

FACULTAD DE CIENCIAS QUÍMICAS

SINTESIS DE DERIVADOS AMINOÁCIDOS DE NAFTOQUINONA Y SU ACOPLAMIENTO A NANOTUBOS DE CARBONO FUNCIONALIZADOS

TESIS PARA OBTENER EL GRADO DE MAESTRIA EN CIENCIAS QUÍMICAS

PRESENTA

ZAPATA ISIDRO DIEGO

DIRECTOR

DRA. ELISA LEYVA RAMOS

CO-DIRECTOR

DRA. MILDRED QUINTANA RUIZ

COMITÉ TUTELAR EXTENDIDO

DRA. SILVIA ELENA LOREDO CARRILLO

SAN LUIS POTOSÍ, S.L.P. NOVIEMBRE, 2022

CREDITOS INSTITUCIONALES

Esta tesis de Maestría en Ciencias Químicas fue elaborada en el Laboratorio de Síntesis Orgánica bajo la dirección de la Dra. Elisa Leyva Ramos perteneciente a la Facultad de Ciencias Químicas. En el Laboratorio Nanoestructurados Funcionales a cargo de la Dra. Mildred Quintana Ruiz perteneciente al Centro de Investigación de Ciencias de la Salud y Biomedicina (CICSaB) ambos de la Universidad Autónoma de San Luis Potosí. En el Laboratorio de Polímeros del Departamento de Química de la Universidad de Guanajuato bajo la dirección del Dr. Antonio Martínez-Richa.

El programa de Maestría en Ciencias Químicas de la Universidad Autónoma de San Luis Potosí pertenece al Programa Nacional de Posgrados de Calidad (PNPC) del CONACyT, registro 519, en el nivel consolidado.

Durante el desarrollo del proyecto de investigación el autor recibió la beca académica del Consejo Nacional de Ciencia y Tecnología (CONACyT) número de CVU 1006859.

Este trabajo se realizó con el financiamiento de CONACyT proyecto A1-S-8817.

También se obtuvo financiamiento gracias a CONACyT convenio 155678 y L'oréal-UNESCO-Academia Mexicana de Ciencias (convocatoria 2022).

Con base en el documento operativo de los Posgrados de la Facultad de Ciencias Químicas de la UASLP, se declara que Diego Zapata Isidro, estudiante de la Maestría en Ciencias Químicas, Elisa Leyva Ramos, Mildred Quintana Ruiz y Silvia Elena Loredo Carrillo, directores de la tesis, son los autores del trabajo reportado y que asumen la responsabilidad de su contenido. La divulgación de cualquier

sección del documento queda supeditada a la aceptación de esta acción por parte de los directores de tesis. Esta divulgación se hará con fines académicos y en todos los casos se deberán dar los créditos correspondientes al CONACyT y a la Universidad Autónoma de San Luis Potosí.

Se firma el presente documento de común acuerdo en la ciudad de San Luis Potosí, S.L.P. el 4 de noviembre de 2022.

IQ. Diego Zapata Isidro	
Dro Elica Lavara Damas	
Dra. Elisa Leyva Ramos	
Dra. Mildred Quintana Ruiz	
Dra. Silvia Elena Loredo Carrillo	

FACULTAD DE CIENCIAS QUÍMICAS

SINTESIS DE DERIVADOS AMINOÁCIDOS DE NAFTOQUINONA Y SU ACOPLAMIENTO A NANOTUBOS DE CARBONO

TESIS PARA OBTENER EL GRADO DE MAESTRÍA EN CIENCIAS QUÍMICAS

PRESENTA

ZAPATA ISIDRO DIEGO

DIRECTORA

DRA. ELISA LEYVA RAMOS

CO-DIRECTORA

DRA. MILDRED QUINTANA RUIZ

SINODALES	
DRA. ELISA LEYVA RAMOS	
DRA. MILDRED QUINTANA RUIZ	
DRA. SILVIA ELENA LOREDO CARRILLO	

27 de octubre de 2022

Comité académico del Posgrado en Ciencias Químicas

Facultad de Ciencias Químicas de la UASLP.

Presente.

Por medio de la presente comunicamos que la tesis llevada a cabo por el alumno de maestría IQ. Diego Zapata Isidro, titulada **Síntesis de derivados aminoácidos de naftoquinona y su acoplamiento a nanotubos de carbono funcionalizados**, ha sido concluida y aprobada por el Comité Académico del Posgrado en Ciencias Químicas para dar inicio a los trámites correspondientes para su titulación. El examen de grado tendrá lugar el próximo 4 de noviembre del presente año, a las 10 horas en la Sala Audiovisual Edificio (K) de la Facultad de Ciencias Químicas de la UASLP.

Dra. Elisa Leyva Ramos
Directora de Tesis

Atentamente

Dra. Mildred Quintana Ruiz
Co-Directora de Tesis

Dra. Silvia Elena Loredo Carillo
Comité Tutorial Extendido

iv

Síntesis de derivados aminoácido de naftoquinona y su acoplamiento a nanotubos de carbono funcionalizados por Diego Zapata Isidro se distribuye bajo una <u>Licencia Creative Commons</u> <u>Atribución-NoComercial-SinDerivadas 4.0 Internacional</u>.

AGRADECIMIENTOS

Gracias a los dioses del amor, de la naturaleza y del conocimiento. Sin sus principios no podría haber llegado a donde estoy ahora. Gracias a los que cimentaron y edificaron las bases del conocimiento de la naturaleza, ayudándonos a entender de donde venimos.

Gracias a toda mi familia por estar para mi. Gracias a mi madre y a mi padre Joaquina y Diego por darme la vida, por amarme y darme las herramientas para salir adelante en la vida. Gracias a mis hermanos y mi sobrino: Kathia, Ángel, Belen, Monserrat, Betsabé, Aranza y Axel, porque sin ellos la vida sería muy triste. Gracias a mis abuelas y abuelos Manuela, Carlota, Pedro y Diego por su cariño y enseñanzas. Gracias a mis tias, tios, primos y primas por sus ánimos, alegría y detalles hacia mi.

Gracias a mis asesoras, la Dra. Elisa Leyva por darme la oportunidad de trabajar en su grupo de investigación, por los conocimientos y aptitudes enseñados. A la Dra. Mildred Quintana por abrime la puerta al posgrado, por su amistad y sus consejos. A la Dra. Silvia por los consejos durante la etapa experimental del proyecto.

Gracias a Diana Luz, por su apoyo incondicional a lo largo de esta experiencia. Las noches más oscuras y heladas no son amenaza para los rayos del sol. Gracias por estar ahí en los momentos alegres y las dificultades de la existencia. Gracias por enseñarme los resultados de la disciplina, la resilencia y el trabajo duro.

Gracias a mis viejos amigos Aminadat, Guadalupe, Jazmin, Miguel y Virgilio, sus animos sinceros son combustible para superarme. Gracias a mis nuevos amigos, Brenda, Christian, Johana, Karina, Oswaldo, Patricia, Saul y Victoria nunca olvidaré los momentos de alegría y diversión que pasamos juntos.

Gracias también a Odette Garcín y su familia por su confianza, amistad y por enseñarme el habito del deporte. Gracias a Kala y a Paolo Fernandez por hacerme parte de su familia, sus enseñanzas y apoyarme a lo largo de mi estancia en esta ciudad.

Finalmente, gracias sinceras a todas las personas que fueron amables conmigo a largo de mi maestría dentro y fuera de la universidad, no olvidaré las atenciones que tuvieron hacia mi.

DEDICATORIA

Esta tesis está dedicada a todas las personas que sueñan y que buscan hacer del mundo un lugar mejor para vivir.

Está dedicata también a las personas desamparadas y que aun no encuentran motivos para sonreir en la vida. Deseo que conozcan lo maravilloso de la vida en la contemplación de las maravillas y los milagros de los procesos naturales que ocurren dia a dia, segundo a segundo en la naturaleza desde lo microscópico a lo macroscópico.

RESUMEN

Por sus propiedades físicoquímicas únicas los nanotubos de carbono (CNT) se han aplicado en diversas áreas de la ciencia. En la química medicinal se han empleado como sistemas de acarreo de fármacos (DDS), los cuales mejoran el perfil farmacocinético de compuestos terapéuticos.

Primero, se llevó a cabo la síntesis de derivados 3-cloro-2-aminoácido-1,4-naftoquinona y 3-cloro-2-carboxifenilamino-1,4-naftoquinona por calentamiento convencional y utilizando fuentes alternas de energia como el ultrasonido y las microondas. Estos derivados fueron caracterizados mediante técnicas espectroscópicas como espectroscopia de UV-Vis, IR y de RMN.

Posteriormente, se realizó la funcionalización de nanotubos de carbono de mútiples capas (MWCNT) mediante sales de aril diazonio para el acoplamiento de los derivados de naftoquinona. La funcionalización y el acoplamiento fueron seguidos mediante espectroscopía UV-Vis y análisis termogravimétrico (TGA). Aspectos como el grado de funcionalización y la carga de los derivados de naftoquinona a los nanotubos son discutidos.

Palabras clave: DDS, naftoquinonas, MWCNT, microondas, ultrasonido, aminoácidos, ácidos aminibenzoicos.

ABSTRACT

Carbon nanotubes (CNTs) have been widely applicated in many áreas of science, this due their unique physicochemical propierties. In medicinal chemistry, among other applications, CNTs are employed as drug delivery systems (DDS) wich improve the pharmacokinetic profile of therapeutic molecules.

Firstly the synthesis of derivatives 3-chloro-2-aminoacid-1,4-napththoquinones and 3-chloro-2-carboxyphenylamino-1,4-naphthoquinone was carried out by termal heating and alternative sources of energy like ultrasound or microwave radiation. These derivatives were characterizated by spectroscopic methods like UV-Vis, IR or NMR.

Next, a functionalization of multi-walled carbon nanotubes (MWCNT) by aryl diazonium salts was performed for further coupling of naphthoquinone derivatives. Functionalization and coupling were monitored by UV-Vis spectrocopy and thermogravimetric analysis (TGA). Topics, like the degree of functionalization and the load of naphthoquinone derivatives was discused.

Keywords: DDS, naphthoquinones, MWCNT, microwaves, ultrasound, aminoacids, aminibenzoic acids.

Índice

CREDITOS INSTITUCIONALES	i
AGRADECIMIENTOS	vi
DEDICATORIA	viii
RESUMEN	ix
ABSTRACT	X
Índice	xi
Índice de Figuras	xiv
Indice de esquemas	xvi
Indice de Tablas	xvii
1. Introducción	1
2. Antecedentes	3
2.1. Naftoquinonas	3
2.1.1. Propiedades fisicoquímicas de las naftoquinonas	5
2.1.2. Naftoquinonas como agentes anticancerígenos y antitumorales	7
2.1.3. Derivados N-naftoquinonil aminoácidos y ácidos N-naftoquinor aminobenzoicos	
2.2. Nanotubos de carbono	
2.2.1. Estructura y morfología	
2.2.2. Propiedades físicas	
2.2.3. Interacciones no covalentes y funcionalización química	
2.2.4. Nanotubos de carbono en sistemas biológicos y sistemas de a	carreo
de fármacos (DDS)	
3. Justificación	
4. Hipótesis	
5. Objetivos	
5.1. Objetivo general	
5.2. Objetivos específicos	
6. Materiales y métodos	
6.1. Reactivos y solventes	
6.2. Métodos de síntesis	
6.2.1. Síntesis asistida por ultrasonido	
6.2.2. Síntesis asistida por microondas	
6.3. Técnicas y métodos de caracterización de derivados de naftoqui	nona30

6.3.1. Técnicas cromatográficas	30
6.3.2. Espectroscopia de ultravioleta-visible (UV-Vis)	30
6.3.3. Espectroscopia de infrarrojo (IR)	31
6.3.4. Espectroscopia de resonancia magnética nuclear (RMN)	31
6.4. Síntesis de derivados de naftoquinona	32
6.4.1. Síntesis de derivados 3-cloro-2-aminoacido-1,4-naftoquinona	32
6.4.1.1. Reacción por calentamiento convencional	32
6.4.1.2. Reacción asistida por ultrasonido	32
6.4.1.3. Reacción asistida por microondas	33
6.4.2. Síntesis de derivados 3-cloro-2-carboxifenilamino-1,4-naftoquinona	33
6.4.2.1. Reacción por calentamiento convencional	34
6.4.2.2. Reacción asistida por ultrasonido	34
6.4.2.3. Reacción asistida por microondas	34
6.5. Funcionalización y acoplamiento de derivados 3-cloro-2- carboxifenilamino-1,4-naftoquinona	35
6.6. Técnicas de caracterización de complejos 3-cloro-2-carboxifenilamin 1,4-naftoquinona@f-MWCNT	
6.6.1. Kit para test Kaiser	36
6.6.2. Análisis termogravimétrico (TGA)	37
7. Resultados y discusión	37
7.1. Naftoquinonas	37
7.1.1. Síntesis de 3-cloro-2-aminoacido-1,4-naftoquinona y 3-cloro-2-carboxifenilamino-1,4-naftoquinona	37
7.1.2. Caracterización de derivados de naftoquinona	47
7.2. Funcionalización de MWCNT	55
7.2.1. Caracterización de f-MWCNT	56
7.3. Acoplamiento de 3-cloro-2-carboxifenilamino-1,4-naftoquinona@f- MWCNT	57
8. Conclusiones	
9. Caracterización Espectroscópica	62
10. Referencias	
11. Glosario	
12. Anexo 1. Simulaciones de CNTs	
13. Anexo 2. Espectros de UV-Vis	93

14. Anexo 3. Espectros de IR	98
15. Anexo 4. Espectros de RMN ¹ H	103
16. Anexo 5. Espectros de RMN ¹³ C	108
CURRICULUM VITAE	112

Índice de Figuras

Figura 2.1. a) Clasificación de las quinonas. b) isómeros de la naftoquinona 4
Figura 2.2. Ejemplos de fármacos con el núcleo quinona5
Figura 2.3. a) Puentes de hidrógeno intramoleculares, b) intermoleculares y c)
trifurcado6
Figura 2.4. Estructuras de resonancia de la 1,4-naftoquinona6
Figura 2.5. Estructuras de: a) shikonina, b) lapachol y c) β-lapachona7
Figura 2.6. Esquema del ángulo de enrollamiento de un CNT quiral (10,7),
además se muestran los patrones de los CNT zigzag y armchair 14
Figura 7.1. Gráfico de barras de rendimientos mediante distintas metodologías de
los derivados 3-cloro-2-aminoácido-1,4-naftoquinona40
Figura 7.2. Diagrama de distribución de especies del aminoácido glicina (2a) 42
Figura 7.3. Diagrama de distribución de especies del aminoácido histidina (2e). 43
Figura 7.4. Diagrama de distribución de especies del aminoácido tirosina (2g) 43
Figura 7.5. Interacciones intermoléculares del aminoácido tirosina (2g) 44
Figura 7.6. Interacciones intramoléculares del aminoácido histidina (2e) 45
Figura 7.7. Gráfico de barras de rendimientos mediante distintas metodologías de
los derivados naftoquinona-ácido aminobenzoico46
Figura 7.8. Diagrama de distribución de especies del ácido m-aminobenzoico (2i)
47
Figura 7.9. Espectros UV-Vis en metanol de algunos derivados 3-cloro-2-
aminoácido-1,4-naftoquinona48
Figura 7.10. Espectros UV-Vis en metanol de los derivados 3-cloro-2-
carboxifenilamino-1,4-naftoquinona 50
Figura 7.11. Estructuras de resonancia de los derivados 3h-j 50
Figura 7.12. Espectros de IR de los compuestos 1 (color azul), 2f (color morado) y
3f (color rojo) 52
Figura 7.13. Espectros de IR de los compuestos 1 (color azul), 2i (color morado) y
3i (color rojo)53
Figura 7.14. Estructura general de los derivados 3-cloro-2-aminoácido-1,4-
naftoquinona54

Figura 7.15. Espectro de RMN 1H del compuesto 3-cloro-2-(4-carboxi)fenilamino)-
1,-4-naftoquinona	55
Figura 7.16. Termogramas de los p-MWCNT, ox-MWCNT y f-MWCNT	57
Figura 7.17. Espectros de UV-Vis de la prueba Kaiser para los f-MWCNT y 3h-	
j@f-MWCNT	59
Figura 7.18. Termogramas de los complejos f-MWCNT y 3h-j@f-MWCNT	60

Indice de esquemas

Esquema 2.1. Esquema general de la reducción por 1 o 2 electrones de las
naftoquinonas7
Esquema 6. 1 Síntesis de derivados con aminoácidos. Cadenas laterales de los
aminoácidos: 2a) R=H (glicina); 2b) R=CH3 (alanina); 2c) R=CH2CONH2
(asparagina); 2d) R=C2H4SCH3 (metionina); 2e) R=CH2C3N2H3 (histidina); 2f)
R=CH2-C6H5 (fenilalanina); 2g) R=CH2-C6H4OH (tirosina)
Esquema 6.2. Síntesis de derivados con ácidos aminobenzoicos. 2h) para-COOH;
2i) <i>meta</i> -COOH; 2j) <i>orto</i> -COOH
Esquema 7.1. Mecanismo general SN2 para la obtención de derivados 2-amino,3-
cloro-1,4-naftoquinona
Esquema 7.2. Mecanismo de reacción para la funcionalización de MWCNT
mediante sales de aril diazonio 55
Esquema 7.3. Reacción de acoplamiento entre el derivado de naftoquinona 3h y f-
MWCNT58

Indice de Tablas

Tabla 6. 1. Reactivos y solventes empleados	26
Tabla 7.1. Rendimientos de los derivados 3-cloro-2-aminoácido-1,4-naftoquino	na
y 3-cloro-2-carboxifenilamino1,4-naftoquinona	38
Tabla 7.2. Constantes de disociación ácida de los aminoácidos 2a-g	42
Tabla 7.3. Valores en nanómetros de las principales absorciones de UV-Vis de	e los
derivados 3a-j en metanol	51
Tabla 7.4. Porcentajes de pérdida de masa a 150 y 800 °C y cantidad de grupo	os
naftoquinona de los complejos 3h-j@f-MWCNT	60