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Abstract

In this thesis, a way to quantify the synchronization of a system is introduced. It
is made from a codification of the paths towards synchronization for synchronizing
flows defined over a network. The collection of paths toward synchronization defines
a combinatorial structure, called the transition diagram, the main object of study. The
cardinality of this collection defines a measure of complexity which depends on the
dimension of the system.

The transition diagram corresponding to the Laplacian flow over the complete graph
KN and the complete bipartite graph KN ,N is described, through a coding: the feasible
states by increasing functions, and the transitions between them by consecutive func-
tions that follow certain rules. These results are applied to the Kuramoto flow (over the
same graph) when a neighborhood close to the diagonal is considered. Furthermore,
it generalizes to flows that are monotonic (that is, its coordinates and the differences
of the coordinates maintain the order).

It is presented as well some numerical and analytical results concerning the Lapla-
cian and Kuramoto flows over the cycle graph CN , and the ring lattice family C (N ,k).
In this case there are a different perspective, due to their no-monotonic behavior.

Keywords: Non-linearity, Synchronization, Laplacian, Kuramoto model
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1 Introduction

The study of complex systems is currently in full expansion and we can find multiple
examples as in Wang, Bu, Han, et al. 2016; Yu, Zeng, Gillard, et al. 2015; Hou, Small,
and Lao 2015. In fact, the notion of complex systems can encompass a much broader
field than those encountered in physics Wang, Bu, Han, et al. 2016; Z.-K. Gao and
Jin 2012; Wu, Sun, and Z. Gao n.d.; Ni, Jiang, and Zhou 2009, ranging from biology
Giuliani, Benigni, Zbilut, et al. 2002; Marwan, Wessel, Meyerfeldt, et al. 2002, to social
sciences Davies, Fry, Wilson, et al. 2013; Baudains, Johnson, and Braithwaite 2013;
Epstein 2002; Siegel 2009, economics and finance Kyrtsou and Vorlow 2005; Bigdeli
and Afshar 2009.

With regard only to physics, complex systems can be considered as systems com-
posed of many components, most often having non-linear interaction on a complex
network for example. When dynamics is introduced, depending on the initial con-
ditions and the considered system, the system may end up landing on a final given
attractor, which in the most simple case is just some fixed point of the dynamical
system as in Siegel 2009. One of the outstanding phenomena around complex systems
is the one studied in this thesis: the synchronization phenomenon.

The synchronization of events seems to happen naturally, as if they were pro-
grammed in such a way that the interaction between them, even if it is very small,
would result in an adjustment of their rhythms.

For example, imagine that we are in an auditorium, listening to an orchestra concert.
The venue is full, and the musicians are doing a really great job. The minutes pass
and we hear the final note of the melody. We are so excited, that we begin to applaud.
Next, the person who is by our side, also applauds and in a few seconds, the whole
audience is doing it. If we pay attention, it turns out that the sound, at the beginning
is irregular and passed the time, it seems as if a single pair of enormous hands were
applauding, with a higher volume. This phenomenon occurs, without the audience, at
first, had agreed with how often they would applaud, just listening to the way others
do it, naturally, causes synchrony.

Another example, and probably one of the most famous, was discovered by a Dutch
astronomer, physicist, and mathematician: Christiaan Huygens (1629-1695). He was
sick and resting in a room, when he noticed that there were two pendulum clocks
hanging on the wall and they were perfectly synchronized. He analyzed the phe-
nomenon and concluded that both clocks were interacting, and they did so because
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1 Introduction

of the only link that existed between them: the wall on which they were hanging.

There are many other examples that we can find in the literature Pikovsky, Rosen-
blum, and Jürgen Kurths 2001. Different types of tools and modelization will be then
developed to understand typical synchronization phenomena occurring in these sys-
tems. These tools have been used to develop models in many different fields ranging
from pure mechanical science to neuroscience or self-organization observed in flock-
ing of birds or schooling of fishes.

Before the concept of synchronization, the frequency adjustment is described. Gen-
erally, the interaction between two oscillators is not symmetrical Zarauza Martínez
2016, this means that one of the oscillators is more powerful than the other. The
frequencies of the two oscillators can be denoted as ω1 and ω2, which can be assigned
an order, for example ω1 <ω2.

The observed frequencies Ωi , defined as the average speed of phase rotation of the
oscillators. That is 〈θ̇〉 =Ω. And,

Ωi = lim
T→∞

1

T

∫ T

0

dθi

d t
d t = lim

t→∞
1

T
[θi (T )−θi (0)] . (1.1)

If the coupling is strong enough, Ω1 =Ω2 =Ω, where generally ω1 <Ω<ω2.

When the frequencies ωi of two decoupled systems are very similar, synchronization
arises because the interaction force is sufficient. Furthermore, there must be a certain
relationship between the phases of the oscillators. This condition means that the
phase difference must be restricted. Let ε> 0, then |θ1 −θ2| < ε.

It is important to be able to distinguish the different cases that may occur in a
system where coupled oscillators act, the first of them, and the most desired in the
case study of this thesis, is where a state of synchronization is reached, that is, where
the oscillators have the same phase from a certain instant. Another possible state is
in which the oscillators are in a phase locked, that is, the difference between them is
a fraction of the complete angle along their entire trajectory (or in other words, the
differences between the phases of different oscillators remain constant in time), as for
example, if the case of two pendulums is considered, with a difference of π radians,
that is, when one goes to the left, the other goes to the right. This means that the
system is always in balance, but without complete synchronization, to know more
details of the case of dimension 2, see Pantaleone 2002. The last case is when the
oscillators do not have any coherence with each other, that is, each one goes at their
own pace and their behavior does not seem to have much influence on their partner.

This field of research when considering coupled dynamical systems on networks
has been highly developed from the main article by Kuramoto published in 1975
Kuramoto 1975 that describes the synchronization of a group of coupled oscillators.
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1 Introduction

There are several studies considering homogeneously coupled systems like global
coupling, completely random coupling or couplings according to a network Acebrón,
Bonilla, Pérez Vicente, et al. 2005; Strogatz 2000; Fonseca and Abud 2018; DeVille
and B. Ermentrout 2016; Delabays, Jacquod, and Dörfler 2019; Medvedev and Tang
2017; Moreno and Pacheco 2004, among other features van Hemmen and Wreszinski
1993; Sokolov and G. B. Ermentrout 2019 which study the conditions under which
globally synchronized phases, phase locked and different degrees of incoherence can
be observed.

As noticed by Arenas, Diaz-Guilera, Jurgen Kurths, et al. 2008, the way in which the
connectivity of a synchronized subnetwork increases as time progresses, follows its
linearized dynamics. From this perspective, in this thesis it is proposed to study the
dynamics of the non-linear system from its linearization, that is, to study the path
towards synchronization through the study of the Laplacian as a linear dynamical
system, which has been extensively studied and of which many properties are known.
On the other side, it is well known that the non-linear dynamics is not always fully
synchronizing and some important differences between linear and non-linear interac-
tions appear as we increase the size of the system, starting with the fact that in the case
of the Laplacian, it is always possible to obtain global synchronization. Nevertheless,
there is always a small volume around the synchronizing manifold where the linear
behavior dominates, and synchronization takes place. There are also works that make
a linear reformulation of the Kuramoto system as in Roberts 2008, so that its behavior
can be explained from the linear point of view.

Due to the great difficulties that one has in itself to find the conditions under which
a system can be synchronized, this work focuses on studying the systems that we know
a priori that synchronizes, through a novel approach that focuses on studying the tran-
sitory state, that is, what happens while the system reaches synchronization. One can
decide under what conditions one wants to start and eventually know what condition
it will reach (which is a synchronized state). The novelty of this thesis is the descrip-
tion of the different ways in which the asymptotic state of a synchronizing system is
reached, which are given the name of paths towards synchronization. Furthermore,
an interesting feature in this thesis is to count the number of these paths, since it is a
way of measuring the complexity of a system (in the case of transient dynamics), to
study the transient behavior and characterize the complexity of the attractor’s basin.
Characterizing the complexity of the system by measuring the diversity of paths is a
topic that has been studied in several works, as in Afraimovich and Zaslavsky 2003;
Zaslavsky and Afraimovich 2005; X. Leoncini and Zaslavsky 2002.

The main objective of this work can be stated: to describe the transitory behavior
of systems that synchronize, which are defined on a fixed network, through a well-
defined coding that allows to globally describe the states by which an initial condition
can be found. Using this coding, define a function that describes the complexity of the
systems to be evaluated. In addition, this coding must allow describing the properties
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1 Introduction

and characteristics of the transitory state of the systems.

Specifically, the objectives of this thesis are:

— To analytically describe the combinatorial structures that are formed from the
paths to synchronization.

— To give a qualitative description of these.
— To study how these combinatorial structures depend on:

— The network.
— The linearity or non-linearity of the system.
— The distance between each pair of coordinates.
— The time scale.

— To study the complexity of combinatorial structures.

To achieve the objectives of this thesis, the concept of synchronization sequences
is introduced, which can be related to the connectivity matrix, defined in Arenas,
Díaz-Guilera, and Pérez-Vicente 2006. If it is considered the case of a fully synchroniz-
ing system, the set of all synchronizing sequences is necessary to form a transition
diagram, which encodes the full transient dynamics towards synchronization. Specifi-
cally, this thesis is dedicated to studying this combinatorial structure for the Laplacian
system dynamics on the complete graph KN in deep detail, and the case of the com-
plete bipartite graph KN ,N in some detail. The characterization is carried out through
some topological and numerical properties of the corresponding transition diagrams,
in addition to the qualitative properties of the generated paths.

This work, which describes how systems that we know how to synchronize reach
this asymptotic state, provides a more complete explanation of the synchronization
phenomenon. In this way, it is possible to understand not only macroscopically, but
microscopically this phenomenon. In addition, the results of this thesis provide a
measure of the complexity of the systems, according to the number of paths that can
be generated, when the graph topology is changed.

The content of the thesis is organized as follows. After establishing the basic con-
cepts in Chapter 2 in graph theory, linear algebra, combinatorics that will be used
throughout this thesis, the two systems in question: the Laplacian system and the
Kuramoto model are defined. Then, the methods are described and divided into two
sections:

— The first focuses on the formal construction of the paths to synchronization,
through successions of subgraphs, which is the main object of study in this thesis.

— The second section focuses on the computational analyzes, which were made to
give an idea of the behavior of the transient state of the systems acting on the
different types of graphs.
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1 Introduction

Next, in Chapter 3, the exploratory study of the Laplacian system and the Kuramoto
model applied to the complete graph, the bipartite complete graph, the cycle graph
and the family of ring lattices are presented. The behavior of a set of random initial
conditions in different dimensions is evaluated, under the following margins:

— The depth of the transition graph.
— The number of possible states in the transition graph.
— The distribution of path lengths.
— The number of different paths towards synchronization.

To finish the section, a discussion between the differences and similarities found by
varying the topology of the graph is presented. These subsections are intentionally
repetitive, so that they can be read individually, depending on the needs of a future
reader. In Chapter 4, the formal and rigorous results of this doctoral work are pre-
sented, organized in three important sections, each one of them focuses on the study
of a combinatorial object.

— Firstly, the transition diagram of synchronization paths for the complete graph
KN is presented, from a complete rigorous and formal study based on a coding,
made from increasing functions and the combinatorics around them.

— Secondly, results concerning the structure of the transition diagram for the com-
plete bipartite graph KN ,N , for balanced initial conditions. This formulation
allows a formal, but not complete, description of the space. This process is done
from a coding of pairs of increasing functions, and the parallelo-polyminoes that
are formed from these pairs.

— Thirdly, it is discussed the behavior of the Laplacian applied to the cycle graph
CN . In addition, the behavior of the transition diagram of the complete graph
and of the complete bipartite graph when the Kuramoto model is applied, is
discussed.

Finally, in Chapter 4.3.2 the conclusions and perspectives of this work are written,
which can be taken for several future and productive works.

Note: This thesis was done in co-tutelage in the universities: Autonomous University
of San Luis Potosí and Aix-Marseille Université. The version of the thesis that is
presented is the Mexican version.
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2.1 Basic concepts
This section presents the definitions that will be used throughout the thesis and

provides examples of them for a better understanding. It begins with graph theory,
linear algebra, the Laplacian system, the Kuramoto model and it is finalized with a
section about combinatorics.

2.1.1 Graph theory
Throughout this thesis, it will be considered a system of coupled differential equa-

tions that acts on an initial condition, in which each of its components interacts with
the others according to an interaction rule. For example, consider a fixed system, for
which an initial condition has 4 components. The interaction rule in this case is as
follows: component number 1 interacts with component 2 and 3 (and vice versa) and
component 4 interacts with component 3 (and vice versa). This interaction rule can
be seen in the following Figure 2.1.

This representation of the interaction rules between the components of an initial
condition is called graph or network, and it will be defined formally below.

On the one hand, a graph or network refers to an undirected graph G = (V ,E), with
vertices in V and edges in E . On the other hand, a directed graph is a couple D = (V , A)
of vertices in V and arrows in A. An edge is a set of two vertices (both are the start, and
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4

32

1

Figure 2.1 – Example of interaction rules between the components of a four-
dimensional initial condition, in which it indicates that vertex 1 interacts
with vertices 2 and 3 and vice versa, in addition, vertex 3 interacts with
vertex 4 and vice versa.

both are the end), while an arrow is an ordered pair of vertices (the first indicates the
start and the second indicates the end). It is denoted by |V | the number of vertices
that a graph has.

In this thesis I focus mainly on the study of three graphs: the complete graph, the
bipartite complete graph, and the cycle graph (with their respective family called ring
lattice), each of which is defined below. First, in the complete graph KN = (V ,E) such
that |V | = N , each of its vertices has an edge with all the others, that is (vi , v j ) ∈ E for
all vi ∈V where 1 ≤ i , j ≤ N and i 6= j . In Figure 2.2 (a), an example of the complete
graph is shown where N = 4, that is, K4. Continuing with the concept of the complete
bipartite graph denoted by KN ,N = (V ,E), in this case |V | = 2N and it is defined as fol-
lows, it is defined two disjoint subsets of V , let’s say V1,V2 ⊂V such that |V1| = |V2| = N ,
and for all vertex in V1 there exist an edge with all vertices in V2, that is, (v1, v2) ∈ E , for
all v1 ∈V1 and all v2 ∈V2. In Figure 2.2 (b), an example of the complete bipartite graph
is shown where N = 2, that is, K2,2. Finally, the cycle graph denoted by CN = (V ,E)
such that |V | = N , each vertex is connected to its consecutive, also the first vertex is
connected to the last one. In other words (vi , vi+1) ∈ E for all vi ∈ V with 1 ≤ i < N
and (v1, vN ) ∈ E . In Figure 2.2 (c), an example of the cycle graph is shown where N = 4,
that is, C4.

There is a type of graph called ring lattice, that is a graph which is obtained by taking
a cycle graph and connecting each vertex to its neighbors two “hops” away, which
is written as C (N ,2) giving as a result a 4-regular graph (that is, all its vertices have
degree 4), as it can be seen in Figure 2.3, an example of the ring lattice C (6,2) is shown,
where each of its vertices has degree 4. The definition can be generalized to other even
numbers greater than 4 (connecting each vertex to its neighbors three hops away, that
is C (N ,3) giving a 6-regular graph, and so on: C (N ,k), the particular case when k = 1
is exactly the cycle graph CN ).

From the graphs, it can be defined their subsets to study each of their parts, hence
the interest in the following concept. A subgraph of G (or subnetwork) it is also a graph,
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32
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32

1

(a) (b) (c)

Figure 2.2 – Example of a complete graph, a bipartite complete graph and a cycle
graph. In (a) the complete graph of dimension 4 is presented, denoted
by K4, in (b) the complete bipartite graph is shown with two sets of di-
mension two, which is denoted as K2,2 and finally, in (c) the cycle graph of
dimension 4 is shown, which is written as C4.

Figure 2.3 – Ring lattice example C (6,2), which is made based on a cycle graph C6 and
each vertex is joined with its first two neighbors to the left and to the right.

which it is written G ′ = (V ′,E ′) such that V ′ ⊂V and all the edges in E ′ ⊂ E have end
vertices in V ′. As it is easy to infer, in general, each subgraph has multiple subgraphs,
Figure 2.4 shows in (a) an example of a graph with 4 vertices and 4 edges, and in (b)
one of its subgraphs composed of 3 vertices and 2 edges which are included in the
sets of vertices and edges of the original graph (a). The set of vertices with which a
fixed vertex v is connected, it is called neighborhood, and each one of them is called
neighbor. For example, in Figure 2.4 (a), vertices 2 and 3 are neighbors of vertex 1. In
addition, the number of neighbors that a vertex v has can be called the degree of v . In
Figure 2.4 (a), all the vertices have degree 2, while in (b) the vertex 1 has degree 2 and
vertices 2 and 3 have degree 1.

From the subgraphs, other types of graphs can be defined that preserve certain
properties. For instance, an induced subgraph G ′ = (V ′,E ′) of a graph G = (V ,E ) is one
subgraph such that for the vertices subset V ′ ⊂V all of the edges E ′ ⊂ E connecting
pairs of vertices in V ′. In Figure 2.5, an example of a graph, an induced subgraph and
a subgraph that is not induced is shown. For the same set of vertices. In (a) a graph is
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32

14

32

1

(a) (b)

Figure 2.4 – Example of a graph and one of its subgraphs. In (a) a graph is shown,
which is the cycle graph of dimension 4 C4 and in (b) a subgraph of it
is shown. All the vertices that appear in (b) are in (a) and this happens
analogously for the edges.

shown. In (b), an induced subgraph of it is shown, because all the edges connecting to
the vertices in (a) appear in (b). In (c), a subgraph is shown that is not induced by (a),
because not all the edges connecting the vertices in (a) appear in (c).

32

1

32

14

32

1

(a) (b) (c)

Figure 2.5 – Example of a graph, an induced subgraph and a not induced subgraph.
In (a), a graph is shown. In (b), an induced subgraph of (a) is shown,
because all the edges connecting to the vertices in (a) appear in (b). In (c),
a subgraph of (a) is shown, but it is not induced by (a), because not all the
edges connecting the vertices in (a) appear in (c).

Now, I am interested in exploring the type of connections that exist in the graph
beyond the first neighbors. That is, if one vertex can be reached to another by following
a succession of vertices in such a way that they are connected by an edge. This concept
is called path, and more formally, it is a sequence of vertices in an undirected graph G
such that each couple of consecutive vertices form an edge. On the other hand, a path
in a directed graph D is an ordered sequence of vertices:

v1 → v2 →···→ vn−1 → vn

such that, each couple of consecutive vertices form an arrow. In this case it is said
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that v1 is the starting vertex of the path and vn the ending one. Furthermore, if the
number of arrows in the sequence is counted, that is n−1, this amount is called length
of the path. In Figure 2.6 it is shown an example of different paths that are in the same
graph. They are two different paths to get from vertex 1 to vertex 3 highlighted in red.
Explaining them in detail. In (a), the path v1 → v2 → v3 is shown. In (b), the path
v1 → v3 is shown as well. The first path has length 2 and the second path has length 1.
This is a very important concept for later definitions. Also, a path is said to be maximal
if it cannot be added any new vertex to make it longer.

4

32

14

32

1

(a) (b)

Figure 2.6 – Example of two paths between two vertices in the same graph. Both in
(a) and in (b) the same graph is shown, the difference between them is
the red highlighted lines that denote different paths through which one
can get from vertex 1 to vertex 3. In (a), there is a path of length 3, passing
through vertices 1, 2, 4, and 3. In (b), a path of length 1 is shown, passing
directly from vertex 1 to vertex 3.

From the definition of a path of a graph, it can be defined properties of it. In this
case, it is said that a graph is connected if each couple of vertices belong to a path. If
for a given graph there is a path through all its vertices, then the graph is connected.
As can be seen in Figure 2.6, both graphs are connected. On the other hand, any
graph G can be decomposed in a unique manner as a disjoint union of connected
subgraphs G1, ...,Gn , called connected components. As is depicted in Figure 2.7, a graph
of 5 vertices and 4 edges, which has two connected components is shown. The first
subgraph is composed of vertices 1 and 2 and the edge that joins them. The second
subgraph is composed of vertices 3, 4 and 5 and the edges that go from vertices 3 to 4,
4 to 5 and 5 to 3. These subgraphs are disjoint, connected and they are the only ones
that the graph is composed of, that is, they are its connected components.

Each of the directed or undirected graphs can be written as a square matrix with
entries in the real numbers, in which each row and column represents a vertex, coded
0 if there are no edges or arrows between them, and 1 if there are some connection
type. This object is called the adjacency matrix associated with the graph G . It can be
written each of its entries as ai , j where i represents the row number and j represents
the column number. The set of square matrices with N rows and N columns with
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32

1

Figure 2.7 – Example of a graph with two connected components. This figure shows a
graph with five vertices and 4 edges, in this case there are two connected
components, the first is the one composed of vertices 1 and 2 and the
edge that joins them, and the second is formed by the vertices 3,4 and 5
and the edges that join this set of vertices.

entries in the real numbers is written as MN×N (R). In Figure 2.8 (a), an example of
an undirected graph is shown, and in (b), the adjacency matrix associated with this
graph is shown as well. In blue, the numbering of the rows and columns are shown,
with they each entry can be written if there is an edge between the associated vertices
(with a 1) or not (with a 0).

4

32

1


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0


1 2 3 4

1

2

3

4

(a) (b)

Figure 2.8 – Example of an adjacency matrix associated to a graph. In (a) a cycle graph
of dimension 4 is shown, and in (b) the adjacency matrix associated with
this graph is shown. In blue, the numbering of the rows and columns
of the matrix is shown, which serves to guide us in the construction of
the matrix, which represents the vertices in the graph shown in (a), this
construction is done as follows: at position i , j of the matrix a 1 is written
when there is an edge connecting vertex i with vertex j and a 0 when there
is no edge between them.

There are many types of matrices, and in this case, there are presented two types
that will be useful later to define the system. First of all, it is the diagonal matrix that
is denoted by Di ag ({x1, x2, ..., xN }) where x1, x2, ..., xN ∈ R, and is defined as follows
ai , j = xi , if i = j where 1 ≤ i , j ≤ N , and 0 otherwise. Here is an example of a diagonal
matrix.
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Di ag ({1,2,3,4}) =


1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

 .

Second, the degree matrix associated with an adjacency matrix MG that is denoted
Deg (MG ) is a diagonal matrix defined as follows, each entry ai , j 6= 0 corresponds to
the degree of the vertex vi of G . As it can be seen in the example depicted in Figure 2.9.
In (a), it is shown one graph, and in (b), is its degree matrix associated.

4

32

1

Deg (MG ) =


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2


(a) (b)

Figure 2.9 – Example of a degree matrix associated with a graph. In (a), an example of
the cycle graph of dimension 4 C4 is shown, and in (b), the degree matrix
associated with its adjacency matrix (which can be seen in the Figure 2.8)
is shown. In this case, all the vertices of the graph shown in (a) they have
degree 2, then, in (b), there are only twos on the diagonal of the matrix.

From these definitions, is now in position to present the function called Lapla-
cian matrix L : MN×N (R) →MN×N (R), which is applied to the adjacency matrix MG

associated with a graph G and is defined as follows:

L(MG ) = MG −Deg (MG ). (2.1)

This is the finite matrix-analogue of the classical Laplacian operator in physics
Cvetkovic, Doob, and Sachs 1995 that describe multiple phenomena such as heat
conduction or wave propagation. In Figure 2.10 is shown in (a) a fixed graph and in (b)
the computation of the Laplacian matrix associated with the adjacency matrix of (a),
which in this case is nothing more than using the previous examples shown in Figures
2.8 and 2.9. Also, L(MG ) is a symmetric matrix, that is, ai , j = a j ,i for all 1 ≤ i , j ≤ N ,
this happens as long as G is undirected. Using this mathematical concept, it has been
possible to study the vibration of a discrete membrane Cvetkovic, Doob, and Sachs
1995 and some chemical properties of substances Merris 1994. In addition, its spec-
trum has been widely studied when applied to different types of graphs, for example,
in K. Das 2004; K. C. Das 2004; Liu, Dolgushev, Qi, et al. 2015, whose definitions are in
the next section.
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4

32

1

L(MG ) =


−2 1 1 0
1 −2 0 1
1 0 −2 1
0 1 1 −2


(a) (b)

Figure 2.10 – Example of Laplacian matrix associated with a graph. In (a) an example
of the cycle graph of dimension 4 C4 is shown and in (b) shows the
Laplacian matrix associated with its adjacency matrix, which is defined
as the subtraction of the adjacency matrix (calculated in the Figure 2.8)
and the degree matrix (calculated in the Figure 2.9), resulting in the
matrix that is shown in (b).

As it is mentioned before, in this thesis there is an interest in the behavior of three
graphs in particular, then it proceeds to write the Laplacian matrix of the complete
graph KN , the complete bipartite graph KN ,N and the cycle graph CN in a generalized
manner for future reference.

It is recalled that in the Equation (2.1), the calculation of the Laplacian matrix
depends on the adjacency matrix and the degree matrix, for the complete graph KN

the adjacency matrix is formed by ones in all the entries except the diagonal (which is
formed only by zeros), furthermore, each one of the vertices is connected to all the
others, that is why the degree of each vertex is N −1, then:

(
L(MKN )

)
i , j =

{
−(N −1) if i = j ,

1 otherwise.
(2.2)

The matrix form of the Equation (2.2) is as follows.

L(MKN ) =


−(N −1) 1 · · · 1 1

1 −(N −1) · · · 1 1
...

. . .
...

1 1 · · · −(N −1) 1
1 1 · · · 1 −(N −1)

 .

Now, for the calculation of the Laplacian matrix in the case of the complete bipartite
graph KN ,N , it is remembered that each vertex of Vi is joined with the N vertices of
the other subset V j where i , j ∈ {1,2} with i 6= j . In addition, its adjacency matrix is
composed of 2 blocks of zeros and 2 blocks of ones, then:
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(
L(MKN ,N )

)
i , j =


−N if i = j ,

1 if N < i ≤ 2N and 0 < j ≤ N

or N < j ≤ 2N and 0 < i ≤ N ,

0 otherwise.

(2.3)

The matrix form of the Equation (2.3) is as follows.

L(MKN ,N ) =



−N 0 · · · 0 1 · · · 1 1
0 −N 0 1 · · · 1 1
...

. . .
...

...
...

0 0 −N 1 · · · 1 1
1 1 · · · 1 −N 0 0
...

...
...

. . .
...

1 1 · · · 1 0 −N 0
1 1 · · · 1 0 · · · 0 −N


.

In the case of the cycle graph CN , it is remembered that each vertex is joined to its
two adjacent vertices, so each one has degree 2. In addition, the adjacency matrix
is made up of two ones in each row and the other entries are zero. This is repeated
cyclically and symmetrically in each of the rows, that is why there is the following
Laplacian matrix:

(
L(MCN )

)
i , j =



−2 if i = j ,

1 if i = j +1 and 0 < j ≤ N −1

or i = j −1 and 1 < j ≤ N ,

or i = 1 and j = N ,

or i = N and j = 1,

0 otherwise.

(2.4)

The matrix form of the Equation (2.4) is as follows.

L(MCN ) =



−2 1 0 0 · · · 0 0 0 1
1 −2 1 0 · · · 0 0 0 0
0 1 −2 1 0 0 0 0

. . . . . . . . .
0 0 0 0 1 −2 1 0
0 0 0 0 · · · 0 1 −2 1
1 0 0 0 · · · 0 0 1 −2


.

Finally, in the case of the family of ring lattices C (N ,k), specifically when two neigh-
bors to the left and two neighbors to the right are considered, that is, C (N ,2), the
Laplacian matrix associated with its adjacency matrix is written as follows:
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(
L(MC (N ,2))

)
i , j =



−4 if i = j ,

1 if i = j +1 and 0 < j ≤ N −1

or i = j −1 and 1 < j ≤ N ,

or i = j +2 and 0 < j ≤ N −2

or i = j −2 and 2 < j ≤ N ,

or i = 1 and N −1 ≤ j ≤ N ,

or i = 2 and j = N ,

or i = N −1 and j = 1,

or i = N and 1 ≤ j ≤ 2,

0 otherwise.

(2.5)

The matrix form of the Equation (2.5) is as follows.

L(MC (N ,2)) =



−4 1 1 0 · · · 0 0 1 1
1 −4 1 1 · · · 0 0 0 1
1 1 −4 1 0 0 0 0

. . . . . . . . .
0 0 0 0 1 −4 1 1
1 0 0 0 · · · 1 1 −4 1
1 1 0 0 · · · 0 1 1 −4


.

From the matrices described in this section, which represent the Laplacian system
applied to the complete graph, the complete bipartite graph, the cycle graph, and
the ring lattice family, it is then possible to define the system of coupled differential
equations that corresponds to each type of matrix, as will be seen in later sections.

2.1.2 Linear algebra
A matrix M ∈ MN×N (R), can be interpreted as a linear transformation (because

this set is a vector space), such that M : MN×N (R) →MN×N (R) such that for certain
v, w ∈RN , M(v) = w .

In the case where v 6= 0 and w =λv , for some λ ∈R, that is, w is a multiple of v , so it
is called λ eigenvalue of M and v is its corresponding eigenvector (of M). The set of all
eigenvalues and eigenvectors of a given matrix M is called the eigensystem of M .

On the other hand, a square matrix M is called diagonalizable, if there exist P,D ∈
MN×N (R) such that P is invertible (that means, there is a P−1 ∈MN×N (R) such that
P−1P = I= PP−1, where I= Di ag ({1, ...,1})) and D = Di ag ({λ1, ...,λN }) such that:

M = PDP−1.

It should be noted that not all square matrices can be diagonalized, but there are
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certain subsets that always have this characteristic, an example are the symmetric
matrices.

It is important to know that all the elements that appear on the diagonal of D are
eigenvalues of M and this set is called the spectrum of M denoted as Spec(M). The
largest value in the spectrum of M is called the maximal eigenvalue. When an eigen-
value does not repeat, it is called a simple eigenvalue. On the other hand, the number
of times an eigenvalue λ is repeated is called the algebraic multiplicity of λ.

Each of the columns of P forms a eigenbasis or just basis B of MN×N (R), that is, all
the elements of MN×N (R) can be written as a linear combination of the elements of
B (that means, for all M ∈MN×N (R) there exist a1, ..., aN ∈R such that M =∑N

i=1 ai bi ,
where bi ∈B), in other words we can say that the elements of B generate the space
and furthermore, all its elements are linearly independent (which means that none of
the elements of B is a linear combination of the other elements of B).

There are several types of bases, in this case will be discussed about the three most
used. First of all, the canonical basis, in RN is formed as the following set, where each
of the N vectors has N components (1 equals one and N −1 equals zero). It is denoted
the i -th element as ei . 


1
0
...
0
0

 ,


0
1
...
0
0

 , · · · ,


0
0
...
1
0

 ,


0
0
...
0
1




.

Secondly, the orthogonal basis, is a basis in which each pair of its elements has a
scalar product equal to zero. For example, the canonical basis for R2, B∗ = {

(1
0

)
,
(0

1

)
}

also is an orthogonal basis. Finally, the orthonormal basis, which is an orthogonal

basis and its elements have norm (in this case, if v = (v1, .., vN ), then ||v || =
√∑N

i=1 v2
i )

equal to one, B∗ is also an example of an orthonormal basis. Now it is taken the
opportunity to define the dominant eigenvector of a basis, it refers to the eigenvector
with the largest norm.

An important property that will be used throughout this thesis is the fact that any
symmetric matrix is diagonalizable. As already described, the Laplacian matrix is
always symmetric, so it can always be diagonalized. Next it is described the eigensys-
tems of the Laplacian matrices of the three graphs that are the object of study of this
thesis, the complete graph KN , the complete bipartite graph KN ,N and the cycle graph
CN , which were calculated in the previous Section 2.1.2.

First, for the Laplacian matrix of the complete graph L(MKN ) shown in Equation (2.2),
and:
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Spec(L(MKN )) = {0,−N }. (2.6)

Where 0 has algebraic multiplicity 1 and −N has algebraic multiplicity N −1. On
the other hand, the eigenvectors are of the following form:

(vi ) j =


1 if i = N , for all 1 ≤ j ≤ N ,

or i = N +1− j and 0 < j ≤ N ,

−1 if j = 1, for all 1 ≤ i < N ,

0 otherwise.

(2.7)

Where vN is the eigenvector corresponding to the eigenvalue 0 and vi where 1 ≤ i <
N are the eigenvectors corresponding to the eigenvalue −N .

In vector form, the vectors of the Equation (2.7) can be written as follows.



−1
0
0
...
0
0
1


,



−1
0
0
...
0
1
0


,



−1
0
0

1
0
0


, · · · ,



−1
0
1

0
0
0


,



−1
1
0
...
0
0
0


,



1
1
1
...
1
1
1




.

The norm of these vectors is:

‖vi‖ =
{p

2 if 1 ≤ i < N ,p
N if i = N .

(2.8)

that means that, when N > 2, vN is the dominant eigenvector of L(MKn ).

Secondly, the eigensystem for the Laplacian matrix of the complete bipartite graph
L(MKN ,N ) shown in Equation (2.3):

Spec(L(MKN ,N )) = {0,−N ,−2N }. (2.9)

For this spectrum, 0 and −2N have algebraic multiplicity equal to 1 and −N has
algebraic multiplicity 2(N −1). Now, the respective eigenvectors are defined in the
following way:
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(vi ) j =



1 if i = 2N , for all 1 ≤ j ≤ 2N ,

or i = 1 and N < j ≤ 2N ,

or i = N +1− j and 0 < j ≤ N ,

or i = N +2− j and N +1 < j ≤ 2N ,

−1 if i = 1, for all 1 ≤ j ≤ N ,

or j = 1 and N ≤ i < 2N ,

or j = N and 1 < i ≤ N ,

0 otherwise.

(2.10)

Where v2N is the eigenvector corresponding to the eigenvalue 0, v1 is the eigenvec-
tor corresponding to the eigenvalue −2N and vi where 1 < i < 2N are the eigenvectors
corresponding to the eigenvalue −N .

In vector form, the vectors of the Equation (2.10) can be written as follows.



−1
−1

...
−1
−1
1
...
1
1


,



0
0
...
0
−1
0
...
0
1


,



0
0
...
0
−1
0

1
0


, · · · ,



0
0
...
0
−1
1

0
0


,



−1
0

1
0
0
...
0
0


, · · · ,



−1
1

0
0
0
...
0
0


,



1
1
1
1
...
1
1
1
1





.

The norm of these vectors is:

‖vi‖ =


p

2N if i = 1,

or i = 2N ,p
2 if 1 < i < 2N .

(2.11)

In this case there are two eigenvectors corresponding to two different eigenvalues
that have the same largest norm.

Then, the eigensystem for the Laplacian matrix of the cycle graph L(MCN ) shown in
Equation (2.4):

Spec
(
L(MCN )

)= {
2

(
cos

(
2πi

N

)
−1

)
: 1 ≤ i ≤ N

}
. (2.12)

For eachλi , by the symmetry of the function cos(x) and the considered interval
(0,2π), λi =λN−i for 1 ≤ i ≤ ⌊N−1

2

⌋
, that is, all eigenvalues have algebraic multiplicity

equal to 2, except when λN , it has algebraic multiplicity equal to 1 and when N is even,
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λN
2

also has algebraic multiplicity equal to 1.

On the other hand, the eigenvectors of L(MCn ) are:

(vi ) j = cos

(
2πi j

N

)
, for 1 ≤ i , j ≤ N . (2.13)

Where each vi is the corresponding eigenvector to the eigenvalue λi .

In vector form, the vectors of the Equation (2.13) can be written as follows.


cos

(2π
N

)
cos

(4π
N

)
...

cos
(

2π(N−1)
N

)
1

 ,


cos

(4π
N

)
cos

(8π
N

)
...

cos
(

2π(N−1)
N

)
1

 , · · · ,



cos
(

2π(N−1)
N

)
cos

(
4π(N−1)

N

)
...

cos
(

2π(N−1)2

N

)
1


,


1
1
...
1
1




.

Since |cos(x)| ≤ 1 for all x ∈R:

‖vi‖ ≤
p

N (2.14)

Furthermore, ‖vi‖ = p
N when each cos

(
2πi j

N

)
= 1, it occurs when i = N for all

1 ≤ j ≤ N , and when N is even, also if i = N
2 which means that vN is the dominant

eigenvector when N is odd, and also v N
2

when N is even. This different behavior in the

eigensystem depending on the parity of N has repercussions on the dynamic behavior
of this matrix as discussed below in Section 3.1.3 where the behavior of the ring lattice
family, which is mentioned below, will also be discussed.

The spectrum of the Laplacian matrix associated to the ring lattice family C (N ,k)
having N vertices and 2k neighbors is also known, which is given by:

Spec(L(MC (N ,k))) =
{

2k −
(

sin
(
π
N (i −1)(2k +1)

)
sin

(
π
N (i −1)

) −1

)
, i = 1,2, ..., N

}
.

Knowing the behavior of the eigensystems associated with these types of graphs,
allows to analytically find the solutions to the associated system of differential equa-
tions, which is discussed in the next section.

2.1.3 The Laplacian system
Once the way in which the components of an initial condition will interact and

the functions that can be applied to the adjacency matrices associated to the graphs
have been defined, it proceeds to define the systems that are considered in this the-
sis. A graph G = (V ,E) is fixed and it is considered a system of coupled differential
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equations on I |V |, where I is either the set of real numbers R or the circle, written as
S1. The flow is generated by a system of ordinary differential equations (hereinafter,
this phrase is abbreviated as ODEs) coupled according to the interactions defined by E .

As has been anticipated, in this thesis I will focus on the discrete Laplacian flow or
just Laplacian flow on the graph G , which is the linear system defined by:

d xv

d t
= (L x)v = ∑

u∈V : (u,v)∈E
(xu −xv ), (2.15)

with xv ∈R for each v ∈V . Also, in this equation L = L(MG ) is the Laplacian matrix
of the adjacency matrix MG . In this case, the set that is formed by vectors x ∈ I |V |, such
that all its components have the same value, called the diagonal:

D = {x ∈ I |V | : xu = xv ∀ u, v ∈V }, (2.16)

is a global attractor, i.e., it is such that limt→∞ di st (x(t ),D) = 0, for all initial condi-
tions.

For example, in R2 the set D, is the identity function shown in Figure 2.11, since it is
formed by the points whose coordinates (x1, x2) are equal, that is x1 = x2.

0 2 4 6 8 10
0

2

4

6

8

10

x

D

Figure 2.11 – In blue line, the set of the diagonal in dimension 2 is shown for the case
of R2, this particular set has all the points x = (x1, x2) whose coordinates
are equal x1 = x2, this is the global attractor of the Laplacian system in
dimension 2, analogously it is built for larger dimensions.

The Equation (2.15), is a linear equation with solution x(t) = e tL x(0). Since the
Laplacian matrix MG is symmetric, it can be diagonalized over an orthonormal basis:
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BL := {v1, v2, . . . , vN } ⊂RN , (2.17)

so that:

x(t ) =
N∑

i=1
〈vi |x(0)〉e tλi vi , (2.18)

where, for each 1 ≤ i ≤ N , λi ∈R is the eigenvalue corresponding to the eigenvector
vi . It is well known, and not so difficult to deduce (see Cvetkovic, Doob, and Sachs
1995 for instance) that, L has a simple maximal eigenvalue λN = 0, and λi < 0 for
each 1 ≤ i ≤ N −1, that can be verified from the Equations (2.6), (2.9) and (2.12). The
dominant eigenvector, vN is the same as in Equations (2.7), (2.10) and (2.13) but
normalized, is precisely the generator of the diagonal, that is vN = 1p

N
(1, ...,1), and in

this case:

x(t ) →〈vN |x(0)〉vN ≡
(

1

N

N∑
i=1

xi (0)

)
vN when t →∞.

In fact, di st (x(t ),D) =
√∑N

i=2 |〈vi |x(0)〉|2 e2λi t for each t ∈R, as λi < 0, then

lim
t→∞ di st (x(t ),D) = 0.

This is the sense in which in this thesis it is considered that the Laplacian system
synchronizes, because when time passes, all the coordinates to which the system was
applied have the same value.

Consider the complete graph KN , then, each of its coordinates has a monotonous
behavior. Let’s consider L(MKN ) and either x ∈RN , by Equations (2.6) and (2.7):

x(t ) = e−N t
N−1∑
i=1

xi vi +xN vN ,

then, for each coordinate:

x j (t ) = e−N t (xN+1− j −x1)+xN ,

therefore x j (t ) is monotonous. This behavior will be used in Section 4.1 to perform
the formal and rigorous analysis of its paths towards synchronization.

2.1.4 The Kuramoto model
Now, the synchronization phenomenon is seen specifically in the case of coupled

oscillators. Let’s imagine that we have several metronomes, these are artefacts used
by beginning musicians that when they are well seated on a table, they can mark the
time correctly so that they can trust them to mark the beat, this is done by means
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of the sound of a needle that moves from left to right at equal time intervals. This
behavior changes when one metronome is influenced by another. This happens when,
for example, we put them next to each other on a swing, in this way their mechanical
movement flows through the board and thus, that movement is “felt” by the other
metronome. We let them interact for a few moments and after time passes, it turns
out that, despite the fact that the two metronomes have begun to oscillate at different
times with different frequencies, we could see one of the following cases, first, that
the influence between them has been so much that they are synchronized, that is, that
both mark the same beat, when one goes to the right or to the left, the other also, as it
is shown in Figure 2.12 (a) represents metronome 1 and (b) represents metronome 2.
Secondly, it may be that they both mark the same beat, but when one goes to the left,
the other goes to the right and vice versa, which causes some compensation in the
oscillation, in other words they are in a phase locking state as it is shown in Figure 2.13
(a) represents metronome 1 and (b) represents metronome 2. Finally, if the influence
they exerted on each other is too weak, what can happen is that they never get to
synchronize and each one marks different and independent beats, that is, they remain
in a state of incoherence as it is shown in Figure 2.14 (a) represents metronome 1 and
(b), represents metronome 2.

Mathematically, according to Kuramoto, asymptotically the dynamics of some sys-
tems are almost identical, and he proposed that N coupled oscillators are described
by the following coupled system of equations:

d xi

d t
=ωi +

N∑
j=1

Γi , j (x j −xi ), (2.19)

for i = 1, .., N , where the interaction function Γi , j determines the form of coupling
between each oscillator i and j , also, ωi is the natural frequency, and xi is the phase
angle of each oscillator.

The Equation (2.19) is very general, allowing any type of coupling Γi , j , however, this
interaction function is very complicated to analyze, which makes the theoretical anal-
ysis considerably more difficult. The first and clearest example, is when Γ is equal to
the identity function, then, there is a translation of the Laplacian system that depends
on the ωi . This can give an idea that every time that the function Γ is modified, it can
be the subject of a large area of study.

Due to this great challenge, Kuramoto assumed that each oscillator affects all other
oscillators by calling this kind of interaction global coupling. At the same time, he
assumed that the interactions between the oscillators are equal and depend only
sinusoidally on the phase difference, given by the following function:

Γi , j (x j −xi ) = K

N
sin

(
x j −xi

)
, (2.20)
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−→ −→ ←− ←− −→

−→ −→ ←− ←− −→

t0 t1 t2 t3 t4

(a)

(b)

Figure 2.12 – In (a) and (b) two different metronomes are shown, which are pho-
tographed at times t0, t1, t2, t3, t4, the arrow above each of the pho-
tographs shows the direction it has the instant after the photo was taken.
In this case, the oscillators at each instant have the same direction, which
is called synchronized. The fact that the times t0 and t4 are shown is to
observe the periodicity of the oscillators.

where the parameter K determines the coupling strength.

Substituting the Equation (2.20) in Equation (2.19), it is the so-called Kuramoto
Model, this is a simple model of N mutually coupled oscillators having different
natural frequencies ωi drawn from some probability density ω 7→ g (ω), with phases
xi , as in the following equation:

d xi

d t
=ωi + K

N

N∑
j=1

sin
(
x j −xi

)
. (2.21)

Because this model describes the synchronization of a system, one of the natural
questions has been how to quantify the degree of synchronization (there are a lot
of examples, but you can see Fonseca and Abud 2018 for instance), that is why the
dynamics of the Equation (2.21) have been analyzed in terms of the order parameter,
then, the complex mean field of the population can be written as follows:

Z = X + i Y = r e iΘ = 1

N

N∑
j=1

e i x j . (2.22)

31



2 Theoretical and methodological frameworks – 2.1 Basic concepts

−→ −→ ←− ←− −→

←− ←− −→ −→ ←−

t0 t1 t2 t3 t4

(a)

(b)

Figure 2.13 – In (a) and (b) two different metronomes are shown, which are pho-
tographed at times t0, t1, t2, t3, t4, the arrow above each of the pho-
tographs shows the direction it has the instant after the photo was taken.
In this case, the oscillators at each instant have the opposite direction,
which is called phase locking. The fact that the times t0 and t4 are shown
is to observe the periodicity of the oscillators.

The mean field, has amplitude r and phase Θ, as in the following equation:

r cos(Θ) = 1

N

N∑
j=1

cos
(
x j

)
, r sin(Θ) = 1

N

N∑
j=1

sin
(
x j

)
(2.23)

Equation (2.22), corresponds to the centroid of all the oscillators when they are
represented as points on a circle of radius 1. The magnitude r of the order parameter
can also be interpreted as a measure of synchronization, in the following sense: if all
the oscillators are fully synchronized with identical angles xi (t ), then r = 1, and if all
the oscillators are distributed around the unit circle, then r = 0. It is shown in Figure
2.15 examples of this synchronization measurement for two coupled oscillators, in
(a) it is observed that the oscillators are in phase locking state, in (b) it is a state of
incoherence and in (c) a synchronization state.

The Kuramoto model, from the Equation (2.21) has been applied to complex net-
works, in the sense that the involved oscillators will influence each other, depending
on the connections that a network has, that is:
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−→ −→ ←− ←− −→

−→ ←− ←− ←− −→ −→

t0 t1 t2 tk tk+1 tk+2

(a)

(b) · · ·

Figure 2.14 – In (a) and (b) two different metronomes are shown, which are pho-
tographed at times t0, t1, t2, t3, t4, the arrow above each of the pho-
tographs shows the direction it has the instant after the photo was taken.
In this case, the oscillators have their direction independently of each
other, they go at their own pace and it is not possible to make a pattern
of their behavior at different times.

d xi

d t
=ωi +σ

∑
j∈V (i )

sin
(
x j −xi

)
. (2.24)

Here, V (i ) represents the set of closest neighbors of node i . The natural frequencies
are distributed according to a probability density function ω 7→ g (ω), and σ denotes
the coupling strength with an appropriate scale to ensure the model exhibits favorable
behavior as N →∞.

It is well known that the Kuramoto model applied to different types of graphs
has been widely studied, for example in DeVille and B. Ermentrout 2016; Delabays,
Jacquod, and Dörfler 2019; Medvedev and Tang 2017; Moreno and Pacheco 2004;
Gómez-Gardeñes, Moreno, and Arenas 2007, both for random and non-random
graphs. Whether synchronization occurs depends on two factors: the coupling
strength, and the difference between the frequencies of both oscillators. The cou-
pling strength describes how weak or strong the interaction is. In the example of the
metronomes on the swing, we can interpret it as a measure of the freedom that the
strings allow them to move the board while they oscillate. Conversely, if the strings
were rigid, then the movement of the metronomes would not affect the board and
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(a) (b) (c)

Figure 2.15 – In (a), (b) and (c) the angles that two oscillators have in three different
situations are shown and the line that appears in the center of the circle
towards the average of the angles shows the synchronization measure
that exists between both oscillators, the first, that is (a), shows that the
synchronization measure is zero, because the oscillators are in totally
opposite directions, in other words, in phase locking. In (b), at the
instant that the synchronization measurement was captured, it is greater
than zero, because the angles seem to be close, which will not last long,
because it is not an equilibrium state, so each of the angles will follow
its path and the synchronization measurement will continue to change
without stabilizing. In (c) it is shown that both angles are very close, so
the synchronization measure corresponds to the length of the radius,
that is, r = 1, which means that these oscillators are synchronized.

there would be no way for the two metronomes to interact, so the coupling strength
would tend to zero. On the other hand, if the strings are not fixed, but can vibrate or
move with some ease, the interaction force would be increased. The other factor that
allows synchronization to occur is the difference in natural frequencies between the
oscillators describes how different they are. Then, measuring the coupling strength
experimentally has some difficulty, but the frequency difference is easy to measure
and to vary.

The synchronizing dynamics of the Laplacian flow is preserved in part by the Ku-
ramoto flow neglecting the natural frequencies, written as follows:

d xv

d t
=σ

∑
u∈V : (u,v)∈E

sin(xu −xv ). (2.25)

Certainly, the diagonal serves as a global attractor for the Laplacian flow. Moreover,
due to the proportionality between the linearization of the Kuramoto flow around
the diagonal and the Laplacian flow, a Hartman-Grobman argument Hartman 1960;
Grobman 1959 implies that a similar converging dynamics is exhibited in a small
neighborhood of the diagonal.
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2.1.5 Combinatorics
In this section, basic concepts of combinatorics will be introduced for the previous

study of the paths towards the synchronization of the Laplacian system and the Ku-
ramoto model, that are defined in previous sections.

It begins with a very simple concept, but which will be used repeatedly, the binomial
coefficient is defined from a pair of positive integers N ,k such that k ≤ N . It is written(N

k

)
, and is given by the formula (

N

k

)
= N !

k !(N −k)!
.

Which can be interpreted as the number of ways of k objects can be chosen from
a total set of N objects. This concept is widely used and it will help to define more
complex concepts as the following, that is the Narayana number T k

N that is defined
from a pair of positive integers N ,ki nZ such that k ≤ N . This number is given by the
formula:

T k
N = 1

N

(
N

k

)(
N

k −1

)
. (2.26)

In the Table 2.1, the first seven lines of the Narayana numbers are shown, that is
when N = 1, ...,7, which generate the Narayana triangle.

1
1 1

1 3 1
1 6 6 1

1 10 20 10 1
1 15 50 50 15 1

1 21 105 175 105 21 1

Table 2.1 – The first 7 lines of the Narayana Triangle are shown in this representation
which is generated from the Equation (2.26).

The Narayana numbers Narayana 1979 gives a solution to many counting problems
in the area of combinatorics as in Stanley and Fomin 1999; Blanco and Petersen 2012
and there is a very complete documentation at Sloane 2021.

In the Equation (2.26), if a sum over all k in each row is done, then, the result is the
Catalan number denoted as CN , that is
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CN =
N∑

k=1
T k

N ,

which has several expressions as a closed formula, from them, the following is
chosen:

CN = 1

N +1

(
2N

N

)
. (2.27)

The first ten numbers of Catalan are listed below:

1,2,5,14,42,132,429,1430,4862,16796.

Catalan numbers are the answer to dozens of problems in the area of combinatorics
too, there is a very complete documentation at Sloane n.d. For example, this is the
number of Dyck paths of order N , this is a staircase walk from (0,0) to (N , N ) that lies
strictly below (or equal) to the diagonal. This case is equivalent to when the staircase
walks are above (or equal) the diagonal.

In Figure 2.16 in (a), the Dyck path of dimension N = 1 is shown. In (b), the two Dyck
paths in N = 2 are shown and in (c), the five corresponding to dimension 3. These
numbers coincide with the first three digits of the list shown above about the values of
the Catalan numbers.

A parallelo-polyminoe in the rectangular lattice of size p ×q refers to a connected
union of squares that is bounded by two increasing boundary functions L and U .
These boundary functions are defined on the set 1,2, . . . , p and take values in 0,1, . . . , q .
The conditions for the boundary functions are as follows: L(1) = 0, U (p) = q , and
L(n) <U (n −1) for every 2 ≤ n ≤ p. In Figure 2.17 an example of parallelo-polyminoe
in the lattice of size 14×10 is shown. The blue path defines the lower border func-
tion L = (0,0,0,0,0,2,2,2,2,5,5,5,5,5), while the red one defines the upper border
U = (1,1,1,3,3,3,5,5,6,6,6,6,7,7). The number of parallelo-polyminoes in the lattice
p ×q is also related with the Narayana number.

Now, another important concept is presented. A Golomb ruler is a set of marks at
integer positions along a ruler where no two pairs of marks have the same distance be-
tween them. Formally, this rulers are defined as follows, the set A = {a1, a2, ..., aN } ⊂Z,
where a1 < a2 < ·· · < aN , is a Golomb ruler if and only if for all i , j ,k, l ∈ {1,2, ..., N }
such that i 6= j and k 6= l , ai − a j = ak − al ⇐⇒ i = k and j = l . In other words, the
difference set has all its elements distinct. The order of this Golomb ruler is N and its
length is aN −a1.

In Figure 2.18 an example of two Golomb rulers is shown. In (a), there is the set
A = {0,1,3} that satisfies x3−x1 > x3−x2 > x2−x1. In (b), there is A = {0,2,3} such that
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(a)

(b)

(c)

Figure 2.16 – In (a), (b) and (c), the different options of Dyck paths of order 1, 2 and 3,
respectively, are shown. As can be seen in (a), the only option to build
such a path of order 1 is to take one step up and one step to the right. In
(b) there are two different options to build a Dyck path of order 2, the
first is to intersperse steps up and to the right, and the second is to go
as high as possible and then go as far to the right. Finally, in (c), the 5
options are shown to get from the coordinate (0,0) to the coordinate (3,3)
in such a way that it is always above the diagonal, whose options they
combine the exposed alternatives in the paths generated in (b).

x3 − x1 > x2 − x1 > x3 − x2. In both cases, |A| = 3. When the set of differences of two
Golomb rules can be ordered in different ways, it is said that these Golomb rules are
combinatorially different.

Although there is still no closed formula to obtain these numbers, there are previous
works as in Johnston 2014a; Beck, Bogart, and Pham 2011, in which they have counted
the number of combinatorially different Golomb rulers with N markings which are
shown below in Table 2.2. The example shown in Figure 2.18, also illustrates the two
possibilities of Golomb rulers with N = 3 indicated in the table.

Another concept that is closely related, is the Sidon set. The set A = {a1, a2, ...} ⊂N, is
a Sidon set in which all pairwise sums ai +a j are different for i ≤ j . The equivalence
between the Golomb rulers and the Sidon finite sets has already been studied (see
Dimitromanolakis 2002 for instance) and it is easy to prove by contradiction.

Suppose the set A = {a1, a2, ..., aN } ⊂ N is a finite Sidon set but not a Golomb
ruler. Since A is not a Golomb ruler, then there exist i , j ,k, l ∈ {1,2, ..., N } such that
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Figure 2.17 – Example of parallelo-polyminoe in the lattice of size 14 ×
10. The blue path defines the lower border function L =
(0,0,0,0,0,2,2,2,2,5,5,5,5,5), while the red one defines the upper
border U = (1,1,1,3,3,3,5,5,6,6,6,6,7,7), as you can see there are no
intersections on the paths, only at the beginning and at the end.

0 1 2 3

0 1 2 3

(a)

(b)

A = {0,1,3}

A = {0,2,3}

Figure 2.18 – Example of two combinatorially different Golomb rulers of order 3. In (a)
and (b) two Golomb rulers are shown, both of order 3. These rules have
an associated set that is denoted by the letter A that is written on the right
side of each of them. Both rules are combinatorially different, because
the differences between each of the elements have a different order. In
(a), the set A = {0,1,3} is presented, that satisfies x3−x1 > x3−x2 > x2−x1.
In (b), there is A = {0,2,3} such that x3 −x1 > x2 −x1 > x3 −x2.

ai −a j = ak −al whence it follows that ai +al = ak +a j which contradicts the fact that
A is a finite Sidon set. In an analogous way it is proved that a Golomb Rule is a finite
Sidon set.

With the definitions of these combinatorial objects the section of basic concepts
is concluded. Now the methodological framework begins with the methodology pro-
posed and used to build the paths to synchronization, for a system that acts on a fixed
graph which it is known that synchronizes.
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N Number Golomb rulers
1 1
2 1
3 2
4 10
5 114
6 2608
7 107498
8 7325650
9 771505180

Table 2.2 – Combinatorially different Golomb rulers. This table shows the combinato-
rially different Golomb rulers from order 1 to order 9 which are the ones
that have been calculated so far.

2.2 Path construction
This section will oversee exposing the methodology used to build the paths towards

the synchronization of a synchronizing system that acts on a graph. This will be done
from the subgraphs that can be generated from the main graph. There are previous
works that measure the diffusion distance between networks in the Laplacian system
as in Bao, You, and Lin 2018, but the proposal presented here is original.

There is an interest in measuring the degree of synchronization of the system, at
a given time t . For this, a precision of ε > 0 is set and say that two neighbors are
ε-synchronized if the distance between them is not greater than ε. In Figure 2.19 an
example of the Laplacian flow as in Equation (2.15) is shown for N = 2 in the complete
graph. The upper blue curve corresponds to the flow of x1(t) and the lower one to
the flow of x2(t ). Between red lines the ε-neighborhood is drawn. From the moment
(t ≈ 2), both flows enter the neighborhood, then they remain ε-synchronized.

It is called active each connection between neighboring sites which are ε-close, and
it is defined a subnetwork containing all the active connections. The main objective
of the present manuscript is to determine and describe the evolution of these subnet-
works.

Therefore, to each fixed threshold ε> 0, the graph G = (V ,E ) and every configuration
x ∈R|V |, an ε-synchronized subnetwork Gx = (V ,Ex ) can be associated, where Ex ⊂ E is
the set of edges:

Ex = {(u, v) ∈ E : |xu −xv | ≤ ε}. (2.28)

Due to the phenomenon studied in this thesis is synchronization, the systems under
consideration, Gx(t ) →G as t →+∞, when the initial condition is sufficiently close to
the diagonal D. This can also be seen in the example presented in Figure 2.19.
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0 2 4 6 8 10
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2.5
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Figure 2.19 – Example of two neighbors ε-synchronized. Blue lines show the Laplacian
flow of two coordinates from when they begin to interact, until they
are synchronized, that is, until both acquire the same value. In red
lines, is represented the neighborhood of size ε/2 around the average of
the values of said coordinates, when the flow enters this neighborhood,
which is approximately at t ≈ 2. These are neighbors ε-synchronized.

The graph G has 2|E | subgraphs, then for each suitable initial condition x ∈ R|V |

there exists a finite sequence of switching times t0 = 0 < t1 < t2 < ·· · < t` and a cor-
responding sequence of ε-synchronized subnetworks (Gx ,Gx(t1), . . . ,Gx(t`)) such that
Gx(tτ) 6=Gx(tτ+1), for each 0 ≤ τ< N , and Gx(t ) =Gx(tτ) with τ= max{0 ≤ j ≤ ` : t ≥ t j }.
In other words, in the sequence of subnetworks, no repeated consecutive subnetworks
are found.

In the example that is considered in Figure 2.19, for the Laplacian system for N = 2
in the complete graph. For all times before tr = 2, the two-vertex fully disconnected
graph ;2 = (V ,;) shown in (a). After tr , at any time cut, K2 appears, as is shown in (b).
Resulting in the sequence {;2,K2} shown in Figure 2.20.

These sequence of subnetworks of G codify the progression of transient synchroniz-
ing patterns. It is important to keep in mind that if ε> 0 sufficiently small is taken, all
the possible synchronizing sequences can be obtained varying the initial condition
x ∈R inside the basin of attraction of the diagonal D.

In Figure 2.21, two paths to synchronization that can be found in the Laplacian
system acting on the complete graph K3 are shown. The path shown in (a) is the same
as shown in (b), by making the following label assignment 1 7→ 2 7→ 3 7→ 1. This occurs
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Figure 2.20 – Example path to synchronization. Here, the construction of the graphs
represented in Figure 2.19 is shown. Before t ≈ 2, the coordinates are
separated by a length greater than ε, then, there is no edge is drawn in
(a). From t ≈ 2, they are already at a distance less than ε, then, an edge is
drawn connecting vertices 1 and 2.

in systems that act on networks that have some symmetries, such as the complete
graph.

In the case of highly symmetric networks, instead of use directly the ε-synchronized
subnetworks it is convenient to use another combinatorial structure that encodes the
subnetwork and respects some of the symmetries that are preserved by the dynamics
at the same time. In Figure 2.21, there are paths that could turn out to be redundant
(in the sense that they do not provide more information than what is already available
and they occupy memory when performing computations). Also, as it will be seen in
the Section 4, this facilitates the description of the evolution of the ε-synchronized
subnetworks.

It is proposed that the whole synchronizing dynamics on G can be compiled in a
single combinatorial superstructure. I call this superstructure the transition diagram,
where to each vertex is associated with a ε-synchronized subnetwork (it should be
noted that this association is not necessarily injective), this is to ensure that the set of
all paths in the transition diagram is equivalent to the set of all observable sequences of
ε-synchronized subnetworks. In Figure 2.22, the transition diagram for the Laplacian
system applied to the complete graph K3 is shown. Each of its vertices corresponds to a
subgraph of K3. In addition, all the transitions that occur can be observed. Each of the
paths that appear in this transition diagram is realized by some initial condition x ∈R3.

To study this dynamic of the paths to synchronization, it is enough to see the tran-
sition diagram with other labels that allow to encode the Gx (preferably in a simpler
way). In Figure 2.22, it would be easier to analyze if a label to each subgraph is associ-
ated. An advantage of it will be taken soon to save information of the corresponding
subgraph.
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Figure 2.21 – Example of two different but symmetrical paths towards synchronization.
In (a) and (b), two paths towards synchronization are shown considering
the complete 3-dimensional graph K3. Both have 4 times t0, t1, t2, t3 in
which the different subgraphs that appear in each of the sequences can
be noted whose transitions are represented by an arrow pointing down.
In the case of (a), starting with the totally disconnected graph, then add
the edge that joins vertices 1 and 2, then the one that joins vertices 2 and
3, and ends with the one that joins vertices 1 and 3. For (b), in the same
way, starting with the totally disconnected graph, first the edge that joins
vertices 2 and 3 appears, then the one that joins vertices 1 and 3 and
ends with the one that joins vertices 1 and 2. One path can be obtained
through another by rotating the labels of the graph so that 1 → 2 → 3 → 1.

Formally, the transition diagram is a directed graph which is written as T ε= (Vε, Aε)
whose vertices Vε, are combinatorial objects containing all the information it is neces-
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Figure 2.22 – The complete transition diagram of the Laplacian system in K3 is shown.
At the top, is the fully disconnected graph, and at the bottom, is the
full 3-dimensional graph K3. This transition diagram is made up of 8
vertices that are all the subgraphs that can be obtained from K3, which
are arranged by levels, depending on the number of edges that each
of them has. Each of the arrows represents the transitions that can be
observed. They are steps that jump one or two levels (a jump of three
levels leads to a contradiction). Furthermore, this is a very rare case
where all the arrows can be constructed following the rule that one
graph is a subgraph of the next, with the only exception that the fully
disconnected does not go to the fully connected.

sary to determine the ε-synchronized subnetworks, and its arrows, Aε, are transitions
between those structures, and they need to be consistent with the evolution of each
ε-synchronized subnetwork. The association of objects in Vε with ε-synchronized
subnetworks is reached via a mapping:

λ : Vε → E ε, (2.29)

which consists of labeling each vertex in the transition diagram with one ε-synchronized
subnetwork. The labelling defined by λ is such that the sequence (G0,G1, . . . ,G`) is
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2 Theoretical and methodological frameworks – 2.2 Path construction

a realizable sequence of ε-synchronized subnetworks as long as there exists a path
v0 → v1 →···→ v` in T ε such that Gn =λ(vn) with 0 ≤ n ≤ `.

In general, the set Eε of all the ε-synchronized subnetworks changes with ε. Never-
theless, for ε sufficiently small, the set of ε-synchronized subgraphs defined by initial
conditions in a small neighborhood of D becomes independent of ε. For example,
in Figure 2.23, when two different values of ε are considered, different sequences are
generated. For the neighborhood drawn in red, the sequence shown in Figure 2.20 is
presented, which is {;2,K2}. For the neighborhood drawn in green, there is only {K2},
because at any time, the flows are close enough to be connected.
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−ε1/2

+ε1/2

+ε2/2

−ε2/2

t

x i
(t
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Figure 2.23 – Example when two neighbors ε-synchronized with different ε. The ob-
jective of this image is to show that when one changes the value of the
precision ε > 0, different sequences can be obtained, then, for some
it can be considered a loss of information. For example, for the red
neighborhood given by ε1, the change that implies that at first the two
coordinates were far apart can be observed, and then, they got close
enough to get in synchronization. In the case of the green neighborhood
given by ε2, since it is too big, at no time did it notice that there was an
approximation between the coordinates, because from the beginning,
for this precision, they were already close enough.

In the case of the Laplacian flow, the set Eε of all possible ε-synchronized subnet-
works is independent of ε as long as ε > 0. It is natural to think that even if Eε is
independent of ε, the corresponding transition diagram may change with ε. This, nev-
ertheless, does not happen in the linear case, since for each initial condition x ∈R|V |,
the corresponding sequence (Gx ,Gx(t1), . . . ,Gx(t`)) of ε-synchronized subnetworks co-
incides with the sequence (Gy ,Gy(t1), . . . ,Gy(t`)) of ε′-synchronized subnetworks de-
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2 Theoretical and methodological frameworks – 2.3 Computational methods

termined by y = x ε′/ε. Indeed, by Equation (2.28) and by the linearity of the system,
{u, v} ∈ Ex is equivalent to |xu − xv | ≤ ε, hence |xu − xv | = ε/ε′|yu − yv | ≤ ε, therefore
|yu − yv | ≤ ε′, which is equivalent to {u, v} ∈ Ey . From this it follows that the set of
ε-synchronized sequences does not depend on ε in the linear case.

Clearly, each ε-synchronized sequence can be realized by an infinite number of
initial conditions, due to this number is finite, which could most likely allow to realize
some partition of the initial space, that is, the basin of attraction of the final synchro-
nized state.

As it has been anticipated, the study is restricted only to the following families of
networks the complete graph KN , the complete bipartite graph KN ,N , the cycle graph
CN and the ring lattice family C (N ,k).

Considering these families, the following questions are addressed, given the under-
lying network:

— Which subgraphs are realizable as ε-synchronizing subnetworks, how large is
this set and how does it grow with the size N of the underlying graph?

— What is the structure of the transition diagram? What is the longest path in this
digraph and what is the distribution of path lengths?

2.3 Computational methods
This section will describe the computational methods by which the exploratory

studies were carried out to determine the behavior of the Laplacian system and the
Kuramoto model in the complete graph, the complete bipartite graph, the cycle graph,
and the family of the ring lattices. This thesis will be in the framework of theoretical
and numerical physics, for which it is required

— Knowledge in non-linear physics and dynamical systems.
— The mastering of the numerical tools in order to perform numerical simula-

tions (programming language Fortran 90 and C++) and some tools to do post-
processing (Wolfram Mathematica) is necessary.

Due to the difficulty that it presents from the beginning to know which are the paths
towards the synchronization of a system that has this asymptotic state, computational
simulations were initially carried out with the objective of making an exploratory study
of the Laplacian system and the Kuramoto model. For this, computations were done,
assuming that there are a G graph of dimension N , and considering 106, randomly
generated initial conditions in (0, N 2)N ⊂RN in the case of the Laplacian system and
(0,2π)N ⊂ RN in the case of the Kuramoto model, for each 1 ≤ N ≤ 10. This will be
done for the following types of graphs:
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2 Theoretical and methodological frameworks – 2.3 Computational methods

— Complete graph KN .
— Complete bipartite graph KN ,N .
— Cycle graph CN .
— Ring lattice family C (N ,k).

From this exploratory study, it can be observed that the dynamics of the initial con-
ditions, in the two systems (the linear system and the non-linear system). That is, how
the system behaves under different types of initial conditions, and how are the paths
they take until they reach the synchronized state to make a formal characterization.
The following concepts were considered from observations and data obtained from
random initial conditions:

— Number of feasible and unfeasible subgraphs.
— Depth of the transition diagram.
— Number of realizable paths.
— Path length distribution.

From the observations made and considering the characteristics listed above, the
objective was to describe in a general, formal, and rigorous way the behavior of the
transient state, through the formulation of theorems. In the cases of the complete
graph KN and the complete bipartite graph KN ,N , this type of formalization could be
carried out in the Laplacian system case and partially in the Kuramoto model. On the
other hand, the observations made for the case of the cycle graph and the family of
ring lattices will allow us to continue with their general and rigorous study in the future.

Next, in the following chapter, the exploratory study made for the Laplacian system
and the Kuramoto system in the complete graph, the complete bipartite graph, the
cycle graph and the ring lattice family is shown under the methodology exposed in
this section.
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3.1 Exploring the Laplacian system
This section shows the exploratory studies that were carried out from computational

simulations for a set of 106 random initial conditions on (0, N 2)N , in the Laplacian
system over: the complete graph, the complete bipartite graph, the cycle graph and
the family of ring lattices. As was said in Section 2.3, the aim is to find the patterns that
meet the initial conditions on their way towards synchronization. In the four graph
types that are analyzed, the same initial condition is evaluated to observe the different
behavior it has when the topology of the graph changes. In addition, for each of them,
the number of feasible subgraphs, the length of the longest path, the number of paths
and the distribution of path lengths are explored, all in a set of random initial condi-
tions. These analyzes and exploratory studies were very important for the formulation
of theorems and propositions that fulfill the different systems exposed in this thesis in
Sections 4.1, 4.2 and 4.3.1.
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3 Exploratory study – 3.1 Exploring the Laplacian system

3.1.1 The Laplacian system of MKN

To begin, the most important observations, made through computational simu-
lations, regarding the behavior of the Laplacian system on the complete graph of
dimension N , L(MKN ), will be presented. Specifically, the behavior of this system is
investigated when the dimension grows. These calculations were made for a set of 106

random initial conditions in (0, N 2)N as was said in Section 2.3. Now, the trajectory
under the Laplacian flow, starting with a fixed initial condition, will be evaluated,
it will be used throughout Section 3.1, in order to observe the differences when the
graph’s topology is changed. Then, the case of the construction of the transition
diagram of the Laplacian system applied to the complete two-dimensional graph,
K2, and what are the initial conditions that correspond to each state are exposed.
Afterwards, the construction of the transition diagram of the Laplacian system applied
to the complete three-dimensional graph, K3 is also presented, which was found from
the evaluation of multiple initial conditions. Next, a calculation of the number of
unfeasible subgraphs of KN and a comparison with the total number of subgraphs of
KN is presented. Then, a formula to calculate the length of the longest path found in
L(MKN ) is presented. Finally, three path lengths normalized distributions for a set of
random initial conditions are shown, with the purpose of observing the length of the
paths in the case presented in this section.

Starting from the order defined in the previous paragraph, Figure 3.1 shows the flow
of this system in a concrete example, applied to a fixed initial condition in dimension
6:

x = (2.64958,1.9171,1.86587,−0.861234,−0.41248,0.5232).

In the figure, the flow of each coordinate approaches monotonically (increasingly or
decreasingly) to x̄ = 0.947006, which is the average of the coordinates of x. Moreover,
in all dimensions, each coordinate follows its path towards the asymptotic value, with-
out crossing other. This is the most important observation, for its future generalization
and writing in a formal version presented in Section 4.1.

Due to this behavior of the Laplacian system in the complete graph, it is immediate
to deduce that, in the 2-dimensional case, for any ε > 0, there are only 2 cases. Let
x = (x1, x2) ∈R2, the first case corresponds to x1 = x2 and the second case corresponds
to x1 6= x2. If x1 = x2, then they are already in the synchronized state, if x1 6= x2, there
are two sub-cases. Without loss of generality, consider that x1 < x2. First, if x1 +ε≤ x2,
which also corresponds to the synchronized case. The second case, if x1+ε> x2, which
corresponds to the state of the totally disconnected graph of dimension 2. Due to
the monotonic and without crossings behavior, they lead in finite time to the state of
synchronization. The transition diagram in this case is explicitly shown in Figure 3.2,
composed only of two states and a single way to go from one to the other.

The form that the coordinates must have to know its path towards synchronization
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Figure 3.1 – The Laplacian flow in the complete graph of dimension 6 K6, applied on
a fixed initial condition x ∈ R6. Each one of the six lines represents the
projection of each one of the coordinates xi of x. It is observed that all of
them reach the same value asymptotically, and they do so monotonically
without crossings between them.
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Figure 3.2 – Transition diagram of the Laplacian system applied to the complete graph
of dimension 2 K2. In this case, only two states are observed. The first one
corresponds when the initial coordinates are at a distance strictly greater
than ε. The second, is when its distance is less than this threshold.

was presented in the previous paragraph, then the phase diagram can be drawn as in
Figure 3.3. It is interpreted as follows: if an initial condition in the blue zone is taken,
it will take one step to arrive to synchronization, otherwise, if a coordinate in the red
zone is taken, it is already in the synchronized state. The red zone depends entirely
on the magnitude of the ε parameter. In the case that ε= 0, the red set is equal to the
diagonal D of dimension 2.

Now, the case N = 3 is presented, for which a specific set of initial conditions was
evaluated to build the associated transition diagram. The specific parameters used
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Figure 3.3 – The Laplacian flow applied in the complete graph of dimension 2 K2 phase
diagram. If ε= 0.5 is set, each initial condition x ∈R2 selected in the blue
area, will take 1 step to reach full synchronization. If it is selected in the
red area, it is already in the synchronized state. The red area can be made
smaller or larger depending on the threshold ε.

are described below. In this case ε = 0.1 is considered, and the initial conditions
x = (x1, x2, x3) in the set [−10,10]3 ⊂Z3, that is, in such a way that points are generated
as in a cubic lattice, one arrives at transition diagram shown in Figure 3.4, where each
of the vertices is a subgraph of K3 and all of them appear. In addition, the drawn
arrows are equivalent to inclusion, that is, the graph from which an arrow leaves is a
subgraph of the graph it enters. To explain the way in which the initial conditions are
constructed, the use of a symmetry of the complete graph will be considered: when
the coordinates are increasingly ordered. Assume that x1 ≤ x2 ≤ x3. Firstly, the initial
conditions already in the synchronized state are such that all their coordinates are
equal to or such that |xi −x j | ≤ ε for all i , j ∈ {1,2,3}. Those that take one step to reach
synchronization, is because two of their coordinates are equal and the distance to the
third is greater than ε, or they are such that |xi −x j | ≤ ε and |xi −xk | > ε and |x j −xk | > ε,
where i , j ,k are any array of the numbers 1,2,3 with no repeats. The initial condi-
tions that take two steps to reach synchronization have the form (x1 +a, x1 −a, x2)
and any of its permutations, on which it depends if 2a ≤ ε to know if two edges are
connected in the first step or in the second step. Furthermore, the distances between
the coordinates that have symmetry and the one that does not, must be greater than ε.
Finally, the initial conditions that take 3 steps to reach the state of synchronization
are that all their pairwise differences are different and greater than ε. Then, there are
different paths to reach synchronization, in other words, also in this case the partitions
that are generated in the phase diagram are inflated subspaces of R3 that depends on ε.
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Figure 3.4 – Transition diagram of the Laplacian system applied to the complete graph
of dimension 3 K3. At the top, is the fully disconnected graph and at the
bottom, is the full 3-dimensional graph K3. In this case, all the arrows can
be constructed following the rule that one graph is a subgraph of the next,
with the only exception that the fully disconnected does not go to the fully
connected.

Besides, for cases of dimension larger than 3, the number of vertices in the transition
diagram of L(MKN ), no longer coincides with the number of subgraphs of KN , since it
is impossible to construct initial conditions that satisfy all the rules of nearness and
farness that some subgraphs dictate. These rules will be formally exposed and demon-
strated in the Section 4.1.2. Computationally, the number of unfeasible subgraphs
was calculated and a comparison was made with respect to the number of subgraphs
of KN , to observe the growth behavior of the feasible subgraphs, shown in Figure 3.5.
The red line represents the number of subgraphs of KN , which is clearly an upper
bound for the number of feasibles and unfeasible subgraphs. The blue line represents
the number of unfeasible subgraphs of KN . There is a very little difference between
the lines, which represents the number of feasibles subgraphs.

Through the computational simulations that were carried out, considering ran-
domly generated initial conditions in a subset of RN , it was found that the longest
path that an initial condition can follow towards synchronization, coincides with the
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Figure 3.5 – Number of unfeasible subgraphs by initial conditions in KN and number
of subgraphs of KN . The blue line represents the number of unfeasibles
subgraphs of KN . The red line represents the number of subgraphs of KN .
The difference between these lines is the number of feasible subgraphs of
KN .

number of edges that KN has, that is

Depth of L(MKN ) transition diagram = N (N −1)

2
.

Under the same conditions of randomness, the path towards synchronization of 106

different initial conditions were calculated and then all those that were different from
each other were counted. The result of this process is shown in Figure 3.6. Note that
although the number of feasibles subgraphs is very small, the number of paths towards
synchronization grows very fast, which allows, from little information and through a
fixed function, to create a large number of possibilities, for its future exploitation and
use.

Now, for the set of random initial conditions and considering ε= 0.1, the path length
distribution was calculated in each dimension N , in order to observe the behavior
of a typical path towards synchronization, to have an idea of what to expect about
the length of a path to synchronization associated with a random initial condition.
Moreover, it can also be seen how likely it is to find an initial condition with maximum
length, and similarly, an initial condition that reaches synchronization in very few
steps. In Figure 3.7, this behavior is shown for the dimensions N = 8,9,10 in blue,
red and green lines respectively (normalized by the total number of initial conditions
evaluated). As can be seen, these distributions have a Gaussian shape, whose average
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Figure 3.6 – Number of paths towards synchronization in L(MKN ). The blue line rep-
resents the number of paths towards synchronization in the Laplacian
system of the complete graph of dimension N .

moves to the right as the dimension N grows. The distributions show that it is not easy
to find initial conditions that synchronize neither in a few nor in many steps, rather
the behavior oscillates in intermediate values.

As a conclusion of this section, due to the monotonicity of the Laplacian flow applied
to the complete graph of dimension N , there is an upper bound for the maximum
length of the paths to synchronization in its transition diagram. In addition, the sym-
metry of the graph being analyzed is inherited by the transition diagram, which makes
some paths redundant. Hence, a simplification of the paths will be considered in the
formal analyses. Besides, due to the diversity of subgraphs, it is not possible for all of
them to be feasible by initial conditions, which means that the number of states in the
transition diagram is less than the number of subgraphs of KN . Finally, the path length
distributions provide an idea of what to expect from the behavior of a random initial
condition, which should be treated carefully when ε is varied, because by making
this threshold smaller, then the average of the typical length grows. The observations
made in this section are the basis for the future formalization of the results presented
in Section 4.1 with respect to the transient state behavior of the Laplacian system over
the complete graph of dimension N .
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Figure 3.7 – Path length distribution of L(MKN ). The blue line represents the normal-
ized path length distribution of Laplacian system of the complete graph
of dimension N = 8, the red line in dimension N = 9 and green line in
dimension N = 10, for a set of random initial conditions.

3.1.2 The Laplacian system of MKN ,N

Now, the most important observations, made through computational simulations,
regarding the behavior of the Laplacian system on the complete bipartite graph of
dimension 2N , L(MKN ,N ), will be presented. Specifically, the behavior of this system
is investigated when the dimension grows. These calculations were made for a set
of 106 random initial conditions in (0, N 2)N as was said in Section 2.3. To begin with,
the trajectory under the Laplacian flow starting with a fixed initial condition will be
evaluated, that will be used throughout Section 3.1, in order to observe the differ-
ences when the topology of the graph is changed. Then, a comparison of the longest
path to synchronization found from computational calculations and the number of
subgraphs that KN ,N has is shown. Next, a calculation of the number of unfeasible
subgraphs of KN ,N is presented. Then, the behavior of the number of different paths
to synchronization that were found is depicted. Finally, three path lengths normalized
distributions for a set of random initial conditions are shown, with the purpose of
observing the length of typical paths.

As mentioned in the previous paragraph, the same initial condition that was evalu-
ated in Section 3.1.1 is evaluated, to observe its behavior when the interactions are
given by the complete bipartite graph K3,3, which is,

x = (2.64958,1.9171,1.86587,−0.861234,−0.41248,0.5232).

In Figure 3.8 it can be seen that not all of its coordinates approach monotonically
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(increasingly or decreasingly) to x̄ = 0.947006, which is the average of the coordinates
of x. In addition, each coordinate follows its path towards the asymptotic value, cross-
ing each other, which does not happen for all the initial conditions. In Section 4.2, a
subset of R2N in which the initial conditions are monotone and there are no crossings
between them will be presented.
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Figure 3.8 – The Laplacian flow in the complete bipartite graph of dimension 6 K3,3

applied on a fixed initial condition x ∈R6. Each one of the six lines repre-
sents the projection of each one of the coordinates xi of x. It is observed
that all of them reach the same value asymptotically non monotonically,
and they cross each other.

Since there are crossings between the lines depicted in Figure 3.8, according to the
way of quantifying the synchronization exposed in Section 2.2, there will be connec-
tions and disconnections between the edges formed in each one of the subgraphs that
composes the sequence of ε-synchronized subnetworks. Then, given that the com-
plete bipartite graph KN ,N has N 2 edges, and the fact that there can be disconnects,
therefore, the length of the longest path in the transition graph of the Laplacian system
of MKN ,N will exceed N 2. In Figure 3.9, the results of the computational calculations
that were made for the case of L(MKN ,N ) are shown. On the one hand, the blue line
represents the maximum number of steps towards synchronization L(MKN ,N ). On the
other hand, the red line represents the number of edges that KN ,N has. As can be seen,
the maximum number of steps that an initial condition takes, exceeds the number of
edges of the graph in which it is located. Of course, in the monotonic case, which will
be shown in Section 4.2, due to the absence of crossings between the coordinates, the
length of the longest path will be less than that shown in this section.
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Figure 3.9 – Depth of L(MKN ,N ) transition diagram. The blue line represents the maxi-
mum number of steps towards synchronization in the Laplacian system
of the complete bipartite graph of dimension 2N . The red line represents
the number of edges that the complete bipartite graph of dimension 2N
has.

Now, computational simulations were carried out to see if there are subgraphs of
KN ,N that cannot be realized by some initial condition in R2N , obtaining the following
results shown in the Table 3.1. As can be seen, for small dimensions, all the subgraphs
of KN ,N are feasible, but once the dimension grows, subgraphs that are no longer
feasible appear. In the particular case of K3,3, the six unfeasible subgraphs correspond
to the hole of size 6 (and all possible permutations of their vertex labels), with which it
can be affirmed that not all the subgraphs of the complete bipartite graph are feasible.
The formal proof of this result will be done in Section 4.2.

Complete bipartite graph KN ,N

N 1 2 3
Unfeasible subgraphs 0 0 6

Table 3.1 – Number of unfeasible subgraphs of KN ,N .

Considering a set of random initial conditions in (0, N 2)2N ⊂R2N , the path towards
synchronization of these 106 initial conditions was calculated, all those that were
different from each other were counted. The result of this process is shown in Fig-
ure 3.10, from which it can be seen that the growth of the number of paths towards
synchronization, despite there being only a few vertices in the transition diagram,

56



3 Exploratory study – 3.1 Exploring the Laplacian system

seems to be greater than exponential.
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Figure 3.10 – Number of paths towards synchronization in L(MKN ,N ). The blue line
represents the number of paths towards synchronization in the Laplacian
system of the complete bipartite graph of dimension 2N .

To conclude this computational analysis, for the set of random initial conditions, the
path length distribution was calculated in each dimension 2N , in order to observe the
behavior of a typical path towards synchronization, to give an idea of what to expect
about the length of a path to synchronization associated with a random initial condi-
tion. In addition, it can also be seen how likely it is to find an initial condition with
maximum length, and similarly, an initial condition that reaches synchronization in
very few steps. In Figure 3.11, this behavior is shown for the dimensions N = 10,12,14
in blue, red and green lines respectively (normalized by the total number of initial
conditions evaluated). As can be seen, these distributions have a Gaussian shape,
whose average moves to the right as the dimension 2N grows. This behavior means
that it is not easy to find initial conditions that synchronize neither in a few nor in
many steps, rather the behavior oscillates in intermediate values.

As a conclusion of this section, due to the non-monotonicity of the Laplacian flow
applied to the complete bipartite graph of dimension 2N , there is a lower bound for
the maximum length of the paths to synchronization in its transition diagram, which
is the number of edges that KN ,N has, and computer simulations suggest that the
longest path triples it. Due to the diversity of subgraphs, it is not possible for all of
them to be feasible by initial conditions, which means that the number of states in
the transition diagram is less than the number of subgraphs of KN ,N , which begins
to be seen from dimension 6. Also, it was observed that the growth of the number of
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Figure 3.11 – Path length distribution of L(MKN ,N ). The blue line represents the nor-
malized path length distribution of Laplacian system of the complete
graph of dimension 10, the red line in dimension 12 and green line in
dimension 14, for a set of random initial conditions.

different paths that can be found in this transition diagram, grows by means of a rule
that seems greater than exponential. Finally, the path length distributions provide
an idea of what to expect from the behavior of a random initial condition, which
should be treated carefully when ε is varied, because by making this threshold smaller,
then the average of the typical length grows. Moreover, the observations made in this
section are the basis for the future formalization of the results presented in Section 4.2
with respect to the transient state behavior of the Laplacian system over the complete
bipartite graph of dimension 2N .

3.1.3 The Laplacian system of MCN

In this section the quantitative properties of the Laplacian system on the cycle graph
of dimension N are seen, which were calculated computationally. Specifically, the
behavior of this system is investigated when the dimension grows. These calcula-
tions were made for a set of 106 random initial conditions in (0, N 2)N as was said in
Section 2.3. To begin with, the trajectory under the Laplacian flow, starting with a
fixed initial condition, will be evaluated, that will be used throughout Section 3.1 in
order to observe the differences when the topology of the graph is changed. Then, a
comparison of the longest path to synchronization found from computational calcu-
lations and the number of subgraphs that CN has is presented. Next, a formula of the
number of feasible subgraphs of CN is presented. In addition, a case in dimension 6 in
which a subgraph does not belong to any path starting from the totally disconnected
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graph despite being feasible. Also, the transition diagram of the Laplacian system
applied to the cycle graph of dimension 6 is shown. Then, the behavior of the number
of different paths to synchronization that were found is presented. Finally, two path
lengths normalized distributions each separated by parity of path lengths, for a set
of random initial conditions are shown, with the purpose of observing the length of
typical paths.

Just as it was presented in the two previous sections, the behavior of the initial
condition

x = (2.64958,1.9171,1.86587,−0.861234,−0.41248,0.5232),

in the cycle graph C6 is shown in Figure 3.12. It can be seen that all of its coordinates
approaches monotonically (increasingly or decreasingly) to x̄ = 0.947006, which is
the average of the coordinates of x. Furthermore, in this case, it is observed that the
convergence time is longer than for when x is considered over the complete graph
and the complete bipartite graph (it can be seen that the convergence time is more
than double than in the other cases).
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Figure 3.12 – The Laplacian flow in the cycle graph of dimension 6 C6 applied on a
fixed initial condition x ∈ R6. Each one of the six lines represents the
projection of each one of the coordinates xi of x. It is observed that all of
them reach the same value asymptotically monotonically, and they cross
each other.

Besides, as in the case presented in Section 3.1.2, due to the crossings that occur
in the flow of the coordinates that we observe in Figure 3.12, it can be thought that
the maximum number of steps to reach the synchronization exceed the number of
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edges of the cycle graph of dimension N (which is N −1). Thereby, computational cal-
culations were performed to observe the behavior of the longest path in the Laplacian
system applied to MCN , as is shown in Figure 3.13. The blue line represents the maxi-
mum number of steps towards synchronization in the Laplacian system in the cycle
graph CN . The red line represents the number of edges that CN has. It is observed that
the maximum number of steps to reach the synchronization, approximately triples
the dimension in which it is found.
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Figure 3.13 – Depth of L(MCN ) transition diagram. The blue line represents the maxi-
mum number of steps towards synchronization in the Laplacian system
of the cycle graph of dimension N . The red line represents the number
of edges that the cycle graph of dimension N has.

On the side of the feasible subgraphs of the cycle graph of dimension N , according
to the simulations carried out, it was found that all of them are feasible. Here, the
number of possible states in the transition diagram of de Laplacian system applied to
MCN was exactly found. In Section 4.3.1 there is a way to construct an initial condition
for each subgraph of CN . Below is the formula with which the number of possible
states in the transition diagram of the Laplacian system applied to the cycle graph is
obtained.

Number of vertices of L(MCN ) transition diagram = 2N .

As an observation, the corresponding cases of C2 and C3, coincides with the com-
plete graphs K2 and K3 respectively. The behaviors that are strictly corresponding to
the cycle graph can be observed for dimensions larger than 4. That’s why, evaluating
initial conditions in a 4-dimensional hypercube of sides (0,23), the trajectory that an
initial condition takes, only a maximum of two turns remain in the directed cycles
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(that is, there are no periodic points in this dynamics).

Figure 3.14 – Subgraph of C6 that, despite being feasible due to an initial condition,
cannot be reached from the totally disconnected graph, due to the sym-
metries presented by the Laplacian spectrum applied to the cycle of
dimension 6.

Focusing on the behavior of the path step by step, that is, when at each step it is
only added one edge to a subgraph, in the specific case of dimension 6, the transition
diagram is shown in Figure 3.15. Vertex 1 represents the totally disconnected graph
with 6 vertices and vertex number 64 represents C6. When the initial conditions start
at vertex 1, it is possible that they oscillate at the first and second levels, but even-
tually they reach vertex 1 and follow a path to vertex 64. Specifically, the subgraphs
that do not pass from vertex 1 to some vertices in level 5 in the transition diagram of
M(LC6 ) are all the symmetries of Figure 3.14. This is because the behavior of the flow
coordinates inherits the symmetry of the cycle graph, so this configuration cannot be
reached from vertex 1.

Next, in the Figure 3.16, some computational calculations for random initial con-
ditions in (0, N 2)N ⊂RN of the number of different paths towards synchronization in
the Laplacian of the cycle graph are shown. It is observed that although the number of
possible states in the transition diagram of MCN is small, the number of paths they
generate grows considerably faster.

The path length distribution of the Laplacian system of the cycle graph was also
analyzed for a set of random initial conditions. It was noted that there was a different
behavior, depending on whether the dimension N considered is even or odd. Further-
more, it came to light that there is also a difference in paths having even or odd lengths.

On the one hand, in Figure 3.17, an example for the behavior of path length distri-
butions when the dimension is odd is depicted, particularly when N = 9. Represented
with a blue line, the behavior of paths with odd length is shown, and represented with
a red line, the behavior of paths with even length. It is observed that there is a not
so biased tendency of the paths to prefer even lengths, because the area associated
with this curve is notably larger than that associated with the blue curve. On the other
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Figure 3.15 – Transition diagram of L(MC6 ) with labels assigned by the number of the
subgraph that lexicographically corresponds to it, is shown. This is com-
posed of 64 vertices and 192 edges. At the top, the vertex 1 corresponds
to the totally disconnected graph of dimension 6, and at the bottom, the
vertex 64 corresponds to the cycle graph of dimension 6, C6.

hand, in Figure 3.18, an example of the behavior of these path length distributions is
presented when the dimension is even, in particular when N = 10. In the figure, the
blue line represents the behavior paths with odd length and the red line the paths with
even length. In this case, it is observed that it is more likely that the paths have odd
length, because the associated curve has a larger area.

To end, as a conclusion of this section, due to the non-monotonicity of differences
in the Laplacian flow applied to the cycle graph of dimension N , there is a lower bound
for the maximum length of the paths to synchronization in its transition diagram,
which is the number of edges that CN has, and computer simulations suggest that the
longest path triples it. On the other hand, due to the non-diversity of subgraphs, it
is possible for all of them to be feasible by initial conditions, which means that the
number of states in the transition diagram is equal to the number of subgraphs of
CN . Despite this, it is not possible to get from the fully disconnected graph to all other
subgraphs by a realizable path, and an example is presented. On the other hand, it
was observed that the growth of the number of different paths that can be found in
this transition diagram grows by means of a rule that seems greater than exponential.
Finally, the path length distributions provide an idea of what to expect from the behav-
ior of a random initial condition, which should be treated carefully when ε is varied,
because by making this threshold smaller, then the average of the typical length grows.
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Figure 3.16 – Number of paths towards synchronization in L(MCN ). The blue line
represents the number of paths towards synchronization in the Laplacian
system of the cycle graph of dimension N .
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Figure 3.17 – Path length distribution of L(MCN ), odd dimension. The blue line repre-
sents the normalized path odd length distribution of Laplacian system
of the cycle graph of dimension N = 9 and red line the normalized path
even length distribution in the same dimension, for a set of random
initial conditions.
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Figure 3.18 – Path length distribution of L(MCN ), even dimension. The blue line repre-
sents the normalized path odd length distribution of Laplacian system
of the cycle graph of dimension N = 10 and red line the normalized path
even length distribution in the same dimension, for a set of random
initial conditions.

In this case, it was found that there is a difference in the distributions depending on
the parity of the dimension and the parity of the length of the paths. The observations
made in this section are the basis for the future formalization of the results presented
in Section 4.3.1 with respect to the transient state behavior of the Laplacian system
over the cycle graph of dimension N .

3.1.4 The Laplacian system of MC (N ,k)

In this section the quantitative properties of the Laplacian system on the ring lattice
family C (N ,k) are seen, which were calculated computationally. Specifically, the be-
havior of this system is investigated when the dimension grows. These calculations
were made for a set of 106 random initial conditions in (0, N 2)N as was said in Sec-
tion 2.3. To begin with, the trajectory under the Laplacian flow, starting with a fixed
initial condition, will be evaluated, to observe the differences when the topology of the
graph is changed. An estimate of the number of unfeasible subgraphs when k = 2 is
then presented and a comparison with the subgraphs of C (N ,2). Then, a comparison
of the longest path to synchronization found from computational calculations when
k = 2 and k = 3 is presented. Finally, four path lengths normalized distributions,
separated by path lengths parity and dimensions parity when k = 2, and four path
lengths normalized distributions when k = 3 are shown, for a set of random initial
conditions, with the purpose of observing the length of typical paths.
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Now, the behavior of the initial condition

x = (2.64958,1.9171,1.86587,−0.861234,−0.41248,0.5232),

that has been analyzed throughout this chapter is observed in the ring lattice C (6,2).
In Figure 3.19, it can be seen that all of its coordinates approach monotonically (in-
creasingly or decreasingly) to x̄ = 0.947006, which is the average of the coordinates of
x. Furthermore, no crossings in the trajectories towards the asymptotic are observed.
It seems that the more connected the principal graph is, the fewer crossings are found
in the flow of coordinates and also, its convergence is faster.
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Figure 3.19 – The Laplacian flow in the ring lattice of dimension 6 C (6,2) applied on
a fixed initial condition x ∈R6. Each one of the six lines represents the
projection of each one of the coordinates xi of x. It is observed that all of
them reach the same value asymptotically monotonically, and they do
not cross each other.

This case is interesting because it said how the family of ring lattices behaves and
what happens when the connectivity between the vertices increases, that is, how is
the transition from being in a graph with a very low density of edges (as is CN ) to be in
a graph with the maximum edge density (that is, KN ).

Below is an estimate of the number of unfeasible subgraphs of the ring lattice when
k = 2, based on the presence of fork graphs. Note that for each vertex of the ring lattice
C (N ,2), there are 4 different ways to make forks. Enlisting the edges of the outer cycle
of the ring from 1 to N , clockwise, and the inner ones of N+1 to 2N , clockwise forming
the triangle 1 → 2 → N +1, for N > 6, the 4 forks that are formed in each vertex are:
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i , i +N , Mod [i −1, N ,1], Mod [i +1, N ,1], Mod [i −1, N ,1]+N

i , Mod [i+N−2, N ,1]+N , Mod [i−1, N ,1], Mod [i+N−2, N ,1], Mod [i−1, N ,1]+N

i , i +N , Mod [i +N −2, N ,1]+N , Mod [i +1, N ,1]

i +N , Mod [i +N −2, N ,1]+N , Mod [i −1, N ,1], Mod [i +N −2, N ,1]

for 1 ≤ i ≤ N . Where on the left side, the edges that make up the fork are written, and
on the right side, the edges that should not appear in the subgraph are written. The
Mod [m,n,d ] gives the remainder on division of m by n uses an offset d . As already
stated, when a subgraph does not contain a fork (or a hole), then it is feasible by an
initial condition, then, calculating this number allows to give an upper bound on
the number of unfeasible graphs. In Figure 3.20, a representation of the number of
unfeasible subgraphs of C (N ,2) is presented with a blue line, which was estimated
using fork containment, and in a red line, the total number of subgraphs of C (N ,2),
the difference between these two lines would be the total of feasible subgraphs.
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Figure 3.20 – Number of unfeasible subgraphs by initial conditions in C (N ,2) and
number of subgraphs of C (N ,2). The blue line represents the number of
unfeasibles subgraphs of C (N ,2) and the red line represents the number
of subgraphs of C (N ,2), the difference between them is the number of
feasible subgraphs.
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Regarding the length of the longest path found in the ring lattice family C (N ,k),
computational calculations were made for k = 2 and k = 3, which are presented in
Figure 3.21. The blue line represents the maximum number of steps towards synchro-
nization when k = 2, and the red line when k = 3. Since C (N ,3) has more edges than
C (N ,2), then it is natural to think that its paths towards synchronization will be longer.
But, when N = 7, it can be observed which is less. Note that C (7,3) = K7, then, its
longest path is exactly 21, and C (7,2) is a sufficiently disconnected graph that there are
internal cycles in its transition diagram. Then, at that N = 7 a difference is observed.
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Figure 3.21 – Depth of L(MC (N ,k)) transition diagram. The blue line represents the
maximum number of steps towards synchronization in the transition
diagram over the Laplacian system of the ring lattice C (N ,2) and the red
line represents the maximum number of steps towards synchronization
in the transition diagram over the Laplacian system of the ring lattice
C (N ,3).

Then, the path length distribution of the transition diagram over the Laplacian sys-
tem of the ring lattice C (N ,2) and C (N ,3) were also analyzed for a set of random initial
conditions. It was noted that there was a different behavior, depending on whether the
dimension N considered is even or odd. For the first case, for the dimensions N that
were analyzed, as the behavior in CN , there is a difference when the paths have even
and odd lengths. In the second case, for the analyzed dimensions N , no difference
that depends on the path length parity is seen. This behavior is associated with the
fact that the density of edges in C (N ,3) (for the analyzed dimensions), is large enough
to resemble the behavior of KN or KN ,N . Contrary to C (N ,2), whose behavior (for the
analyzed dimensions), is more similar to CN .
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On the one hand, in Figure 3.22, two examples for the behavior of path length distri-
butions when the dimension is odd are depicted. Particularly when N = 9, they are
represented with blue lines. When N = 11, they represented with red lines. In both
cases, one line represents the paths that have an even length, and the other the paths
that have an odd length. In addition, the curves with the most area in each case are
those associated with odd lengths of the paths.
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Figure 3.22 – Path length distribution of L(MC (N ,2)), odd dimensions. The blue line
represents the normalized path odd and even length distribution of
Laplacian system of the ring lattice C (9,2) and red line is for C (11,2), for
a set of random initial conditions.

On the other hand, in Figure 3.23, two examples of the behavior of path length
distributions when the dimension is even are depicted. When N = 10, they are rep-
resented with blue lines. When N = 12, they are represented with red lines. In both
cases, one line represents the paths that have an even length and the other the paths
that have an odd length. In addition, the curves with the most area in each case are
those associated with even lengths of the paths.

In contrast, the distributions presented for odd dimensions in Figure 3.22 are more
symmetric than those presented for even dimensions in Figure 3.23, which has a bias
to the left. That is why they were presented in different figures.

Now, for the case of the ring lattice C (N ,3), its path length distributions were ob-
tained for a set of random initial conditions, with the aim of give an idea of the behavior
of the conditions initials when they are evaluated in the Laplacian system on this type
of graph. Specifically, they are shown in Figure 3.24 for N = 8,9,10,11. The blue line
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Figure 3.23 – Path length distribution of L(MC (N ,2)), even dimensions. The blue line
represents the normalized path odd and even length distribution of
Laplacian system of the ring lattice C (10,2), and red line is for C (12,2),
for a set of random initial conditions.

represents the normalized path length distribution of Laplacian system of the ring
lattice C (8,3), red line is for C (9,3), green line is for C (10,3) and yellow line is for
C (11,3). In the four cases, no change in the distributions is observed depending on
the parity of the length of the paths, that is why for each distribution, only a single
line is assigned. For the dimensions analyzed in this case, the density of the edges for
each of the four ring lattices is very high, then, a radically different behavior is not
observed depending on the dimension parity, then they are shown in the same figure.
This behavior is more similar to that of the complete graph KN , or that of the bipartite
complete graph KN ,N .

Then, to conclude, the computational calculations that were made to study the
behavior of the family of ring lattices C (N ,k), allows to relate and understand the
behavior of the different types of graphs studied in this thesis, which range from the
complete graph KN that has all its vertices connected (so the edge density is 1), to the
behavior of the cycle graph CN (whose edge density is small 2

N−1 for N ≥ 3), when the
dimension N grows. This is because KN =C (N ,bN /2c), when N is odd and when N is
even it is only necessary to remove the duplicate edge. Besides, the other extreme case,
is when k = 1, that means CN = C (N ,1). The observations made from the analyzes
presented in this section suggest that when the density of edges is small, the behavior
will be like that of the cycle graph CN , and when the density is large, it will resemble
the complete graph KN . The formal results of these observations will be presented as
perspectives of this thesis.
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Figure 3.24 – Path length distribution of L(MC (N ,3)). The blue line represents the nor-
malized path length distribution of Laplacian system of the ring lattice
C (8,3), red line is for C (9,3), green line is for C (10,3) and yellow line is
for C (11,3), for a set of random initial conditions.

3.1.5 Discussion
In this section, an exploratory study of the transitory state of the Laplacian system

was carried out, applied to the complete graph, the bipartite complete graph, the cycle
graph, and the ring lattice family, to open the panorama and understand the behavior
of the system before reaching the synchronization. The behavior of a randomly gener-
ated and fixed initial condition in the four types of graphs was studied. The number of
vertices contained in each of the transition diagrams was estimated. The length of the
longest path in each diagram was calculated. In addition, the number of realizable
paths towards synchronization was calculated, and the section is concluded with the
presentation of the normalized distributions of path lengths for each case.

Analyzing the same initial condition in the four types of graphs, allow to see the
differences between the dynamics when the Laplacian flow is applied. It is recalled
that the cases analyzed were in dimension six. It was observed in the complete graph,
in the cycle graph and in the ring lattice that the way to approach the asymptotic value
is monotonically, either with increasing or decreasing values. On the other hand, in
the case of the complete bipartite graph one of coordinates do not have monotonic
behavior. Also, the differences between the coordinates are monotonically reduced
in the case of the complete graph and the ring lattice, in contrast to the cases of the
complete bipartite graph and the cycle graph. In addition, the times in which syn-
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chronization is reached for the complete graph, the complete bipartite graph and the
ring lattice are very similar, and always smaller than 8-time units. In the case of the
cycle graph, the convergence time appears to be t > 20, which may be due to poor
connectivity of the graph.

The number of realizable states for each of the four different types of transition
diagrams was analyzed, this refers to the number of subgraphs of the complete graph,
the complete bipartite graph, the cycle graph, and the ring lattice family that are
feasible for some initial condition. Only for the case of the cycle graph, each of its
subgraphs are feasibles, then, from computational calculations, it was possible to give
an exact formula for the number of states in their respective transition diagram. For
the other three cases, the types of unfeasible subgraphs were found, and an estimate
was made of how many subgraphs there are of each of them.

Regarding the length of the longest path found in the transition diagram of the
Laplacian system applied to the four different types of graphs, the following results
were obtained. In the case of the complete graph, due to the monotony it presents,
the longest length found corresponds to the number of edges that KN has, and the
same thing happens in small dimensions of the families of ring lattices when k = 2 and
k = 3, because there is a coincidence between the two type of graphs, but when the
dimension increases, then the presence of directed cycles in the transition diagrams is
observed, therefore, its depth increases, until it triples the number of edges they have.
This behavior is observed in the cycle graph, in the complete bipartite graph and in
the families of ring lattices when k = 2 and k = 3 when the dimension is relatively large,
then, the edge density decreases and is comparable to the density of the cycle graph.

About the number of different paths towards synchronization in the four different
types of transition diagrams, it was observed that although the number of realizable
states is much less than the number of possible states (referring to the number of
subgraphs that the complete graph, the complete bipartite graph and the ring lattice
family has), the number of paths towards synchronization in all cases seems to grow
at least exponentially. Therefore, it can be concluded that with little information, the
number of possibilities to build new information is large enough, then, that it can
be exploited in the future, making use of applications, for example, in information
storage and classification.

To end this discussion section, the behavior of a set of 106 random initial conditions
in (0, N 2)N was analyzed, and whose sequence of ε-synchronized subnetworks was
calculated, the length of each of them was measured and the normalized distribution
of the length of these paths was constructed. For cases with a high density of edges,
such as the complete graph, the complete bipartite graph, and the ring lattice when
k = 3 (for the dimensions analyzed), unimodal distributions like the Gaussian distri-
bution were observed, which the average increases when the dimension increases.
In the case where the density of edges is small, as in the cases of the cycle graph and
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the ring lattice when k = 2, then a case-by-case behavior is observed, which separates
the parity of the dimension and the parity of the path’s length, these distributions
are also unimodal, and appear to be slightly skewed to the left. Knowing how these
distributions behave for a set of random initial conditions, gives an idea of what to
expect about the length of a path to synchronization for a random initial condition.
In all cases, it is observed that there is very little possibility of choosing randomly an
initial condition that has a path that reaches synchronization in a few or many steps,
rather the behavior would be intermediate. In addition, this behavior depends on the
threshold ε that is chosen to make the computational calculations, when the threshold
is lower, the average length of the paths will increase.

3.2 Exploring the Kuramoto model
This section shows the exploratory studies that were carried out from computational

simulations for a set of 106 random initial conditions on (0,2π)N in the Kuramoto
model the complete graph, the complete bipartite graph, the cycle graph and the
family of ring lattices, as was said in Section 2.3, with the aim of finding the patterns
that meet the initial conditions on their way to finding the synchronization. In the four
types of subgraphs that are analyzed, the same initial condition is evaluated to observe
the different behavior it has when the topology of the graph changes. In addition, for
each of them, the number of feasible subgraphs, the length of the longest path, the
number of paths and the distribution of path lengths are explored, for a set of random
initial conditions. These analyzes and exploratory studies are very important for the
elaboration of theorems and propositions that fulfill the different systems exposed in
this thesis in Section 4.3.2.

3.2.1 The Kuramoto model of MKN

To begin, the most important observations, made through computational simu-
lations, regarding the behavior of the Kuramoto model on the complete graph of
dimension N , K (MKN ), will be presented. Specifically, the behavior of this system is
investigated when the dimension grows. These calculations were made for a set of 106

random initial conditions in (0,2π)N as was said in Section 2.3. The trajectory under
the Kuramoto flow, starting with a fixed initial condition, will be evaluated, this will be
used throughout Section 3.2 in order to observe the differences when the topology of
the graph is changed. Then, a summary with the probability that when generating a
random initial condition is shown, evaluating it with the Kuramoto model, its behavior
is not monotonous. Below a comment about the number of unfeasible subgraphs of
KN is presented. Then, a computational calculation about the length of the longest
path found in the transition diagram of the Kuramoto model applied to the complete
graph KN is shown. Moreover, a calculation of the number of distinct paths found in
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the transition diagram discussed in this section is shown. Finally, three path lengths
normalized distributions for a set of random initial conditions are shown, with the
purpose of observing the length of typical paths in the Kuramoto model applied to the
complete graph KN .

Starting from the order defined in the previous paragraph, Figure 3.25 shows the flow
of this model in a concrete example, applied to a fixed initial condition in dimension
6:

x = (3.69253,1.95285,2.48317,0.984696,3.39029,4.82533).

It meets that x ∈ (0,2π)6, and each of its coordinates approaches monotonically
(increasingly or decreasingly) to x̄ = 2.88815, which is the average of the coordinates
of x. Moreover, each of the coordinates follows its path towards the asymptotic value,
without crossing each other. In this case, the differences between the coordinates do
not decrease monotonically. This is the first and most important difference between
the Laplacian system and the Kuramoto model in this type of graph.
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Figure 3.25 – The Kuramoto flow in the complete graph of dimension 6, K6, applied on
a fixed initial condition x ∈ (0,2π)6. Each one of the six lines represents
the projection of each one of the coordinates xi of x. It is observed
that all of them reach the same value asymptotically and that they do
so monotonically, without crossings between them, but the differences
between the coordinates do not decrease monotonically.

Simulations to see if the differences between the coordinates are monotonic in dif-
ferent dimensions were performed. That means, to find the probability that an initial
condition, when applying the Kuramoto flow, its components are monotone. A total
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of 10000 random ordered initial conditions in (0,2π) showed the behavior described
by Table 3.2. It can be seen that as the dimension increases, the probability of finding
an initial condition in which its differences remain monotonic tends to zero.

N % not monotonous
2 0
3 2.53
4 12.57
5 31.28
6 47.30
7 61.34
8 72.81
9 81.70

Table 3.2 – Percentage of non-monotonic initial conditions. For different dimensions
N = 2,3, ...,9, the percentage of initial conditions over the Kuramoto flow,
such that the behavior of the differences between the coordinates are not
monotonous, was evaluated.

Simulations to see the behavior of the differences of the coordinates when we limit
the interval of the initial conditions were made. In dimension 15, it was observed
that for (−π/8,π/8), (−π/6,π/6) and (−3π/8,3π/8), 0% of the initial conditions are
non-monotonic, that is, all the differences are monotonic. This means that when
an interval close to the diagonal is considered, it has the same behavior as for the
Laplacian system.

It is important to point out that, the possible states in the Kuramoto flow transition
diagram applied to the complete graph are the same as for the Laplacian flow over the
complete graph, since an initial condition can have a given configuration is a matter
of the graph that it is found, and not of the system that is applied.

Regarding the length of the longest path found for the Kuramoto flow over the com-
plete graph, Figure 3.26 shows the result of the computational calculations that were
carried out for a set of random initial conditions on (0,2π)N . In this case, contrary
to what happens when the Laplacian system is applied, the size of ε is important,
because, since the way in which the differences of the coordinates decrease is not
monotonic, then, for certain values of ε connections and disconnections between
edges could be detected. In the case shown in Figure 3.26, ε was taken small enough
to not detect the non-monotony of the differences. Then, the longest path length in
the transition diagram coincides with the number of edges of KN .

The number of different paths to synchronization was calculated in the Kuramoto
model applied to the complete graph KN , for the set of random initial conditions, and
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Figure 3.26 – Depth of K (MKN ) transition diagram. The blue line represents the maxi-
mum number of steps towards synchronization in the Kuramoto model
of the complete graph of dimension N .

is presented in Figure 3.27. As well as for the case in which the Laplacian system was
applied, the number of paths generated grows at least exponential.
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Figure 3.27 – Number of paths towards synchronization in K (MKN ). The blue line rep-
resents the number of paths towards synchronization in the Kuramoto
model of the complete graph of dimension N .
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For a set of random initial conditions in (0,2π)N , specifically in the dimensions
N = 8,9,10, the number of steps they must take to reach full synchronization was
counted. In Figure 3.28 the normalized numerical results by the number of initial
conditions evaluated (106) are shown. In which a blue line is presented to represent
the behavior when N = 8, in red color when N = 9 and in green color when N = 10,
which are unimodal and symmetric. Unlike when the initial conditions were applied
to the Laplacian system, these functions have a larger variance.
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Figure 3.28 – Path length distribution of K (MKN ). The blue line represents the normal-
ized path length distribution of Kuramoto model of the complete graph
of dimension N = 8, the red line in dimension N = 9 and green line in
dimension N = 10, for a set of random initial conditions.

As a conclusion of this section, due to the monotonicity of the Kuramoto flow ap-
plied to the complete graph of dimension N , considering a very small ε threshold,
first, there is an upper bound for the maximum length of the paths to synchronization
in its transition diagram. In addition, as in the case of the Laplacian system, the
number of feasible subgraphs is the same, since it is not a property that depends on
the system that is applied, but on the topology of the graph. On the other hand, the
number of different paths to synchronization generated by Kurimoto’s model in the
complete graph seems to be growing at least exponentially. Finally, the path length
distributions provide an idea of what to expect from the behavior of a random initial
condition, which should be treated carefully when ε is varied, because by making
this threshold smaller, then the average of the typical length grows. The observations
made in this section are the basis for the future formalization of the results presented
in Section 4.3.2, with respect to the transient state behavior of the Kuramoto model
over the complete graph of dimension N .
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3.2.2 The Kuramoto model of MKN ,N

Now, the most important observations, made through computational simulations,
regarding the behavior of the Kuramoto model on the complete bipartite graph of
dimension 2N , K (MKN ,N ), will be presented. Specifically, the behavior of this system is
investigated when the dimension grows. These calculations were made for a set of 106

random initial conditions in (0,2π)N as was said in Section 2.3. The trajectory under
the Kuramoto flow, starting with a fixed initial condition, will be evaluated, this will be
used throughout Section 3.2 in order to observe the differences when the topology
of the graph is changed. Then, a comparison of the longest path to synchronization
found from computational calculations and the number of subgraphs that KN ,N has
is presented. Next, a comment about the number of unfeasible subgraphs of KN ,N is
presented. Then, the behavior of the number of different paths to synchronization
that were found is presented. Finally, three path lengths normalized distributions are
shown for a set of random initial conditions, with the purpose of observing the length
of typical paths in the case presented in this section.

As mentioned in the previous paragraph, the same initial condition that was studied
in Section 3.2.1 is evaluated, to observe its behavior when the interactions are given
by the complete bipartite graph K3,3, which is,

x = (3.69253,1.95285,2.48317,0.984696,3.39029,4.82533).

It can be seen that not all of its coordinates approach non monotonically (increas-
ingly or decreasingly) to x̄ = 2.88815, which is the average of the coordinates of x.
In addition, each of the coordinates follows its path towards the asymptotic value,
without crossing each other, but the differences between the coordinate values do not
decrease monotonically.

Due to the non-monotonic behavior of the differences of the coordinates towards
the asymptotic value, in this case, there are also crossings between them, then, the
maximum length of a path towards synchronization exceeds the number of edges
of the complete bipartite graph KN ,N which is N 2. In Figure 3.30, the results of the
computational calculations for the case of K (MKN ,N ) are shown. On the one hand,
the blue line represents the maximum number of steps towards synchronization in
the Kuramoto model of the complete bipartite graph of dimension 2N . On the other
hand, the red line represents the number of edges that the complete bipartite graph
of dimension 2N has. As can be seen, the maximum number of steps exceeds the
number of edges of the graph in which it is located. Recall that this behavior also
appears in the case of the Laplacian system applied to the same graph.

Regarding the number of unfeasible subgraphs in KN ,N over the Kuramoto model,
as mentioned for the complete graph KN case, they are the same as for the Laplacian
system, because it is not a characteristic associated to the system that is applied, but
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Figure 3.29 – The Kuramoto flow in the complete bipartite graph of dimension 6 K3,3

applied on a fixed initial condition x ∈R6. Each one of the six lines repre-
sents the projection of each one of the coordinates xi of x. It is observed
that all of them reach the same value asymptotically non monotonically.
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Figure 3.30 – Depth of K (MKN ,N ) transition diagram. The blue line represents the
maximum number of steps towards synchronization in the Kuramoto
model of the complete bipartite graph of dimension 2N . The red line
represents the number of edges that the complete bipartite graph of
dimension 2N has.

to the topology of the graph.
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Considering a set of random initial conditions in (0,2π)2N ⊂R2N . The path towards
synchronization of these 106 initial conditions was calculated, then all those that
were different from each other were counted. The result of this process is shown in
Figure 3.31. The growth of the number of paths towards synchronization, despite
there being only a few vertices in the transition diagram, seems to follow a rule, at
least of exponential growth.
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Figure 3.31 – Number of paths towards synchronization in K (MKN ,N ). The blue line
represents the number of paths towards synchronization in the Ku-
ramoto model of the complete bipartite graph of dimension 2N .

To finish the computational analysis, for the set of random initial conditions, the
path length distribution in each dimension 2N was calculated, to observe the behavior
of a typical path towards synchronization. To give an idea of what to expect about
the length of a path to synchronization associated with a random initial condition. In
addition, it can also be seen how likely it is to find an initial condition with maximum
length, and similarly, an initial condition that reaches synchronization in very few
steps. In Figure 3.32, this behavior for the dimensions N = 10,12,14 is shown, in blue,
red and green lines respectively (normalized by the total number of initial conditions
evaluated) in the Kuramoto model. As can be seen, these distributions seem to follow a
Gaussian behavior, and are not as smooth as those found for the case of the Laplacian
system applied to the same graph. In addition, the paths found are considerably
longer.

As a conclusion of this section, due to the non-monotonicity of the differences
of the coordinates in the Kuramoto flow applied to the complete bipartite graph of
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Figure 3.32 – Path length distribution of K (MKN ,N ). The blue line represents the nor-
malized path length distribution of Kuramoto model of the complete
graph of dimension 10, the red line in dimension 12 and green line in
dimension 14, for a set of random initial conditions.

dimension 2N , there is a lower bound for the maximum length of the paths to syn-
chronization in its transition diagram, which is the number of edges that KN ,N has,
and computer simulations suggest that the longest path triples it. As in the case of the
complete graph, the number of states in the complete bipartite graph is the same as
in the case of the Laplacian flow, since it is a property that depends on the topology
of the graph and not on the system that is applied to it. On the other hand, it was
observed that the growth of the number of different paths that can be found in this
transition diagram grows by means of a rule that seems at least exponential. Finally,
the path length distributions provide an idea of what to expect from the behavior of a
random initial condition, which should be treated carefully when ε is varied, because
by making this threshold smaller, then the average of the typical length grows.

3.2.3 The Kuramoto model of MCN and MC (N ,k)

In this section the quantitative properties of the Kuramoto model on the cycle graph
of dimension N and the ring lattice family C (N ,k) are seen, which were calculated
computationally. Specifically, the behavior of this model when the dimension grows
is investigated. The trajectory under the Kuramoto flow, starting with a fixed initial
condition, will be evaluated, this will be used throughout Section 3.2, to observe the
differences when the topology of the graph is changed. The objective of this section
is to observe the transient behavior of the Kuramoto model in the space RN , before
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reaching synchronization, that is, all its coordinates have the same value after a certain
period. Sections 3.1 and 3.2 have focused on the behavior when the dimension of
spaces N increases, and the problem presented in these cases is exposed.

Just as it was presented in the two previous sections, the behavior of the initial
condition

x = (3.69253,1.95285,2.48317,0.984696,3.39029,4.82533),

in the cycle graph C6 is presented. In Figure 3.33 it can be seen that all of its coordi-
nates approaches monotonically (increasingly or decreasingly) to x̄ = 0.947006, which
is the average of the coordinates of x. Furthermore, in this case, it is observed that the
convergence time is longer than for when this initial condition is considered over the
complete graph and the complete bipartite graph (the convergence time is more than
double than in the other cases). In addition, this behavior occurs when the Laplacian
system is considered.
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Figure 3.33 – The Kuramoto flow in the cycle graph of dimension 6, C6, applied on
a fixed initial condition x ∈R6. Each one of the six lines represents the
projection of each one of the coordinates xi of x. It is observed that all of
them reach the same value asymptotically monotonically, and they cross
each other.

Once again, as was said for the case of the Laplacian system applied to these graphs,
CN and C (N ,k), the same subgraphs are feasible in the case of the Kuramoto model.

In Figure 3.34, a comparison of the proportion of initial conditions that synchronize
in the Kuramoto system in the cycle graph CN , and in three types of ring lattices
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(C (N ,2), C (N ,3) and C (N ,4)), which depends on the dimension are shown. They are
represented with a blue, red, green, and yellow line respectively. As can be seen, as
the dimension increases, the probability of finding synchronizing initial conditions
decreases, therefore, it is not possible to provide an analysis like that of the other cases
presented, in which what is of interest is to know the behavior of the transient state
when the dimension N increases.
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Figure 3.34 – Proportion of initial conditions that synchronize in the Kuramoto model
in the rind lattice family C (N ,k) for k = 1,2,3 and 4.

To end, as a conclusion of this section, regarding the number of possible states in
the transition diagrams associated with these graphs, it is observed that they are the
same quantity as in the Laplacian system, because it is a property that depends on
the topology of the graph and not on the system that is applied. On the other hand,
it is not possible to give an analysis of the behavior of the transition diagram when
N grows, because the probability of finding synchronizing initial conditions tends to
zero from very small dimensions. Despite this, the asymptotic state reached by the
initial conditions corresponds to phase locking, that is, to a state where the angles
of each of the initial conditions are equally distributed in the interval (0,2π). The
analysis of this state will remain as a perspective of the thesis.

3.2.4 Discussion
In this section, an exploratory study of the transitory state of the Kuramoto model

was carried out, applied to the complete graph, the bipartite complete graph, the cycle
graph, and the ring lattice family, to open the panorama and understand the behavior
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of the model before reaching the synchronization. The behavior of a randomly gener-
ated and fixed initial condition in the four types of graphs was studied. The number of
vertices contained in each of the transition diagrams was estimated. The length of the
longest path in each diagram was calculated. In addition, the number of realizable
paths towards synchronization was calculated and concluded with the presentation
of the normalized distributions of path lengths for each case.

Analyzing the same initial condition in the four types of possible graphs allow to see
the differences between the dynamics when the Kuramoto flow is applied. It is recalled
that the cases analyzed were in dimension six. It was observed in the complete graph
that the way to approach the asymptotic value is monotonically, either with increas-
ing or decreasing values. On the other hand, in the case of the complete bipartite
graph and the cycle graph some coordinates do not have monotonic behavior. Also,
the differences between the coordinates are monotonically reduced in no case. In
addition, the times in which synchronization is reached for the complete graph and
the complete bipartite graph are very similar, and always smaller than 8-time units. In
the case of the cycle graph, the convergence time appears to be t > 20, which may be
due to poor connectivity of the graph.

The number of realizable states was analyzed for each of the four different types of
transition diagrams studied. This refers to the number of subgraphs of the complete
graph, the complete bipartite graph, the cycle graph, and the ring lattice family that
are feasible for some initial condition. Only for the case of the cycle graph, each of its
subgraphs are feasible, from computational calculations, it was possible to give an
exact formula for the number of states in their respective transition diagram. For the
other three cases, the types of unfeasible subgraphs were found, and an estimate of
how many subgraphs there are of each of them was made.

Regarding the length of the longest path found in the transition diagram of the
Kuramoto model applied to the complete graph and the complete bipartite graph,
the following results were obtained. In the case of the complete graph, due to the
monotony it presents when ε is small enough, the longest length found corresponds
to the number of edges that KN has. When the presence of directed cycles in the tran-
sition diagrams is observed, therefore, its depth increases, until it triples the number
of edges they have, that is the case of the complete bipartite graph.

Regarding the number of different paths to synchronization that are observed in the
complete graph and the complete bipartite graph transition diagrams, it was observed
that although the number of realizable states is much less than the number of possible
states (referring to the number of subgraphs that the complete graph and the com-
plete bipartite graph has), the number of paths towards synchronization in all cases
seems to grow at least exponentially. Therefore, it can be concluded that with little
information, the number of possibilities to build new information is large enough
so that it can be exploited in the future, making use of applications, for example, in
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information storage and classification.

To end this discussion section of the behavior of the transition diagrams associated
with the Kuramoto model in the complete graph and the complete bipartite graph,
computational calculations for a set of 106 random initial conditions in (0,2π)N , whose
sequence of ε-synchronized subnetworks was calculated. The length of each of them
was measured and the normalized distribution of the length of these paths was con-
structed. For case of the complete graph, unimodal distribution like the Gaussian
distribution was observed, which the average increases when the dimension increases.
In the case of the complete bipartite graph a case-by-case behavior is observed, which
separates the parity of the path’s length, these distributions are also unimodal, and
appear to be slightly skewed to the left. Knowing how these distributions behave for a
set of random initial conditions, gives an idea of what to expect about the length of a
path to synchronization for a random initial condition. In all cases, it is observed that
there is very little possibility of choosing randomly an initial condition that has a path
that reaches synchronization in a few or many steps, rather the behavior would be
intermediate. In addition, this behavior depends on the threshold ε that is chosen to
make the computational calculations, when the threshold is lower, the average length
of the paths will increase.
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4.1 The transition diagram of L(MKN )

In this section it is formally and rigorously analyzed the behavior of the transition
diagram of the Laplacian system applied to the complete graph of dimension N . This
study is organized as follows: to begin with, the coding used to describe the states, and
the paths towards synchronization are presented, which respects all the dynamics of
the system. Then, the unfeasible subgraphs that the complete graph has been shown,
which imply the states that cannot have the initial conditions in the transition diagram.
Finally, the way to generate the paths to synchronization in the Laplacian flow over
the complete graph, an estimation of the diversity of paths and their distribution are
exposed.

4.1.1 Coding
The coding of the subgraphs of the complete graph and the dynamics that follow

on their path to synchronization was carried out taking advantage of the fact that the
differences of the flow of the coordinates monotonically tend to zero. The following
shows how this process occurs. Due to the Laplacian matrix for KN , as it is shown in
Equation (2.2) is symmetrical, it can be diagonalized, and the basis {u1,u2, . . . ,uN } can
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be chosen, where u1 :=∑N
n=1 e

n and, for each n ≥ 1, un := en −e1. Let’s remind that en

denotes the n-th vector of the canonical basis of RN .

In this section, L will denote the Laplacian system over the adjacency matrix of the
complete graph L(MKN ). Writing some simple calculations, first:

Lu1 = L

(
N∑

n=1
en

)
,

=
N∑

n=1
Len ,

= 0.

and for each n ≥ 2:

Lun = L
(
en −e1) ,

= Len −Le1,

= −N
(
en −e1) ,

= −Nun .

Now an arbitrary initial condition x ∈RN is considered and it can be decomposed
as:

x = x̄ u1 +
N−1∑
n=1

(xn+1 − x̄)un ,

where x̄ := (∑N
n=1 xn(0)

)
/N . Therefore, its Laplacian flow can be written as:

x(t ) = x̄ u1 +e−N t
N−1∑
n=1

(xn+1 − x̄)un ,

=
N∑

n=1

(
x̄

(
1−e−N t )+e−N t xn

)
en ,

for all t ∈R.

From this, it follows that the behavior of the differences between each of its coordi-
nates is as in the following expression:
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xn(t )−xm(t ) = e−N t (xn −xm), (4.1)

for all t ∈R and each 1 ≤ m,n ≤ N . In other words, the behavior of coordinate differ-
ences is monotone. Hence, the edge {n,m} belongs to the ε-synchronized subnetwork
Gx(t ), for all times exceeding:

tn,m = log |xn −xm |− log(ε)

N
.

In other words, once an edge appears on a path in the transition diagram, it never
disappears.

As explained in Section 3.1.1, when considering the paths generated in the transition
diagram of the complete graph, due to the symmetries that KN has, there are paths
that turn out to be redundant and that can be described more simply by considering
some symmetry. Then without loss of generality, I will focus on considering ordered
initial conditions, that is, I will assume that x1(0) ≤ x2(0) ≤ ·· · ≤ xN (0) which, by Equa-
tion (4.1), ensures that x1(t ) ≤ x2(t ) ≤ ·· · ≤ xN (t ) for all t .

Now, it will be defined the transition diagram not over the ε-synchronized subnet-
works but over another combinatorial object that encodes both the ε-synchronized
subnetworks, and at the same time, it recognizes the order of the coordinates. By
employing this methodology, the depiction of transition diagrams becomes more
convenient. The coding scheme employed here enables the straightforward identifica-
tion of the sequential emergence of new edges in the synchronized sequence. This
coding approach is not only advantageous but also essential for preserving the order
of coordinates while constructing new edges.

The ε-synchronized subnetwork Gx , determined by the ordered configuration x1 ≤
x2 ≤ ·· · ≤ xN is coded by the increasing function φx : {1,2, . . . , N } → {1,2, . . . , N } given
by:

φx(m) = max{n ≥ m : xn ≤ xm +ε}. (4.2)

The function φx is clearly increasing and such that φx(n) ≥ n for each 1 ≤ n ≤ N , in
other words, this function goes above the diagonal φx ≥ Id. Here and below Id de-
notes the identity function in {1,2, . . . , N }. Now, an example of the construction of the
increasing function from a given initial condition is presented in Figure 4.1. In the first
line (a), an example of the values of x = (x1, x2, x3, x4) are illustrated with black dots
on a fixed axis. To construct the corresponding subgraph Gx based on Equation (2.28),
we can observe that x1 and x2 lie within one ε-neighborhood (depicted as a rectangle
with side length ε), while x3 and x4 are within another neighborhood. This implies
that in scenario (b), there are links connecting vertices 1 and 2, as well as vertices
3 and 4. In the final line (c), the increasing function φx associated with x is shown.
The information conveyed by φx can be interpreted as follows: the furthest vertex
connected to vertex 1 is vertex 2, vertex 2 does not have a connection to vertex 3, and
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vertex 3 is connected to vertex 4, which is the last one.

ε ε

x4x3x2x1

↓ ↓ ↓
Link No link Link

4321

φx=(2,2,4,4)

(a)

(b)

(c)

Figure 4.1 – Construction of an increasing function from a given network. In (a), a
graphic representation of the values of the four coordinates of an initial
condition is shown, in boxes, the pairs of coordinates that are ε-neighbors
are shown, which implies that a link will be added to build the subgraph
between the vertices that represent each coordinate. With this idea in (b),
the graph that connects vertex 1 with vertex 2 and vertex 3 with vertex
4 is shown. Finally, in (c), the increasing function φx is shown, which is
associated with the initial condition x = (x1, x2, x3, x4) that appears in (a).
In this case, the first component is written the vertex number with the
largest label that is connected to vertex 1, and so on. The vertices 2 and
4 meet this condition with themselves, and vertices 1 and 3 meet it with
their consecutive.

It should also be noted that if for certain t > 0: x j (t )−xi (t ) < ε, then: x j (t )−xk (t ) <
ε,∀ 0 < i < k < j ≤ N . In the following Figure 4.2, an example of the behavior of the
closeness of the vertices under the previous proposition is shown. Since vertex 2 and
vertex 5 are connected, it implies that |x5−x2| < ε, since there are considering ordered
initial conditions, then all interior differences will be less than ε as well, which for this
example, having the longest edge implies having 5 more edges. To avoid tiring the
eyes, will be restricted in the future, it will only draw the longest edge, if all the inner
edges still exist.

The collection:

ΦN := {φ : {1, . . . , N } → {1, . . . , N } increasing and s. t. φ≥ Id}, (4.3)

is in a one-to-one correspondence with the set of all ε-synchronized subnetworks
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1 2 3 4 5 6

Figure 4.2 – Example of the closeness of the vertices. This figure shows a graph with
6 vertices associated with an ordered initial condition, that is, it satisfies
x1 < x2 < x3 < x4 < x5 < x6. Since 2 is connected to 5, it implies that all the
internal links are also found, that is, 2 with 3, 3 with 4, 4 with 5, 2 with 4
and 3 with 5. To avoid writing so many arrows, only the largest one will be
drawn, with the understanding that the inner arrows also exist.

of KN defined by ordered initial conditions, that is x1 ≤ x2 ≤ ·· · ≤ xN . The correspon-
dence is given by:

φ 7→ ({1,2, . . . , N },Eφ) where Eφ = {{m,n} : min(m,n) ≤φ(max(n,m))}. (4.4)

In this case, the coding in Equation (2.29) which associates increasing functions to
synchronized subnetworks is given by Equation (4.4). The proof is outlined below.

Firstly, it is possible to establish a correspondence between each increasing function
φ : 1,2, . . . , N → 1,2, . . . , N , satisfying φ ≥ Id, and an ordered initial condition x ∈ RN

such that φ=φx . This correspondence is achieved by representing φ as a collection of
disjoint directed trees, according to the following method. Let Fix(φ) := {1 ≤ n ≤ N :
φ(n) = n}. To each n ∈ Fix(φ) a directed tree Tn , rooted at n, with vertex set:

Vn :=
h(n)⋃
l=0

φ−l ({n}),

is associated and directed edges in:

An := {(k,φ(k)) : k ∈Vn \ {n}}.

The vertex set Vn splits into h(n)+1 disjoint levels, V l
n :=φ−l ({n}), 0 ≤ l ≤ h(n). The

number h(n) is the high of Tn .

The maximal paths in Tn are completely determined by their starting vertices, which
must be leaves. Let `1

n < `2
n < ·· · < `w(n)

n be the leaves of Tn . Its number, w(n), is the
width of the tree Tn .

Since φ is increasing and such that φ≥ Id, then every element in the l-th level, V l
n ,

is greater than all the elements in the l ′-th level, V l ′
n whenever l < l ′. This implies
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that the length l (m) of the path starting at m and ending at the root is a decreasing
function of m.

In the tree Tn , every maximal path starts at a leaf, and the longest of these paths
have a length of h(n) and begin at leaves in the highest level. Additionally, all vertices
in Tn are part of a maximal path, indicating that they are reachable from a leaf.

Now, consider an increasing function φ : 1,2, . . . , N → 1,2, . . . , N such that φ≥ Id. Let
Tnk : 1 ≤ k ≤ R be the associated collection of directed trees, and let n1 < n2 < ·· · < nR

be the corresponding roots in Fix(φ). Choose x ∈RN such that xn1 = ε ·h(n1), and for
each 1 ≤ k < R, proceed as follows:

xnk+1 = xnk + (h(nk )+2)ε. (4.5)

Using this approach, the value of xn is determined for each n ∈ Fix(φ) in such a way
that xnk +ε< xnk+1 −h(nk+1)ε for every 1 ≤ k < R.

Next, for each n ∈ Fix(φ), let `1
n < `2

n < ·· · < `w(n)
n represent the leaves of Tn . For

every 1 ≤ j ≤ w(n) and 0 ≤ k ≤ l (n j ), where x
φk (`

j
n )

has not yet been defined, we define

it as follows:

x
φk (`

j
n )
= xn − (l (n j )−k)ε+ ( j −1)

ε

w(n)
. (4.6)

It is recalled that l (n j ) is the length of the maximal path starting at ` j
n . It is not

difficult to verify that Equations (4.5) and (4.6). Define an ordered initial condition
0 = x1 < x2 < ·· · < xN =∑R

k=1(h(nk )+2), such that φx =φ.

By establishing the equivalence of these objects, it is then possible to search for
properties of one that may be useful in the study of the other. In this case, the collection
ΦN is equivalent to a well-studied combinatorial set, the set of Dyck paths of order
N that have length 2N . Let’s remember that this combinatorial set has a cardinality
given by the Catalan numbers Stanley and Fomin 1999 as said in Section 2.1.5. The
formula shown below is one of the most important relationships found in this thesis.

|ΦN | =CN = 1

N +1

(
2 N
N

)
. (4.7)

In this way, the ε-synchronized subnetworks or the increasing functions can be used
interchangeably and better yet, at the convenience of the problem that is addressed.

In Figure 4.3, a concrete example of the encoding of all the increasing functions in
the subgraphs of K3 is shown. For each row from (a) to (e). In the first column, an
increasing function of dimension 3 is shown, then to its right, its representation as
a linear graph is shown, as was done in Figures 4.1 and 4.2. Further to the right, its
associated subgraph in the form of a subgraph of K3 is shown, with the aim of using
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whatever is preferably for the reader. In this way, in future sections it will be possible
to have more clarity when passing from the transition diagram with vertices repre-
senting subgraphs, to when the transition diagram undergoes a relabeling in terms
of increasing functions. Through this code it will be possible to do the translation
step by step. As a last observation, note that in Equation (4.7), making a substitution,
then |Φ3| = 1

4

(6
3

)= 5, which corresponds precisely to the number of rows observed in
Figure 4.3.

(a)

(b)

(c)

(d)

(e)

(1,2,3)

(1,3,3)

(2,2,3)

(2,3,3)

(3,3,3)

321

321

321

321

321

3

21

3

21

3

21

3

21

3

21

Figure 4.3 – Correspondence between graphs and increasing functions when N = 3.
List of increasing functions for typical initial conditions in dimension
3, to its right the representation as a graph in a line and to its right the
representation in the complete graph array.

Furthermore, in Figure 4.4, the list of increasing functions in dimension 4 is shown
and to its right, the associated graph in its linear version is shown. Note that in Equa-
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tion (4.7), making a substitution, then |Φ4| = 1
5

(8
4

)= 14, which corresponds precisely to
the number of increasing functions depicted in the figure.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

(n)

(1,2,3,4)

(1,2,4,4)

(1,3,3,4)

(1,3,4,4)

(1,4,4,4)

(2,2,3,4)

(2,2,4,4)

(2,3,3,4)

(2,3,4,4)

(2,4,4,4)

(3,3,3,4)

(3,3,4,4)

(3,4,4,4)

(4,4,4,4)

4321

4321

4321

4321

4321

4321

4321

4321

4321

4321

4321

4321

4321

4321

Figure 4.4 – Correspondence between graphs and increasing functions when N = 4.
List of increasing functions for typical initial conditions in dimension 4
and to its right the representation as a graph in a line.

To end, as a conclusion of this section, when making a simplification of the ini-
tial conditions in RN , through one of the symmetries that the complete graph KN

has (considering its coordinates in strictly increasing order), which describe the en-
tire space except for a set of Lebesgue measure zero, allows to establish a coding
of the ε-synchronized subnetworks through increasing functions. Concepts already
established in the literature can describe one of the most important properties of the
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transition diagram of L(MKN ), that is: the number of increasing functions corresponds
to the number of possible states in the transition diagram.
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4.1.2 Unfeasible subgraphs of KN

Given the characteristics of increasing functions and the way they consistently en-
code initial conditions in the sense of ε-synchronized subnetworks, it turns out that
some subgraphs of KN remain uncoded, precisely because they are not feasible by no
initial condition. Initially, it can be thought that all the subgraphs of KN are feasible
by initial conditions, which unfortunately is not true. Below are described these types
of subgraphs.

As noted in the Section 3.1.1, all subgraphs of K3 are feasible, therefore, this analysis
starts for N = 4. In this dimension, there are two clear examples shown in Figure 4.5.
Both the subgraphs in (a) and (b), including all their symmetries, cannot be performed
by any initial condition on R4 and the reasons are given below.

2 3 4

1

1 2

4 3

(a) (b)

Figure 4.5 – Unfeasible subgraphs of K4. In (a) and (b) subgraphs of K4 which are not
feasible for any initial condition in R4 are shown. The subgraph in (a) is
named fork, and the subgraph shown in (b) is named hole.

Firstly, consider the case of Figure 4.5 (a), by construction of the subgraph, at time t
the following inequalities in Equations (4.8-4.13) must be met.

|x1(t )−x2(t )| ≤ ε, (4.8)

|x1(t )−x3(t )| ≤ ε, (4.9)

|x1(t )−x4(t )| ≤ ε, (4.10)

|x2(t )−x3(t )| > ε, (4.11)

|x2(t )−x4(t )| > ε, (4.12)

|x3(t )−x4(t )| > ε. (4.13)

By Equations (4.8) and (4.9), and the condition of the Equation (4.11) x2(t ) < x1(t ) <
x3(t ) or x3(t ) < x1(t ) < x2(t ). Suppose the first is true, then:
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x2(t ) = x1(t )−δ2, δ2 < ε, (4.14)

x3(t ) = x1(t )+δ3, δ3 < ε. (4.15)

Where δ2 +δ3 > ε. By the condition of the Equation (4.10), there are two cases:

x4(t ) = x1(t )+δ4, δ4 < ε, (4.16)

x4(t ) = x1(t )−δ4, δ4 < ε. (4.17)

By the conditions of Equations (4.17) and (4.16):

|x4(t )−x3(t )| < |x1(t )+δ4 −x1(t )−δ3|,
< |δ4 −δ3|,
< ε.

What contradicts the condition of the Equation (4.13). And by the conditions of
Equations (4.16) and (4.17):

|x4(t )−x2(t )| < |x1(t )+δ4 −x1(t )−δ2|,
< |δ4 −δ2|,
< ε.

What contradicts the condition of the Equation (4.12). Therefore, no initial condi-
tion meets all the requirements of the Equations (4.8-4.13).

Lastly, consider the case of Figure 4.5 (b), by construction of the subgraph, at time t
the following inequalities in Equations (4.18-4.23) must be met.

|x1(t )−x2(t )| ≤ ε, (4.18)

|x1(t )−x3(t )| ≤ ε, (4.19)

|x2(t )−x4(t )| ≤ ε, (4.20)

|x3(t )−x4(t )| ≤ ε, (4.21)

|x1(t )−x4(t )| > ε, (4.22)

|x2(t )−x3(t )| > ε. (4.23)

By Equations (4.18) and (4.18), and the condition of the Equation (4.23), x2(t) <
x1(t ) < x3(t ) or x3(t ) < x1(t ) < x2(t ). Suppose the first is true, then:
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x2(t ) = x1(t )−δ2, δ2 < ε, (4.24)

x3(t ) = x1(t )+δ3, δ3 < ε. (4.25)

Where δ2 +δ3 > ε. By the condition of the Equation (4.21), there are two cases:

x4(t ) = x3(t )+δ4, δ4 < ε, (4.26)

x4(t ) = x3(t )−δ4, δ4 < ε. (4.27)

If the condition of the Equation (4.27) is met, then by Equation (4.25):

|x3(t )−x4(t )| = |x1(t )+δ3 −x4(t )|,
= |x1(t )−x4(t )+δ3,|,
< ε.

What contradicts the Equation (4.22). And if Equation (4.26) is true, then:

|x4(t )−x2(t )| = |x3(t )+δ4 −x1(t )+δ2|,
= |x1(t )+δ3 +δ4 −x1(t )+δ2|,
= |δ3 +δ4 +δ2|,
> ε.

What contradicts Equation (4.20). Therefore, there is no initial condition that meets
all the requirements of the Equations (4.18-4.23).

On the other hand, considering dimension N > 4, all subgraphs containing the
graphs in Figure 4.5 as induced subgraphs cannot be obtained from an initial con-
dition. For this reason, the number of vertices in the transition diagram does not
coincide with the number of subgraphs of the initial graph. The coding that is pre-
sented in this thesis, as well as the rules for constructing edges between them, respects
this fact.

Formally, in order for a subgraph S ⊆ KN to appear in the transition diagram of
L(MKN ), it must meet with the following:

1. If S contains a fork (3-star) (denoted by F N the set of forks in a set of N vertices),
that is, it have 4 vertices v1, v2, v3, v4, such that there is an edge ei , j that connects
vi with v j as follows: {e1,2,e1,3,e1,4}, then e2,3 or e2,4 or e3,4 is also an edge of S.

2. If S contains a k-hole Hk (denoted by H N
k the set of k-holes in a set of N vertices,

such that k ≤ N ), where k > 3, that is v1, v2, ..., vk , such that ei ,i+1 if i < k and ek,1,
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are the edges of Hk , then ei , j is also an edge of S where j 6= i +1 and this is for all
3 < k < N that must meet the previous condition.

From the above, it can be inferred that the number of subgraphs that do not appear
in the transition diagrams increases with the dimension N which is done next. On the
one hand, by construction, the complete graph KN has the following number of forks
in dimension N :

|F 4| =
(

4

1

)
,

|F N | = |F N−1|
(

N

4

)
2(N−4)(N−1)−]E(KN−4),

where N > 4.

On the other hand, by construction too, the complete graph KN has the following
number of m-holes in dimension N :

|H N
m | = |H m

m |
(

N

m

)
2(N−m)(N−1)−]E(KN−m ),

|H N
N | = (N −1)!

2
,

where 3 < m ≤ N .

The set of the forks F N and the set of the holes H N
m are not disjoint, then, for the

number of feasible graphs in dimension N (without considering any symmetry), GN ,
there is an upper bound:

|GN | ≥ 2]E(KN ) −
(

N∑
i=4

(|F N |+ |H N
i |)) .

The important fact to highlight in this section is that not all the subgraphs of the
complete graph KN , when the dimension is greater than 3, are feasible for some initial
condition, therefore, establish how many states its transition diagram has is not a
trivial problem, which could be calculated exactly in Section 4.1.1, when a symmetry
is considered, but which can be extended to the whole graph.

4.1.3 Paths towards synchronization
In this section, the paths towards synchronization of the Laplacian system applied

to the complete graph of dimension N are studied, from the coding established in
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Section 4.1.1. To begin with, a simplification of the initial conditions in RN to a set
that faithfully represents the behavior of the space is made. Then, the conditions
that the increasing functions must fulfill, so they can be consecutive to form a path
towards synchronization are mentioned. Two concepts are conceived: an admissible
path and a realizable path, the differences between them are mentioned and the
conditions that an admissible path must meet to become a realizable one. In addition,
concrete examples for dimensions three and four are presented. In general, bounds
and computational calculations for the first nine dimensions of the number of paths
towards synchronization L(MKN ) transition diagram are presented. Finally, two types
of distributions associated to path lengths and the degrees in the transition diagram
of are shown.

As mentioned above in Section 4.1.1, the switching times t1 < t2 < ·· · < t` are com-
pletely determined by the increments xn −xm , with m < n. A path associated with an
initial condition that satisfies that all those increments are different from zero and
pairwise different is called typical. Clearly, the non-typical paths correspond to initial
conditions in a set of zero Lebesgue measure in RN .

By this assumption, from the example shown in Figure 2.22 (which shows the
transition diagram of the Laplacian system over the complete graph K3 with all its
symmetries and steps), can be replaced considering the diagram shown in Figure 4.6.
If all increments are different, then there are no jumps larger than one level in the
transition diagram of L(MK3 ). This is an easier diagram to read and that continues to
represent all the dynamics of space, except in a set of zero Lebesgue measure (which
considers for example, the initial conditions that have one or several equal coordi-
nates).

To recapitulate, a path to synchronization will be, in this context, a succession of
increasing functions. For typical paths, below how are two consecutive functions in
the sequence is presented.

The sequence:

(φ0,φ1, . . . ,φ`) := (φx ,φx(t1), . . . ,φx(t`)),

is such that φi and φi+1 for all i = 0, ...,`−1, differ at a single point. If it is denoted
by δn ∈ {0,1} the characteristic function of the singleton {n}, hence φτ+1 =φτ+δnτ for
some nτ ∈ {1,2, . . . , N } satisfying the condition φτ(nτ) <φτ(nτ+1).

Therefore, an admissible sequence (φ0,φ1, . . . ,φ`), can be obtained by choosing a
valid initial function φ0 ∈ ΦN , then for each τ ≥ 0, a point nτ ∈ {1,2, . . . , N −1} such
that:

φτ(nτ) <φτ(nτ+1),

to update:
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3

21

3

21

3

21

3

21

3

21

3

21

3

21

3

21

↙ ↓ ↘

→

↙↓ ↓ ↓↙

↘ ↓ ↙

Figure 4.6 – Transition diagram of the Laplacian system in K3 for typical initial con-
ditions. When considering typical three-dimensional initial conditions,
that is, all its coordinates are different and the differences between them
are also not repeated. Under Laplacian flow the transition diagram shown
here is generated.

φτ+1 =φτ+δnτ .

Nevertheless, not all the sequences obtained in this way are realizable as synchro-
nizing sequences. The sequence (nτ)0≤τ<` of jump sites is determined based on the
ordering of the increments:

∆ := {∆n,k := xn+k −xn : 1 ≤ n < n +k ≤ N },

such that the τ-th smallest increment in ∆ corresponds to ∆nτ,k .

On the other hand, continuing with the example of the Laplacian system in the
complete graph of dimension 3, considering the initial conditions x = (x1, x2, x3) ∈R3

such that x1 < x2 < x3, and all the differences |xi −x j | for all i , j and i 6= j , are different
from zero and pairwise different. Also, considering the coding in Figure 4.3 (where
the assignment of increasing functions to subgraphs of KN is presented), then, in Fig-
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ure 4.7 the transition diagram with the corresponding vertices labeled with increasing
functions is depicted. This diagram converts Figure 4.6, into a simpler one, which
preserves its properties (for example, the length of the longest path and the diversity
of paths is given by the geometry of KN ).

(1,2,3)

(2,2,3) (1,3,3)

(2,3,3)

(3,3,3)

Figure 4.7 – Transition diagram of L(MK3 ) with labels assigned by the corresponding
increasing functions is shown. This is composed of 5 vertices and 5 edges.
At the top the vertex (1,2,3), corresponds to the totally disconnected graph
of dimension 3. At the bottom, the vertex (3,3,3), corresponds to the
complete graph of dimension 3 K3. This transition diagram corresponds
to the typical ordered initial conditions x = (x1, x2, x3) ∈R3 such that x1 <
x2 < x3. The symmetries in Figure 4.6, no longer appear.

When L(MK3 ) is considered over typical initial conditions, there are only 2 possible
orders, which are the following:

∆1,1 <∆1,2 <∆2,1,

∆1,2 <∆1,1 <∆2,1.

These two possible orders correspond to the following paths in terms of increasing
functions shown in Figure 4.7, which start with the increasing function (1,2,3) which
corresponds to the fully disconnected graph of dimension 3, and end with (3,3,3)
which corresponds to the complete graph of dimension 3.
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(1,2,3,4) (1,2,3,4)
(2,2,3,4) (2,2,3,4)
(2,3,3,4) (2,3,3,4)
(2,3,4,4) (2,3,4,4)
(2,4,4,4) (3,3,4,4)
(3,4,4,4) (3,4,4,4)
(4,4,4,4) (4,4,4,4)

Table 4.1 – Example of an admissible path and a realizable path in the L(MK4 ) transi-
tion diagram as increasing functions. In each line, the increasing function
associated to each subgraph in Figure 4.8 are shown. In the first column
for (a) and in the second column for (b).

(1,2,3) → (2,2,3) → (2,3,3) → (3,3,3),

(1,2,3) → (1,3,3) → (2,3,3) → (3,3,3).

Therefore, it is observed that to each valid strict ordering in ∆ corresponds a unique
realizable path towards synchronization.

It should be noted that for the construction of the paths towards synchronization, it
is not only required that one graph be a subgraph of another for there to be an edge in
the transition diagram (as one might think from Figure 2.22). The following example
which illustrates the differences between an admissible path and a realizable path in
the L(MK4 ) transition diagram is shown. In Figure 4.8, each row represents a subgraph
of K4 in their linear form (which are not numbered, but the labels from left to right
from 1 to 4 for each of them are considered) and each blue arrow represents an edge
in the transition diagram of L(MK4 ), which satisfy that the graph from which the arrow
leaves is a subgraph of the one it enters. The problem in (b) is step 4, because when
the sequence of the first three steps is followed, the last 3 are already determined, and
it does not coincide with those described in the figure. Step 4 should join (from left to
right) the first vertex with the third and the third with the fourth as in Figure 4.8. In
this way, there are a realizable path as in (a). Moreover, in the Table 4.1 the increasing
functions associated to the subgraphs that are showed in Figure 4.8 are written and
these two successions of increasing functions are the paths to synchronization.

On the one hand, the total number of admissible paths towards synchronization for
L(MK4 ) is sixteen, and all of them are shown below, each letter in parentheses is the
one assigned in Figure 4.4.
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Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

(a)

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

(b)

Figure 4.8 – Example of an admissible path and a realizable path in the L(MK4 ) tran-
sition diagram. In (a) and (b) two paths towards synchronization in a
set of four elements over the Laplacian of the complete graph are shown.
In (a), the path shown is admissible because it is a sequence of feasible
subgraphs of K4. On the other hand, in (b), a realizable path is shown, in
addition to being an admissible path, the succession of the edges that are
presented follow a coherent logic to an initial condition that exists. The
problem in (b) is step 4, because when the sequence of the first three steps
is followed, the last 3 are already determined, and it does not coincide
with those described in the figure. Step 4 should join (from left to right)
the first vertex with the third and the third with the fourth.

((a), ( f ), (h), (k), (l ), (m), (n)) ((a), ( f ), (h), (i ), (l ), (m), (n))

((a), ( f ), (h), (i ), ( j ), (m), (n)) ((a), ( f ), (g ), (i ), (l ), (m), (n))

((a), ( f ), (g ), (i ), ( j ), (m), (n)) ((a), (c), (h), (k), (l ), (m), (n))

((a), (c), (h), (i ), (l ), (m), (n)) ((a), (c), (h), (i ), ( j ), (m), (n))

((a), (c), (d), (i ), (l ), (m), (n)) ((a), (c), (d), (i ), ( j ), (m), (n))

((a), (c), (d), (e), ( j ), (m), (n)) ((a), (b), (g ), (i ), (l ), (m), (n))

((a), (b), (g ), (i ), ( j ), (m), (n)) ((a), (b), (d), (i ), (l ), (m), (n))

((a), (b), (d), (i ), ( j ), (m), (n)) ((a), (b), (d), (e), ( j ), (m), (n))

On the other hand, the total number of admissible paths towards synchronization
for L(MKN ) is ten and the associated valid strict orderings are shown in Table 4.2.

Each ordering uniquely determines an observable path towards synchronization
in the transition diagram of L(MK4 ), and all of them are organized in a transition
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∆1,1 <∆2,1 <∆3,1 <∆1,2 <∆2,2 <∆1,3 ∆1,1 <∆2,1 <∆1,2 <∆3,1 <∆2,2 <∆1,3

∆1,1 <∆3,1 <∆2,1 <∆1,2 <∆2,2 <∆1,3 ∆2,1 <∆1,1 <∆3,1 <∆1,2 <∆2,2 <∆1,3

∆2,1 <∆1,1 <∆1,2 <∆3,1 <∆2,2 <∆1,3 ∆2,1 <∆3,1 <∆1,1 <∆2,2 <∆1,2 <∆1,3

∆2,1 <∆3,1 <∆2,2 <∆1,1 <∆1,2 <∆1,3 ∆3,1 <∆1,1 <∆2,1 <∆2,2 <∆1,2 <∆1,3

∆3,1 <∆2,1 <∆1,1 <∆2,2 <∆1,2 <∆1,3 ∆3,1 <∆2,1 <∆2,2 <∆1,1 <∆1,2 <∆1,3

Table 4.2 – The ten different orderings of the increments for the typical initial condi-
tions in R4.

diagram depicted in Figure 4.9. As has been said before, the ε-synchronized subnet-
works are encoded by increasing functions as defined by Equation (4.4) and depicted
in Figure 4.4. At the top is placed the identity function (1,2,3,4) which codifies the
completely disconnected graph. All the paths towards synchronization end at the
constant function (4,4,4,4) which codifies the globally synchronized state.

In a general way, the path towards synchronization for the initial condition x ∈RN

is given by the sequence (Gx ,Gx(t1), . . . ,Gx(t`)) of ε-synchronizing subnetwork, which
is equivalent to a sequence of increasing functions:

(φx ,φx(t1), . . . ,φx(t`)) ⊂ΦN .

This sequence (φx ,φx(t1), . . . ,φx(t`)) is completely determined by the order of the
increments ∆. Each ordering of increments determines the sequence (nτ)0≤τ<` of
sites where consecutive increasing functions differ, that is, the sites nτ such that
φx(tτ+1) −φx(tτ) = δnτ for each 0 ≤ τ < `. Therefore, each valid ordering in ∆ corre-
sponds to a unique realizable path towards synchronization.

As a result, the total number of paths towards synchronization is determined by
the number of distinct orderings of ∆ that can be obtained from an ordered initial
condition x ∈RN . Interestingly, this combinatorial problem is closely related to the
concept of "Golomb rulers" in mathematics Golomb 1972. Counting the number of
valid orders is equivalent to counting the combinatorially distinct Golomb rulers. Now,
let’s explain how this equivalence is established.

As mentioned in Section 2.1.5, A Golomb ruler with N marks is defined as a vector
a ∈ ZN with a1 < a2 < ·· · < aN , where no two increments an+k − an , with 1 ≤ n < N
and 1 ≤ k ≤ N −n, are equal. In essence, a Golomb ruler represents a specific type of
initial condition characterized by integer entries which we call: typical. Interestingly,
a Golomb ruler can be associated with each typical initial condition x ∈RN using the
following procedure. Since x is typical, then both ε1 = min{∆n,k : 1 ≤ n < N , 1 ≤ k <
N −n} and ε2 = min{|∆n,k −∆m,`| : (m,k) 6= (n,`) : 1 ≤ n < N , 1 ≤ k < N −n, 1 ≤ m <
N , 1 ≤ `< N −m} are strictly positive. Let p ∈N be such that p ·min(ε1,ε2/4) > 1, and
for each 1 ≤ n ≤ N let qn := max{q ∈Z : q/p ≤ xn}. The vector q = (q1, q2, . . . , qN ) ∈ZN

represents the desired Golomb ruler. Indeed, since p ε1 > 1, then for each 1 ≤ n < N ,
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4 Results – 4.1 The transition diagram of L(MKN )

(1,2,3,4)

(2,2,3,4) (1,3,3,4) (1,2,4,4)

(2,2,4,4) (2,3,3,4) (1,3,4,4) (2,2,4,4)

(2,3,4,4)(1,4,4,4)(3,3,3,4)(2,3,4,4)

(3,3,4,4) (2,4,4,4)

(3,4,4,4)

(4,4,4,4)

Figure 4.9 – Transition diagram of L(MK4 ) with labels assigned by the corresponding in-
creasing functions is shown. This is composed of 16 vertices and 22 edges.
At the top, the vertex (1,2,3,4) corresponds to the totally disconnected
graph of dimension 4, and at the bottom, the vertex (4,4,4,4) corresponds
to the complete graph of dimension 4 K4. This transition diagram corre-
sponds to the ordered initial conditions x = (x1, x2, x3, x4) ∈R4 such that
x1 < x2 < x3 < x4, then, the other symmetries no longer appear.

then
qn ≤ p xn ≤ p (xn+1 −ε1) ≤ qn+1 +1−p ε1 < qn+1.

On the other hand, if ∆n,k >∆m,`, then the following condition holds:

(qn+k −qn)− (qm+`−qm) ≥ p(∆n,k −∆m,`−4/p) > p(ε2 −4/p) > 0.
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Furthermore, two Golomb rulers are considered combinatorially equivalent if they
yield the same ordering in their differences. In other words, for a,b ∈RN , the rulers
are equivalent if and only if the inequality ((an+k −an)− (am+`−am))((bn+k −bn)−
(bm+`−bm)) > 0 holds for every 1 ≤ m,n < N and 1 ≤ k < n, ,1 ≤ `< m. Consequently,
the number Golomb(N ) of equivalence classes of Golomb rulers with N marks cor-
responds to the number of paths towards synchronization. Therefore, the following
relationship is established:

Number of paths towards synchronization for KN = Golomb(N ). (4.28)

The growth of the number of paths towards synchronization with the dimension N
grows, can be seen as a measure of complexity like the topological complexity Farber
2003 of discrete-time dynamical systems. In this scenario, the topological complexity
measures the increase in the number of distinguishable trajectories over time. How-
ever, in the case of Golomb(N ), it counts the number of distinguishable paths towards
synchronization as a function of the system’s dimension rather than time.

Additionally, a Golomb ruler a ∈Z is characterized by the property that all the sums
am +an are distinct. This can be observed from the fact that:

sign((an+k −an)− (am+`−am)) = sign((an+k +am)− (am+`+an)),

the number of combinatorially different Golomb rules can be determined by count-
ing the different orderings of the set S = am +an : 1 ≤ m < n ≤ N . Interestingly, this is
equivalent to counting the different orderings of the set P = am , an : 1 ≤ m < n ≤ N .Now
count the number of possible orders of all pairwise sums {ai +a j }1≤i≤ j≤n such that
the ordered set A = {a1, a2, ..., an} ⊂N is a finite Sidon set, as an adaptation of Johnston
2014b upper bound.

Let’s generate a matrix MN ∈M (N)N×N such that each (i , j )-element is ai +a j . For
instance, when N = 5, there is the following symmetric matrix:

M5 =


2a1 a1 +a2 a1 +a3 a1 +a4 a1 +a5

a2 +a1 2a2 a2 +a3 a2 +a4 a2 +a5

a3 +a1 a3 +a2 2a3 a3 +a4 a3 +a5

a4 +a1 a4 +a2 a4 +a3 2a4 a4 +a5

a5 +a1 a5 +a2 a5 +a3 a5 +a4 2a5

 .

As a1 < a2 < ·· · < aN , then the rows and columns of the upper-triangular part of M5

are increasing. And in this way, an upper bound can be given by counting the number
of ways that the numbers 1,2, ..., N (N +1)/2, can be accommodated in N (N +1)/2
places in the upper-triangular part of a matrix such that the rows and columns of that
upper-triangular part are increasing by Thrall bound in Thrall 1952,
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]Paths towards sync in L(MKN ) ≤
(

N (N +1)

2

)
!

∏N−1
i=1 i !∏N

i=1(2i −1)!
, (4.29)

which furnishes an upper bound for the number of paths towards synchronization
as well.

Since the finite Sidon sets and the Golomb rulers are related, then this bound also
works for the number of paths to synchronization. The number Golomb(N ) holds
significance in the study of quantum entanglement Hildebrand 2007. It is listed in the
On-line Encyclopedia of Integer Sequences (OEIS) under the entry A237749 Johnston
2014a, where the first nine terms are explicitly computed and presented in Table 1
(see Table 4.3). For dimensions 3 and 4, they coincide with the number of paths that
are presented previously.

N Golomb(N )
1 1
2 1
3 2
4 10
5 114
6 2608
7 107498
8 7325650
9 771505180

Table 4.3 – Number of classes of Golomb rulers.

On the other hand, finding a closed formula for Golomb(N ) remains an unsolved
problem. However, we can establish quick and demonstrable bounds for this number,
as shown in Equation (4.30). The lower bound can be obtained by considering all
possible orderings of the first differences xi+1 − xi for 1 ≤ i ≤ N −1, while the upper
bound arises from considering all possible orderings of the differences xi − xk for
1 ≤ k < i ≤ N . Thus, we obtain:

(N −1)! < Golomb(N ) <
(

N

2

)
!. (4.30)

Based on the established concepts, various characteristics can be calculated, includ-
ing the number of ε-synchronized sequences with a fixed length ` and the distribution
of path lengths in the synchronization process. These calculations enable us to de-
termine the mean length and the most common length of the paths. Furthermore,
by examining the behavior of these quantities as the dimension increases, we can
extrapolate their trends for larger dimensions.
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In all the examples, the transition diagram for L(MKN ) exhibits a hierarchical struc-
ture. At the top of the hierarchy, there is a disconnected subnetwork represented by
the identity function Id = (1,2, ..., N ) ∈ΦN . At the bottom of the hierarchy, there is a
complete graph represented by the constant function N(n) = N for 1 ≤ n ≤ N . Only
typical initial conditions are considered, and at each step, only one new edge appears
in the ε-synchronized subnetwork.

Each level of the hierarchy, starting from the top and counting down, represents
the subnetworks that can be reached from the disconnected subnetwork after exactly
` steps. These subnetworks have precisely ` edges and are encoded by increasing
functions φ ∈ΦN that satisfy the following condition:

N∑
n=1

(φ(n)−n) = `.

In particular, the maximal length of a synchronizing sequence is given by:

lmax =
N∑

n=1
(N −n),

= N (N −1)/2.

From the previous observations, it follows that the number FN (`) of synchronized
sequences of length ` is given by the number of Dyck paths of order N with length 2N
and area N 2 −`. In other words, we have:

FN (`) :=
∣∣∣∣∣
{
φ ∈ΦN :

N∑
n=1

φ(n) = N 2 −`

}∣∣∣∣∣ . (4.31)

These quantities can be computed from the following generating polynomials:

PN (t ) := ∑
φ∈ΦN

t area(φ),

=
N (N−1)

2∑
`=0

FN (`) t
N (N−1)

2 −`,

where area(φ) :=∑N
n=1(φ(n)−n) denotes the area under the Dyck path determined

by the increasing function φ. The generating polynomials mentioned above can be
determined using the recurrence relation:

PN (t ) =
N−1∑
n=0

t n Pn(t )PN−n−1(t ) (4.32)

with initial condition P0 = 0, derived in Carlitz and Riordan 1964 (see Blanco and
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Petersen 2012 as well, that is a more recent work). Although there is no closed formula
for FN (`), the recurrence relation above allows to directly compute these distributions
and it can be also established its asymptotic behavior. In the following Table 4.4 FN (`)
for some values, that are 2 ≤ N ≤ 8 are shown.

N FN (`)
2 (1,1)
3 (1,1,2,1)
4 (1,1,2,3,3,3,1)
5 (1,1,2,3,5,5,7,7,6,4,1)
6 (1,1,2,3,5,7,9,11,14,16,16,17, 14,10,5,1)
7 (1,1,2,3,5,7,11,13,18,22,28,32,37,40,44,43,40,35,25,15,6,1)
8 (1,1,2,3,5,7,11,15,20,26,34,42,53,63,73,85,96,106,113,118,118,115,102,86,65,41,21,7,1)

Table 4.4 – Number FN (`) of functions φ ∈ ΦN codifying a ε-synchronizing subnet-
works starting a synchronizing path of length `.

On the other hand, the normalized cumulative distribution, fN : [0,1] → [0,1], is
defined by:

fN (x) = 1

CN

∑
n≤x×N (N−1)/2

FN (x), (4.33)

where FN is given by Equation (4.31) and CN is the N -th Catalan number previously
defined. By using the recurrence shown in Equation (4.32), there are numerically com-
puted fN (x) for increasing values of N , and observe that fN approaches an absolutely
continuous limit distribution x 7→ f (x) whose density written as ρ(x) := d f (x)/d x is
closely approached by the curve shown in Figure 4.10. Hence, for N sufficiently large
and δ> 0 sufficiently small, the proportion of paths towards synchronization of length
N (N −1)(x±δ)/2 is approximatively ρ(x)δ. As shown in the Figure 4.10, the numerical
computation suggests that the function ρ is continuous, unimodal, and negatively
skewed.

Recapping, the transition diagram for L(MKN ) is composed by levels:

L0, L1, . . . , L N (N−1)
2

,

in such a way that each path towards synchronization passes through levels of
increasing index until reaching level N (N − 1)/2 which is composed solely of the
complete graph KN , representing the full ε-synchronization. Besides, a typical initial
condition starting at Ln , will take N (N −1)/2−n steps to attain the complete graph.
Furthermore, the number of subnetworks at level n = N (N −1)/2−` is given by FN (`),
defined by Equation (4.31). Then, the number of ε-synchronized subnetworks at each
level increases monotonously from 1 to the following expression:
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0 0.2 0.4 0.6 0.8 1
0

0.5
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ρ
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Figure 4.10 – Probability density function ρ(x) of the normalized length asymptotic
distribution of a path towards synchronization in the L(MKN ) transition
diagram.

modeN (`) := max
1≤`≤N (N−1)/2

FN (`),

≈ 0.632
N (N −1)

2
, (4.34)

and then decreases monotonically to 1 as shown in Figure 4.10. Therefore, since
the distribution of these path lengths is negatively skewed, the mean length of the
paths towards synchronization is smaller than the most frequent length. Thus, we can
conclude that:

〈`〉N :=
∑N (N−1)/2

`=1 `FN (`)

CN
,

≈ 0.523
N (N −1)

2
,

< modeN (`).

From the calculations shown in this section, an idea of some characteristics of a
typical synchronization path in the Laplacian system of the complete graph KN can be
obtained, for example, if a random ordered initial condition x ∈RN is taken, then its
associated synchronization path would most likely be of length as in Equation (4.34).

In addition, under the approach of increasing functions, the degree distributions
for the L(MKN ) transition diagram are given by the Narayana triangle described by the
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Equation (2.26) read by lines. In the OEIS sequence A001263 it is also defined.

By setting the dimension N = 100, the following histogram shown in Figure 4.11 it is
generated which is unimodal and symmetric.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

·1056

Output degree

Fr
eq

u
en

cy

Figure 4.11 – L(MK100 ) transition diagram degree distribution. The degree distribution
for the L(MKN ) transition diagram, is given by the Narayana triangle
described by the Equation (2.26) read by lines, in this case, when N = 100
the distribution is shown.

As a conclusion of this section, there are two different types of paths that can be
generated from sequences of increasing functions that satisfy that are greater than
another by one unit at a single coordinate value. When they only meet this condition
are called admissible paths, moreover, when they satisfied a specific order dictated
by the differences between the coordinates then, they are realizable paths. This is
a famous problem equivalent to compute the number of combinatorially distinct
Golomb rulers, for which there is no closed formula, and it seems to be a NP-hard
problem. Despite of this, bounds of its growth with respect to the dimension N can
still be given. On the other hand, it is shown that the longest path that can be found
in the transition diagram of L(MKN ) precisely matches the number of edges of KN .
Furthermore, the number of paths towards synchronization of size ` is given by the
number of Dyck paths of order N with length 2N and area N 2−`, which its probability
density function for N sufficiently large is given, and from which the behavior for
the mode and the mean path length is obtained. Finally, the degree distribution of
the transition diagram of L(MKN ) is given by the lines of the Narayana triangle. Once
again, the coding done through the increasing functions allow to formally describe
the behavior of this transition diagram.
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4.1.4 Discussion
In this section it is formally and rigorously analyzed the behavior of the transition

diagram of the Laplacian system applied to the complete graph of dimension N . To
achieve this objective, a coding of the subgraphs of KN was proposed, which preserves
the dynamics of the system and turns out to be very useful because it transforms it
into a combinatorial problem that has been widely studied before.

One of the advantages of using this coding is that it automatically generates the sub-
graphs that are feasible for a set of initial conditions. Despite of this, it was considered
pertinent to give the two conditions that a subgraph of KN must meet to be feasible by
an initial condition, the first is that it must not strictly contain forks or 3-stars and the
second is that it must not induce holes or Ck for k ≥ 4, this with the aim of giving an
idea of how many states that could be thought to be feasible for KN actually are not.

Moreover, two key simplifications are made for the analytical study of the transition
diagram of L(MKN ). The first is when defining the coding of the subgraphs that are
formed from initial conditions, whose coordinates are in strictly increasing order, then,
that the set of associated ε-synchronized subnetworks have a bijection with the set of
increasing functions. This simplification allows to focus the attention on the diversity
of states generated by considering a single symmetry of the complete graph. On the
other hand, the second simplification made in this section is when the typical initial
conditions in the space RN are considered, that is, when the differences between
the coordinates are different from zero and pairwise different. This type of initial
conditions faithfully represents space, because for example, if they were generated
randomly, on the one hand, the probability of finding an initial condition with two or
more exactly equal coordinates is zero, and on the other hand, the probability that two
differences of the coordinates coincide is also zero. Typical initial conditions generate
typical paths, which are the ones with the longest lengths, that is, if they start forming
the totally disconnected subgraph, then they will reach synchronization in N (N −1)/2
steps.

By considering these two simplifications in the space of initial conditions, it is possi-
ble to establish the two rules by which two increasing functions will be consecutive
on a path towards synchronization. The first is that an increasing function will follow
another if they differ by only one coordinate and only by one unit. From this condi-
tion admissible paths are generated. The second condition is that the sequence of
increasing functions must correspond to a specific order of the increments of a typical
initial condition. This second condition generates feasible paths.

The problem of counting how many realizable paths there are in each dimension is
equivalent to counting the number of combinatorially distinct Golomb rulers, which
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is a famous open problem, for which some analytical and numerical bounds have
been provided. Furthermore, the number of combinatorially distinct Golomb rulers
has only been possible to calculate up to dimension nine, due to the great memory
demand that the computation of the Golomb rulers requires.

To end this discussion, it should be noted that having this coding allow to associate
characteristics of the combinatorial objects that have a relevant meaning in terms of
the study of the transition diagram, which are listed below.

Combinatorial concept Transition diagram property

Catalan number Possible states

Combinatorially different
Golomb rulers

Number of paths towards
synchronization

Number of Dyck paths
of order N and area N 2 −`

Number of synchronized
sequences of length `

N -th line of Narayana
triangle

Degree distribution of
L(MKN )
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4.2 The transition diagram of L(MKN ,N )

In this section it is formally and rigorously analyzed the behavior of the transition
diagram of the Laplacian system applied to the complete bipartite graph of dimension
N . This study is organized as follows: to begin with, the coding used to describe
the states and the paths towards synchronization are presented, which respects the
monotonic dynamics of the system. Then, the unfeasible subgraphs that the complete
bipartite graph has been shown, which imply the states that cannot have the initial
conditions in the transition diagram. Finally, the way to generate the paths to synchro-
nization in the Laplacian flow over the complete bipartite graph, an estimation of the
diversity of paths and their distribution are exposed.

4.2.1 Coding
The coding of the subgraphs of the complete bipartite graph and the monotonic

dynamics that follow on their path to synchronization was carried out taking advan-
tage for the subset of the space for which the differences of the flow of the coordinates
monotonically tend to zero, the following shows how this process occurs. It is recalled
that the Laplacian matrix of corresponding to KN ,N has the following entries

L(i , j ) =


1, if N < i ≤ 2N and 0 < j ≤ N

or N < j ≤ 2N and 0 < i ≤ N ,
−N , if i = j , 1 ≤ i , j ≤ 2N ,

0, otherwise.

As it was said in Section 2.1.2, an eigenbasis can be computed in terms of the
canonical basis of R2N and written as the set:

B = {um , vn , w n : 1 ≤ m ≤ 2, 1 ≤ n ≤ N −1}.

Where:

u1 =
2N∑
k=1

ek ,

u2 =
N∑

k=1
(ek −ek+N ),

and for each n ≥ 1,

vn = en+1 −e1,

w n = eN+n+1 −eN+1,
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In this section the Laplacian matrix of KN ,N will be written as L := L(MKN ,N ). It acts
on this basis as follows:

Lu1 = 0,

Lu2 = −2N u2,

Lvn = −N vn ,

Lw n = −N w N ,

for each n = 1,2, . . . , N −1.

An initial condition x ∈R2N can be decomposed as:

x = x̄ u1 + (x̄1 − x̄)u2 +
N−1∑
n=1

(
(xn+1 − x̄1) vn + (xN+n+1 − x̄2) w n)

.

Where:

x̄ :=
∑2N

n=1 xn

2N
, x̄1 :=

∑N
n=1 xn

N
and x̄2 :=

∑N
n=1 xN+n

N
. (4.35)

Therefore, for all t ∈R:

x(t ) = x̄ u1 +e−2N t (x̄1 − x̄)u2 +e−N t
N−1∑
n=1

(
(xn+1 − x̄1), vn + (xN+n+1 − x̄2) w n)

,

=
N∑

n=1

((
1−e−N t )(x̄ −e−N t x̄1

)+e−N t xn
)
en

+
N∑

n=1

((
1−e−N t )(x̄ −e−N t x̄2

)+e−N t xN+n
)
eN+n .

From here it follows that:

xn(t )−xN+m(t ) = e−N t (
xn −xN+m + (

1−e−N t ) (x̄1 − x̄2)
)

, (4.36)

xn(t )−xm(t ) = e−N t (xn −xm) , (4.37)

xN+n(t )−xN+m(t ) = e−N t (xN+n −xN+m) ,

for all t ∈R and each 1 ≤ m,n ≤ N .

Hence, the distance between coordinates in the same part of the complete bipartite
graph KN ,N decreases monotonously, while the distances between coordinates at
different parts oscillates at most once, and then decreases to zero. It is important to
note that all the differences decreases monotonously if and only if the initial condition
x ∈ R2N satisfies x̄1 = x̄2. In this case, the edges (n,m) would be included in the
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ε-synchronized subnetwork Gx(t ) for all:

t ≥ tn,m := log |xn −xN+m |− log(ε)

N
.

Without loss of generality, assume that the initial condition is ordered as x1 ≤
x2 ≤ ·· · ≤ xN , xN+1 ≤ xN+2 ≤ ·· · ≤ x2N , that is, each of its parts is ordered in an
increasing way. By Equation (4.37), ensures that x1(t) ≤ x2(t) ≤ ·· · ≤ xN (t) and
xN+1(t) ≤ xN+2(t) ≤ ·· · ≤ x2N (t) for all t ∈ R. Also assume, when convenient, that
x̄1 = x̄2, the initial condition x ∈ R2N that satisfies this condition is called balanced.
In Figure 4.12, in (a), an initial condition where each of the parts that make up the
bipartite graph are not balanced is shown, the dashed line represents the average of
both coordinates. In (b), an initial condition that is effectively balanced is shown,
which are the ones that will be studied in this section.

x1

x2

x4

x3

x2

x4

x1

x3

(a) (b)

Figure 4.12 – Example of the balanced and not balanced initial conditions. In (a) and
(b) examples of initial conditions in R4 are shown. The value varies
depending on its height and are grouped by the same party that they are
in K2,2, also with dashed lines the average of each pair is drawn. In (a), it
is observed that the averages of both parts are different and in (b), it is
observed that both averages coincide. Initial conditions that satisfy the
case shown in (b) are called balanced initial conditions.

Similarly to Section 4.1.1, in order to utilize the property that the Laplacian flow
preserves the coordinate order within each component, the transition diagram is
defined based on combinatorial objects that encode the ε-synchronized subnetworks
while respecting this order. This simplifies the description of the transition diagram,
especially in the case of monotonicity, which is achieved when the initial condition
x ∈R2N is balanced, meaning x̄1 = x̄2.

In this occasion, the ε-synchronized subnetwork Gx defined by x1 ≤ x2 ≤ ·· · ≤
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xN , xN+1 ≤ xN+2 ≤ ·· · ≤ x2N , is encoded by the couple of functionsαx ,ωx : {1,2, . . . , N } →
{0,1,2, . . . , N +1} given by:

αx(n) =
{

min{`≤ N : xn −ε≤ xN+`} if x2N ≥ xn −ε,
N +1 if x2N < xn −ε,

(4.38)

ωx(n) =
{

max{`≤ N : xn +ε≥ xN+`} if xN+1 ≤ xn +ε,
0 if xN+1 > xn +ε.

(4.39)

It should be noted that im(αx) ⊂ [1, N +1] while im(ωx) ⊂ [0, N ]. Both functions
are increasing and such that αx(n) ≤ωx(n)+1 for each 1 ≤ n ≤ N . An example of the
construction of the increasing functions from a given initial condition is presented
in Figure 4.13. Firstly in (a), an example of the relative position of the coordinates of
x = (x1, x2, x3, x4) for each of its parts on different sides with black dots is illustrated,
the first two coordinates to the left and the last two coordinates to the right. The angles
formed by the first two coordinates indicate their respective ε-neighborhoods. To
construct the subgraph Gx , as described in Equation (4.41), it is sufficient to observe
that x3 lies within the ε-neighborhood of x1, and x4 lies within the ε-neighborhood
of x2. Consequently, in (b), vertices 1 and 3 are connected, as well as vertices 2 and 4.
Finally, in (c), the increasing functions determined by x ∈R4 are depicted. The first
function, denoted as αx , encodes the fact that x3 is the first coordinate of the second
part within the angle opening from x2, and similarly for x4 with respect to x2. On the
other hand, the second function, denoted as ωx , indicates that x3 is the last coordinate
of the second part within the angle opening from x1, and similarly for x4 with respect
to x2. Therefore, the two increasing functions associated with the initial condition are
built.

Now the following set of increasing functions is defined. Note that the domain of
the increasing function has dimension N and the image has dimension N +2.

IN := {φ : {1, . . . , N } → {0, . . . , N +1} : φ(n +1) ≥φ(n) for all 1 ≤ n < N }.

From IN , it can be defined the following collection of pairs of increasing functions:

ΦN ,N := {(α,ω) ∈ IN × IN : im(α) ⊂ [1, N +1], (4.40)

im(ω) ⊂ [0, N ] and α≤ω+1},

and it codes all the ε-synchronized subnetworks of KN ,N compatible with an ordered
initial conditions x1 ≤ x2 ≤ ·· · ≤ xN , xN+1 ≤ xN+2 ≤ ·· · ≤ x2N . The correspondence is
given as follows: For each (α,ω) ∈ΦN ,N , the subnetwork G(α,ω) ⊂ KN ,N is constructed
with edges in the set

E(α,ω) = {(n, N +m) : 1 ≤ n,m ≤ N , and α(n) ≤ m ≤ω(n)}, (4.41)
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x4

x3

x2

x1

4

3

2

1

αx=(1,2).

ωx=(1,2).

(a) (b) (c)

Figure 4.13 – Construction of the increasing functions αx and ωx from a given initial
condition x ∈R4. In (a), a representation of the values of an initial condi-
tion x ∈ R4 are shown, and these values are grouped in the same parts
for their sites in K2,2. Furthermore, at the coordinates x1 and x2 a fan
is opened that is projected to the second group, this is to represent the
ε-neighborhood around them, because x1 and x3 are within the same
neighborhood. Then, in (b), an edge joining the corresponding vertices
is drawn, and the same happens with the coordinates x2 and x4. For the
construction of increasing functions in (c) it is enough to note the follow-
ing: the first function αx codified the fact that x3 is the first coordinate of
the second part inside the angle opening from x2 and similarly x4 with
respect to x2. On the other hand, the second function ωx , indicates that
x3 is the last coordinate of the second part inside the angle opening from
x1 and analogously x4 with respect to x2.

is associated, which is consistent with the fact that (α,ω) = (αx ,ωx) if and only if
G(α,ω) =Gx . The correspondence in Equation (4.41) establishes a mapping from ΦN ,N

to the collection of ε-synchronized subnetworks defined by ordered initial conditions.
In other words, it is the mapping λ associated with Equation (2.29).

Each pair of increasing functions α,ω : 1, . . . , N → 0,1, . . . , N +1 is compatible with
some x ∈ R2N according to Equations (4.38) and (4.39), and therefore codifies an
ε-synchronized subnetwork, provided that im(α) ⊂ [1, N + 1], im(ω) ⊂ [0, N ], and
α≤ω+1. This initial condition x ∈R2N can be constructed as follows.

Firstly, for each 1 ≤ n ≤ N the set:
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An := {1 ≤ m ≤ N : α(n) ≤ m ≤ω(n)},

is defined. Now, the partition:

{1,2, . . . , N } = ⊔̀
k=1

Ik ,

where for each 1 ≤ k ≤ ` can be written. Then, Ik = {nk ,nk +1, . . . ,mk } is such that
An ∩An+1 6= ; for each nk ≤ n < mk and it is a maximal element in the sense of
inclusion (Ik ( I ⇒ ⋃

n∈Ik
An is not an interval). Note that n1 = 1 and that Ik = {nk }

whenever α(nk ) =ω(nk )+1.

The next step is that for each 1 < k ≤ `, let ∆ : Ik → Ik be such that

∆(n) = max{m ∈ Ik : An ∩Am 6= ;}.

It is easy to observe that ∆(n) ≥ n, and ∆(n) = n if and only if n = nk = mk . To each
∆, we can associate a directed tree Tk with vertices in Ik , rooted at mk , and arrows
given by n 7→ ∆(n). The structure of these trees is similar to the trees described in
Section 4.1 for the complete graph KN .

Additionally, let:

nk 7→∆(nk ) 7→ · · · 7→∆ j (nk ) 7→ · · · 7→ mk =∆hk (nk ),

be the maximal path in Tk and for each 1 ≤ j ≤ lk let V j =∆− j ({mk }) be the j -th level
of Tk . Clearly:

minV j =∆hk− j (nk ) and maxV j < minV j−1,

for each 0 ≤ j ≤ hk .

Now assume that xnk is given. It defines:

nk, j := minV j and xnk, j := xnk + jε,

for each 1 ≤ j ≤ hk . Now, for nk, j ≤ n < nk, j−1, let:

xn = xnk, j +
(n −nk, j )ε

n j−1 −nk, j
.

With:

δk := 1

2
min

nk≤n<mk
(xn+1 −xn),

for each nk ≤ n < mk and α(n) ≤ m <α(n +1), let:

xN+m = xn − (ε−δk ).
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For nk,1 ≤ n < nk,0 ≡ mk and ω(n) < m ≤ω(n +1), let:

xN+m = xn + (ε−δk ).

Furthermore, for α(mk ) ≤ m ≤ω(nk,1), define:

xN+m = xnk,1 +xmk

2
.

In order to complete the specification of all the coordinates, fix x1 = xn1 = 0 and for
each 1 ≤ k ≤ ` let:

xnk := xmk−1 +3ε.

Finally, for each m ∉⋃N
n=1 An , let:

k(m) := min{1 ≤ k ≤ ` : α(nk ) > m}

and define:
xN+m := xN+α(nk ) −3

ε

2
.

If ω(N ) < N , then define:

xN+m := xm`
+3

ε

3
.

With this, the construction of the initial condition associated with the two increasing
functions is finalized.

The pairs of increasing functions in ΦN ,N can be related to combinatorial objects,
the parallelo-polyminoes inscribed in a rectangle. Formally, the number of parallelo-
polyminoes in the lattice of size p × q is given by the Narayana number Barcucci,
Frosini, and Rinaldi 2005 and the dependency is like the following Equation (4.42), as
described in Section 2.1.5.

T p+q−1
q = 1

p +q −1

(
p +q −1

q

)(
p +q −1

q −1

)
. (4.42)

Furthermore, to each couple of increasing functions (α,ω) ∈ ΦN ,N a parallelo-
polyminoe in {0,1, . . . , N+1}×{0,1, . . . , N+1} with border functions L,U : {1, . . . , N+1} →
{0,1, . . . , N +1} can be associated, such that:

L(n) =
{

0 for n = 1,
α(n −1)−1 for 2 ≤ n ≤ N +1,

(4.43)

And:

U (n) =
{

ω(n)+1 for 1 ≤ n ≤ N ,
N +1 for n = N +1.

(4.44)

In this way, an injective correspondence between parallelo-polyminoes and couples
of increasing functions in ΦN ,N is established, from which the cardinality of this set
can be calculated, which is expressed in the following equation.
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|ΦN ,N | = T 2N+1
N+1 = 1

2N +1

(
2N +1
N +1

)(
2N +1

N

)
. (4.45)

To end, as a conclusion of this section, making a simplification of the initial condi-
tions in R2N , through one of the symmetries that the complete bipartite graph KN ,N

has (the two groups of coordinates are in increasing order, and considering that they
are balanced), which describes a section of space that corresponds to where the be-
havior is monotonic, allows to establish a coding of the ε-synchronized subnetworks
through pairs of increasing functions, with which the concepts already established in
the literature describe one of the most important properties of the transition diagram
of L(MKN ,N ), that is: the number of pairs of increasing functions corresponds to the
number of possible states in the transition diagram.

4.2.2 Unfeasible subgraphs of KN ,N

Given the characteristics of the pairs of increasing functions and the way they con-
sistently codes ordered and balanced initial conditions in the sense of ε-synchronized
subnetworks, it turns out that some subgraphs of KN ,N remain uncoded, precisely
because they are not feasible by no initial condition. Initially, it can be thought that all
the subgraphs of KN ,N are feasible by initial conditions, which unfortunately is not
true, below are described these types of subgraphs.

To begin, an interesting note is that for the complete bipartite graph case, unlike the
case exposed in Section 4.1.2, initial conditions in the form of a fork or a hole can be
feasible, since this kind of subgraphs of KN ,N does not lead to any contradiction when
an initial condition is on it. As is shown in Figure 4.14, there are two subgraphs of the
complete bipartite graph K3,3, which, in principle, are unfeasible if they are considered
as subgraphs of the complete graph K6, but in K3,3 are feasible. For example, fixing
the corresponding ε> 0 to build the subgraph depicted in (a), means that |x1 −x5| ≤ ε,
|x2 − x5| ≤ ε and |x3 − x5| ≤ ε, and there is no constraint, for instance, |x2 − x1| ≤ ε, in
case, it is not necessary to draw any edge between vertices 1 and 2, because this edge
does not exist in K3,3, an explicit initial condition for constructing this subgraph is
when x1 = x2 = x3 = x5 and |x5 − x4| = |x5 − x6| = 3ε. In the case of (b), there are a
similar argument, fixing the corresponding ε> 0 such that the conditions to have the
subgraph represented in that image, implies that |x1−x5| ≤ ε, |x2−x5| ≤ ε, |x2−x4| ≤ ε

and |x1 − x4| ≤ ε, and there are any constraints saying that, for instance |x1 − x2| ≤ ε,
in this case, but since the edge joining vertices 1 and 2 does not exist in K3,3, then
it is not drawn, an explicit initial condition for constructing this subgraph is when
x1 = x2 = x4 = x5 and |x5 −x3| = |x5 −x6| = 3ε.

Although these two subgraphs are feasible in the case of the complete bipartite
graph in any dimension, there is another subgraph that is unfeasible, the hole of
dimension 6 with all permutations of its vertex labels, an example of this subgraph
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(a) (b)

Figure 4.14 – Feasible subgraphs of K3,3. The subgraphs presented in (a) and (b) corre-
spond to the fork and the hole respectively considering as subgraphs of
K3,3, there is no impediment to build it, then, they are performed by an
initial condition on R6, unlike if they are considered as subgraphs of the
complete graph of dimension 6 K6.

is shown in Figure 4.15. If there were an initial condition x = (x1, x2, x3, x4, x5, x6) ∈R6

that could perform it, the edges present would mean on the one hand that |x6−x1| ≤ ε,
|x6 − x3| ≤ ε, |x5 − x2| ≤ ε, |x5 − x3| ≤ ε, |x4 − x1| ≤ ε and |x4 − x2| ≤ ε. And on the other
hand, that |x6−x2| > ε, |x5−x1| > ε and |x4−x3| > ε. Also, there is no restriction for the
distances |x3 −x1|, |x3 −x2|, |x2 −x1|, |x6 −x4|, |x6 −x5| and |x5 −x4|, since this graph
is considered a subgraph of K3,3.

Suppose x1 is the smallest coordinate of x, then x4 is to its right, that is x4 = x1 +ε1

such that ε1 ≤ ε. Then x6 must also be to the right of x1, that means x6 = x1 +ε2 such
that ε2 ≤ ε. If x4 < x6, since |x4 − x2| ≤ ε, then |x6 − x2| ≤ ε, which is a contradiction.
Therefore x4 > x6, and x2 is to the right of x4, that is x2 = x4 + ε3 such that ε3 ≤ ε. If
x5 > x2, and then x3 > x5, then |x6 − x3| > ε, which is also a contradiction. If x5 > x2,
then x3 < x5, but x3 > x2, then also |x6 − x3| > ε. If x5 > x2, then x3 < x5, but x3 < x2,
then |x4 − x3| ≤ ε, which is a contradiction. The only remaining case is that x5 < x2,
such that x5 > x1 + ε, that is, is to the right of x4. To finish, x3 need to be placed. If
x3 > x5, and x3 > x2, then |x6 −x3| > ε, which is a contradiction. If x3 > x5, and x3 < x2,
then |x4−x3| ≤ ε, which is also a contradiction. Finally, if x3 < x5, then also |x4−x3| ≤ ε.
It is concluded that there is no suitable place to put x3 and thus, there is no initial
condition that can perform this subgraph. This same procedure is also followed to
verify all possible symmetries. Therefore, an important observation is that not all
subgraphs of KN ,N are realizable by an initial condition when N ≥ 3.

The important fact to highlight in this section is that not all the subgraphs of the

121



4 Results – 4.2 The transition diagram of L(MKN ,N )

2

1

5

4

63

Figure 4.15 – Unfeasible subgraph of K3,3. This case corresponds to the hole of dimen-
sion 6, seen as a subgraph of KN ,N or as a subgraph of KN is unfeasible
by some initial condition with dimension greater than 6.

complete bipartite graph KN ,N (when the dimension is greater than 6), are feasible
for some initial condition, therefore, establish how many states its transition diagram
has is not a trivial problem, which could be calculated exactly in Section 4.2.1, when a
symmetry of the graph and balanced initial conditions are considered.

4.2.3 Paths towards synchronization
In this section the paths towards the synchronization of the Laplacian system ap-

plied to the complete bipartite graph of dimension 2N are studied, from the coding
established in Section 4.2.1. To begin with, the conditions that the pairs of increasing
functions must fulfill to they can be consecutive to form a path towards synchroniza-
tion are mentioned. In addition, concrete example for dimensions four are presented.
It needs to be noted that the transition diagram contains all the paths towards synchro-
nization starting at balanced initial conditions, but it also contains paths which are
not compatible with any balanced initial condition. In general, a bound is presented
for the number of paths towards synchronization in the Laplacian system applied to
the complete bipartite graph of dimension 2N transition diagram. Finally, two types of
distributions associated to path lengths in the transition diagram of L(MKN ) are shown.

Given the correspondence established by Equation (4.4), each sequence of ε-synchronized
subnetworks defined by an ordered and balanced initial condition can be accurately
represented by the corresponding sequences of increasing function pairs given by
Equations (4.38) and (4.39). As discussed in Section 4.2.1, for a balanced initial con-
dition x ∈ R2N , the differences xN+m(t)− xn(t) converge monotonically to 0 at the
same rate. In this case, the maps t 7→ αx(t ) and t 7→ ωx(t ) are both coordinate-wise
monotonically non-decreasing, and they converge to the constant functions 1(n) = 1
and N(n) = N at time:
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t1,N := log |x1 −x2N |− log(ε)

N
.

The sequence of switching times 0 < t1 < t2 < ·· · < t` is such that (αx(tτ),ωx(tτ)) 6=
(αx(tτ+1),ωx(tτ+1)). We denote αtτ as ατ and ωtτ as ωτ. In a typical initial condition, at
each switching time, only one of the functions ατ or ωτ changes, and it changes at
only one site. The sequence ((α0,ω0), (α1,ω1), . . . , (α`,ω`)) can be determined by the
initial couple (α0,ω0), the jump sites n1,n2, . . . ,n` ∈ 1,2, . . . , N`, and the binary labels
q1, q2, . . . , q` ∈ (−1,+1)` as follows:

(ατ+1,ωτ+1) =
{

(ατ−δnτ ,ωτ) if qτ =−1,
(ατ,ωτ+δnτ) if qτ =+1.

(4.46)

To the couple (ατ,ωτ), a parallelo-polyminoe according to Equations (4.43) and
(4.44) can be associated. In the transition (ατ,ωτ) → (ατ+1,ωτ+1), the area inside the
corresponding parallelo-polyminoe increases by one unit until the greatest area. There
is an example of this transition in Figure 4.16, the parallelo-polyminoes only differ by
one unit of area.

U = (1,1,1,2,3).
L = (0,0,0,0,1).

U = (1,1,2,2,3).
L = (0,0,0,0,1).

−→

(a) (b)

Figure 4.16 – Example of the transition between parallelo-polyminoes. In (a) and
(b), two parallelo-polyminoes and their respective increasing functions
that generate them U (red line) and L (blue line) are shown. From
the parallelo-polyminoe shown in (a), there is a step to the parallelo-
polyminoe shown in (b). In its U-functions, there is only one unit in-
crease in one coordinate. Which translates to an increase of an area unit
between them, in other words, this is how it looks the transition between
parallelo-polyminoes.

Realizable sequences ((n1, q1), (n2, q2), . . . , (n`, q`)) are those that are compatible
with a balanced initial condition x ∈R2N and can be completely determined by the
differences:
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∆n,m := xN+m −xn ,

with 1 ≤ n,m ≤ N as follows.

For ε< |∆n1,m1 | < |∆n2,m2 | < · · · < |∆nN 2 ,mN 2 | the sequence:

((n1, q1), (n2, q2), . . . , (nN 2 , qN 2 )),

where qτ = sign(∆nτ,mτ) for each 1 ≤ τ≤ N 2.

All the possible orderings:

∆ := {∆n,m : 1 ≤ n,m ≤ N },

are compatible with an initial condition x ∈R2N , not necessarily balanced. Assum-
ing that the dynamics towards synchronization is solely determined by this ordering,
similar to the balanced case, a transition diagram can be constructed. The vertices
of this diagram belong to the set ΦN ,N and the maximal paths start at couples (α,ω)
(representing the disconnected subnetwork) and end at the couple (1,N) (representing
the complete bipartite graph KN ,N ). This directed graph encompasses all the paths
towards synchronization starting from balanced initial conditions. However, it is im-
portant to note that it also includes paths that are not compatible with any balanced
initial condition.

For instance, in the case of N = 2, there are a total of 20 possible orderings∆n,m :,1 ≤ n,m ≤ N
that are realizable. These orderings, along with their corresponding paths towards
synchronization, are presented in Table 4.5 and illustrated in the transition diagram
shown in Figure 4.18. However, it is important to note that out of these 20 orderings,
there are 4 that are incompatible with a balanced initial condition. These incompati-
ble orderings are indicated in red color. The two-digit strings used to represent the
functions α and ω encode each ordering.

In the transition diagram, the underlined starting configurations represent the
disconnected network, while the ending vertex (11,22) corresponds to the couple
representing the complete bipartite graph K2,2. By removing the starting couples
indicated in red, which are incompatible with a balanced initial condition, the result-
ing transition diagram represents all the paths towards synchronization for balanced
initial conditions.

In Figure 4.17, the coordinate arrangements that are incompatible with a bal-
anced initial conditions are shown. In (a), for x1 < x2 < x3 < x4 and, in (b), for
x3 < x4 < x1 < x2 are depicted. In general, there are 2 arrangements of initial condi-
tions, x1 < ·· · < xN < xN+1 < ·· · < x2N and xN+1 < ·· · < x2N < x1 < ·· · < xN , which are
incompatible with a balanced initial condition. These arrangements define maximal
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x3

x4

x2

x1

x1

x2

x4

x3

(a) (b)

Figure 4.17 – Arrangements incompatible with a balanced initial conditions in R4. Of
all the arrays of 4 components (x1, x2, x3, x4) ∈R4 that can be generated
that satisfy x1 < x2 and x3 < x4, there are two arrays that cannot be
generated by balanced initial conditions. In (a), the case in which x1 <
x2 < x3 < x4 is shown. In (b)m the case x3 < x4 < x1 < x2 is shown. It can
be observed that the average of the two parts can not be the same.

paths starting at vertices ( 1, 0) and ( N+1, N), which for the case N = 2, that is for
L(MK2,2 ) transition diagram, is indicated in red in the following Figure 4.18.
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Coordinates Differences Signs
x1 < x2 < x3 < x4 |∆2,1| < |∆2,2| < |∆1,1| < |∆1,2| (+1,+1,+1,+1)

|∆2,1| < |∆1,1| < |∆2,2| < |∆1,2| (+1,+1,+1,+1)
x1 < x3 < x2 < x4 |∆2,1| < |∆2,2| < |∆1,1| < |∆1,2| (−1,+1,+1,+1)

|∆2,2| < |∆2,1| < |∆1,1| < |∆1,2| (+1,−1,+1,+1)
|∆2,2| < |∆1,1| < |∆2,1| < |∆1,2| (+1,+1,−1,+1)
|∆2,1| < |∆1,1| < |∆2,2| < |∆1,2| (−1,+1,+1,+1)
|∆1,1| < |∆2,1| < |∆2,2| < |∆1,2| (+1,−1,+1,+1)
|∆1,1| < |∆2,2| < |∆2,1| < |∆1,2| (+1,+1,−1,+1)

x1 < x3 < x4 < x2 |∆1,1| < |∆2,2| < |∆1,2| < |∆2,1| (+1,−1,+1,−1)
|∆2,2| < |∆1,1| < |∆2,1| < |∆1,2| (−1,+1,−1,+1)

x3 < x4 < x1 < x2 |∆1,2| < |∆1,1| < |∆2,2| < |∆2,1| (−1,−1,−1,−1)
|∆1,2| < |∆2,2| < |∆1,1| < |∆2,1| (−1,−1,−1,−1)

x3 < x1 < x4 < x2 |∆1,2| < |∆1,1| < |∆2,2| < |∆2,1| (+1,−1,−1,−1)
|∆1,1| < |∆1,2| < |∆2,2| < |∆2,1| (−1,+1,−1,−1)
|∆1,1| < |∆2,2| < |∆1,2| < |∆2,1| (−1,−1,+1,−1)
|∆1,2| < |∆2,2| < |∆1,1| < |∆2,1| (+1,−1,−1,−1)
|∆2,2| < |∆1,2| < |∆1,1| < |∆2,1| (−1,+1,−1,−1)
|∆2,2| < |∆1,1| < |∆1,2| < |∆2,1| (−1,−1,+1,−1)

x3 < x1 < x2 < x4 |∆1,1| < |∆2,2| < |∆1,2| < |∆2,1| (−1,+1,+1,+1)
|∆2,2| < |∆1,1| < |∆2,1| < |∆1,2| (+1,−1,−1,+1)

Table 4.5 – Increment orders at opposite parties, and corresponding signs for typical
initial conditions in R4. The twenty different orderings of the differences
between coordinates at opposite parties, and corresponding signs, for a
typical initial conditions in R4.
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(11,00)

(11,01)
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(11,12)
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(12,12)

(12,02)

(33,22) (23,12)

(13,12)

(22,22)

(11,22)

(12,11)
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(13,12)
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(22,11)

(22,12)

Figure 4.18 – Transition diagram of L(MK2,2 ) with labels assigned by the corresponding
increasing functions is shown. This is composed of 23 vertices and 31
edges. The vertices where a path can start (so that it is as long as possible),
are underlined, and are (22,11), (12,01), (13,02), (23,12), (11,00), (33,22).
The vertices that are in red are those that correspond to initial conditions
that are not balanced. And in the middle, the vertex (1,1,2,2) that corre-
sponds to the complete bipartite graph K2,2, is placed. This transition dia-
gram corresponds to the ordered initial conditions x = (x1, x2, x3, x4) ∈R4

such that x1 < x2 and x3 < x4, which are the ones that keep the monotony.
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Now, the number of paths towards synchronization in the Laplacian flow over the
complete bipartite graph KN ,N is estimated. Firstly, an easy upper bound for the num-
ber of paths towards synchronization starting at typical balanced initial conditions
x ∈R2N is written below in Equation (4.47). For each arrangement xi1 < xi2 < ·· · < xi2N ,
obtained by interplacing the first N coordinates with respect to the last N coordinates
while maintaining the order within each group, there are Golomb(2N ) different order-
ings for the differences xik −xi` . Each of these orderings corresponds to a path towards
synchronization. However, in this case, the path does not depend on the differences
between coordinates within the same group (i.e., first N or last N coordinates).

It is important to note that there are two coordinate arrangements that are incom-
patible with a balanced initial condition: one where x1 < x2 < ·· · < x2N and another
where xN+1 < xN+2 < ·· · < x2N < x1 < x2 < ·· · < xN . Therefore, the number of paths
towards synchronization in this case is upper bounded by the expression:

]Paths towards sync in L(MKN ,N ) ≤
((

2N
N

)
−2

)
Golomb(2N ). (4.47)

Once again, the growth of the number of paths towards synchronization with respect
to N defines a complexity function analogous to the topological complexity Farber
2003 as a function of time.

Similar to the case presented in Section 4.1, the number of paths towards synchro-
nization of a given length, in this case written as FN ,N (`), is given by the number
of pairs of increasing functions (α,ω) ∈ΦN ,N such that the corresponding parallelo-
polyminoe has an interior area of (N +1)2 −` units. Hence,

FN ,N (`) :=
∣∣∣∣∣
{

(α,ω) ∈ΦN ,N :
N+1∑
n=1

(U (n)−L(n)) = (N +1)2 −`

}∣∣∣∣∣ . (4.48)

Here, L,U : {1, . . . , N +1} → {0,1, . . . , N +1} are the polyminoe border functions de-
fined from the couple of increasing functions (α,ω) by the Equations (4.44) and (4.43),
mentioned before. In the Table 4.6 the numbers that generate the distributions FN ,N (`)
for the first dimensions 2 ≤ N ≤ 8 are shown.

For each N and 0 ≤ ` ≤ N , the integer FN ,N (`) coincides with the `-th term of
the sequence of Sloans (it can be found by writing the entry A000712 of the On-line
Encyclopedia of Integer Sequences Sloane 2022), which among other things, counts
the number of couples of integer partitions P = (p1 ≥ p2 ≥ ·· · ≥ pk ), Q = (q1 ≥ q2 ≥
·· · ≥ qr ), such that

k∑
i=1

pi +
r∑

j=1
q j = `. (4.49)
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N FN ,N (`)
2 (1,2,5,6,6)
3 (1,2,5,10,16,24,31,36,30,20)
4 (1,2,5,10,20,32,53,78,111,146,187,216,243,240,210,140,70)
5 (1,2,5,10,20,36,61,98,153,228,327,454,611,798,1005,1236,1466,1688,1862,1980,

1971,1850,1540,1120,630,252)
6 (1,2,5,10,20,36,65,106,173,268,409,600,867,1212,1671,2244,2966,3826,4868,

6056,7422,8906,10519,12166,13830,15352,16704,17656,18133,17890,16903,
14966,12306,8988,5670,2772,924)

7 (1,2,5,10,20,36,65,110,181,288,449,680,1013,1474,2107,2958,4088,5558,7450,
9842,12820,16488,20932,26246,32507,39790,48116,57538,67984,79414,91653,
104578,117806,131096,143865,155692,165779,173530,177877,178282,173616,
163632,147855,127092,102060,75432,49434,27720,12012,3432)

8 (1,2,5,10,20,36,65,110,185,296,469,720,1093,1618,2369,3400,4824,6732,9296,
12654,17054,22694,29912,38976,50333,64320,81489,102242,127219, 156850,
191841,232602,279832,333830,395204,464030,540737,625028,716966,815766,
920990,1031168,1145253,1260882,1376172,1487820,1593022,1687242,1766791,
1826112,1860845,1865122,1834995,1765746,1656541,1506540,1320987,1106748,
877470,647592,437118,260832,132132,51480,12870)

Table 4.6 – Number FN ,N (`) of couples (α,ω) ∈ΦN ,N codifying a ε-synchronized sub-
networks starting in a path towards synchronization of length `.

Indeed, to each couple of integer partitions (P,Q), it can be associated a unique
couple L,U : {1,2, . . . , N+1} → {0,1, . . . , N+1} of upper and lower border functions such
that U (i ) = N +1−pi and L(N +2− j ) = q j .

Clearly the previous sum presented in Equation (4.49), occurs if and only if the area
of the parallelo-polyminoe with border functions L and U is exactly (N +1)2 −`.

The correspondence between integer partitions and border functions cannot go
further than `= N , since for `= N +1 the couple ((N +1),(0)) of partitions does not
define admissible border functions in the considered rectangle.

On the opposite extreme, FN ,N (N 2) counts all the parallelo-polyminoes in {0,1, . . . , N+
1}× {0,1, . . . , N +1} composed of 2N +1 squares. These squares are arranged in a path
going from (0,0) to (N +1, N +1), the next square place at the left or on top of the
previous one. In Figure 4.19 an example for N = 4 is depicted, of this array of squares a
path from (0,0) to (5,5) which is made up of 9 squares is shown, which coincides with
the notes mentioned above.

Each one of these arrangements can therefore be codified into a sequence:

(a1, a2, . . . , a2N ) ∈ {L,T }2N ,

with exactly N entries equal to T . From this an exact formula can be written.
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U = (1,2,3,4,5).
L = (0,0,1,2,3).

Figure 4.19 – Example of parallelo-polyminoe in a path from (0,0) to (5,5). Parallelo-
polyminoe in a path from (0,0) to (5,5) and the functions U and L that
form it are shown. If N = 4 is fixed, and it is constructed such that the
next square place at the left or on top of the previous one, it is verified
that is made up of 2N +1 = 9 squares.

FN ,N (N 2) =
(
2N
N

)
. (4.50)

On the other hand, the normalized cumulative distribution, fN ,N : [0,1] → [0,1], is
given by:

fN ,N (x) = 1

|ΦN ,N |
∑

n≤x×N 2

FN ,N (x), (4.51)

where the number FN ,N is given by Equation (4.48) and the number |ΦN ,N | is already
defined in Equation (4.45). In this case, there are numerically computed fN ,N (x) for
increasing N , and observe how it approaches a limit distribution x 7→ f(x) whose
density %(x) := d f(x)/d x approaches the curve depicted in Figure 4.20, which means
that for N sufficiently large and δ> 0 sufficiently small, the number of paths of length
N 2(x ±δ)/2 is approximatively %(x)δ. As in the case of the Laplacian flow applied to
the complete graph KN , the numerical computation suggests that % is continuous,
unimodal, and negatively skewed.

Throughout this section, it is emphasized that in the case of KN ,N there is not
complete panorama of its paths towards synchronization, since this methodology, and
therefore this analysis, is limited to the initial conditions that are balanced, because
they are the initial conditions that keep the monotony of the system. Furthermore, it
is worth noting that currently there are no known combinatorial results that facilitate
the calculation of these distributions for arbitrary large sizes N . However, by directly
computing and analyzing these distributions for small dimensions, it is observed that
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Figure 4.20 – The probability density function %(x) of the asymptotic distribution of
the normalized length of a path towards synchronization.

the normalized distribution fN ,N converges rapidly. A unimodal distribution with has
a maximum at:

modeN ,N (`) := max
1≤`≤N 2

FN ,N (`),

≈ 0.74118 N 2. (4.52)

as it is depicted in Figure 4.20 can be obtained. The distribution is negatively skewed,
and the mean length of these paths being larger than the most frequent length, as it is
shown in the following expression:

〈`〉N ,N :=
∑N 2

`=1`FN ,N (`)

T (2N +1, N +1)
,

≈ 0.8125 N 2, (4.53)

> modeN ,N (`).

The estimations shown in Equations (4.52) and (4.53) were obtained by using a
relatively low (N = 8) dimension. As mentioned above, despite this low dimension an
accurate qualitative behavior of the asymptotic distribution can be obtained. Which
means that it is possible to qualitatively describe a typical synchronization path for
the Laplacian of the complete bipartite graph L(MKN ,N ), starting at a random balanced
ordered initial condition x ∈R2N . For instance, this kind of path towards synchroniza-
tion would most likely be of the length indicated in Equation (4.52).

As a conclusion of this section, for two pairs of increasing functions to be consecu-
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tive on a path towards synchronization then, respective two of them must be equal and
the other pair must differ by one unit of area (if it corresponds to the upper function,
it must go up, and if it corresponds to the lower function, must go down), in this way a
sequence of jump sites and the direction (up or down) are assigned. These realizable
sequences are compatible with balanced initial conditions and are completely deter-
mined by the differences between the two parties of the coordinates, of which clearly
not all correspond to balanced initial conditions. Then the famous problem that
computes the number of combinatorially distinct Golomb rulers in dimension 2N , is
necessary to make an adjustment to constrain the paths to synchronization bound (in
the case of the Laplacian flow applied to the complete bipartite graph). Furthermore,
the number of paths towards synchronization of size ` is computationally given for the
first eight dimensions, which its probability density function for N sufficiently large
is given, and from which the behavior for the mode and the mean path length is ob-
tained. Once again, the coding done through the couples of increasing functions allow
to formally describe a part of the space of initial conditions by their transition diagram.

4.2.4 Discussion
In this section it is formally and rigorously analyzed the behavior of the transition

diagram of the Laplacian system applied to the complete bipartite graph of dimension
2N . To achieve this objective, a coding of the subgraphs of KN ,N was proposed, which
preserves the monotonic dynamics of the system and turns out to be very useful
because it transforms it into a combinatorial problem that has been widely studied
before.

One of the advantages of using this coding is that it automatically generates the
subgraphs that are feasible for a set of initial conditions. Despite of this, it was con-
sidered pertinent to give the examples that show that not all the subgraphs of KN ,N

are feasible. Then, it can be stated that when N ≥ 3 not all subgraphs of the complete
bipartite graph are feasible for some initial condition on the respective space R2N .

Moreover, two key simplifications for the analytical study of the transition diagram
of L(MKN ,N ) are made. The first, defining the coding of the subgraphs that are formed
from initial conditions, for whose two groups of coordinates are in strictly increasing
order, such that, the set of associated ε-synchronized subnetworks have a relation
with the set of the couples of increasing functions. This simplification allows to focus
the attention on the diversity of states generated by considering a single symmetry
of the complete bipartite graph. On the other hand, the second simplification made
in this section is: balanced initial conditions in the space R2N are considered (that is,
the mean of the two parts of the coordinates are equal). This type of initial conditions
represents all the monotonous dynamics of space. As in the previous case, typical
initial conditions generate typical paths, which are the ones with the longest lengths,
that is, if they start forming the totally disconnected subgraph, then they will reach
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synchronization in N 2 steps.

By considering these two simplifications in the space of initial conditions, it is
possible to establish the rules by which two pairs of increasing functions will be con-
secutive on a path towards synchronization. That is, respective two of them must
be equal and the other pair must differ by one unit of area, if it corresponds to the
upper function, it must go up, and if it corresponds to the lower function, must go
down, in this way a sequence of jump sites and the direction (up or down) are assigned.

These realizable sequences are compatible with balanced initial conditions, and
they are completely determined by the differences between the two parties of the
coordinates. Clearly, not all correspond to balanced initial conditions. The problem of
counting how many realizable paths there are in each dimension 2N is equivalent to
counting the number of combinatorially distinct Golomb rulers (but in this case, with
an adjustment), which is a famous open problem. Some analytical and numerical
bounds have been provided in low dimensions (due to the great memory demand that
the computation of the Golomb rulers requires).

To end this discussion, it should be noted that having this coding allow to associate
characteristics of the combinatorial objects that have a relevant meaning in terms of
the study of the transition diagram, which are listed below.

Combinatorial concept Transition diagram property

Narayana number Possible states

Combinatorially different
Golomb rulers

Number of paths towards
synchronization

Number of parallelo-polyminoe
with interior area (N +1)2 −`

Number of synchronized
sequences of length `

4.3 About other transition diagrams
In this section it is briefly formally and rigorously analyzed the behavior of the

transition diagrams of the Laplacian system applied over the cycle graph of dimension
N and of the Kuramoto model applied over the complete graph of dimension N . The
formal and rigorous analyzes concerning these two systems are presented with the
aim of giving a perspective and a starting point for future research.
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4.3.1 The transition diagram of L(MCN )

In this section it is formally and rigorously analyzed the behavior of the transition
diagram of the Laplacian system applied to the cycle graph of dimension N . This study
is organized as follows: to begin with, the two dynamics are shown in the Laplacian
system with respect to the dimension. Then, the feasible subgraphs that the cycle
graph has been shown. Finally, a bound for the maximum length of the paths that are
observed in the associated transition diagram is presented.

As mentioned in the Section 2.1 (specifically in Equations (2.12) and (2.13)), the
eigensystem of the Laplacian system applied to the cycle graph L(MCN ) (in this Section
it is written just as L), has the symmetries inherited by the graph in question, besides
there is a difference in the behavior of the system depending on the parity of the
dimension N . When the system has an even dimension, it behaves in one way, and
when it has an odd dimension, it behaves in another way. This can be inferred when
the flow of an initial condition of the space is analyzed, as it is done in the following.

To begin, any initial condition x ∈ RN can be written as a linear combination of
the eigenbasis BL = {v1, v2, ..., vN } of L(MCN ), for some coefficients αi ∈ R, where
1 ≤ i ≤ N , as the following expression:

x =
N∑

i=1
αi |vi 〉 .

On the other hand, its flow meets:

x(t ) =
N∑

i=1
αi eλi t |vi 〉 ,

=
N−1∑
i=1

αi eλi t |vi 〉+αN |vN 〉 ,

= αN |vN 〉+
⌊ N−1

2

⌋∑
i=1

eλi t (αi |vi 〉+αN−i |vN−i 〉)

+αi∗eλi∗ t |vi∗〉 .

Where the i∗ term only appears when the dimension N is even, and is defined as
following:

i∗ = N

2
+1.

Therefore, with this fact, it can be inferred that depending on the parity of the di-
mension N , the Laplacian system applied to the cycle graph have a different dynamic.

On the other hand, the flow at each coordinate meets:
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x j (t ) = αN +
⌊ N−1

2

⌋∑
i=1

eλi t (αi v j
i +αN−i v j

N−i )+αi∗eλi∗ t v j
i∗ ,

= αN +
⌊ N−1

2

⌋∑
i=1

eλi t
(
αi cos

(
2π j i

N

)
+αN−i cos

(
2π j (N − i )

N

))
+αi∗eλi∗ t v j

i∗ ,

= αN +
⌊ N−1

2

⌋∑
i=1

eλi t cos

(
2π j i

N

)
(αi +αN−i )+αi∗eλi∗ t v j

i∗ .

And also, by the symmetry of the function cos(x) and the considered interval(
0, 2π(N−1)

N

)
, the eigenvectors are equal by couples as the following relation vi = vN−i

for 1 ≤ i ≤ ⌊N−1
2

⌋
. The symmetry of the eigenvalues and the eigenvectors make that

the flow of the coordinates also have a symmetric behavior.

One of the most important notes related to the dynamics of the cycle graph is that
all its subgraphs are feasible for some initial condition. Hence:

]Vertices in the transition diagram of L(MCN ) = 2N−1. (4.54)

The simplest way to construct an initial condition x ∈ RN that meets the require-
ments of a given subgraph is: if vertex i is connected to vertex j , then xi = x j and make
sure that when there is no edge, the vertices are further apart than the corresponding
ε> 0.

On the other hand, due to the way in which the eigenvalues and eigenvectors in the
spectrum of L(MCN ) are defined, the differences of the coordinates are not monotone,
then, they are crossings between them. This causes that the flow of the transition
diagram is not in a single direction (as it has been observed in the two previous cases,
whichever vertex was chosen at the beginning, the next step was closer to the node
that represents complete synchronization), that is, there are cycles or returns from low
levels to high levels. Also, for this reason, the number of steps towards synchronization
often exceeds the total number of edges of CN which is N −1.

As a conclusion of this section, since the Laplacian system applied to the cycle graph
does not have a monotone dynamic quickly to find, it was not possible to provide a
coding in terms of increasing functions as in the previous cases. However, it was possi-
ble to provide the number of possible states, and a lower bound for the depth of the
transition diagram. It is hoped that in the future a good coding will be achieved in such
a way that it will be possible to describe its transitory dynamics in a combinatorial way.
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4.3.2 The transition diagram of the Kuramoto model
In this section it is formally and rigorously analyzed the behavior of the transition

diagram of the Kuramoto model applied to the complete graph of dimension N and
the complete bipartite graph of dimension 2N . This study is organized as follows:
first, a discussion is made of why and when it is possible to use the same coding in
terms of increasing functions from the case of the Laplacian system to the case of the
Kuramoto model in the complete graph. Finally, in the same way, it is discussed, and
the conditions to use the same coding in terms of pairs of increasing functions from
the case of the Laplacian system to the case of the Kuramoto model in the complete
bipartite graph are given.

Although the above presented results in Section 4.1 concern the Laplacian flow, they
can be applied in a particular region when the Kuramoto flow is considered. In the case
of the complete graph KN , the transition diagram resulting from the Kuramoto flow
captures a significant portion of the paths towards synchronization that originate from
a small neighborhood around the diagonal. In this region, the same coding scheme
for ε-synchronized subnetworks, as described in Section 4.1.1, can be applied. This
is because the order of the coordinates is preserved by the Kuramoto flow, allowing
us to use the set of increasing functions in ΦN for coding purposes. In fact, based on
Equation (2.25), where is the Kuramoto model applied on a network with a coupling
strength σ, then for a couple of index 1 ≤ n,m ≤ N :

d(xn −xm)

d t
= σ

(
N∑

j=1
sin

(
x j −xn

)− sin
(
x j −xm

))
,

= σr (sin(Θ−xn)− sin(Θ−xm)) ,

where r e iΘ =
(∑N

j=1 cos
(
x j

))+i
(∑N

j=1 sin
(
x j

))
, by expanding the Equation (2.22). Hence,

whenever xn = xm ,
d

d t
(xn −xm) = 0,

which implies that the order in the coordinates is preserved under the flow since no
crossing of coordinates is possible.

Assume that:
max{|xn − x̄| : 1 ≤ n ≤ N } < π

4
,

where x̄ =∑N
n=1 xn(0).

In this case:

|Θ− x̄| ≤ π

4
and

d

d t
(xn −xm) = 0,

if and only if xm = xn .
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Furthermore, in this case, the sign of (sin(Θ−xn)− sin(Θ−xm)) is the same as the
sign of (xm −xn), and therefore |xn −xm | decreases monotonously for all initial condi-
tions x ∈RN .

Numerical calculations have shown that the transition diagram obtained from the
Laplacian system applied to the complete graph KN is preserved by the Kuramoto
flow when considering a sufficiently small value of ε with respect to π/4, and initial
conditions x ∈ (S1)|V | such that |xn − x̄| <π/4 for all 1 ≤ n ≤ N .

On the other hand, for the case of the complete bipartite graph KN ,N , the order of
the coordinates at each of the two parts is preserved by the Kuramoto flow. For this, it
can be proceed as in an analogous way, which was exposed before, that is, to explore
the behavior between each couple 1 ≤ n,m ≤ N of coordinates, and obtain:

d(xn −xm)

d t
= σr2 (sin(Θ2 −xn)− sin(Θ2 −xm)) ,

d(xN+n −xN+m)

d t
= σr1 (sin(Θ1 −xn)− sin(Θ1 −xm)) ,

in this case, there is: r1 e iΘ1 =
(∑N

j=1 cos
(
x j

))+ i
(∑N

j=1 sin
(
x j

))
and similarity, r2 e iΘ2 =(∑N

j=1 cos
(
x j

))+ i
(∑N

j=1 sin
(
x j

))
.

From this it follows that if xn = xm then:

d

d t
(xn −xm) = 0,

and similarly for xN+n −xN+m ,

d

d t
(xN+n −xN+m) = 0.

The preservation of order in the coordinates at each part under the Kuramoto flow
enables us to utilize the same coding scheme for ε-synchronized subnetworks that
was initially defined for the Laplacian flow on the complete bipartite graph KN ,N . This
means that the coding scheme based on increasing functions can be applied consis-
tently to represent and analyze ε-synchronized subnetworks in both the Laplacian
and Kuramoto systems.

As there is mentioned Section 4.2, the transition diagram defined for the Laplacian
flow over the complete bipartite graph KN ,N , describes only the paths towards synchro-
nization corresponding to balanced initial conditions. In Figure 4.18, the red markings
indicate the ε-synchronized subnetworks that are incompatible with balanced initial
conditions. The complete transition diagram, including these subnetworks, allows
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for non-monotonic paths. Additionally, for unbalanced initial conditions x ∈R2N , the
flow does not preserve the order in the differences between coordinates.

As a conclusion of this section, it is possible to use the two codes that were used in
the case of the Laplacian system to apply them in the study of the transitory dynamics
of the Kuramoto model, when certain conditions are considered. In the case of the
complete graph, when initial conditions close to the diagonal are considered. In the
case of the complete bipartite graph, when the initial conditions are balanced (that is,
the same conditions that are considered for the linear case). The fact that the codes
can be reused allows to think of more general conditions to use them, for example, for
the complete graph it would be enough that the system that synchronizes is mono-
tonic, and its differences are monotonic. This generalization is expected to be made
formally in future works.
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Conclusions

In this thesis, I have studied the transition behavior of systems that synchronize.
Also, I have proposed a new approach to understand the paths towards synchroniza-
tion, especially for two concrete systems: the Laplacian system and the Kuramoto
model, which I applied in four different types of graphs: the complete graph, the
complete bipartite graph, the cycle graph, and the ring lattice family.

Two types of analysis were carried out in this thesis. The first is an exploratory study
based on computational calculations and simulations, to find the most important
characteristics of the two systems studied, applied on four types of graphs. The main
objective of this type of analysis was to recognize the behavior patterns that follow the
random generated initial conditions with the change of parameters (that is, systems
and graphs). In the second type of analysis presented in this thesis, a formal, rigorous,
and complete description was made, based on propositions, of the characteristics and
properties of the transitory state of these systems for typical initial conditions, which
completes the first analysis and thus includes the observations made.

The results of the exploratory study presented in this thesis, first, allowed to know
how the transitory state of the Laplacian system acts on the complete graph, the
bipartite graph, the cycle graph, and the ring lattice family, to distinguish and analyze
the features that make them different. In this way, the exploratory study allowed
to know that, from the ring lattice C (N ,k) (that has N vertices, and each of them is
connected with its k neighbors to the left, and its k neighbors to the right), is possible
to generalize the behavior of the analyzed graphs, that goes from the complete graph
to the cycle graph. It is possible because when the parameter k is varied, the density
of the graph edges changes, and the transition from a highly connected to a not so
connected graph behavior can be observed, and what features appear or change (as
internal directed cycles or monotonicity).

On the one hand, thanks to the monotonic behavior of the Laplacian flow in the
complete graph KN , it was possible to completely describe the behavior of their tran-
sient dynamics, using a codification of the ε-synchronized subnetworks by increasing
functions above the diagonal, which are well known and studied. On the other hand,
in the case of the transitory behavior of the complete bipartite graph KN ,N , a similar
codification was presented, but it is limited only to synchronizing paths which start at
special type of initial conditions, the balanced ones, which preserve a monotonous
behavior, and therefore, this methodology can be applied.
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On the contrary, in the case where there is no monotony in the flow towards syn-
chronization, specifically when considering the cycle graph and most of the members
of the ring lattice family, arguments and discussion about the behaviors observed in
the experimental studies were provided.

In all cases, I obtained a closed formula for the number of realizable states, and
in the monotonical cases, their states are given by combinatorial objects that codify
all the feasible ε-synchronized subnetworks. In contrast, determining a closed-form
expression for the number of paths towards synchronization in Laplacian systems
still poses a challenge. Nevertheless, it is feasible to establish bounds or conduct
computational calculations that can provide insights into their growth rate. From
these results about complexity, it can be concluded that with little information, that
is, from a small-dimensional system, an immense number of paths can be found.
Although it is known that in finite time, these systems converge to the synchronized
state, the number of ways in which the initial conditions reach the asymptotic state
grows at a factorial rate.

It is important to discuss the difference between the experimental study, in which
randomly generated initial conditions were considered, and the rigorous study, in
which typical initial conditions were considered for the monotonical cases. In the rig-
orous study, it has been said that randomly generating a non-typical initial condition
has zero probability, and then, the paths to synchronization for the typical initial con-
ditions would be the longest possible (in terms of the edges number of the considered
graph). On the other hand, in the experimental study, when the initial conditions are
randomly generated, the results indicate that the generated paths are not the longest,
as expected. This behavior is due to the threshold ε> 0 that is considered when the
simulations were made, then, when this threshold ε→ 0 decreases, the behavior tends
to the one observed for the typical initial conditions.

The probability density functions of the asymptotic distribution of the normalized
length of a path towards synchronization in both the complete bipartite graph KN ,N

and the complete graph KN exhibit similar characteristics. They are continuous, uni-
modal, and negatively skewed. However, the typical length, relative to the longest path,
is larger for the case of the complete bipartite graph KN ,N compared to the complete
graph KN .

In the case of the transitory behavior of the Kuramoto model applied on the com-
plete graph KN , it can be implemented the already defined methodology used to
describe the Laplacian system on the same graph in a neighborhood around the diag-
onal. For this reason, the dynamics in this region can be studied in a complete way. In
the other case, the description of transition diagram for the Laplacian flow over KN ,N ,
the same codification used to study the linear case for the balanced initial conditions
can be implemented. The full dynamics of this system would be the subject of future
work.
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Finally, it is worth noting that the ε-synchronizing sequences discussed in this thesis
can be viewed as a way of partitioning the basin of attraction of a particular attractor,
which in this case is the fully synchronized state. These sequences effectively divide
the space of initial conditions into different regions, with each region corresponding
to a specific ε-synchronized subnetwork. Since, for a given finite ε > 0, the final ε-
synchronized subnetwork will be reached in a finite time τ(ε, N ), if the space of initial
conditions has a finite volume, the entire space-time trajectory will also be bounded.
Therefore, these sequences serve to effectively partition the full space-time around
the diagonal.

Moreover, by associating each sequence with an ensemble of initial conditions
that realizes that sequence, it becomes possible to measure and assign weights (mea-
sures) to each sequence. This provides a means to further characterize the space-time
complexity by quantifying the distribution and properties of these ensembles. By
considering the ensemble measures, it becomes possible to gain deeper insights into
the structure and behavior of the space of initial conditions and their corresponding
trajectories towards synchronization.

Below are some perspectives and future work regarding the analysis of the transient
state of systems that synchronize.

As has been said and remembered throughout this thesis, there are different asymp-
totic states that a system that describes the synchronization phenomenon can reach,
for example, in the Kuramoto model there is a phase locking state, in which the dif-
ference between the phases of the N oscillators is equal to a fraction of the complete
angle, which is also an attractor. Given ε> 0, adjusting the definition of ε-synchronized
neighbors in the graph G = (V ,E) for vertices u, v ∈V , from being

|xu −xv | ≤ ε,

to

|xu −xv | mod

(
2π

|V |
)
≤ ε,

the transitory state can be studied before reaching the phase locking of the initial
condition, with the same methodology. This is recommended to study the behavior of
the family of graphs called ring lattice, when the Kuramoto model is applied, because
when the proportion of edges with respect to the number of edges of the complete
graph tends to zero (that is, when N grows and k remains constant), it is more likely
to find this state of phase locking than global synchronization state.

Some perspectives, regarding the formal and rigorous study of the cycle graph CN

and the family of the ring lattices C (N ,k) in the Laplacian system are mentioned. In
the first case, it is still necessary to find an encoding in which some degree of monotony
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is found, if possible, to continue with the approach presented in this manuscript. It
is possible that by observing the symmetry of the spectrum, which implies that the
i -th component tends to have the same behavior as the N +1− i -th component, then,
N /2 increasing functions might be needed to describe the neighborhood in which
they behave monotonically (following the same intuition that was used to solve the
bipartite complete graph case). In the second case, since the family of ring lattices can
take from the complete graph to the cycle graph by varying the connectivity parameter
k, then an area of opportunity is to exploit the concept and investigate in depth the
transition between these types of graphs.

Most of these results are published in España, Leoncini, and Ugalde 2022, and in a
second article now in preparation.
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