  Culex 28% 

City outskirts Tangamanga Park  Pool 14  Aedes 50% 

EW25 June 21 City outskirts San Jose dam FTA/Pool 1104  Culex 26% 

EW29 July 20 City outskirts Tangamanga Park  FTA 336  Aedes 46% 

CHIKV 

EW31 August 2 City outskirts Rio Españita brook FTA 37  Culex 54% 

EW36 September 6 Suburban Arboledas HC FTA 26  Culex 50% 

WNV 

EW27 July 6 City outskirts Tangamanga Park  FTA 72  Aedes 46% 

EW31 August 2 City outskirts San Jose dam FTA 1173  Culex 15% 

EW36 September 6 City outskirts Rio Españita brook FTA 35  Culex 20% 

EW42 October 19 Inner city City center FTA 2  Aedes 50% 

 

  



Figures 

Figure 1. Geographic location, main water features and mosquito collection sites of San Luis 

Potosí.  

 

San Luis Potosi is located near the geographical center of Mexico (panel A). Mosquito collection 

sites (numbered stars) included city outskirt (1 through 4), suburban (5 and 6) and urban (7 

through 8) locations. 



Figure 2. Weather variables for San Luis Potosí during 2021. 

 

The black histogram line corresponds to average, grey lines indicate minimum and maximum 

values, black line below dates on horizontal axis corresponds to the time during which mosquitos 

were collected. 



Figure 3. Total mosquito collections (A) and genus abundance (B) in all collection sites. San 

Luis Potosi, Mexico 2021. 

 

Panel A depicts mosquito numbers collected from all sites; Panel B depicts mosquito genus 

abundance as percentage. Arboviral RNA sequences detected in this study are shown as D 

(DENV), Z (Zika), C (Chikungunya) and W (West Nile Virus) for their corresponding 

epidemiological week. 

 

 

 

 

 

 



Figure 4. Mosquito genus abundance in city outskirts. San Luis Potosí, Mexico 2021. 

 

Percent mosquito genus abundance per week for each of the four city outskirt collection sites. 

Arboviral detections corresponding to each specific site is indicated as D=DENV, Z=ZIKV, 

C=CHIKV and W=WNV 

 



Figure 5. Mosquito genus abundance in suburban San Luis Potosí, Mexico 2021. 

 

Percent mosquito genus abundance per week for the two suburban collection sites. Arboviral 

detections corresponding to each specific site are indicated as D=DENV and C=CHIKV. 

 

 

 

 

 

 

 



Figure 6. Mosquito population wave off-set observed between city ouutskirt, suburban and 

urban sites of San Luis Potosi Mexico during 2021. 

 

 

 


