

UNIVERSIDAD AUTÓNOMA DE SAN LUIS POTOSÍ

FACULTAD DE CIENCIAS

Implementation and application of
the wavelet transform into

deep learning techniques for
texture classification and object detection

TESIS

PARA OBTENER EL GRADO DE:

DOCTOR EN CIENCIAS APLICADAS

PRESENTA:

M.C. Juan Manuel Fortuna Cervantes

DIRECTOR(A) DE TESIS:

Dr. Marco Tulio Ramírez Torres

Dra. Marcela Mejía Carlos

SAN LUIS POTOSÍ, SLP AGOSTO 2022

Título:
Implementation and application of the wavelet
transform into deep learning techniques for
texture classification and object detection

Nombre del estudiante:
Juan Manuel Fortuna Cervantes

Comité que acepta la Tesis:

Dr. Marco Tulio Ramírez Torres (Asesor) —————————

Dra. Marcela Mejía Carlos (Co-Asesor) —————————

Dr. José Salomé Murguía Ibarra (Sinodal) —————————

Dr. Carlos Soubervielle Montalvo (Sinodal) —————————

Dr. Oscar Fernando Núñez Olvera (Sinodal) —————————

Dr. José Martinez Carranza (Sinodal - externo) —————————

AGOSTO-2022

Implementation and application of the wavelet
transform into deep learning techniques for
texture classification and object detection

Abstract:
Texture characterization in digital images has become an analysis tool in computer
vision. Texture in visual perception is a very important physical property since
it provides information about the structural composition of surfaces and objects
in the image. This research involves two areas of knowledge, wavelet analysis
and deep learning, both of which functioned as feature extraction methods for
image processing with textures and materials. This work aimed to study the
adaptability of deep learning with wavelet analysis and implement a detection
and classification system for aerial navigation. The first approach analyzes the
extracted information (spatial domain vs. wavelet domain) in object detection
and aerial navigation. In addition, to evaluate the learning performance of a
binary classifier. In the second approach, a multi-class classifier is proposed for the
following databases: KTH-TIPS-2B (KT2B), Describable Textures Dataset (DTD),
and Flickr Material Database (FMD). The possibility of merging both domains
is evaluated since Convolutional Neural Networks (CNNs) do not learn spectral
information, important information for texture recognition. In the third approach,
a classification system for textured objects in aerial navigation tasks is implemented,
where texture is involved as a physical property of the object. A classification model
is developed using the knowledge transfer method and wavelet features. In the
fourth approach, it is shown that internal pooling layers often lead to information
loss. A classification system with a new pooling method called Discrete Wavelet
Transform Pooling (DWTP) is proposed to solve this problem. The combination
of these methods achieves acceptable classification performance. The learning
plots reflect that all three datasets show learning generalization. In addition, the
images obtained from the virtual environment show learning generalization for
some classes in the DTD database. Moreover, the fusion of deep learning with
wavelet analysis is recommended for small datasets of images with textures. Due
to the limitation of learning about spectral information that is lost in conventional
CNNs. Furthermore, it is argued that this helps to eliminate overfitting. The
results show that it is possible to integrate this methodology into the technological
development of applications, such as image classification or restoration tasks and
object detection.

A mis padres
Maria y Juan Manuel

A mis hermanas
Elisa, Aurora y Delia.

Acknowledgment
A mi familia, por siempre darme la confianza de seguir superándome en cada paso
de vida que doy. Gracias por apoyarme en esta etapa de vida profesional.

Al Dr. Marco Tulio Ramírez Torres por apoyarme en la realización de este proyecto
de tesis. Aprecio el tiempo durante el cual me ha guiado en esta etapa de mi
formación científica.

Agradezco a la Dra. Marcela Mejía Carlos por todo el apoyo, los consejos y sobre
todo por los conocimientos que me ha brindado a lo largo de este trabajo.

Al Dr. Raúl Balderas Navarro por toda la disposición y el apoyo brindado durante
su etapa de coordinador para seguir con mis estudios de posgrado, sus importantes
comentarios y su compromiso con la ciencia.

Agradezco a mis profesores Dr. Salomé Murguía, Dr. Carlos Souberville, Dr. Oscar
Nuñez y al Dr. José Martinez Carranza los cuales han compartido sus conocimientos
conmigo, así como su impulso a comprender la ciencia y tecnología desde otro
punto de vista.

A mis amigos de generación Lore, Beto y Balta, por todo el apoyo brindado, las
conversaciones y discusiones, por todos los momentos divertidos y sobre todo por
los sabios consejos que me han brindado.

A todo el personal del IICO por el apoyo, la confianza y las atenciones brindadas
durante toda mi estancia en el instituto.

Al grupo de Drones (Arturo, Aldrich, Oyuki y Matus) del INAOE a cargo del Dr.
José Martines Carranza por apoyarme y trasmitirme sus conocimientos en el área
de las ciencias computacionales.

Expreso mi agradecimiento al Instituto de Investigación en Comunicación Óptica y
al Consejo Nacional de Ciencia y Tecnología que a través del programa nacional de
posgrados de calidad se me permitió realizar este trabajo de investigación, No. de
becario 776118.

iv

Contents
Acknowledgment iv

List of Figures vii

List of Tables x

1 Introduction. 1

2 Background. 7
2.1 Wavelet Analysis. 8

2.1.1 Multiresolution Analysis . 9
2.1.2 2D Discrete Wavelet Transform 11

2.2 Convolutional Neural Networks . 12
2.2.1 Pooling Method . 15
2.2.2 Transfer Learning . 17
2.2.3 Evaluating Deep Learning Models 19

3 Proposed approach. 23
3.1 Object Detection in Aerial Navigation using Wavelet Transform and

Convolutional Neural Networks: A first Approach. 29
3.1.1 Materials and Methods. 29
3.1.2 Experimental Results. 32

3.2 System for Image Texture Classification using Deep Learning and
Wavelet Features. 40
3.2.1 Materials and Methods. 40
3.2.2 Experimental Results. 45

3.3 Texture Classification for Object Detection in Aerial Navigation
using Transfer Learning and Wavelet-based Features. 50
3.3.1 Materials and Methods. 50
3.3.2 Experimental Results. 53
3.3.3 Texture Classification in Aerial Navigation. 56

3.4 Texture and Materials Image Classification Based on Wavelet Pooling
Layer in CNN. 59
3.4.1 Materials and Methods. 60
3.4.2 Experimental Results. 63

3.5 Discussion . 73

4 Conclusions. 76
4.1 Conclusions. 77
4.2 Future work. 79

v

Contents vi

A Appendix. 81
A.1 Training Process Using Regularization Techniques and Pooling. . . 82

A.1.1 DTD Dataset. 82
A.1.2 FMD Dataset. 83

A.2 Multiple Confusion Matrix. 85
A.2.1 CIFAR-10 Dataset . 85
A.2.2 DTD Dataset. 86
A.2.3 FMD Dataset. 88

A.3 Classification Report with Evaluation Metrics. 90
A.3.1 CIFAR-10 Dataset. 90
A.3.2 DTD Dataset. 90
A.3.3 FMD Dataset. 93

B Appendix. 94
B.1 Algorithm 1: Binary Classification. 95
B.2 Algorithm 2: Modeltlvgg16_3Input1Model. 98
B.3 Algorithm 3: PyWavelets. 100
B.4 Algorithm 4: Wavelet Pooling Layer. 101

C Appendix 103
C.1 List of terms and abbreviations . 103

Bibliography 104

List of Figures
2.1 The first level of decomposition applied to an image using the filter

bank [1]. 9
2.2 Decomposition process applying three levels of the filter bank, which

results are some approximation and detail sub-images. 10
2.3 (a) Convolution between an input layer of size 32×32×3 and a filter

of size 5×5×3. (b) Sliding a filter around the image is tried to look
for a particular feature [2]. 14

2.4 Convolution between a 7×7×1 input and a 3×3×1 filter with an
interval of 1. Each filter will create a single feature map, regardless
of its depth [2]. 14

2.5 The Max-Pooling operation to an activation map of size 7×7 with
strides of 1 and 2. Unlike convolution, each activation map is
processed independently. Therefore, the number of output activation
maps is exactly equal to the number of input activation maps [2]. . 15

2.6 Example of the shortcoming of Max and Average Pooling against
the contribution of wavelet pooling, preserving the essential features. 17

2.7 Swapping classifiers while keeping the same convolutional base [3] . 18
2.8 Simple Hold-Out validation split [4] 20
2.9 What is Gradient Descent? [5] . 21

3.1 Workflow 1: Spatial domain VS Wavelet domain. 25
3.2 Workflow 2: Spatial domain information + Wavelet domain

information. 26
3.3 Workflow 3: CNN Features (Transfer Learning) + Wavelet Features. 27
3.4 Workflow 4: Discrete Wavelet Transform Pooling. 28
3.5 Architecture of deep neural network (ConvNet) with binary output. 30
3.6 Wavelet sub-image dataset for the second detection model; in this

case, it only focuses on the approximation sub-images. 32
3.7 Capacity of the model in the accuracy of training and validation,

without pre-processing of the input images to the ConvNet. 33
3.8 Capacity of the model in the loss of training and validation, without

pre-processing of the input images to the ConvNet. 33
3.9 Capacity of the model in the accuracy of training and validation,

with the wavelet dataset. 34
3.10 Capacity of the model in the loss of training and validation, with

the wavelet dataset. 35
3.11 Test 1: Object detection in scene applying the proposed method

with the approach of wavelet analysis and deep learning. 36

vii

List of Figures viii

3.12 Test 2: Object is not detected on the scene, as it is out of view from
the on-board camera of the drone. 36

3.13 Detection results at four different distances from the target to the
drone camera, and different scales and illumination (a)-(d) are results
based on a perspective in the environment, while (f)-(h) are results
based on an opposite perspective in the environment (the image of
the target contains shadow). 37

3.14 Test dataset 1: Images of the virtual environment to perform the
binary classification, (a)-(e) Class CubTexture: images with the
textured cube and (f)-(j) Class NotCubTexture: images without the
textured cube. 38

3.15 Virtual world 1: The learning model achieves object detection on
the image plane. 38

3.16 Test dataset 2: (a)-(e) Class CubTexture: Images with the textured
cube on the table and (f)-(j) Class NotCubTexture: images of the
environment and without the cube on the table. Both wavelet
datasets are trained for binary classification. 39

3.17 Virtual world 2: Example of detection. The on-board camera of the
drone detects the textured object on the table. 39

3.18 Deep learning process. 41
3.19 Example images from the KTH-TIPS-2B dataset. 41
3.20 Example images of the DTD dataset. 42
3.21 Example images from the FMD dataset. 42
3.22 Architecture for a textured image classification system. 44
3.23 Evaluation of accuracy and loss metrics for training and validation

sets. 46
3.24 Confusion matrix for the DTD dataset. 47
3.25 Confusion matrix for the FMD dataset. 48
3.26 Confusion matrix for the KT2B dataset. 48
3.27 Random texture classification (from 846 images) using the DTD

prediction model. 49
3.28 Random texture classification (from 150 images) using the FMD

prediction model. 49
3.29 Random texture classification (from 715 images) using the KT2B

prediction model. 49
3.30 An aerial navigation texture classification system based on knowledge

inference on the DTD database is designed. See at https://youtu.
be/d41kgBw7Y_c. 51

3.31 Texture classification system. 51
3.32 Images textures that have been decoded (Class) to train the

classification model. 52
3.33 Approximation and details set of wavelet features. 53

https://youtu.be/d41kgBw7Y_c
https://youtu.be/d41kgBw7Y_c

List of Figures ix

3.34 Classification of textures randomly (from a total of 846 images)
using the DTD prediction model. 55

3.35 The number of images with textures obtained with the onboard
camera while flying recognition. 56

3.36 Image sequence acquired from the on-board camera of the drone.
The classification system has a good inference on the texture in the
first, second, and fifth rows. 57

3.37 Image sequence acquired from the on-board camera of the drone.
In the second, third, and fourth rows, the classification system gets
good classification performance. 58

3.38 Learning behavior on CIFAR-10 training and validation sets. . . . 65
3.39 Learning behavior on DTD training and validation sets—SGD

optimizer. 66
3.40 Learning behavior on DTD training and validation sets—Adam

optimizer. 68
3.41 Learning behavior on FMD training and validation sets—SGD

optimizer. 70
3.42 Learning behavior on FMD training and validation sets—Adam

optimizer. 72

A.1 Cont. 82
A.1 Learning behavior for baseline architecture + pooling, increasing

DropOut, Data Augmentation, and Batch Normalization—DTD
dataset. 83

A.2 Cont. 83
A.2 Learning behavior for baseline architecture + pooling, increasing

DropOut, Data Augmentation, and Batch Normalization—FMD
dataset. 84

A.3 Cont. 85
A.3 In this case, each confusion matrix correlates with the five models

obtained for the CIFAR-10 dataset. 86
A.4 Experiment 1 with SGD Optimizer—the confusion matrix correlates

with the best model (DWTaP) obtained for the DTD dataset. . . . 86
A.5 Experiment 2 with Adam Optimizer—the confusion matrix correlates

with the two best models (MaxP and DWTaP) for the DTD dataset. 87
A.6 Experiment 1 with SGD Optimizer—The confusion matrix correlates

with the best model (DWTdP) obtained for the FMD dataset. . . 88
A.7 Experiment 2 with Adam Optimizer—the confusion matrix correlates

with the two best models (AveP and DWTdP) for the DTD dataset. 89

List of Tables
3.1 The test set results for each learning model (Spatial domain VS

Wavelet domain). 35
3.2 Learning performance in the three evaluation sets. 46
3.3 Classification results for the pre-trained VGG16 network and our

model indicated as accuracy (%). 54
3.4 Classes (test set) that results with precision above 70%. 55
3.5 Classes (test set) that results with precision above 50%. They are

chosen from the easy human visual perception of the texture. . . . 55
3.6 Training parameters of the proposed model. 62
3.7 The number of images per class. 63
3.8 Performance of pooling methods on CIFAR-10. 64
3.9 Performance of pooling methods on DTD—SGD optimizer. 67
3.10 Performance of pooling methods on DTD—Adam optimizer. 67
3.11 Performance of pooling methods on FMD—SGD optimizer. 69
3.12 Performance of pooling methods on FMD—Adam optimizer. . . . 71
3.13 Experimental results of running our application on the ROS

framework and Gazebo simulator. 73
3.14 Classification results and comparison with other state-of-the-art

architectures in terms of accuracy (%). 74
3.15 Classification results and comparison with other state-of-the-art

pre-trained architectures with ImageNet, in terms of accuracy (%). 74
3.16 Performance evaluation and comparison with other methods

indicated as accuracy (%)—DTD dataset. 75

A.1 Classification report for CIFAR-10 dataset. In this case, each pooling
method is evaluated considering DropOut, Data Augmentation, and
Batch Normalization. 90

A.2 Experiment 1 with SGD Optimizer—classification report for the
DTD dataset. 91

A.3 Experiment 2 with Adam Optimizer—classification report for the
DTD dataset. 92

A.4 Experiment 1 with SGD Optimizer—classification report for the
FMD dataset. 93

A.5 Experiment 2 with Adam Optimizer—classification report for the
FMD dataset. 93

x

1
Introduction.

This chapter will give a brief overview of the development and implementation of
the wavelet transform into deep learning techniques applied to texture classification
and object detection in order to understand the importance of this research study
and the distribution of the chapters of the work done.

1

2

Visual perception is a human ability that allows us to recognize objects around
us, where the optical and nervous systems are involved. They are able to capture
and process visual information to obtain a meaning, to be able to interpret and
understand what is composed of the object. The necessity to have autonomous
systems with the same visual capacity has allowed the development of these systems.
Nowadays, interesting challenges can be found in the area of aerial robotics. Thus,
some systems have integrated computer vision to obtain the information that
describes the content of the image. Object detection is a problem for robots
performing tasks in real scenarios and in real-time, given the lighting conditions,
indeterminate orientations, object identity, shape, color, and texture. In addition,
the information may differ in outdoor and indoor environments, thus varying the
target information [6]. Therefore, image processing techniques such as wavelet
analysis, deep neural networks, or Convolutional Neural Networks (CNNs) have
become a compelling alternative [7, 8].

In image processing, texture can be defined from neighboring pixels and intensity
distribution over the image. Besides, some classification methods for texture
analysis include statistical, geometric, model, and spectral [9]. Spectral methods
such as wavelet analysis describe the texture in the frequency domain. They
are based on the decomposition of a signal in terms of basis functions and use
the expansion coefficients as feature vector elements. Deep learning in the last
decade has positioned itself as a new solution in the areas of robotics, computer
vision, and natural language [10–12]. In particular, CNNs are a category of deep
learning, as they are adapted to object analysis by learning and extracting complex
features [13,14]. Although CNNs are a universal extractor, in practice, it is unclear
whether CNNs can learn to perform spectral analysis — a methodology that can
provide better texture and material classification performance [9]. In this sense, a
fusion of methods is needed to address this problem, combining both spatial and
spectral approaches.

Some systems employ deep learning and wavelet analysis in visual processing. In
image classification tasks, it has been proposed to convert images to the wavelet
domain, thus obtaining temporal and frequency features [15]. In the field of image
restoration, a multilevel wavelet CNN method was proposed to provide a balance
between the size of the receptive area and computational efficiency [16]. The
method is based on a U-Net architecture and the Inverse Wavelet Transform (IWT)
for the reconstruction stage with high resolution. In the automatic coding of an
image, the design of the CNN architecture has a significant weight. In this case, the
designed network is a siamese CNN that receives merged information from infrared
and visible images. The fusion is performed by multiscale decomposition of the
image using wavelet analysis, and the reconstruction result is more perceptive to
the human visual system [17]. Following the same approach, the work proposed
in [18] presented two methods to highlight the edges of images in the classification

3

area. The first method decomposes the images and subsequently reconstructs them
in a limited way. The second method, which develops enhanced images, introduces
the local maximum wavelet coefficients. Both methods are applied before entering
the CNN architecture. Regarding the texture classification in image processing
applications [19–21], the authors propose an architecture to generalize spectral
information lost in conventional CNNs. This information is beneficial for texture
classification as it usually contains sufficient information about the shape of the
object.

Following this, some proposals have also been made to decompose the feature maps
through a wavelet pooling layer, achieving efficient processing comparable to that of
the spatial domain. In [22], they proposed another alternative called wavelet pooling
as a pooling layer within the CNN architecture. This method decomposes the image
into two subbands, discarding the first level to reduce the size of the feature map.
The approach allows for structured data compression, reducing the creation of
denoised edges and other artifacts in the image. Moreover, it is found that existing
pooling methods lose relevant information [23]. A method has been developed for
vehicle-type classification tasks that combine CNN layers with compression and
excitation modules and the Haar wavelet as a pooling layer [24]. According to this
idea, the development of a method that contemplates multiple wavelet transforms
has also been found because they work similarly to CNN filters [25].

In semantic segmentation tasks, encoder-decoder type networks have been used [26].
This type of CNNs usually uses pooling to reduce computational costs, improve
invariance against certain distortions, and extend the receptive field. Therefore,
a pooling method based on wavelet operations has been proposed to partition
it into regions of interest. In [27], the authors presented an approach based on
wavelets and deep learning for 3D neuron segmentation. In this case, the neuron
segmentation method can completely extract the target neuron in noisy neuron
images. A U-Net architecture based on wavelet transform pooling is proposed
in [28]. This work aims to segment multiple sclerosis (MS) lesions in magnetic
resonance imaging (MRI). One advantage is its multiresolution analysis; thus, its
use improves the detection of lesions of different sizes and segmentation.

In recent years, Micro Aerial Vehicles (MAVs) applications have been studied
and developed for object detection tasks [8, 29]. Several approaches use deep
learning, giving excellent performance in the applications. In some autonomous
navigation tasks for obstacle detection and avoidance, AlexNet (network) has
been integrated to classify the images captured from the on-board camera of the
drone [30]. The learning of this architecture is transferred from the ImageNet
database [31]. Moreover, a detection system is presented for object detection and
autonomous landing in [6]. It is about implementing the SSD7 (network) aboard
the MAV. This SSD7 network is chosen for its fast performance on low-budget
microcomputers without GPU.

4

The method proposed in [32] is an architecture called YOLO, which presents
an essential performance in real-time image detection and processing. Moreover,
in [33], the authors propose a deep learning approach to estimate the object center
robustly due to varying illumination conditions, object geometry, and overlap in
the image plane.

On the other hand, the importance of integrating wavelet analysis into deep
learning is to improve the network’s learning and find a new way to obtain
necessary information for object recognition, whose main characteristic is repetitive
patterns such as texture. In addition, implementing a classification system with
both approaches improves detection efficiency. In this case, the classification and
detection system is a good solution for integration into an aerial navigation system.
Today, the capability and features of aerial navigation systems have been increased
by using ROS — an operating system for robots, and in its development of Python
scripts, OpenCV libraries, and deep learning algorithms.

This work proposes a general approach based on wavelet analysis as a method of
spectral feature extraction. The first approach is a complete analysis of the learning
behavior, using the information in the spatial and wavelet domains. In the second
approach, a system is developed that combines wavelet analysis and deep learning
to integrate it for texture classification. From this work, in the third approach, it
is decided to incorporate transfer learning to improve classification performance.
In the fourth approach, a new pooling method based on the wavelet transform is
developed, allowing spectral analysis integration into the CNN architecture. The
design of each process allows us to know and learn more about the characteristics
of the objects. Moreover, the validation and implementation of a classification
system and an aerial navigation system demonstrate the importance of the proposed
approach.

• In this regard, the first approach is presented where the architecture design
explicitly accepts that the inputs are images in the wavelet domain. This
requirement implies the creation of a wavelet dataset with approximation
and detail features — time-frequency information through multiresolution
analysis. Using images in the wavelet domain improves the learning capability
at the training stage, in contrast to the exclusive use of images in the spatial
domain. Furthermore, it avoids overfitting in learning generalization when
there is a small training dataset. A virtual navigation scenario has been pro-
posed to validate the learning model, where the MAV or drone can recognize
and learn the object with a repetitive pattern such as texture. The final basis
of the proposal is a CNN with results in binary classification. In this way, the
detection model predicts frame-by-frame and classifies the images captured
from the on-board camera of the drone.

5

• From the analysis with spatial and wavelet domain data, the second approach
focuses on classifying textures in images. The idea is to obtain structural
information of surfaces, such as texture. The basis of the classification system
is an approach to the Wavelet CNN architecture, which was proposed in [20]
for texture classification and tasks on multiple labeling concerning image
content. The implementation of this system is developed with the fusion of
two approaches, using the spatial domain, specifically CNNs, and the spectral
domain, the Haar wavelet transform [13, 14, 34]. Internally this system is
divided into two stages: the first corresponds to feature extraction and the
second to the classification stage. With respect to the feature extraction stage,
the created tensor has a set of numerical parameters that describe the image
content, such as color, texture, or shape of the object. Therefore, the feature
extraction stage is vital for the overall success of any image classification and
recognition system. A combination of both feature extraction methods, in
particular, is shown to achieve accuracies competitive to those reported in
the literature, with significantly fewer trainable parameters than using only
one method. The system is validated with three datasets: KTH-TIPS-2B
(KT2B), Describable Textures Dataset (DTD), and Flickr Material Database
(FMD) [35–37]. As a result, the model is easier to train, its learning generalizes
across the combination of information, and has a lower computational cost.

• Given the proposed architecture results, the third approach focuses on
implementing a system for the classification (detect objects with textures).
The goal is that the MAV performs aerial navigation (inside the virtual
environment) in order for the classification system to recognize the object.
This work focuses on prior information (in the data collected by the MAV)
and structural recognition of the object (with a given texture) into a region
of interest in the image plane. The system implementation is developed
with the fusion of two approaches. The first is in the spatial domain, using
transfer learning. The VGG16 architecture with the ImageNet database
features is taken as a reference [31,38]. The second approach focuses on the
spectral domain, applying the Haar wavelet transform in two dimensions
to obtain features across different scales [34]. VGG16 network has been
selected for its fast performance and implementation with transfer learning
and adaptability with wavelet analysis. In this case, the Describable Texture
Database (DTD) is used to train the model, containing 47 texture classes,
with 120 images per class [36]. On average, it has been tested with some
textures for the classification task in the virtual environment. The prediction
can be performed correctly, with an average processing rate of 2 fps.

6

• Despite the promising results obtained in texture classification, the
architecture only fuses features that are lost with the spatial approach [19,21].
Moreover, regularization methods are known to focus only on the convolutional
layer. In contrast, the pooling layers’ operations have not been updated [22].
In this sense, it has been decided to integrate wavelet analysis inside deep
learning before merging the spatial and spectral approaches, i.e., to make
it part of the learning process using the pooling method. Motivated by the
above reasons, a classification system with a new pooling method called
Discrete Wavelet Transform Pooling (DWTP) is proposed in the fourth
approach. The pooling approach is based on the decomposition of the image
into subbands. The method is implemented and developed using Python and
Keras API with Tensorflow as Backend. Besides, the method is validated
on three datasets: CIFAR-10, Describable Textures Dataset (DTD), and
Flickr Material Database (FMD) [36, 37, 39]. The approach differs from
traditional methods because it is not a subsampling methodology using
neighboring regions, but rather wavelet pooling retains its role as a reduction
layer. Wavelets allow localization in scale (i.e., frequency) and space. In
other words, wavelets can be used to analyze local and spatial transients
in data, such as edges or surfaces of an image [40]. Therefore, a complete
evaluation of texture and material classification performance in images is
presented. In addition, it preserve the most relevant information of textures
and materials, which is sometimes lost with traditional methods such as
Max-Pooling (MaxP) and Ave-Pooling (AveP). The idea is to evaluate the
adaptability of deep learning with wavelet pooling.

The thesis has been organized as follows. Chapter 2 presents a brief review of the
methodology and concepts required to develop this research. Chapter 3 presents a
detailed description of the design and implementation of each proposed approach,
the validation of the method, the discussion of the results obtained, and their
application in object detection and image classification. Finally, Chapter 4 includes
the conclusions, the analysis of the planned objectives, and the future work of the
research.

2
Background.

This chapter introduces the essential elements to perform the proposed approaches
using techniques such as Wavelet Analysis, Convolutional Neural Networks, and
Transfer Learning to improve classification performance (object detection, textures
and materials). Also, the concepts of pooling are discussed in-depth to integrate
wavelet pooling.

Contents

2.1 Wavelet Analysis. 8
2.1.1 Multiresolution Analysis 9
2.1.2 2D Discrete Wavelet Transform 11

2.2 Convolutional Neural Networks 12
2.2.1 Pooling Method . 15
2.2.2 Transfer Learning . 17
2.2.3 Evaluating Deep Learning Models 19

7

2.1. Wavelet Analysis. 8

2.1 Wavelet Analysis.

Wavelets represent functions as simpler, fixed building blocks at different scales and
positions [15]. The one-dimensional wavelet transform can be easily extended to a
Two-Dimensional Wavelet Transform (2D-WT), which is widely applied to two-
dimensional signals such as images [41,42]. It has greatly impacted image processing
tasks such as edge detection, image recognition, and image compression [9].

2D-WT considers a two-dimensional scale function Φ (x, y), and three two-
dimensional wavelet functions ΨH (x, y) ,ΨV (x, y) and ΨD (x, y), resulting in a
lower resolution image than original, as well as detailed information on the horizontal
(H), vertical (V) and diagonal (D) perspectives. Each function corresponds to the
product of a function of scale ϕ and its corresponding wavelet ψ; in this way we
have:

Φ (x, y) = ϕ (x)ϕ (y) (2.1)

ΨH (x, y) = ψ (x)ϕ (y) (2.2)

ΨV (x, y) = ϕ (x)ψ (y) (2.3)

ΨD (x, y) = ψ (x)ψ (y) (2.4)

Scale and translation base functions are defined by:

Φj;m,n (x, y) = 2
j
2 Φ
(
2jx−m, 2jy − n

)
(2.5)

Ψj;m,n (x, y) = 2
j
2 Ψd

(
2jx−m, 2jy − n

)
(2.6)

where j,m, n ∈ Z and the superindex d assumes the values H, V and D to
identify the directional wavelets given in equations (2.2)-(2.4). Considering that the
equations (2.5)-(2.6) constitute an orthonormal basis for L2

(
R2
)
, the expansion of

a finite energy function f(x, y) is then defined as:

f (x, y) =
1√
MN

∑
m

∑
n

aj0;m,nΦj0;m,n (x, y)

2.1. Wavelet Analysis. 9

+
1√
MN

∑
d=H,V,D

∑
j=j0

∑
m

∑
n

ddj;m,nΨd
j;,m,n (x, y) (2.7)

where the scale coefficients aj;m,n and wavelet ddj;m,n are defined by:

aj;m,n =

∫∫
f (x, y) ,Φj;m,n (x, y) dxdy (2.8)

ddj;m.n =

∫∫
f (x) ,Ψd

j;m,n (x, y) dxdy (2.9)

Expressions (2.7) and (2.8)-(2.9) represent the equations of synthesis and analysis
of the original image, and together they constitute the Two-Dimensional Discrete
Wavelet Transform (2D-DWT) [1].

2.1.1 Multiresolution Analysis

The Mallat-Multiresolution Analysis (M-MA) algorithm makes it possible to
calculate the coefficients numerically aj;m,n and dj;m,n of the two-dimensional
functions or image (denoted by x [m,n]), with a theoretical basis of the Fast Two-
Dimensional Wavelet Transform (2D-FWT) [43]. Also, the algorithm provides a
connection between the wavelets and the filter banks [44]. The multiresolution
decomposition of an image is represented by a series of approximations and details
in sub-images. In the first level of decomposition, two filters are applied respectively,
one low-pass (h) and one high-pass (g), each followed by a subsampling operation
by a factor of 2, as illustrated in Figure 2.1.

Initial image

𝑥 𝑚, 𝑛 = 𝑎𝑗+1,𝑚,𝑛

Columns
(along n)

ℎ 2 ↓

𝑔 2 ↓

ℎ 2 ↓

ℎ 2 ↓

𝑔 2 ↓

𝑔 2 ↓

Columns

Rows (along m)

Rows

Rows

Rows

𝑎𝑗,𝑚,𝑛

𝑑𝑗,𝑚,𝑛
𝑉

𝑑𝑗,𝑚,𝑛
𝐷

𝑑𝑗,𝑚,𝑛
𝐻

Figure 2.1: The first level of decomposition applied to an image using the filter bank [1].

2.1. Wavelet Analysis. 10

The result of applying three levels of wavelet decomposition to an image (x[m,n]),
sized M ×N , is illustrated in Figure 2.2. After the two-dimensional signal passes
through the filter bank structure shown in Figure 2.1, four sub-images with M/2

rows and N/2 columns are obtained; i.e., each one of the four sub-images has a
quarter of the pixels of the input image. The approximation sub-image is achieved
by the approximation calculations along the rows of the original image, followed
by the approximation calculations across the columns. This sub-image is an
average version of the image (x[m,n]), with a quarter resolution and statistical
properties similar to the original signal [42]. The rest of the sub-images show
specific characteristics of the original image in a particular direction, providing the
detail coefficients: horizontal, vertical, and diagonal. The same wavelet transform
is applied only to the approximation sub-image to determine the next level of
decomposition. Therefore, we get four sub-images but now with dimensions ofM/22

rows and N/22 columns. This iteration is repeated until the desired resolution
level or until the level allowed by the image’s dimensions [1].

Original
image

Approximation
Sub-image

Vertical
details

Sub-image

Horizontal
details

Sub-image

Diagonal
details

Sub-image

Level 1 Level 2 Level 3

Figure 2.2: Decomposition process applying three levels of the filter bank, which results
are some approximation and detail sub-images.

In general, multiresolution decomposition for a two-dimensional signal reveals
differences in resolution levels. It shows details in different orientations, properties
that indicate that the 2D-DWT is well suited for detecting important information
from the original two-dimensional signal or image.

The Haar wavelet is the most straightforward and is one of the fundamental ex-
amples to illustrate the wavelet theory better. It is widely used when there are
signals with abrupt changes. It has dramatically impacted image processing tasks
such as edge detection, image recognition, and image compression [9].

2.1. Wavelet Analysis. 11

The concept of the wavelet transform is easy to generalize to two-dimensional
functions such as images. This can be done in several ways. Only two are mentioned
here: the standard decomposition and the non-standard or pyramidal decomposition.
The process with the bank filter describes the non-standard decomposition. It
is the basis of this research work. Because most of the existing techniques for
image management are usually complex, difficult to implement, and have a high
computational cost, recently, wavelet methods have been applied to different stages
of image processing because they are very efficient computationally and easy to
implement numerically [7].

2.1.2 2D Discrete Wavelet Transform

Given an image x, it is possible to use 2D-Discrete Wavelet Transform (2D-DWT)
with four convolution filters, i.e., low-pass filter fLL and high-pass filters fLH , fHL,
and fHH , to decompose x into four sub-images, i.e., xLL, xLH , xHL, and xHH [34].
Note that the four filters have fixed parameters with convolutional stride 2 during
the transformation [16,24]. Taking the Haar wavelet as an example, these filters
are defined in Equation (2.10).

fLL =

[
+1 +1

+1 +1

]
, fLH =

[
−1 −1

+1 +1

]
, fHL =

[
−1 +1

−1 +1

]
, fHH =

[
+1 −1

−1 +1

]
(2.10)

Moreover, the operation of DWT is defined in Equation (2.11):

xLL = (fLL ⊗ x) ↓2, xLH = (fLH ⊗ x) ↓2
xHL = (fHL ⊗ x) ↓2, xHH = (fHH ⊗ x) ↓2

(2.11)

where ⊗ denotes convolution operator, and ↓2 means the standard downsampling
operator with factor 2. In other words, 2D-DWT mathematically involves four
fixed convolution filters with stride 2 to implement the downsampling operator.
Moreover, according to the theory of Haar transform [34], the (i, j)th value of xLL,
xLH , xHL, and xHH can be written in Equation (2.12).

xLL(i, j) = x(2i− 1, 2j − 1) + x(2i− 1, 2j) + x(2i, 2j − 1) + x(2i, 2j)

xLH(i, j) = −x(2i− 1, 2j − 1)− x(2i− 1, 2j) + x(2i, 2j − 1) + x(2i, 2j)

xHL(i, j) = −x(2i− 1, 2j − 1) + x(2i− 1, 2j)− x(2i, 2j − 1) + x(2i, 2j)

xHH(i, j) = x(2i− 1, 2j − 1)− x(2i− 1, 2j)− x(2i, 2j − 1) + x(2i, 2j)

(2.12)

Given that the derivability of the Haar transform is a good property for end-to-end
backpropagation [45], Haar wavelet decomposition is used as a pooling layer in the
proposed structure.

2.2. Convolutional Neural Networks 12

2.2 Convolutional Neural Networks

Artificial Neural Networks (ANNs) are a class of machine learning algorithms
that learn from data. Moreover, the algorithm is inspired by the structure and
function of the brain. For example, deep learning is in this area. In other words,
deep learning methods transform information into multiple levels of representation
obtained by composing nonlinear but straightforward modules [46].

The history of neural networks and deep learning began in the 1940s. McCulloch
and Pitts proposed the first neural network in 1943 [47]. Capable of recognizing two
different classes called perceptron. However, the process was performed manually
to obtain the correct weights for each category. Therefore, Rosenblat [48, 49] in
1950 developed an algorithm that automatically learned the weights required for
the classifier. On the other hand, Minsky and Papert in 1969 [50] showed that a
perceptron with a linear activation function could not solve nonlinear problems,
particularly on the XOR function dataset problem. Moreover, within the third
winter stage of deep learning, the backpropagation algorithm and the research of
Werbos, Rumelhart, and LeCun recently succeeded in resurrecting neural networks.
The proposed algorithm made it possible to train multilayer neural networks
combined with nonlinear activation functions, learning nonlinear functions, and
the XOR problem. Today, we can train networks with many more hidden layers
that can obtain hierarchical learning. In which simple features are learned in the
lower layers and more complex attributes in the higher layers of the network.

On this idea of hierarchical learning, the Convolutional Neural Network (CNN)
proposed by LeCun in 1988 could recognize handwritten characters automatically
using filters [51]. In many applications, CNNs are considered the most powerful
image classifier and today are responsible for driving the state-of-the-art in the
subfields of computer vision [46]. A CNN comprises three main layers: convolution,
pooling, and fully connected [24].

Convolutional Neural Networks are a type of neural network capable of processing
time series and images. The name convolutional neural network indicates that
the network uses a mathematical operation called convolution, which is a linear
operation. Indeed, neural networks use convolution instead of general matrix
multiplication inside their layers [14]. Moreover, an initial condition of CNNs is
that it uses a spatial structure. This spatial relationship is inherited from layer
to layer, and each feature is based on a small local spatial region. It is essential
to maintain this condition because the convolution operation and transformation
critically depend on these relationships [2]. The design of CNNs is divided into
feature extraction and a classification stage. The feature extraction stage is initially

2.2. Convolutional Neural Networks 13

composed of three layers: convolution, pooling, and ReLU function. Each layer is a
three-dimensional (tensor) structure with a height, width, and depth. Inside the
classification stage, the set of layers is usually fully connected and mapped in a
specific way to the set of output nodes.

The input data of the CNN usually have a two-dimensional structure. The point
values of each section of the structure are called pixels. In particular, each pixel
represents a spatial location inside the image. On the other hand, the input layer
(qth) receives a three-dimensional structure (height Lq, width Bq, and color_depth
dq), as two dimensions represent the spatial relationships and a third one represents
the independent properties of the color channels, as shown in Figure 2.3a. In
contrast, in the hidden layers, these independent properties correspond to patterns
extracted from local regions of the image. These new regions are called feature
maps or activation maps [2].

An essential element is the generation of the learning weights, which depends on
the filter set. For example, Figure 2.3a shows the application of a filter with size 5.
It should be emphasized that the value of Fq is small and odd and that they are
commonly used with sizes 3, 5, or 7. Besides, the filter and the image define the
height and spatial width of the next hidden layer. In other words, by performing
convolutions on the qth layer, one can align the filter at Lq+1 = (Lq−Fq + 1) along
the height and Bq+1 = (Bq − Fq + 1) along the width of the image. Therefore, the
greater the number of filters, the greater the number of feature maps. Also, the
number of filters used in each layer controls the number of parameters.

Note that each filter will identify one type of spatial pattern, so many filters are
required to capture a wide variety of patterns. For example, the filter shown in
Figure 2.3b represents a horizontal edge detector in a grayscale image. In this case,
the resulting feature has a high activation at every position where a horizontal
edge is seen. However, a vertical edge will give zero activation, while a slanted edge
might give intermediate activation. About the convolution operation from the qth
layer to the (q + 1)th layer, it can be defined as follows:

h
(q+1)
ijp =

∑Fq

r=1

∑Fq

s=1

∑dq

k=1 w
(p,q)
rsk h

(q)
i+r−1,j+s−1,k ∀i ∈ {1..., Lq − Fq + 1}

∀j ∈ {1..., Bq − Fq + 1}
∀p ∈ {1..., dq+1}

(2.13)

where the filter pth of layer qth has parameters denoted by the three-dimensional
tensor W (p,q) = [w

(p,q)
ijk], the indices i, j, k denote the positions along the height,

width, and depth of the filter. The feature maps of layer qth are represented by the
three-dimensional tensor H(q) = [h

(q)
ijk]. The underlying convolutional operation is

a simple dot product over the filter volume, repeated over all valid spatial positions
(i, j) and filters (indexed by p). Figure 2.4 shows two examples of convolution

2.2. Convolutional Neural Networks 14

3

5

5
32

3

32

28

28

5

Input layer Filter Output layer

Depth of input and
filter must match

Depth defined by
number of

different filters (5)

(a)

5

High activation Zero activation

Image
Horizontal edge
detecting filter

1 1 1

0

-1 -1 -1

0 0

(b)

Figure 2.3: (a) Convolution between an input layer of size 32×32×3 and a filter of size
5×5×3. (b) Sliding a filter around the image is tried to look for a particular feature [2].

operations with a 7×7×1 input layer and a filter of size 3. In this case, the depth of
the layer must match that of the filter or kernel. Besides, it is essential to mention
that the contributions from the overall feature maps of the scalar product will
result in a single output feature value in the next layer. Also, the activation map
of the next layer is shown in the upper right part of Figure 2.4.

Filter

Input
Output

Convolve

6

16

1 0

20 0
1

1

0 0

16

26

18 20

25

14

15

16

21 14 16

26
14

21

13

15

16

15

21 16

16

7 3

2

7 16 23

3 4 04 5 3

4 7 4 0 4 0 4

3

5

7 0 3 0 7

8
8 1 2 5 4 2

6
0 1 0 6 0 0

7 0 2 3 4 5 2

5

4 1 3 0 4 5

Figure 2.4: Convolution between a 7×7×1 input and a 3×3×1 filter with an interval of
1. Each filter will create a single feature map, regardless of its depth [2].

Hence, the number and order of layers considered for architecture design can
improve feature extraction and thus better classification. However, the pooling
layer, where dimensionality reduction happens, can also improve efficiency. In the
next section, some popular pooling methods are described.

2.2. Convolutional Neural Networks 15

2.2.1 Pooling Method

Some authors describe the pooling method as a subsampling methodology
[2, 14, 23, 52]. The pooling method also transforms the activation map into a
new feature map. The pooling operation works on small regions of size Pq × Pq

on the qth layer, usually after each convolutional layer. The pooling method has
two main purposes. The first is to reduce the number of parameters and, thus,
reduce the computational cost. The second is to control overfitting [22,28]. The
expectation is that an ideal pooling method extracts only useful information and
discards irrelevant details [24]. Also, the pooling method does not change the
number of activation maps. In other words, the depth of the layer created keeps
the same dimension as the layer on which the pooling operation has been carried
out [2, 16].

Figure 2.5 shows examples of pooling with strides 1 and 2. In this case, pooling
over 3×3 regions is used. On the other hand, by setting pooling (3×3) with a stride
of 2, pooling can reduce the size of the activation maps. Therefore, it is pretty
common to use this type of configuration. Additionally, when using an array of 2
(pooling 2×2), the result between the different regions that are pooled would have
no overlapping.

Input

Output

3x3 Pooling
Stride=1

6

7 5

68 6

8
5

5 7

5

6

3 4 04 5 3

4 7 4 0 4 0 4

3

5

7 0 3 0 7

8
8 1 2 5 4 2

6
0 1 0 6 0 0

7 0 2 3 4 5 2

5

4 1 3 0 4 5

8 8

7

3x3 Pooling
Stride=2

3x3 Pooling
Stride=1

3x3 Pooling
Stride=1

7

7

7
7

5 5

8

5
5 7

8

8

8

8
8

5 5 7
76 6

6 6

Output

Figure 2.5: The Max-Pooling operation to an activation map of size 7×7 with strides of
1 and 2. Unlike convolution, each activation map is processed independently. Therefore,
the number of output activation maps is exactly equal to the number of input activation
maps [2].

2.2. Convolutional Neural Networks 16

The pooling method has two main purposes. The first is to reduce the number
of parameters and thus reduce the computational cost. The second is to control
overfitting [22,28]. Besides, reducing the image size makes it possible for the neural
network to tolerate small changes in the input image. The expectation is that
an ideal pooling method extracts only useful information and discards irrelevant
details [24]. In general, pooling takes two forms that are most commonly used:
Max-Pooling (MaxP) and Ave-Pooling (AveP) [22,52–57].

• Ave-Pooling: an Average Pooling layer performs top-down sampling by
dividing the input into rectangular regions and calculating the mean values
of each region. It was first introduced by LeCun et al. [53] and used in the
first convolution-based neural network [54]. The average pooling function is
expressed as:

akij =
1

|Rij |
∑

(p,q)∈Rij

akpq (2.14)

where akij is the output activation of the kth feature map at (i, j), akpq is
the input activation at (p, q) within Rij , and |Rij | is the size of the pooling
region.

• Max-Pooling: a Max-Pooling operator [55] can be applied to downsample
the convolutional output bands, therefore reducing variability. The max-
pooling operator pulls the maximum value inside each rectangular region.
The Max-pooling function is expressed as:

akij = max(p,q)∈Rij
(akpq) (2.15)

An example of these two pooling methods is shown in Figure 2.6.

These forms of pooling are deterministic, efficient, and simple but have shortcomings
that hinder the learning potential of CNN. Depending on the data, Max-Pooling can
erase details from an image [22]. Hence, this happens if important details have less
intensity than insignificant details. Moreover, it generates noise accumulation, and it
is not possible to restore lost information [27]. Max-Pooling is sensitive to overfitting
the dataset used for training and hinders generalization [58]. Average pooling,
depending on the data, can dilute the relevant details of an image. Averaging data
with values far below important details cause this action [22]. Figure 2.6 illustrates
these shortcomings with the example of a toy image.

2.2. Convolutional Neural Networks 17

Ave-Pooling Max-Pooling DWT-PoolingImage

Approximation Horizontal detail

Vertical detail Diagonal detail

Approximation Horizontal detail

Vertical detail Diagonal detail

Figure 2.6: Example of the shortcoming of Max and Average Pooling against the
contribution of wavelet pooling, preserving the essential features.

Suppose DWT filters are considered convolutional filters with predefined weights.
In that case, it is observed that DWT is a particular case of Fully Connected Layers
(FCN) without the layers of nonlinearity. The original image can be decomposed
by DWT and then reconstructed exactly by the DWT inverse without losing
information [16]. On the other hand, the wavelet theory opens the possibility to
represent the image details inside learning CNNs, thanks to the frequency and
location features generated by the wavelet transform (see Figure 2.6).

2.2.2 Transfer Learning

A common and highly effective approach to deep learning on small image datasets
is to use a pre-trained network. In this case, a large CNN trained on the ImageNet
dataset (1.4 million labeled images and 1,000 different classes) is considered [31].
Furthermore, feature extraction involves using representations that have already
been obtained through previous training in the architecture. The purpose is to
extract relevant characteristics from new examples. These characteristics are used
in a new classifier trained from scratch.

2.2. Convolutional Neural Networks 18

A previous section mentioned that the CNN is composed of two parts (feature
extraction and classification stage) for image classification tasks. The first part
is called the convolutional-base. In this case, feature extraction consists of taking
the convolutional-base part of a previously trained CNN, running the new data
through it, and training a classifier on top of the output, see Figure 2.7.

Prediction Prediction

• Xception
• Inception V3
• ResNet50
• VGG16 & VGG19
• Mobilet

Trained with
ImageNet database

Pre-trained model for the
general recognition task

Input layer Input layer

A new specific model
for a recognition task

Convolutional
Basis

Reuse of pre-
trained

convolutional
basis

Dense classifier

Fixed (frozen)
pre-trained

convolutional
basis

Trainable ad hoc
Dense classifier

Dense

Dense

Dense

Dense

Figure 2.7: Swapping classifiers while keeping the same convolutional base [3]

The feature maps of a convolutional-base are generic concept maps over an
image, valid for any given computational vision problem. On the other hand,
densely connected features are largely useless for problems where object location is
essential [4].

The level of the representations extracted by convolutional layers depends on the
depth of the layer in the model. Layers earlier in the model extract local and
generic feature maps (such as visual edges, colors, and textures), while layers higher
in the model extract more abstract concepts. Therefore, if a new dataset differs
significantly from the dataset on which the original model was trained, it may be
better to use only the first few layers of the model to feature extraction over the
complete convolutional-base. In this case, the ImageNet dataset includes multiple
classes.

It is beneficial to reuse the information contained in the densely connected layers of
the original model. However, it is decided not to do so in order to solve the more
general case in which the set of classes of the new problem is correlated with the set
of classes of the original model. This is implemented by using the convolutional-base
of the network (selected in each case study), trained with ImageNet, to extract
interesting features from the images and then train a classifier (objects with textures,

2.2. Convolutional Neural Networks 19

etc.) on these features. The VGG16 model, among others, comes pre-packaged
with Keras. It can be imported from the keras.applications module. These
models can be used for prediction, feature extraction, and fine-tuning. The list of
image classification models (all pre-trained on the ImageNet dataset) is available
as part of keras.applications:

• Xception [59].

• Inception V3 [60].

• ResNet50 [61].

• VGG16 and VGG19 [38].

• MobileNet [62].

2.2.3 Evaluating Deep Learning Models

In deep learning, the goal is to achieve models that generalize-that perform well
on never-seen data—and overfitting is the main obstacle. You can only control
that which you can observe, so it is crucial to be able to reliably measure the
generalization power of the model. The following sections look at strategies for
mitigating overfitting and maximizing generalization. In addition, to measuring
generalization: how to evaluate machine learning models [4].

2.2.3.1 Training, Validation, and Test Sets

The four approaches presented in Chapter 3 divided the data into a training set,
a validation set, and a test set. The reason for not evaluating the models with
the same data with which they were trained is so that the three models do not
overfit. That is, their performance on the unseen data may stagnate (or get worse)
compared to their performance on the training data, which always improves as
training progresses.

A good practice is to split our dataset using the Hold-Out Cross-Validation sampling
technique [4]. The technique tests the model’s predictive performance and how
well it performs on the test or unseen data. The dataset is initially separated
into two sets: training and test; then, the training set is split into two subsets:
training and validation. The idea is that each set contains representative images of
each class. Therefore, it is achieved to have balanced and random sets. Typically,

2.2. Convolutional Neural Networks 20

one uses about 80% of the training data for training and 20% for validation [14].
Schematically, Hold-Out validation looks like Figure 2.8.

Training set
Held-out
validation

set

Total available labeled data

Train on this Evaluate on this

Figure 2.8: Simple Hold-Out validation split [4]

2.2.3.2 Compile and Train Model

To make the network ready for training, it is needed to pick three things as part of
the compilation step [4]:

• A loss function–How the network will be able to measure its performance on
the training data and thus how it will steer itself in the right direction, also
called the objective function.

• An optimizer—The mechanism through which the network will update itself
based on the data it sees and its loss function. It implements a specific variant
of Stochastic Gradient Descent (SGD) [63].

• Metrics to monitor during training and testing—Here, it will only care about
accuracy (the fraction of the images that were correctly classified).

In order to compile the network with Keras, the compile() function is used.

Listing 2.1: Keras Code.
1 model.compile(optimizer=’rmsprop ’,
2 loss=’categorical_crossentropy ’,
3 metrics =[’accuracy ’])

Training a CNN means finding the best set of weights, which map the inputs
(images) to the outputs (labels) in the training dataset and, at the same time, in
the validation dataset. Training is processed over epochs. An epoch is an iteration
through all samples of the training dataset. Moreover, it is common for an epoch
to be split into minibatches. Each minibatch consists of one or more samples. After
each batch iteration, the weights of the network will be updated. In order to train
the network with Keras, we use the fit() function.

2.2. Convolutional Neural Networks 21

2.2.3.3 Gradient Descent in Keras

The fundamental trick in deep learning is to use a Loss score as a feedback signal
to adjust the value of the weights a little in a direction that will lower the loss
score for the current example. This adjustment is the job of the optimizer, which
implements what’s called the Backpropagation algorithm: the central algorithm in
deep learning.

Gradient descent is an algorithm that uses calculus concept of gradient to try and
reach local or global minima. It works by taking the negative of the gradient in a
point of a given function, and updating that point repeatedly using the calculated
negative gradient, until the algorithm reaches a local or global minimum, which
will cause future iterations of the algorithm to return values that are equal or too
close to the current point, as shown in Figure 2.9. It is widely used in machine
learning applications [5].

Initial Weight

Gradient

Weight

Derivative of Cost Minimum Cost

Incremental Step

𝜔´ ≡ 𝜔 + −𝜂ΔLoss(ω)
Updated

parameter
Parameter Learning

rate
Gradient Loss

function

Figure 2.9: What is Gradient Descent? [5]

Also, there is Stochastic Gradient Descent (SGD) which iteratively updates a set
of parameters to minimize an error function [63]. While in GD, you have to run
through all the samples in your training set to do a single update for a parameter
in a particular iteration, in SGD, on the other hand, you use only one or a subset
of training samples from your training set to do the update for a parameter in a
particular iteration. If you use a subset, it is called Minibatch Stochastic Gradient
Descent [64].

In Minibatch Gradient Descent, the batch size must be between 1 and the size
of the training dataset. As a result, we get k batches. The weights of the neural
network are updated after each mini-batch iteration. The batch_size argument is

2.2. Convolutional Neural Networks 22

set to a number, which is more than 1 and less that the size of the training dataset.
For example, we can use a batch size of 64:

Listing 2.2: Keras Code.
1 model.fit(X_train , y_train , epochs =150, batch_size =64)

Additionally, multiple variants of SGD differ by taking into account previous weight
updates when computing the next weight update, rather than just looking at the
current value of the gradients. There is, for instance, SGD with momentum, Adam,
RMSProp, and several others [65,66].

2.2.3.4 Evaluation Metrics

To quantitatively evaluate the classification model based on the combination of
deep neural networks with pooling methods, this paper adopts the metrics Accuracy,
Recall, Precision, F1-score, and the confusion matrix to evaluate the classification
index [67]. Accuracy measures the percentage of cases that the model predicted
correctly. In this case, it functions well because the classes are correctly balanced.
The indicator is expressed by equation (2.16). Also, the quality of the classification
model can be measured with the Precision metric, equation (2.17). The Recall
metric will tell us how many cases the classification model can identify, equation
(2.18). The F1 value is used to combine the Accuracy and Recall metrics into a single
value, equation (2.19). The F1-score value allows us to compare the performance
of the combined Precision and the Recall model among several solutions.

Acc =
TP

Total number of images
(2.16)

P =
TP

TP + FP
(2.17)

R =
TP

TP + FN
(2.18)

F1 = 2 ∗ P ∗R
P +R

(2.19)

where TP is the number of positive samples correctly predicted, and FP is the
number of samples where negative samples are predicted as positive. FN is the
number of positive samples that are predicted as negative samples. The Scikit
learn library provides us with a classification report to evaluate the quality of
the predictions of a classification algorithm. The method shows us the main
classification metrics (classification_report).

3
Proposed approach.

Throughout this chapter, the approaches will be described, and the application of each
method. The first approach is a complete analysis of the learning behavior, using the
information in the spatial or wavelet domains. In the second approach, a system is
developed that combines wavelet analysis and deep learning to integrate it for texture
classification. From this work, in the third approach, it is decided to incorporate
transfer learning to improve classification performance. In the fourth approach, a
new pooling method based on the wavelet transform is developed, allowing spectral
analysis integration into the CNN architecture.

Contents

3.1 Object Detection in Aerial Navigation using Wavelet
Transform and Convolutional Neural Networks: A first
Approach. 29

3.1.1 Materials and Methods. 29
3.1.2 Experimental Results. 32

3.2 System for Image Texture Classification using Deep
Learning and Wavelet Features. 40

3.2.1 Materials and Methods. 40
3.2.2 Experimental Results. 45

3.3 Texture Classification for Object Detection in Aerial
Navigation using Transfer Learning and Wavelet-based
Features. 50

3.3.1 Materials and Methods. 50
3.3.2 Experimental Results. 53
3.3.3 Texture Classification in Aerial Navigation. 56

3.4 Texture and Materials Image Classification Based on
Wavelet Pooling Layer in CNN. 59

3.4.1 Materials and Methods. 60
3.4.2 Experimental Results. 63

3.5 Discussion . 73

23

24

In order to provide the context in which this chapter is developed, a brief description
of the general problem statement, which is divided into four approaches, is described
below. In addition, the advantages and disadvantages of each experiment.

The first approach assumes that object detection is a problem for robots performing
tasks in real-world, real-time scenarios, given lighting conditions, indeterminate
orientations, object identity, shape, color, and texture. In addition, the information
may differ in outdoor and indoor environments, thus varying the target information.
Then, as the sensing task becomes more robust, its description capability is limited
to recognizing textures as a physical property of the object. Therefore, the main
objective of this research is to develop a methodology for object detection and
texture classification, using the wavelet transform, applied to the processing of
real-time images captured from the on-board camera of the UAV.

The first approach focuses on developing most of the specific objectives:

• To establish a diagram between the ROS operating system and the flight
control of the Parrot UAV.

• Identify the factors that affect the performance of autonomous navigation in
the AR.Drone or Bebop and ROS.

• Determine if it is viable to use OpenCV libraries based on discrete wavelet
transform and multiresolution analysis.

• Consider the use of wavelet families in texture characterization with a multi-
class approach.

• Develop an algorithm involving image processing to detect textured objects
in AR.Drone or Bebop images or video.

The workflow for this case study allows for visualizing the general idea of the research
project. To realize a binary classifier and evaluate its classification performance,
see Figure 3.1. In this case, a complete analysis is performed by using the spatial
information and the information in the wavelet domain during the learning behavior.
The advantages of this configuration are the following:

• The architecture is modular toward another type of dataset.

• It eliminates overfitting during the training stage, the wavelet domain.

• It uses scaled information, therefore fewer parameters to train, the wavelet
domain.

• A new data set is generated during an aerial survey in the virtual world to
validate the binary detection system.

25

Disadvantages:

• An empirical and experimental methodology is used in the development and
implementation of CNN by Francois Chollet in his book Deep Learning with
Python [4].

• Keras Callbacks are not proposed to adjust, control, and monitor the learning
of the model.

Spatial domain (The first model) VS
Wavelet domain (The second model)

RGB Image
(64x64)

C
N

N
 F

ea
tu

re
s

Fl
at

te
n

D
en

se
 (

1)
Block.ClassificationBlock.Feature Extraction

Classifying
Object: a

binary
classification

D
e

n
se

 (
5

1
2

)
Convolutional Máx-Pooling

Input Image

Classifier
evaluation
(Accuracy)

Figure 3.1: Workflow 1: Spatial domain VS Wavelet domain.

The second approach is based on the fact that texture characterization in digital
images has become an analysis tool in computer vision. Besides, in practice, CNNs
cannot analyze spectral, noteworthy information for texture analysis. Therefore, it
is decided to merge spatial and spectral data to improve model learning.

For this case study, the main idea is to create a texture and material classification
system. The workflow is modified; these stages are highlighted in orange, as shown
in Figure 3.2. It can be seen that this can be concatenated to the CNN architecture
from the creation of information in the wavelet domain. Therefore, one model
- three inputs are achieved. The new model becomes a multi-class classifier. In
addition, the accuracy metric for evaluating the performance of the classifier is still
preserved. The advantages of this configuration are as follows:

• The model stops being sequential and changes to a functional model: multiple
inputs and outputs, with arbitrary connections between layers.

• Regarding the design of the CNN, an experimental methodology based on
the VGG16 architecture, which is one of the most recognized in the state-of-
the-art, is used [38].

• The optimizer is replaced by Adam, which has achieved a good performance
in classification tasks [65].

26

• Keras Callbacks are proposed to adjust, control, and monitor model learning.

Disadvantages:

• The model is slow to compile.

• No regularization methods are used to eliminate overfitting.

• Only two wavelet feature vectors are established because one limitation is
that the images must be square. In this case, when applying the 3rd level of
decomposition, pixels would have to be applied or added to have an image
of M×M. It is necessary to emphasize that it is not feasible to alter the
information. From this point of connection inside the CNN, the feature
extraction falls entirely on the CNN.

Spatial domain information + Wavelet domain information

Input Image
RGB Image
(300x300)

C
N

N
 F

ea
tu

re
s

G
lo

b
al

A
P

o
o

l

So
ft

m
ax

Block.ClassificationBlock.Feature Extraction

Classifying
texture &
materials:
multi-class

classification

D
ro

p
O

u
t

Convolutional Máx-Pooling

Datasets
DTD

KTH-TIPS-2B
FMD

Classifier
evaluation
(Accuracy)

Multiresolutions Analysis - 2 Levels

Feature Maps of
Texture/Materials

Figure 3.2: Workflow 2: Spatial domain information + Wavelet domain information.

From the second approach, in the third approach, it is decided to add transfer
learning to improve classification performance. In context, the third approach
is that Micro Aerial Vehicles (MAVs) have increased in engineering and civil
applications to explore environments without prior information. In particular, in
autonomous navigation, a fundamental part is detecting and locating targets of
interest. For this reason, computer vision has become an analysis tool.

For this case study, the main idea is to create an object classification system for
aerial navigation tasks. A new stage is added to the workflow proposal, which has
to do with integrating the aerial classification system and modifying the feature
extraction stage. These stages are highlighted in orange, as shown in Figure 3.3. It
can be seen that the information in the wavelet domain can be concatenated after
using transfer learning. The advantages of this configuration are as follows:

27

• The model remains functional: multiple inputs and outputs with an arbitrary
connection.

• As for the CNN design, the pre-trained VGG16 architecture is used, and the
synaptic weights are taken from the ImageNet database [31,38].

• Regularization methods are used to eliminate overfitting at the classification
stage.

• Keras Callbacks are proposed to adjust, control, and monitor the learning of
the model.

• The classification model generalizes its learning toward textured objects in
the navigation application.

Disadvantages:

• The model is slow to compile.

• Without a GPU machine, the classifier latency increases, and the performance
in the simulator decreases.

CNN Features (Transfer Learning) + Wavelet Features

RGB Image
(300x300) C

N
N

 F
ea

tu
re

s

G
lo

b
al

A
P

o
o

l

So
ft

m
ax

Block.ClassificationBlock.Feature Extraction

Classifying
texture: multi-

class
classification

FL
C

Convolutional Máx-Pooling

Dataset
DTD

Classifier
evaluation
(Accuracy)

Texture
feature

extraction
Grayscale

image

2D
TW

 H
aa

r
Fe

at
u

re
s

C
o

n
ca

te
n

at
e

FL
C

G
lo

b
al

A
P

o
o

l

C
o

n
ca

te
n

at
e

Texture Object
classification

System: Aerial
Navigation

Pretrained VGG16

Figure 3.3: Workflow 3: CNN Features (Transfer Learning) + Wavelet Features.

The fourth approach takes the approach that CNNs have recently been proposed
as a solution for texture and material classification in computer vision. However,
inside CNNs the internal pooling layers often cause a loss of information, which is
detrimental to the architecture. While Max-Pooling and Ave-Pooling are efficient
and simple methods, they also have shortcomings. Therefore, a methodology is
designed to reduce the size of feature maps and preserve image information.

28

For this case study, the workflow only focuses on the analysis and implementation
of the pooling methods, which are highlighted in orange as shown in Figure 3.4. It
can be seen that the accuracy metric is still preserved to evaluate the performance
of the classifier. The advantages of this configuration are as follows:

• The model is sequential, which allows to speed up model compilation and
training.

• The architecture is modular toward another type of dataset and another type
of layer.

• The CNN design is based on the VGG16 architecture with only three
convolutional blocks [38].

• Regularization methods are used to eliminate overfitting in the feature
extraction and classification stages.

• Keras Callbacks are proposed to adjust, control, and monitor the learning of
the model.

Disadvantages:

• An empirical and experimental methodology is used in the development and
implementation of CNN by Francois Chollet in his book Deep Learning with
Python [4].

• The analysis is only performed with traditional pooling methods (Max-Pooling
and Ave-Pooling).

• The wavelet pooling method is implemented only with the Haar wavelet
transform.

Each of the fourth approaches is described in depth below.

Dataset
CIFAR10 - DTD47 – FMD10

• Trainig set
• Validation Set
• Test set

Regularization methods
Base VGG3

Block.C1 Block.C2

Block.C3

C
N

N
 F

e
at

u
re

s

Fl
at

te
n

FL
C

So
ft

m
ax

Block.Prediction

Block.Classification
Block.Feature
Extraction

+DropOut
+DataAugmentation
+BatchNormalization

1. Max-Pooling
2. Ave-Pooling
3. DWT-Pooling
4. DWTa-Pooling
5. DWTd-Pooling

Classifier
evaluation
(Accuracy)

Pooling

Figure 3.4: Workflow 4: Discrete Wavelet Transform Pooling.

3.1. Object Detection in Aerial Navigation using Wavelet Transform
and Convolutional Neural Networks: A first Approach. 29

.

3.1

Object Detection in Aerial Navigation using
Wavelet Transform and Convolutional Neural
Networks: A first Approach.

This work proposes a first approach based on wavelet analysis inside image
processing for object detection. The idea is to detect objects with a repetitive
pattern and use a binary classification system to navigate simulated environments.
Currently, it has become common to use algorithms based on Convolutional Neural
Networks (CNNs) to process images obtained from the on-board camera of Micro
Aerial Vehicles (MAVs), being useful in detection and classification tasks. CNN
architecture can receive images without pre-processing as input in the training stage.
This advantage allows us to extract the characteristic features of the image.

Nevertheless, in this work, it is argued that characteristics at different frequencies,
low and high, also affect the performance of CNN during training. Therefore, a CNN
architecture is proposed complemented by the 2D Discrete Wavelet Transform,
which is a feature extraction method. Wavelet analysis allows us to use time-
frequency information through a multiresolution analysis. The information improves
the learning capacity, eliminates overfitting, and achieves better target detection
efficiency. Also, the learning model was evaluated in the aerial navigation of a
drone.

3.1.1 Materials and Methods.

In this section, the experimental structure is presented with two detection models.
The first model involves images in the spatial domain, original images without
pre-processing. The second model uses images in the wavelet domain, so the images
are pre-processed at three decomposition levels before entering the architecture.
The two datasets are previously acquired in a recognition and navigation stage in
the Gazebo simulation environment. Besides, it is essential to mention that the
ConvNet architecture shown in Figure 3.5 was used in both models. The neural
network was trained using the machine learning library Keras, and TensorFlow
was used as the backend.

3.1. Object Detection in Aerial Navigation using Wavelet Transform
and Convolutional Neural Networks: A first Approach. 30

62x62x32
64x64x3 31x31x32

29x29x32
14x14x64

12x12x128
6x6x128

4x4x128
2x2x128 512

512 1

convmáxPooling
(máxP)

flatten

densedense

Convolutional
(conv)

convconv máxP máxPmáxP

Figure 3.5: Architecture of deep neural network (ConvNet) with binary output.

As a rule, a way to evaluate the learning capacity of the model and the detection
performance is to compare the accuracy and loss metrics. These two statistics are
usually sampled during the training, validation, and testing. Finally, this model is
evaluated in the aerial navigation application, using the Robot Operating System
(ROS) and the Gazebo simulation environment.

3.1.1.1 Experimental setup.

Keras is one of the deep learning frameworks with tools to create new and pre-
trained models. Besides, it is an open-source project and makes deep learning
easy to implement sequentially using blocks [4]. Integrating the learning model
with the ROS framework uses the special libraries of Keras and OpenCV — a free
artificial vision library. For this case study that is proposed with a small dataset
to train the model, it is decided to use a ConvNet architecture, with results in the
classification of Dogs against Cats [4]. This dataset is not distributed in the Keras
framework, so it had to create our experimental dataset. The CNN design is a stack
of 2D convolutional layers with a Rectified Linear Unit (ReLU) activation function
alternated with a MaxPooling2D layer. Also, the depth value of the hidden layers
progressively increases from 32 to 128, while the size of the feature maps decreases
from 62×62 to 2×2, as shown in Figure 3.5. By having a binary classification
approach, the network will end with a single unit (a dense layer of size 1) and a
Sigmoid activation function — a non-linear function where it is a guarantee that
the output of this unit will always be between 0 and 1. It means that the unit will
encode the probability that the architecture is oriented to one class or another.

3.1. Object Detection in Aerial Navigation using Wavelet Transform
and Convolutional Neural Networks: A first Approach. 31

3.1.1.2 Original and Wavelet Dataset.

The ConvNet architecture in the two detection models is parameterized to train
and predict only images with a size of 64×64 pixels (a decision that depends on the
computational power of the CPU, and at the next level, the image quality would
decrease) and the three channels RGB. In the scaling functions of the OpenCV
library is the cv.resize(src,dst,dsize,fx,fy,interpolation) function. The
return type of this function is void, and the input arguments are the source image,
the target image, the size of the target image, the x and y scaling factors, and the
interpolation technique. The default scaling algorithm is Bilinear Interpolation,
often used to improve image quality after performing spatial transformation
operations such as digital zoom or rotation [68]. Bilinear interpolation takes a
weighted average of the four neighborhood pixels to calculate its final interpolated
value. This technique gives better results than nearest neighbor interpolation and
requires less computation time than bicubic interpolation [69].

Therefore, for the first detection model, the original images (640×380 pixels) are
resized to 64×64 pixels. While the second model uses the wavelet images, first,
the original image (640×380 pixels) is conditioned to a size of 512×512 pixels for
multiresolution analysis. Three decomposition levels are applied to get the network
input in this case. The process generates one approximation sub-image and three
detail sub-images (horizontal, diagonal, and vertical). As illustrated in Figure 3.6,
the wavelet process is applied to the two classification datasets (classes). In this
case, it is proposed to use only the approximation sub-sets (images of 64×64 pixels)
because it is where the most energy is conserved. A Haar mother function is used in
multiresolution decomposition, as it is one of the most common functions in image
processing and feature extraction. The two detection models have a binary output,
so the detection task is focused on two classes; the first class detects the presence of
a textured object in the image plane, and the second class where the object is out
of the scene. Mainly, both data classes are divided into 700 images for the training
stage, 150 for validation, and 105 for testing (955 per class). Each split contains
the same number of samples from each class: this is a balanced binary-classification
problem, which means classification accuracy will be an appropriate measure of
success [4].

3.1. Object Detection in Aerial Navigation using Wavelet Transform
and Convolutional Neural Networks: A first Approach. 32

Image RGB (512x512)
details

sub-images (64x64)

Wavelet dataset 1

Approximation VerticalDiagonal Horizontal

Wavelet dataset 2

Approximation VerticalDiagonal Horizontal

Figure 3.6: Wavelet sub-image dataset for the second detection model; in this case, it
only focuses on the approximation sub-images.

3.1.2 Experimental Results.

The two detection models are used to demonstrate the contribution of wavelet
analysis in conjunction with CNN architectures. Furthermore, the experimental
development allows us to visualize the learning behavior of the two models, so
the Accuracy and Loss metrics are sampled in ten epochs (number of iterations
in which the dataset must be learned) within the training and validation stages.
Hence, the two detection models are trained with a total of 504,001 parameters,
using a computer with Intel® CPU Core™ i5-2450M.

The first learning model, characterized by using only the original images and the
ConvNet for binary classification, shows the following results in all ten epochs.
The Accuracy in the training stage (green line) starts with 78%, then reaches
almost 100% in the second epoch; from this point, the learning behavior is random
between 98% and 100%. As for Accuracy in the validation stage (blue line), the
generalization of learning decreases when new data are learned, see Figure 3.7.
This effect is caused by overfitting (after three epochs); it begins to learn patterns
specific to the training data but misleading or irrelevant when it comes to new
data. Meanwhile, Figure 3.8 shows the Loss metric to evaluate the learning model.
A Loss value near-zero is obtained very quickly at the training stage (green line);
this effect makes the network more susceptible to overfitting. For the new data, the
loss in the validation stage (blue line) decreases and increases considerably (three
and seven epochs), preserving the overfitting effect.

3.1. Object Detection in Aerial Navigation using Wavelet Transform
and Convolutional Neural Networks: A first Approach. 33

1 2 3 4 5 6 7 8 9 10
Epochs

0.75

0.80

0.85

0.90

0.95

1.00

1.05

A
cc
u
ra
cy

Training and validation accuracy

Training acc
Validation acc

Figure 3.7: Capacity of the model in the accuracy of training and validation, without
pre-processing of the input images to the ConvNet.

1 2 3 4 5 6 7 8 9 10
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

Lo
ss

Training and validation loss

Training loss
Validation loss

Figure 3.8: Capacity of the model in the loss of training and validation, without
pre-processing of the input images to the ConvNet.

Differing from the first model, the second learning model is under the same
conditions as the ConvNet architecture but now with the conjunction of the images
in the wavelet domain (only approximation sub-images). The approach with wavelet
analysis has the following results in the ten training and validation epochs. As
illustrated in Figure 3.9, the model’s capability has a better performance in the
learning generalization and avoids overfitting to the new validation dataset. In the

3.1. Object Detection in Aerial Navigation using Wavelet Transform
and Convolutional Neural Networks: A first Approach. 34

training stage, it initially reaches 68% in the Accuracy metric (green line), but it is
until the fourth epoch that it gets almost 100%. The Accuracy metric performs
better in the validation stage (blue line) since the learning generalization is higher
than the training data, avoiding overfitting new data and achieving almost 100%
in the second epoch. Moreover, the model achieves its Loss in the training stage
(green line) very slowly, approaching zero until the seventh epoch; this effect allows
us to have a model that is not susceptible to overfitting new data, see in Figure
3.10. In the case of the validation stage, a near-zero loss value is obtained very
quickly (blue line); this is due to the learning capacity and the quality of the images
in the wavelet domain.

1 2 3 4 5 6 7 8 9 10
Epochs

0.5

0.6

0.7

0.8

0.9

1.0

1.1

A
cc
u
ra
cy

Training and validation accuracy

Training acc
Validation acc

Figure 3.9: Capacity of the model in the accuracy of training and validation, with the
wavelet dataset.

Therefore, a model with higher detection and classification performance is obtained,
unlike the first learning model using the original dataset. The generalization of
knowledge allows us to learn new information adequately; the result is a smaller
difference between the Loss metric in the training stage and the Loss in the
validation stage. The contribution of this work allows optimizing the learning
capacity for object detection in aerial navigation applications. Besides, some
advantages of converting the data to the wavelet domain are to have images with
meaningful learning of the physical characteristics of the object, oriented to the
details of the texture, and eliminate the overfitting when having a small training
dataset. Finally, Table 3.1 shows the success rate for the wavelet test dataset. The
Accuracy and Loss metrics validate the learning model created by the information
in the spatial domain and by the information in the wavelet domain. Likewise, it
is the third dataset that has never been observed by the model.

3.1. Object Detection in Aerial Navigation using Wavelet Transform
and Convolutional Neural Networks: A first Approach. 35

1 2 3 4 5 6 7 8 9 10
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ss

Training and validation loss

Training loss
Validation loss

Figure 3.10: Capacity of the model in the loss of training and validation, with the
wavelet dataset.

Table 3.1: The test set results for each learning model (Spatial domain VS Wavelet
domain).

Topic Model 1 [%] Model 2 [%]

Test Accuracy 100 100
Test Loss 0.41 0.61

3.1.2.1 Simulation Experiments.

A simulator (Gazebo) is used to design UAVs like the Parrot AR.Drone 2.0 and the
development of realistic 3D scenarios [70]. Specifically, it allows fast execution of
algorithms, provides a user interface, and controls the navigation of the AR.Drone
in a fluid way. Also, Gazebo gives an identical control to the one used in real
vehicles. In the development of the applications, it allows the connection of the ROS
operating system — a system created under a Berkeley Software Distribution (BSD)
license with the open-source trend. ROS provides the functionality of an operating
system in a heterogeneous computer cluster. The way to transmit messages in
ROS is through the nodes, which allows them to be programmed in any language
with client libraries for ROS (like C, C++, Python, Java, and Matlab) [71].

Concerning the second detection model, the simulator provides real-time support for
evaluation and execution. It is important to emphasize that the image acquisition
in the evaluation stage are images from the on-board camera of AR.Drone (front

3.1. Object Detection in Aerial Navigation using Wavelet Transform
and Convolutional Neural Networks: A first Approach. 36

view) as if it were the real camera. Images initially have a size of 640×380 pixels,
so the images are conditioned to a size of 512×512 pixels. After, these images are
converted to the wavelet domain via multiresolution analysis at a scale level equal
to three. Therefore, the result is four sub-images with a resolution of 64×64 pixels
(value allowed for the detection model).

The real-time execution it is showed different perspectives from the on-board
camera of the drone. In this case, two classes of prediction are displayed correctly;
the first class in which the object with texture appears entirely in the scene, as
illustrated in Figure 3.11, and the second class in which it does not appear in the
image plane, see Figure 3.12. A video of this work for review purposes is available at
https://youtu.be/MOSrJyf14T8. Also, the average detection rate reaches 98% in
different perspectives (scene scale and lighting variations), as illustrated in Figure
3.13. Proof of this, the detection model resulted in an excellent performance in
prediction times, as shown in Table 3.13.

Figure 3.11: Test 1: Object detection in scene applying the proposed method with the
approach of wavelet analysis and deep learning.

Figure 3.12: Test 2: Object is not detected on the scene, as it is out of view from the
on-board camera of the drone.

https://youtu.be/MOSrJyf14T8

3.1. Object Detection in Aerial Navigation using Wavelet Transform
and Convolutional Neural Networks: A first Approach. 37

It is demonstrated that the interaction of a ConvNet neural network with a wavelet
dataset in robotic applications could achieve promising results in the learning stage.
The simulation environment provides a complete analysis of the proposed method;
therefore, it can be adapted to real conditions for classifying and detecting objects
with textures. Nevertheless, without leaving aside the prediction time reported,
it is advisable to use a computer with high processing capacity, given that the
simulation consumes many resources for its operation.

(a) Object distance = 1 m (b) Object distance = 2 m

(c) Object distance = 3 m (d) Object distance = 4 m

(e) Object distance = 1 m (f) Object distance = 2 m

(g) Object distance = 3 m (h) Object distance = 4 m

Figure 3.13: Detection results at four different distances from the target to the drone
camera, and different scales and illumination (a)-(d) are results based on a perspective
in the environment, while (f)-(h) are results based on an opposite perspective in the
environment (the image of the target contains shadow).

3.1. Object Detection in Aerial Navigation using Wavelet Transform
and Convolutional Neural Networks: A first Approach. 38

3.1.2.2 Object Detection in Aerial Navigation.

This section shows two virtual worlds for aerial navigation. The goal is to validate
the proposed methodology in an environment that provides a real-world perspective.
Two training sets are offered in the wavelet domain in both virtual worlds, as shown
in Figure 3.14 and Figure 3.16. These two wavelet datasets are used as input to
the CNN architecture, which is shown in Figure 3.5. For the first virtual world
shown in Figure 3.15, it is obtained an Accuracy rate of 99.8% in the test stage
(out of 300 frames) and a Loss value of 0.44%. A video of this work is found at
https://youtu.be/6WbQjKRFI_E.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.14: Test dataset 1: Images of the virtual environment to perform the binary
classification, (a)-(e) Class CubTexture: images with the textured cube and (f)-(j) Class
NotCubTexture: images without the textured cube.

Figure 3.15: Virtual world 1: The learning model achieves object detection on the
image plane.

https://youtu.be/6WbQjKRFI_E

3.1. Object Detection in Aerial Navigation using Wavelet Transform
and Convolutional Neural Networks: A first Approach. 39

For the case of the second virtual world, as shown in Figure 3.17, in the
test stage, it is obtained a 99.7% Accuracy rate (out of 450 frames) and a
Loss value of 0.89%. A video of this work for review purposes is available at
https://youtu.be/tGo4wpvsoyI. The results show that both environments have
a high performance in detection capability.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.16: Test dataset 2: (a)-(e) Class CubTexture: Images with the textured cube
on the table and (f)-(j) Class NotCubTexture: images of the environment and without the
cube on the table. Both wavelet datasets are trained for binary classification.

Figure 3.17: Virtual world 2: Example of detection. The on-board camera of the drone
detects the textured object on the table.

https://youtu.be/tGo4wpvsoyI

3.2. System for Image Texture Classification using Deep Learning
and Wavelet Features. 40

3.2
System for Image Texture Classification using
Deep Learning and Wavelet Features.

Texture characterization in digital images has become an analysis tool in computer
vision. Texture in visual perception is an important physical property because
it provides information about the structural composition of surfaces and objects
in the image. On the other hand, texture analysis in machine learning plays an
essential role in object classification, detection, and localization tasks.

In image processing, texture can be defined from neighboring pixels and intensity
distribution over the image [9]. In addition, there are some classification methods
for texture analysis such as statistical, geometric, model, and spectral. Meanwhile,
spectral methods describe the texture in the frequency domain. They are based on
the decomposition of a signal in terms of basis functions and use the expansion
coefficients as feature vector elements.

In this work, a classifier is made for the databases: KTH-TIPS-2B (KT2B),
Describable Textures Dataset (DTD), and Flickr Material Database (FMD).
Moreover, the adaptivity of deep learning with the wavelet transform is studied,
particularly an approach to the Wavelet CNN architecture [21]. Also, an
empirical and experimental methodology is used in developing and implementing
Convolutional Neural Network (CNN) and wavelet analysis, both as feature
extraction methods.

Internally this system is divided into two stages: the first corresponds to feature
extraction and the second to the classification stage. Regarding the feature
extraction stage, the created tensor has a set of numerical parameters that describe
the image content, such as the color, texture, or shape of the object. Therefore,
the feature extraction stage is important for the overall success of any image
classification and recognition system.

3.2.1 Materials and Methods.

Deep learning is a subfield of machine learning, a new way of learning features
from data, such as text, audio, and images [72]. In this area, the term deep does
not refer to any architecture; rather, it represents the idea of successive layers of
representations at different levels. These new representations are getting more and
more meaningful. On the other hand, inside deep learning are CNNs, specialized
neural networks for data processing.

3.2. System for Image Texture Classification using Deep Learning
and Wavelet Features. 41

The proposed methodology for improving performance on the learning model is
summarized in three stages, shown in Figure 3.18. Each step is described below.

1. Dataset
(Input)

2. Data
preparation

3. Model evaluation

•Training and validation of the
model

•Model visualization

•Model selection

•Model tuning

•Model testing and updating

Figure 3.18: Deep learning process.

For the first stage, select the data with which the model learning will be generalized.
In this case, the images of KT2B, DTD, and FMD, which contain images with
different textures and materials in natural conditions, are used. These datasets
will be described below.

3.2.1.1 Dataset.

The first dataset selected is KTH-TIPS-2B (KT2B), containing 432 images classified
into 11 classes. Each class consists of four samples, and each sample has 108
images [35]. Figure 3.19 illustrates the 11 classes with four random samples.

Aluminium foil CorkCotton

WoolBrown bread White bread

Wood

Cracker Linen

CorduroyLettuce leaf

Figure 3.19: Example images from the KTH-TIPS-2B dataset.

The second dataset is the Describable Textures Dataset (DTD) which contains
47 classes of 120 images in the wild, meaning that the images were acquired in
uncontrolled conditions [36]. This dataset includes ten available divisions with 40
training images, 40 validation images, and 40 test images for each class. Image
sizes range between 300×300 and 640×640, and the images contain at least 90% of
the surface representing the category attribute. Figure 3.20 shows some pictures
from this set.

3.2. System for Image Texture Classification using Deep Learning
and Wavelet Features. 42

Figure 3.20: Example images of the DTD dataset.

The third dataset is the Flickr Material Database (FMD). It is built with various
everyday materials (e.g., glass, plastic, etc.). Each image is manually selected from
Flickr (under Creative Commons license) to ensure lighting conditions, compositions,
colors, texture, and material subtypes. FMD has become a benchmark for material
recognition in the computer vision community [37]. Some images are shown in
Figure 3.21.

metalfabric foliage glass leather

paper plastic stone water wood

Figure 3.21: Example images from the FMD dataset.

3.2.1.2 Data Preparation.

Since the images within the sets are initially sized differently, in the pre-processing
stage, the images are resized to a size of 300×300 (a decision that depends on the
NVIDIA GPU’s computing power and the images’ size because they range from
300×300 to 640×640) for the three sets, KT2B, FMD, and DTD. In the scaling
functions of the OpenCV library is the cv.resize() function. The default scaling
algorithm is Bilinear Interpolation [68,69]. Also, when using a CNN architecture,
the inputs must be processed. For that reason, when working with images, it is
convenient to normalize the pixel values from 0 to 1. As a result, the model can
quickly converge to a local minimum because inputs with large integer values can
slow down the learning process.

3.2. System for Image Texture Classification using Deep Learning
and Wavelet Features. 43

3.2.1.3 Model Evaluation.

In this stage, a dataset is randomly generated and divided into three subsets, one
for training with 70% of the images, another for validation with 15%, and the
remaining 15% for the testing stage [4]. This new distribution of images for model
evaluation during training and validation will be applied to the three datasets
(KT2B, FMD, and DTD). Then, the training parameters are selected in order to
evaluate the model during each epoch or learning iteration. In the search for kernel
filters, which establish the characteristic features of each texture, the one with the
best performance must be selected automatically. Therefore, this process allows
adjusting and updating the model as the architecture is trained.

On the other hand, it is possible to use a performance metric when having classes
with the same number of images. In this case, Accuracy, a very relevant performance
metric in classification tasks, can be calculated. Accuracy (acc) is calculated
as a percentage of images that the created model correctly labels. Regarding
model performance, one way to determine error patterns in texture prediction or
classification is by using the multiple confusion matrix. This is a table of N×N,
which summarizes the level of success of the predictions of a classification model;
that is, the correlation between the label and the classification of the model. In
this case, N represents the number of classes, one axis of the confusion matrix is
the label that the model predicted, and the other is the actual label.

3.2.1.4 Method for Feature Extraction.

Different feature extraction methods generally lead to different texture information
elements. Therefore, taking up the main idea of the Wavelet CNN [21], it is decided
to design an approximation of the architecture. The result is a hybrid system that
combines the features generated by the CNN through the filters or kernel, the
attributes or feature maps generated by hand with the Haar wavelet transform
through multiresolution analysis at two decomposition levels.

The network design includes two separate processes (feature extraction using
CNN and feature extraction using wavelet analysis) later merged in the model
training. In the first process, the RGB image pre-processed in the data preparation
stage enters as a tensor to the base VGG architecture to achieve specific patterns
automatically. This will allow to classify the textures and discriminate one from
another. The second process is performed additionally. In other words, before
entering the spatial information into the CNN architecture, new synthetic data
must be generated, the attributes (wavelet coefficients) or feature maps in the

3.2. System for Image Texture Classification using Deep Learning
and Wavelet Features. 44

spectral domain. It should be emphasized that the multiresolution analysis process
in the decomposition stage. It allows generating feature maps that can be adapted
to the convolutional blocks of the base CNN. Therefore, with the fusion of these
processes in the feature extraction stage, it is possible to move to the next step
of deep learning for classification. In Figure 3.22, the classification system with a
spatial approach and the fusion of the spectral approach is shown.

RGB Image
VGG-CNN

Multiresolutions Analysis - 2 Levels

Datasets
DTD

KTH-TIPS-2B
FMD

Feature Maps
of Texture

G
lo

b
al

A
P

o
o

l

VGG-CNN
D

ro
p

O
u

t

So
ft

m
ax

Figure 3.22: Architecture for a textured image classification system.

3.2.1.5 Experimental Setup.

The proposed classification system is illustrated in Figure 3.22. The architecture
is designed according to the VGG16 network [36], it has five convolutional blocks
with kernels of size 3×3 and a padding (same) so that the output has the same
size as the input. In addition, each convolutional block contains two convolution
methods Conv2D, the first with a stride of 1 and the second with a stride of 2 to
enable the output to be half the size of the input. This allows the convolutional
blocks to extract texture features in the spatial domain.

On the other hand, the VGG architecture and the multiresolution analysis
(decomposition stage) have the same reduction feature. It is possible to concatenate
each level of decomposition (information in the spectral domain) with the feature
maps of each convolutional block. In order to determine the characteristic attributes
of each texture, it was decided to use the Haar wavelet transform at two levels. This
factor of 2 depends on the possibility of decreasing the image size. Furthermore,
avoid using padding that affects the wavelet characteristics at the next level. Also,
it is essential to mention that this process is applied for each of the RGB channels
of the image, performing the individual decomposition per channel. In the end, the
maps found are concatenated in a vector. The new information is concatenated into

3.2. System for Image Texture Classification using Deep Learning
and Wavelet Features. 45

a feature cube (spectral and spatial), and this must be transformed to change its
representation using the GlobalAveragePooling2D method. This new vector, in
turn, feeds the regularization method DropOut to avoid overfitting before passing
through the last prediction layer, Softmax [73].

3.2.1.6 Implementation.

The system implementation is based on the Python language and the Keras
API with Tensorflow as Backend [4]. In summary, the classification system has
5,441,866 trainable parameters or synaptic learning weights. Also, in selecting the
hyperparameters, a learning rate value is defined as 0.001, a minibatch of 30, 500
training epochs for learning, four Callbacks API to improve model performance
(ModelChekpoint, EarlyStopping, CVLogger, ReduceLROnPlateau), besides the
Adam optimizer — a variant of Descent Gradient [65]. On the other hand, the
OpenCV libraries are used for image processing due to their ease of use and
adaptability in programming. In the case of the additional method, the Haar
wavelet transform, the Pywt library is used [74].

3.2.2 Experimental Results.

Three datasets (KT2B, DTD, and FMD) have validated the approach. Two (KT2B
and DTD) are special cases of texture databases because they contain images
captured under uncontrolled conditions.

The local maximum achieved for the Accuracy metric is shown in Figure 3.23a. For
the DTD dataset, the maximum value achieved is around epoch 21, with a value
of 39.74% in training (DTD train_acc). And for validation (DTD val_acc) of
32.21%. In the case a local maximum for the FMD dataset is given at epoch 45, the
Accuracy is 34.14% for training (FMD train_acc) and 36.67% for validation (FMD
val_acc). Finally, for the KT2B dataset the local maximum occurs at epoch 48,
with a better performance, 95.80% Accuracy for training (KT2B train_acc) and
96.29% (KT2B val_acc) for validation. Figure 3.23b shows the loss of the model
in each of the three datasets. Also, it is shown that there is a point of divergence
between the two sets being trained (training and validation). This point matches
the epoch number where the local maximum of Accuracy was found. The learning
behavior for the three data sets is shown in Figure 3.23. The Accuracy achieved for
the test set in KT2B is 96%, for FMD with 30%, and for DTD is 34%, as shown in
Table 3.2. These results are significant, given that these are images that the model
has never seen.

3.2. System for Image Texture Classification using Deep Learning
and Wavelet Features. 46

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy
 %

Training and validation acc
DTD train_acc
DTD val_acc
FMD train_acc
FMD val_acc
KT2B train_acc
KT2B val_acc

Model learning

(a) Model accuracy.

0 20 40 60 80 100
Epochs

0

1

2

3

4

5

Lo
ss

 %

Training and validation loss
DTD train_loss
DTD val_loss
FMD train_loss
FMD val_loss
KT2B train_loss
KT2B val_loss

Model learning

(b) Model loss.

Figure 3.23: Evaluation of accuracy and loss metrics for training and validation sets.

Table 3.2: Learning performance in the three evaluation sets.

Train [Acc] Val [Acc] Test [Acc]

DTD 0.3974 0.3221 0.3451
FMD 0.3414 0.3667 0.3000
KT2B 0.9580 0.9629 0.9678

3.2. System for Image Texture Classification using Deep Learning
and Wavelet Features. 47

In order to evaluate the classification performance of the model, it is determined
to use the multiple confusion matrix. Note that there is a relationship between
the test set and the multiple confusion matrix results. For DTD in Figure 3.24, it
shows a blue diagonal difficult to detect, and the heat map is still distributed in
some areas. This indicates that the developed model still finds similitude in most
classes.

ba
nd

blo
t

bra
i

bu
bb

bu
mp

che
q

cob
w

cra
c

cro
s

cry
s

do
tt

fib
r

fle
c

fre
c

fril ga
uz

gri
d

gro
o

ho
ne

int
e

kn
it

lac
e

line marb matt mesh pa
is

pe
rf

pit
t

ple
a

po
lk

po
ro

po
th

sca
l

sm
ea

spi
r

spr
i

sta
i

str
a

str
i

stu
d

sw
ir

ve
in

waff wov
e

wrin zig
z

Predicted Label

band

blot

brai

bubb

bump

cheq

cobw

crac

cros

crys

dott

fibr

flec

frec

fril

gauz

grid

groo

hone

inte

knit

lace

line

marb

matt

mesh

pais

perf

pitt

plea

polk

poro

poth

scal

smea

spir

spri

stai

stra

stri

stud

swir

vein

waff

wove

wrin

zigz

Tr
ue

 L
ab

el

12 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

0 1 0 0 1 0 0 0 0 1 0 1 2 1 0 1 0 0 0 0 0 0 0 1 3 0 0 0 2 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 1 0 0 2 0 1 0 0 0 2 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 2 0 1 0 0 0 2 0 0

0 0 0 2 0 0 1 0 0 1 0 0 2 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 5 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0

0 1 1 0 4 0 0 1 0 0 0 0 1 0 2 1 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 17 0 0 0 0 1 0

0 0 0 0 0 0 11 0 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

1 0 0 0 0 0 1 7 0 0 0 2 1 0 0 0 0 2 0 0 0 2 0 2 0

1 0 0 0 0 0 0 1 3 0 0 2 5 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 9 0 0 0 2 0 4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 5 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 1 3 0 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 10 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 4 0 0 0 1 4 1 0 0 0 0 0 0 0 1 1 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 1 0 4 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 2 1 0 0 0 0 0 0 1 2 1 0 0 0 0 4 0 0 3 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 2 1 1 0 0 0 0 0 0 0 1 4 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2 2 0 0 0 0 0 0 0

1 0 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0 1 3 0 0 0 1 0 0 1 1 2 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 4 1 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 2 1

0 0 0 0 0 0 1 1 1 0 0 3 2 0 1 0 0 0 0 0 5 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 9 0 1 0 1 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 9 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 2 0 0 0 0 1 0 0 7 1 0 0 0 1 1 0 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 3 0 1 0 1 0 0 0 0 0 0 0 3 2 0 0 0 2 2 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 2 0 0 0 1 0 0 0 2 0 0 0 0 2 0 0 0 0 5 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 3 1 1 0 0 0 0 0 0 2 0 0 1 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 11 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0 0 1 0 1 4 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1 6 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 1 0 0 1 0 0 0 0 0 0 1 0 9 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 9 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 0 1 0 0 1 5 0 2 1 0 0 0 0 0 0 0 1 0 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 2 0 0 2 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 8 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 1 0 1 0 4 1 0 0 0 1 0 0 0 0 1 1 0 1 1 0 0 0 0

0 1 0 0 0 0 0 0 0 1 0 1 0 2 0 3 0 1 0 0 0 1 0 0 0 0 0 0 0 2 0 0 2 0 0 1 0 2 0 0 0 1 0 0 0 0 0

3 1 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 3 0 0 0 1 1

0 1 0 0 1 0 0 0 0 2 0 1 0 1 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 2 0 1 2 0 0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 1 1 0 0 1 3 0 4 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 13 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 11 0 0 0 0 0 0

1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 4 1 0 1 0 0 0 0 0 0 0 0 0 0 0 4 1 0 0 0 0

1 0 0 0 0 0 1 0 0 0 0 0 2 0 0 1 0 1 0 2 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 2 1 0 0 4 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 10 0 0 0

0 0 0 0 0 0 0 2 0 0 0 1 3 0 0 0 0 0 1 0 1 0 1 0 0 0 0 3 2 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 2 0 0

0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 1 0 0 1 1 0 2 0 0 0 0 0 3 0 0 0 0 0 0 0 0 2 0 2 0 0 0 0 3 0

2 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 3 0 6 0

2

4

6

8

10

12

14

16

count of predictions

Figure 3.24: Confusion matrix for the DTD dataset.

In particular, the blue diagonal is also very difficult to detect for the set of FMD
images, see Figure 3.25. There is no correct prediction in the center of the matrix.
The diagonal is not completed with the true label or any other class. Also, it is
found that most of the heat map is distributed to the right. On the other hand, for
the KT2B dataset, see Figure 3.26, which shows a full blue color diagonal. This
indicates a positive prediction trend concerning the original label of the KT2B

3.2. System for Image Texture Classification using Deep Learning
and Wavelet Features. 48

textures. Some images test are evaluated for each model; at the top, the true label
and the prediction can be seen. In particular, it allows having a visual idea about
the classification features and the correlation between classes. In Figures 3.27-3.29
show some test set images.

fab
ric

fol
iag

e
gla

ss
lea

the
r

meta
l

pa
pe

r
pla

stic
sto

ne
wate

r
woo

d

Predicted Label

fabric

foliage

glass

leather

metal

paper

plastic

stone

water

wood

Tr
ue

 L
ab

el

8 0 0 2 0 0 1 2 0 2

0 13 0 0 0 1 1 0 0 0

5 0 5 1 0 0 0 3 0 1

0 0 1 3 0 0 1 4 1 5

2 1 0 0 0 0 2 2 1 7

3 1 1 1 0 1 2 4 1 1

2 1 1 0 0 2 6 2 0 1

1 0 2 0 2 0 0 6 2 2

2 0 1 2 0 0 0 1 9 0

0 0 0 1 0 0 1 2 2 9

0

2

4

6

8

10

12

count of predictions

Figure 3.25: Confusion matrix for the FMD dataset.

alu
miniu

mfoi
l

bro
wnb

rea
d

cor
du

roy

cor
k

cot
ton

cra
cke

r

let
tuc

ele
af

line
n

whit
eb

rea
d

woo
d

woo
l

Predicted Label

aluminiumfoil

brownbread

corduroy

cork

cotton

cracker

lettuceleaf

linen

whitebread

wood

wool

Tr
ue

 L
ab

el

63 0 0 0 0 0 0 2 0 0 0

0 64 0 0 0 0 0 0 1 0 0

0 0 65 0 0 0 0 0 0 0 0

0 0 2 62 0 0 0 0 0 1 0

2 0 0 0 63 0 0 0 0 0 0

0 0 1 4 0 60 0 0 0 0 0

0 0 0 0 0 0 65 0 0 0 0

1 0 1 1 1 0 0 60 1 0 0

0 0 0 0 2 0 0 0 62 1 0

0 0 0 0 0 0 0 1 0 64 0

0 0 0 1 0 0 0 0 0 0 64

0

10

20

30

40

50

60

count of predictions

Figure 3.26: Confusion matrix for the KT2B dataset.

3.2. System for Image Texture Classification using Deep Learning
and Wavelet Features. 49

0 250

0

200

flec, flec

0 250

0

200

stud, stud

0 250

0

200

poth, poth

0 250

0

200

spri, spri

0 250

0

200

zigz, zigz

0 250

0

200

cheq, cheq

0 250

0

200

cheq, cheq

0 250

0

200

bubb, bubb

0 250

0

200

line, line

(a) 292 Correctly classified.

0 250

0

200

fibr, pitt

0 250

0

200

gauz, smea

0 250

0

200

gauz, spri

0 250

0

200

scal, blot

0 250

0

200

band, cros

0 250

0

200

knit, wove

0 250

0

200

scal, marb

0 250

0

200

poth, gauz

0 250

0

200

crys, smea

(b) 554 Incorrectly classified.
Figure 3.27: Random texture classification (from 846 images) using the DTD prediction
model.

0 250

0

200

stone, stone

0 250

0

200

water, water

0 250

0

200

leather, leather

0 250

0

200

water, water

0 250

0

200

foliage, foliage

0 250

0

200

plastic, plastic

0 250

0

200

foliage, foliage

0 250

0

200

foliage, foliage

0 250

0

200

water, water

(a) 45 Correctly classified.

0 250

0

200

foliage, metal

0 250

0

200

wood, glass

0 250

0

200

water, stone

0 250

0

200

wood, fabric

0 250

0

200

paper, plastic

0 250

0

200

stone, glass

0 250

0

200

fabric, paper

0 250

0

200

stone, paper

0 250

0

200

stone, metal

(b) 105 Incorrectly classified.
Figure 3.28: Random texture classification (from 150 images) using the FMD prediction
model.

0 250

0

200

cracker, cracker

0 250

0

200

corduroy, corduroy

0 250

0

200

cork, cork

0 250

0

200

cork, cork

0 250

0

200

wool, wool

0 250

0

200

linen, linen

0 250

0

200

linen, linen

0 250

0

200

aluminiumfoil, aluminiumfoil

0 250

0

200

cracker, cracker

(a) 692 Correctly classified.

0 250

0

200

cork, cracker

0 250

0

200

corduroy, cracker

0 250

0

200

cork, cracker

0 250

0

200

cork, cracker

0 250

0

200

wood, cork

0 250

0

200

cork, linen

0 250

0

200

cork, wool

0 250

0

200

cork, cracker

0 250

0

200

corduroy, cork

(b) 23 Incorrectly classified.
Figure 3.29: Random texture classification (from 715 images) using the KT2B prediction
model.

3.3. Texture Classification for Object Detection in Aerial Navigation
using Transfer Learning and Wavelet-based Features. 50

.

3.3

Texture Classification for Object Detection in
Aerial Navigation using Transfer Learning and
Wavelet-based Features.

The use of Micro Aerial Vehicles (MAVs) has increased in engineering and civil
applications to explore environments without previous information. In particular,
in autonomous navigation, a fundamental part is that of detecting and locating
targets of our interest. For this reason, computer vision has become an essential
analysis tool. This work focuses on object classification in aerial navigation tasks,
where texture is involved as a physical property of the object. It is presented
a classification model using transfer learning and wavelet-based features as an
additional feature extraction method.

Therefore, it is decided to merge these methodologies (deep learning and wavelet
features) as a solution for texture classification. The objective is that the MAV
performs aerial navigation (inside the virtual environment) for the classification
system to recognize the object, see Figure 3.30. This work focuses on preview
information (in data collected by MAV) and structural recognition of the object
(with a particular texture) within a region of interest in the image plane. The
implementation of our system is developed with the fusion of two approaches. The
first is in the spatial domain, using transfer learning. It is a baseline of the VGG16
architecture with the features of the ImageNet database [31, 38]. The second
approach focuses on the spectral domain, applying the Haar wavelet transform in
two dimensions to obtain features at different scales [34]. The VGG16 network has
been selected for its fast performance and implementation with transfer learning
and adaptability with wavelet analysis. Internally, the system is divided into
two stages: the first corresponds to feature extraction and the second one to the
classification stage.

3.3.1 Materials and Methods.

This system allows for the prediction or classifies the texture in images transmitted
from the on-board camera of the drone, whose objects are in an outdoor scenario
(in Gazebo) — a virtual simulation environment. This work proposes an approach
based on transfer learning and wavelet features. There is interest in texture
recognition, mainly to know one of the characteristics of the object. So, the image
plane (640×360) is limited to a Region of Interest-ROI (300×300 pixels). In the

3.3. Texture Classification for Object Detection in Aerial Navigation
using Transfer Learning and Wavelet-based Features. 51

Figure 3.30: An aerial navigation texture classification system based on knowledge
inference on the DTD database is designed. See at https://youtu.be/d41kgBw7Y_c.

ROI function is the code frame[30:330, 170:470, :]. The default ROI code
extracts a portion of the image plane. As a result, the system will have the image
in RGB and a grayscale version. This decision depends on feeding the CNN with
the ROI image and applying the wavelet transform to a single channel. These two
images are the inputs for our proposed classification system; see Figure 3.31.

RGB image
Pretrained

VGG16

DTD Database

VGG-CNN

Texture feature
Extraction

2D
TW

 H
aa

r
Fe

at
u

re
s

C
N

N
Fe

at
u

re
s

C
o

n
ca

te
n

at
e

G
lo

b
al

 P
o

o
l

G
lo

b
al

 P
o

o
l

D
en

se
 (

64
)

P
re

d
ic

ti
o

n
s(

47
)

D
ro

p
O

u
t

D
en

se
 (

28
)

D
en

se
 (

64
)

D
en

se
 (

28
)

C
o

n
ca

te
n

at
e

Grayscale image

Feature extraction stage

Classification stage

Predition layer
(Softmax)

Convolutional Neural Network + Wavelet Features for texture recognition.

Figure 3.31: Texture classification system.

https://youtu.be/d41kgBw7Y_c

3.3. Texture Classification for Object Detection in Aerial Navigation
using Transfer Learning and Wavelet-based Features. 52

Describable Textures Dataset (DTD) was selected to be used. It contains 47 classes
of 120 images in the wild. This means that the images have been acquired that
in uncontrolled conditions [36]. This dataset includes ten divisions available with
40 training images, 40 validation images, and 40 test images for each class. Our
experiment will create a new dataset, with the distribution of 70% for training, 15%
for validation, and the remaining 15% for testing [4, 14]. Figure 3.20 shows some
images from this set. One limitation of the dataset is the number of images per class,
so it is decided to use the transfer learning method to improve the classification
performance of our model. The synaptic weights are based on the ImageNet
database, which will feed the feature extraction stage of the base architecture
VGG16. Moreover, this approach was not decided to use KT2B and FMD because
of the limitation in the number of classes. The model is intended to generalize to a
variety of textured objects, such is the case of the DTD dataset.

Before training, the Haar wavelet transforms in two dimensions is applied to one
level (a decision that depends on obtaining spectral information and decreasing
the computational cost), see Figure 3.31. The factor of one represents the level of
image decomposition. This new spectral information is essential for classification.
Therefore, four sets (in the wavelet domain) are automatically generated to
determine the characteristic attributes of each texture. This information can
be combined with the spatial information of the VGG16 architecture. Also, it
is essential to mention that this process is only applied to the image previously
converted to grayscale, performing the decomposition for a single channel, see
Figure 3.32 & 3.33.

0 250

0

200

Ground Truth: 28

0 250

0

200

Ground Truth: 12

0 250

0

200

Ground Truth: 34

0 250

0

200

Ground Truth: 40

0 250

0

200

Ground Truth: 36

0 250

0

200

Ground Truth: 32

0 250

0

200

Ground Truth: 1

0 250

0

200

Ground Truth: 8

0 250

0

200

Ground Truth: 44

Figure 3.32: Images textures that have been decoded (Class) to train the classification
model.

For the test stage in MAV, a scenario is designed in the Gazebo simulator. The
virtual scenario is created with ten cubes with certain textures (Figure 3.30). These
textures are selected due to the performance achieved in the model testing stage.
Therefore, the chosen classes have performance above 70% Accuracy (Table 3.4).

3.3. Texture Classification for Object Detection in Aerial Navigation
using Transfer Learning and Wavelet-based Features. 53

0 100

0

100

Ground Truth: 28

0 100

0

100

Ground Truth: 12

0 100

0

100

Ground Truth: 34

0 100

0

100

Ground Truth: 40

0 100

0

100

Ground Truth: 36

0 100

0

100

Ground Truth: 32

0 100

0

100

Ground Truth: 1

0 100

0

100

Ground Truth: 8

0 100

0

100

Ground Truth: 44

(a) Approximation

0 100

0

100

Ground Truth: 28

0 100

0

100

Ground Truth: 12

0 100

0

100

Ground Truth: 34

0 100

0

100

Ground Truth: 40

0 100

0

100

Ground Truth: 36

0 100

0

100

Ground Truth: 32

0 100

0

100

Ground Truth: 1

0 100

0

100

Ground Truth: 8

0 100

0

100

Ground Truth: 44

(b) Horizontal details

0 100

0

100

Ground Truth: 28

0 100

0

100

Ground Truth: 12

0 100

0

100

Ground Truth: 34

0 100

0

100

Ground Truth: 40

0 100

0

100

Ground Truth: 36

0 100

0

100

Ground Truth: 32

0 100

0

100

Ground Truth: 1

0 100

0

100

Ground Truth: 8

0 100

0

100

Ground Truth: 44

(c) Vertical details

0 100

0

100

Ground Truth: 28

0 100

0

100

Ground Truth: 12

0 100

0

100

Ground Truth: 34

0 100

0

100

Ground Truth: 40

0 100

0

100

Ground Truth: 36

0 100

0

100

Ground Truth: 32

0 100

0

100

Ground Truth: 1

0 100

0

100

Ground Truth: 8

0 100

0

100

Ground Truth: 44

(d) Diagonal details

Figure 3.33: Approximation and details set of wavelet features.

3.3.2 Experimental Results.

The experiment to train our learning model was carried out with the Keras API
with Tensorflow as Backend [3-17] [4]. Besides, the OpenCV libraries are used for
image processing due to their ease of use and adaptability in programming. Also,
it is used the Pywt library [74], from which the Haar wavelet transform was chosen
as the feature extractor method. An aerial navigation experiment was performed
using the ROS framework and Gazebo simulation environment to validate the
classification system and its learning generalization. This section describes the
results obtained in each experiment.

3.3. Texture Classification for Object Detection in Aerial Navigation
using Transfer Learning and Wavelet-based Features. 54

3.3.2.1 Model Training.

In the first instance, the VGG16 network was trained from scratch. The idea is to
see if, with training from scratch, it is able to generalize its learning. Therefore, it is
possible to use the transfer learning methodology. Table 3.3 shows the performance
of the pre-trained network and the proposal with the wavelet feature fusion. It
shows the Accuracy performance on the three sets to validate the model (training,
validation, and test). In training the pre-trained network, slight overfitting is
observed. The model will be adjusted to learn specific instances and unable to
recognize new textures. One way to improve the performance of the model is
to integrate the wavelet features. In this case, the elimination of overfitting and
homogeneity between the three sets is achieved. Besides, the value of the test
set is highlighted because these are images that the model has never seen. In
summary, the classification system has 14,778,735 synaptic learning weights. 64,047
are trainable parameters, of which 16,832 correspond to wavelet features.

Table 3.3: Classification results for the pre-trained VGG16 network and our model
indicated as accuracy (%).

Training Validation Test

Pre-trained model 68.15 50.41 54.49
Our model 57.67 51.22 53.19

3.3.2.2 Texture Classification DTD.

Other metrics evaluate the performance of the DTD dataset classes. The
metrics such as Precision, Recall, and F1-score are given when applying the
classification_report method, where it is necessary to involve the true labels
and the prediction label of the model. Table 3.4 shows the classes that performed
above 70% classification. Also, Table 3.5 shows three random classes that perform
above 50% classification. This class selection analysis provides the basis for the
design of the textured cubes in the Gazebo environment. On the other hand, we
can observe the similarity and correlation between classes (about the test set) by
performing the prediction. Figure 3.34 shows the true and prediction labels at the
top of each texture.

3.3. Texture Classification for Object Detection in Aerial Navigation
using Transfer Learning and Wavelet-based Features. 55

Table 3.4: Classes (test set) that results with precision above 70%.

Class Precision Recall F1-score Test

bubb 0.73 0.61 0.67 18
cheq 1.00 0.78 0.88 18
fibr 0.73 0.61 0.67 18
fril 0.72 0.72 0.72 18
stri 0.77 0.94 0.85 18
stud 0.70 0.78 0.74 18
zigz 0.75 0.67 0.71 18

Table 3.5: Classes (test set) that results with precision above 50%. They are chosen
from the easy human visual perception of the texture.

Class Precision Recall F1-score Test

hone 0.58 0.61 0.59 18
line 0.50 0.28 0.36 18
polk 0.65 0.61 0.63 18

0 250

0

200

flec, flec

0 250

0

200

smea, smea

0 250

0

200

stud, stud

0 250

0

200

cros, cros

0 250

0

200

marb, marb

0 250

0

200

fril, fril

0 250

0

200

groo, groo

0 250

0

200

spri, spri

0 250

0

200

band, band

(a) 450 Correctly classified

0 250

0

200

zigz, pitt

0 250

0

200

lace, spri

0 250

0

200

crys, poth

0 250

0

200

stai, blot

0 250

0

200

grid, wove

0 250

0

200

swir, gauz

0 250

0

200

crys, smea

0 250

0

200

cros, inte

0 250

0

200

knit, scal

(b) 396 Incorrectly classified

Figure 3.34: Classification of textures randomly (from a total of 846 images) using the
DTD prediction model.

3.3. Texture Classification for Object Detection in Aerial Navigation
using Transfer Learning and Wavelet-based Features. 56

3.3.3 Texture Classification in Aerial Navigation.

The classification model is tested in navigation and aerial recognition, creating a
virtual environment with the Gazebo simulator. They are controlling and sending
information from the on-board camera of the drone using the ROS framework. In
the world presented in Figure 3.30, the ten cubes with the selected textures are
positioned in a row. Therefore, the position of the cubes allows the evaluation of
the prediction model during aerial exploration. The idea of the model is that it
generalizes its learning to textured objects. In total, 1000 image captures were
performed in a navigation recognition for each class. The proposed texture sets
bubbly, chequered, honey and striped, studded obtain a high correlation with their
original label above 60% Accuracy. In contrast, the fibrous, polka-dotted, and
zigzagged textures obtain a low performance, below 20% of the total captured
images. Moreover, the frilly and lined textures show minimum correlation with
their original label, see Figure 3.35.

Bubb Cheq Fibr Fril Hone Line Polk Stri Stud Zigz
Textured targets

0

200

400

600

800

1000

Im
ag

es
 a

cq
ui

re
d

The classification system
Correct prediction
Incorrect prediction

Figure 3.35: The number of images with textures obtained with the onboard camera
while flying recognition.

Some images (figures 3.36 & 3.37) of the recognition set are shown, with its original
label and its prediction label. However, it is observed that the five test images
incorrectly predict the frilly, lined, polka-dotted, and zigzagged set. These five
images relate to the whole recognition set, except for fibrous, polka-dotted, and
zigzagged, which achieve at least 3% Accuracy. This result allows us to understand
the generalization of learning between the model and textured objects.

3.3. Texture Classification for Object Detection in Aerial Navigation
using Transfer Learning and Wavelet-based Features. 57

The experimental development is positive because of the ten classes; the worst
performing was frilly, with a high correlation with the bubbly, cobwebbed, freckled,
and studded classes. In contrast, the fibrous class is highly correlated with the
cobwebbed class. On the other hand, lined has a high correlation with the zigzagged,
braided, striped, and swirly classes. In the case of the polka-dotted class, it
performed poorly. However, it is observed that most of the predicted labels were
of the dotted class.

(a) bubb,bubb (b) bubb,bubb (c) bubb,spri (d) bubb,bubb (e) bubb,bubb

(f) cheq,vein (g) cheq,bump (h) cheq,cheq (i) cheq,cheq (j) cheq,cheq

(k) fibr,cobw (l) fibr,cobw (m) fibr,cobw (n) fibr,fibr (o) fibr,fibr

(p) fril,bubb (q) fril,bubb (r) fril,cobw (s) fril,frec (t) fril,stud

(u) hone,hone (v) hone,hone (w) hone,hone (x) hone,hone (y) hone,hone

Figure 3.36: Image sequence acquired from the on-board camera of the drone. The
classification system has a good inference on the texture in the first, second, and fifth
rows.

3.3. Texture Classification for Object Detection in Aerial Navigation
using Transfer Learning and Wavelet-based Features. 58

Therefore, the two classes were observed to have almost the same characteristic
patterns. In addition, the studded class obtained nearly 100% Accuracy. Bubbly,
chequered, honey, and striped at least achieved 60% Accuracy. On the other hand,
the striped class shows a low correlation with the cobwebbed class. Also, the
zigzagged class has a high correlation with the meshed class and a slight correlation
with the grid class.

(a) line,zigz (b) line,zigz (c) line,brai (d) line,stri (e) line,swir

(f) polk,dott (g) polk,dott (h) polk,dott (i) polk,dott (j) polk,swir

(k) stri,cobw (l) stri,cobw (m) stri,stri (n) stri,stri (o) stri,stri

(p) stud,stud (q) stud,stud (r) stud,stud (s) stud,stud (t) stud,stud

(u) zigz,grid (v) zigz,grid (w) zigz,mesh (x) zigz,mesh (y) zigz,mesh

Figure 3.37: Image sequence acquired from the on-board camera of the drone. In
the second, third, and fourth rows, the classification system gets good classification
performance.

3.4. Texture and Materials Image Classification Based on Wavelet
Pooling Layer in CNN. 59

3.4
Texture and Materials Image Classification
Based on Wavelet Pooling Layer in CNN.

Convolutional Neural Networks (CNNs) have recently been proposed as a solution
to texture and material classification in computer vision. However, inside CNNs,
the internal pooling layers often cause a loss of information, which is detrimental
to learning architecture. Moreover, when considering images with repetitive and
essential patterns, the loss of this information affects the performance of subsequent
stages, such as feature extraction and analysis. In addition, it is known that
regularization methods focus only on the convolutional layer. In contrast, the
operations of the pooling layers have been left without an update [22]. In this
approach, a classification system with a new pooling method called Discrete Wavelet
Transform Pooling (DWTP) is proposed to solve this problem. This method is
based on the image decomposition into sub-bands, in which the first level sub-
band is considered its output. The objective is to obtain approximation and
detail information. As a result, this information can be concatenated in different
combinations. Hence, it is offered three configurations: DWTP = approximation
and detail information; DWTaP = approximation information; and DWTdP =
detail information. The goal is to preserve the most information for each texture
and material.

The method is validated on three datasets: CIFAR-10, Describable Textures
Dataset (DTD), and Flickr Material Database (FMD) [36, 37, 39]. The approach is
different from traditional methods because it is not a subsampling methodology
using neighboring regions, but wavelet pooling maintains its function as a reduction
layer. Wavelets allow localization in scale (i.e., frequency) and space. In other
words, wavelets can be used to analyze local and spatial transients in the data,
such as edges or surfaces in an image [40]. Therefore, they can preserve the most
relevant information about textures and materials, sometimes lost with traditional
methods such as Max-Pooling (MaxP) and Ave-Pooling (AveP).

The following was presented in the first study, where a CNN architecture was
designed for object detection with a repetitive pattern approach in aerial navigation.
Where it argued that the characteristics at different frequencies, low and high,
also affect the performance of the CNN during training, eliminate overfitting, and
achieve higher efficiency in object detection. Based on the results from the previous
work, it now presents a wavelet pooling approach to improve the learning of the
classification model with the following contributions:

1. It is presented a CNN architecture with a combination of regularization
methods (DropOut, Data Augmentation, and Batch Normalization) to
evaluate the performance of each pooling method: MaxP, AveP, and wavelet

3.4. Texture and Materials Image Classification Based on Wavelet
Pooling Layer in CNN. 60

pooling (DWTP, DWTaP, and DWTdP). The objective is to have a reference
for the learning behavior.

2. It is shown that the method eliminates the overfitting created by pooling
methods while reducing features using an approach based on level-based
decomposition. It is more compact than pooling by using neighboring regions.

3. It is demonstrated that a correct inference of texture or material can be
obtained if we determine the type of pooling used during learning. It has
conducted several experiments, but now it can choose the best pooling method
depending on the dataset. The experiments indicate that this is also useful
for future object detection applications, focusing on physical features such as
texture.

3.4.1 Materials and Methods.

The design of an effective model for texture and material classification considers
several issues: CNN architecture, dataset, regularization methods, model accuracy,
and information pooling. The DWTP method mainly focuses on improving the
model’s classification performance. Moreover, the method reduces the artifacts
resulting from dimension reduction in feature maps. The approach preserves
the significant features that traditional methods cannot retain. To evaluate the
approach (DWTP) and to have the effect of each pooling method concerning the
dataset, we outline the main steps below:

1. It is decided to involve digital images containing mainly textures and materials
for the CNN training. Textures and materials are key features for evaluating
the pooling method against losing information with repetitive patterns.

2. Each dataset being evaluated is divided into training, validation, and test.
A higher distribution percentage for the training set and the remaining
percentages for the validation and test sets are similar. This is a good
practice in state-of-the-art CNNs [4].

3. An approximate version of the VGG16 architecture is used in the CNN design
but with only three convolutional blocks [38]. In addition, a classification
block is proposed for our research case. The training hyperparameters are
described in Table 3.6.

4. The configuration for pooling inside each convolutional block of the CNN
(Block.CX) permits a reduction in the feature map. This initial configuration
depends on the selection of the pooling method. Therefore, it has at disposal

3.4. Texture and Materials Image Classification Based on Wavelet
Pooling Layer in CNN. 61

AveP and MaxP, the proposed DWTP method, and the complementary
versions DWTaP and DWTdP.

5. The evaluation stage includes the analysis of the classifier with the Accuracy
metric because it allows us to evaluate the performance of the model and its
learning behavior.

6. Finally, regularization methods are used to improve the performance of the
model.

The main contribution is to perform pooling (as a layer) inside the CNN using
a level-based decomposition approach. Hence, the proposed approach (DWTP)
concatenates the sub-images xLL, xLH , xHL and xHH , given Equation (2.12). From
this approach, it is obtained two configurations. The first configuration (DWTaP)
uses only the first level approximation sub-band xLL, and the second approach
(DWTdP) uses all the first level detail sub-bands. The traditional methods (AveP–
MaxP) are implemented with the Keras and TensorFlow methods. The diagram of
the proposed methodology is presented in Figure 3.4.

3.4.1.1 Network Training and Parameter Setting.

The algorithms are implemented and developed using the Python language and
Keras API with Tensorflow as Backend. Moreover, it is an open-source project,
and its manner of programming is sequential through blocks [4]. The hardware
specifications of the training device are an Intel® Core™ i7 processor with an
NVIDIA GeForce RTX™ 2080 graphics card, 12 GB of RAM, and Ubuntu 18.04
64-bit operating system.

The base architecture is the VGG network, and it is one of the first deep models
with good results in a large-scale visual recognition challenge (ILSVRC-2014) with
92.7% top-5 accuracy [38]. This architecture is designed to facilitate the creation of
a classification model—three convolutional blocks with their pooling layer and one
classification stage. The process is as follows: using the base VGG architecture,
combined with the pre-processed CIFAR-10, DTD, and FMD datasets, through
supervised learning. Before training the CNN, the Loss function and the optimizer
need to be specified. These parameters determine how the network weights should
be updated during training. The training parameters for the proposed models have
listed in Table 3.6.

A complete analysis is performed with each of the proposed pooling methods:
MaxP, AveP, DWTP, DWTaP, and DWTdP. In addition, it is combined with the
regularization methods DropOut [73,75,76], Data Augmentation [28,77], and Batch
Normalization [78, 79]. In this manner, a learning model is obtained, and it can

3.4. Texture and Materials Image Classification Based on Wavelet
Pooling Layer in CNN. 62

predict the objects, textures, and materials in the dataset (test) images with better
Accuracy.

Table 3.6: Training parameters of the proposed model.

Hyperparameters

Learning rate 0.001
Minibatch 30, CIFAR-10 = 64

Loss function ’categorical_crossentropy’
Metrics ’acc’,’loss’
Epochs 500

Callbacks API 4
ModelCheckpoint Monitor = ‘val_loss’, save_best_only = True,

mode=‘min’
EarlyStopping Monitor = ‘val_acc’, patience = 15, mode = ‘max’
CVLogger ‘model_history.csv’, append = True

ReduceLROnPlateau Monitor = ‘val_los’, factor=0.2,
patience=10, min_lr = 0.001

Optimizer SGD—Adam

3.4.1.2 Benchmark Dataset.

In classification tasks, the model must be evaluated on a dataset. It has performed
our experiments on three datasets. The first dataset is CIFAR-10 [39], the second
one is the Describable Textures Dataset (DTD) [36], and the last one is Flickr
Material Database (FMD) [37]. CIFAR-10 consists of 60,000 images of 32×32
pixels of ten different objects. DTD contains 47 classes of 120 images in the wild.
This dataset is developed in different uncontrolled conditions. Initially, it includes
40 training images, 40 validation images, and 40 test images for each class. Finally,
FMD is built with standard materials. It has ten classes of 100 images, and each
image is hand-picked from Flickr (under Creative Commons license) to ensure
various lighting conditions, compositions, colors, texture, and material subtypes.

A good practice is to split our dataset using the Hold-Out Cross-Validation sampling
technique [4,14]. In the case of CIFAR-10, the test set is initially with approximately
16.66%, and the training set is divided into two subsets with the same distribution
of images: training 80% and validation 20%. For DTD and FMD, the distribution
is different because the dataset is small. The test set contains 15% of the data.
Therefore, the rest is divided into the training subset with 82% and the validation
subset with 18% of the data.

3.4. Texture and Materials Image Classification Based on Wavelet
Pooling Layer in CNN. 63

The images have dimensions of 224×224 pixels, except for the CIFAR-10 dataset,
which has dimensions of 32×32 pixels. Following convention, it is helpful to
normalize the pixel values to a range of 0 to 1 for our model to converge quickly
because the inputs with large integer values can slow down the learning process.
The number of images per class is shown in Table 3.7. As observed, the last two
datasets have a few images, but one advantage is that they have a balance between
the number of images per class.

Table 3.7: The number of images per class.

Dataset Classes Images per Class Training Validation Test

CIFAR-10 10 10,000 40,000 10,000 10,000
DTD 47 120 3,931 863 846
FMD 10 100 700 150 150

3.4.2 Experimental Results.

The different classification models created allow us to analyze the contribution
of wavelet pooling; in this case, the model can analyze images with objects,
textures, and materials. It can also observe the learning curve of the proposed
pooling methods. Furthermore, it is incorporated regularization methods for image
classification to improve the model’s learning capability. The experiments obtained
using the three proposed regularization techniques are shown in Figures A.1 and
A.2 in Appendix A.1, based on the VGG architecture and the pooling method. In
this manner, a complete analysis of the performance of the classifier is provided.

In order to perform efficiency testing of each pooling method on each dataset, it is
used an initial configuration where each pooling layer inside the architecture has
only one pooling method at a time. All pooling methods use a 2×2 window to
perform the comparison with the proposed method.

3.4.2.1 Image Classification CIFAR-10.

The first dataset used is CIFAR-10, with a set of 60,000 images. Table 3.8 shows
that the proposed method outperforms traditional methods. In this sense, the
DWTaP combination uses only the approximation information. In addition, it
retained the number of parameters to be trained. Figure 3.38 shows the learning
curves of the pooling methods for CIFAR-10. In this case, it is observed that

3.4. Texture and Materials Image Classification Based on Wavelet
Pooling Layer in CNN. 64

MaxP and DWTaP resist overfitting; moreover, it shows a slower tendency to learn
in both sets. AveP maintains a consistent learning progression in both sets, but
Accuracy does not improve after epoch 50. In DWTP, it shows the smoothest
drop-in learning. It also achieves the best Accuracy performance for the training set.
DWTdP shows a rapid decrease during learning, which does not resist overfitting
after epoch 70.

Table 3.8: Performance of pooling methods on CIFAR-10.

Method Trainable
Params

Loss Acc Val_
loss

Val_
acc

Test_
loss

Test_
acc

MaxP 545,206 0.2741 0.9069 0.3058 0.8990 0.3365 0.8913
AveP 545,206 0.3220 0.8906 0.3296 0.8932 0.3493 0.8850
DWTP 1,558,966 0.1958 0.9330 0.3181 0.9020 0.3461 0.8946
DWTaP 545,206 0.2568 0.9126 0.2970 0.9067 0.3208 0.8970
DWTdP 1,221,046 0.3678 0.8735 0.4040 0.8701 0.4207 0.8672

The correlation of each class with their actual and predicted label for each model is
shown in Figure A.3 in Appendix A.2, which shows the multiple confusion matrix.
Moreover, the classification report with the evaluation metrics for CIFAR-10 is
shown in Table A.1 of Appendix A.3.

3.4.2.2 Image Classification with Textures DTD.

The second dataset used is DTD, with 47 classes of different textures. It has only
120 images for each category, which may cause overfitting in the model. Thus,
the proposed method is also a solution when you have a small dataset. In this
case, two experiments are performed by varying the training optimizer. First,
it used SGD as the optimizer [63]. Table 3.9 shows that the proposed DWTP
method using its DWTaP configuration outperforms all the methods. In addition,
it retains similitude in all three sets: training (37.40%), validation (31.17%), and
test (34.16%). Figure 3.39 shows the learning curves of the pooling methods
for DTD. MaxP shows a smooth learning decay and similar behavior between
both sets in this case, but the learning rate does not improve after epoch 71.
AveP and DWTP maintain a consistent learning progression, and their validation
sets progress at a similar rate but does not resist overfitting. DWTaP shows
identical behavior to AveP and DWTP. The model resists overfitting, achieving
the best Accuracy performance in both sets. DWTdP practically does not resist
overfitting; in this case, the validation set shows an increase in the error of the cost
function. The DWTaP model obtained with this configuration is shown in Figure
A.4 of Appendix A.2, which shows the correlation of each class with its actual and
predicted label. Based on this result, it is decided to use the following optimizer to
improve classification performances.

3.4. Texture and Materials Image Classification Based on Wavelet
Pooling Layer in CNN. 65

0 20 40 60 80 100 120
Epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9
A

cc
ur

ac
y(

%
)

Training and validation accu & loss

MaxP training acc
MaxP validation acc
AveP training acc
AveP validation acc
DWTP training acc
DWTP validation acc
DWTaP training acc
DWTaP validation acc
DWTdP training acc
DWTdP validation acc

CIFAR10

(a) Accuracy

0 20 40 60 80 100 120
Epochs

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

 (
%

)

Training and validation accu & loss
MaxP training loss
MaxP validation loss
AveP training loss
AveP validation loss
DWTP training loss
DWTP validation loss
DWTaP training loss
DWTaP validation loss
DWTdP training loss
DWTdP validation loss

CIFAR10

(b) Loss

Figure 3.38: Learning behavior on CIFAR-10 training and validation sets.

.

3.4. Texture and Materials Image Classification Based on Wavelet
Pooling Layer in CNN. 66

0 20 40 60 80 100 120
Epochs

0.0

0.1

0.2

0.3

0.4

0.5
A

cc
ur

ac
y(

%
)

Training and validation accu & loss

MaxP training acc
MaxP validation acc
AveP training acc
AveP validation acc
DWTP training acc
DWTP validation acc
DWTaP training acc
DWTaP validation acc
DWTdP training acc
DWTdP validation acc

DTD47

(a) Accuracy

0 20 40 60 80 100 120
Epochs

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

 (
%

)

Training and validation accu & loss
MaxP training loss
MaxP validation loss
AveP training loss
AveP validation loss
DWTP training loss
DWTP validation loss
DWTaP training loss
DWTaP validation loss
DWTdP training loss
DWTdP validation loss

DTD47

(b) Loss

Figure 3.39: Learning behavior on DTD training and validation sets—SGD optimizer.

.

3.4. Texture and Materials Image Classification Based on Wavelet
Pooling Layer in CNN. 67

Table 3.9: Performance of pooling methods on DTD—SGD optimizer.

Method Trainable
Params

Loss Acc Val_
loss

Val_
acc

Test_
loss

Test_
acc

MaxP 12,344,831 2.5715 0.3176 2.9217 0.2480 2.8203 0.2742
AveP 12,344,831 1.7849 0.5024 2.4606 0.3766 2.3937 0.3865
DWTP 48,748,031 1.8842 0.4817 2.4958 0.3685 2.4415 0.3924
DWTaP 12,344,831 2.3214 0.3740 2.7459 0.3117 2.6390 0.3416
DWTdP 36,613,631 3.5035 0.1069 3.4968 0.1136 3.4817 0.1288

The second experiment uses an Adam optimizer — an extension of stochastic
gradient descent [65]. Table 3.10 shows that the proposed DWTaP method and
MaxP exhibit the best classification performance on all three data sets. In this
case, it considers a change in the optimizer that resulted in an essential factor
for learning MaxP. Figure 3.40 shows the learning curves of the pooling methods
for DTD. MaxP shows a smooth learning decay and similar behavior between the
two sets. It also resists overfitting, managing to have good Accuracy performance.
AveP and DWTP maintain a consistent learning progression, and their validation
sets progress at a similar rate but does not resist overfitting. The learning rate
of DWTaP resists overfitting in both sets, achieving one of the best Accuracy
performances. DWTdP shows a slow learning behavior; thus, the learning rate
does not improve after epoch 28.

Table 3.10: Performance of pooling methods on DTD—Adam optimizer.

Method Trainable
Params

Loss Acc Val_
loss

Val_
acc

Test_
loss

Test_
acc

MaxP 12,344,831 1.7423 0.5225 2.1863 0.4426 2.1376 0.4350
AveP 12,344,831 1.6607 0.5324 2.1816 0.4345 2.1934 0.4184
DWTP 48,748,031 1.4055 0.5922 2.0647 0.4855 2.0195 0.4799
DWTaP 12,344,831 1.6408 0.5329 2.2657 0.4484 2.2878 0.4302
DWTdP 36,613,631 3.3241 0.1356 3.3666 0.1425 3.3205 0.1536

The DWTaP and MaxP learning models obtained with this configuration are
shown in Figure A.5 of Appendix A.2, which summarizes the level of success of the
classification model predictions. Moreover, the classification reports obtained with
both configurations (SGD and Adam) for DTD are shown in Appendix A.3 and
Tables A.2 and A.3.

3.4. Texture and Materials Image Classification Based on Wavelet
Pooling Layer in CNN. 68

0 20 40 60 80
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6
A

cc
ur

ac
y(

%
)

Training and validation accu & loss
MaxP training acc
MaxP validation acc
AveP training acc
AveP validation acc
DWTP training acc
DWTP validation acc
DWTaP training acc
DWTaP validation acc
DWTdP training acc
DWTdP validation acc

DTD47

(a) Accuracy

0 20 40 60 80
Epochs

1

2

3

4

5

6

7

8

9

Lo
ss

 (
%

)

Training and validation accu & loss
MaxP training loss
MaxP validation loss
AveP training loss
AveP validation loss
DWTP training loss
DWTP validation loss
DWTaP training loss
DWTaP validation loss
DWTdP training loss
DWTdP validation loss

DTD47

(b) Loss

Figure 3.40: Learning behavior on DTD training and validation sets—Adam optimizer.

3.4. Texture and Materials Image Classification Based on Wavelet
Pooling Layer in CNN. 69

3.4.2.3 Image Classification with Materials FMD.

The third dataset used is FMD, with ten classes of different materials. Moreover,
it is a small dataset since it only has 100 images per class. Likewise, it performed
two experiments: the first with the SGD optimizer and the second with the Adam
optimizer [63, 65]. Table 3.11 shows that the proposed DWTP method using its
DWTdP configuration outperforms all methods. In addition, the model retains
a similitude in the three sets: training, validation, and test. Figure 3.41 shows
the learning curves of the pooling methods for FMD. In this case, MaxP presents
overfitting rather quickly. AveP maintains a smooth descent for the training set,
but the validation set does not avoid overfitting. DWTP maintains a consistent
learning progression for its two sets, but they do not resist overfitting. The learning
rate of DWTaP does not resist overfitting in both sets, having similar behavior as
DWTP. Finally, DWTdP shows a consistent progression in its first learning epochs,
and its ensembles progress at a similar rate, thus achieving the best performance
for this dataset. The DWTdP model obtained with this configuration is shown
in Figure A.6 of Appendix A.2, which shows the correlation of each class with its
actual and predicted label.

Table 3.11: Performance of pooling methods on FMD—SGD optimizer.

Method Trainable
Params

Loss Acc Val_
loss

Val_
acc

Test_
loss

Test_
acc

MaxP 12,341,686 2.6234 0.2239 2.4013 0.1667 2.4426 0.1333
AveP 12,341,686 1.7555 0.4369 2.2773 0.2067 2.3420 0.2467
DWTP 48,744,886 1.5113 0.4896 2.0208 0.3533 2.1488 0.2867
DWTaP 12,341,686 1.3802 0.5101 2.1916 0.3267 2.3301 0.3066
DWTdP 36,610,486 3.0464 0.1687 2.3172 0.1867 2.4176 0.1400

The change of the optimizer, in this case, was beneficial for AveP learning. Table
3.12 shows that the proposed DWTdP method and AveP exhibit the best classifi-
cation performance on all three datasets. Figure 3.42 shows the learning curves
of the pooling methods for FMD. In this case, MaxP shows a smooth learning
descent and similar behavior between the two sets, but after epoch 22, it does
not resist overfitting. AveP achieves the best performance at epoch 17, avoiding
overfitting in the following epochs. DWTP and DWTaP maintain a consistent
learning progression, and their validation sets progress at a similar rate but does
not resist overfitting. DWTdP shows a slow learning trend in the early epochs, but
after epoch 15, the learning rate improves, and the sets evolve at a similar rate,
achieving good Accuracy performance.

3.4. Texture and Materials Image Classification Based on Wavelet
Pooling Layer in CNN. 70

0 10 20 30 40 50 60 70
Epochs

0.1

0.2

0.3

0.4

0.5

0.6
A

cc
ur

ac
y(

%
)

Training and validation accu & loss
MaxP training acc
MaxP validation acc
AveP training acc
AveP validation acc
DWTP training acc
DWTP validation acc
DWTaP training acc
DWTaP validation acc
DWTdP training acc
DWTdP validation acc

FMD10

(a) Accuracy

0 10 20 30 40 50 60 70
Epochs

1

2

3

4

5

6

7

Lo
ss

 (
%

)

Training and validation accu & loss
Maxp training loss
MaxP validation loss
AveP training loss
AveP validation loss
DWTP training loss
DWTP validation loss
DWTaP training loss
DWTaP validation loss
DWTdP training loss
DWTdP validation loss

FMD10

(b) Loss

Figure 3.41: Learning behavior on FMD training and validation sets—SGD optimizer.

.

3.4. Texture and Materials Image Classification Based on Wavelet
Pooling Layer in CNN. 71

Table 3.12: Performance of pooling methods on FMD—Adam optimizer.

Method Trainable
Params

Loss Acc Val_
loss

Val_
acc

Test_
loss

Test_
acc

MaxP 12,341,686 1.4713 0.4821 2.0068 0.2867 2.1222 0.2867
AveP 12,341,686 1.9043 0.3594 2.2249 0.3267 2.0981 0.3000
DWTP 48,744,886 1.3116 0.5493 2.0832 0.3200 2.0667 0.3133
DWTaP 12,341,686 1.4319 0.5108 2.0566 0.3667 2.0717 0.2866
DWTdP 36,610,486 2.1660 0.2239 2.1728 0.2600 2.2071 0.2199

The DWTdP and AveP learning models obtained with this configuration are shown
in Figure A.7 of Appendix A.2, which summarizes the level of success of the
classification model predictions. Moreover, the classification reports obtained with
both configurations (SGD and Adam) for FMD are shown in Tables A.4 and A.5
of Appendix A.3.

3.4. Texture and Materials Image Classification Based on Wavelet
Pooling Layer in CNN. 72

0 10 20 30 40 50
Epochs

0.1

0.2

0.3

0.4

0.5

0.6
A

cc
ur

ac
y(

%
)

Training and validation accu & loss

MaxP training acc
MaxP validation acc
AveP training acc
AveP validation acc
DWTP training acc
DWTP validation acc
DWTaP training acc
DWTaP validation acc
DWTdP training acc
DWTdP validation acc

FMD10

(a) Accuracy

0 10 20 30 40 50
Epochs

1

2

3

4

5

6

7

Lo
ss

 (
%

)

Training and validation accu & loss
Maxp training loss
MaxP validation loss
AveP training loss
AveP validation loss
DWTP training loss
DWTP validation loss
DWTaP training loss
DWTaP validation loss
DWTdP training loss
DWTdP validation loss

FMD10

(b) Loss

Figure 3.42: Learning behavior on FMD training and validation sets—Adam optimizer.

3.5. Discussion 73

3.5 Discussion

This section presents the discussion of results and observations for each approach.

First approach: CNNs have impacted classification, detection, and localization
tasks in area navigation. Two virtual worlds are illustrated in Figures 3.15 and 3.17.
These have allowed the generation of two new datasets. This further information
allows for validating the use of the wavelet transform. In addition, the created
dataset is allowed to become a benchmark for aerial object recognition in the deep
learning community. Furthermore, Table 3.1 contains the results of comparing both
experiments on the test set, where the Accuracy and Loss metrics are evaluated.
The results show that the proposals have very similar learning. However, this
value differs from the learning behavior in the training and validation sets, see
Figures 3.7-3.10. Therefore, the model in the spatial domain has been overfitted.
Moreover, Table 3.13 shows that the detection model has an excellent performance
in prediction time. This value is lower than the time the image is published in
the topic into the ROS framework. In particular, this time value depends on the
network, depth, image size, number of neurons in the last layer, and the hardware
where it is implemented.

Table 3.13: Experimental results of running our application on the ROS framework and
Gazebo simulator.

Topic Value [s]

Prediction function 0.01608
Image_raw 0.02587

The main observations are: (a) Considering scaled information in the wavelet
domain at the training stage eliminates overfitting; (b) using the information in
the wavelet domain for CNN training is beneficial to reducing the computational
cost; and (c) although some experimental tests have good detection performance,
the analysis is affected by the classification latency of the model. However, using
an NVIDIA graphics card is feasible to optimize the application performance.

Second approach: CNN can be a universal feature extractor. However, it is unclear
whether it can process spectral information (information for texture analysis) in
practice. It is shown in Table 3.2 that the test set in KT2B texture datasets is
96%, DTD is 34%, and FMD with 30%. These results are significant, given that
these are images that the model has never seen. Besides, although the metrics in
training and validation are given at different times, similar behavior is shown with
the test data. So, there is a learning generalization between the three training sets.

3.5. Discussion 74

Table 3.14 shows a summary of the achieved performance of the classification
system, as well as a comparison against AlexNet [31], Texture CNN [19], and
Wavelet CNN [21]. Furthermore, the FMD dataset is proposed to validate the
learning model. Therefore, based on the results, it can be seen that the model
offers a generalization of learning to other datasets.

Table 3.14: Classification results and comparison with other state-of-the-art architectures
in terms of accuracy (%).

AlexNet T-CNN Wavelet CNN Proposal

DTD 22.7 27.8 35.6 34.5
KT2B 48.3 49.6 63.7 96.7
FMD – – – 30.0

In general, the performance of the classifier is evaluated by taking into account
the fusion of the information. The main observations are: (a) the proposed model
generalizes its learning to other datasets; and (b) extracting features using the
wavelet transform, which feeds spectral information to the CNN.

Third approach: Sometimes there is not enough information to train CNNs, and
sometimes the datasets are tiny. Despite this, transfer learning is a methodology
that can help to improve the learning capacity of the classification model. Table 3.3
shows the analysis of the experiment; in this case, it is observed that the network
trained from scratch shows overfitting, as opposed to using the pre-trained network.
Also, it is essential to mention that the wavelet features provide homogeneity in
the performance of the classifier. Moreover, Table 3.15 summarizes the achieved
performance of our classification system, as well as a comparison to AlexNet
(trained from scratch) [31], T-CNN [19], and Wavelet CNN [21]. In particular, it is
observed that through the transfer learning and wavelet features, the performance
of the classifier is improved when having a small dataset.

Table 3.15: Classification results and comparison with other state-of-the-art pre-trained
architectures with ImageNet, in terms of accuracy (%).

AlexNet T-CNN Wavelet CNN New model

DTD 22.7 55.8 59.8 53.19

Fourth approach: Even though CNNs have established their position in image
analysis and the different elements considered to improve classification performance
and are well known in the literature, only a few experiments have been conducted
by considering the pooling layers. In Figures 3.38–3.39 and 3.41, it illustrates the
learning behavior of each model and for each pooling method. Figures clearly show

3.5. Discussion 75

that the DWTP versions of the model behavior in both training sets are uniformly
distributed. The learning curve remains stable and shows a similar generalization
between the three training sets. When the optimizer change is proposed (Figures
3.40 and 3.42), the results are very similar to the DWTP versions. Moreover, it
achieves increased classification performance for both the proposed version and the
traditional methods.

Furthermore, Table 3.16 contains the results of comparing our proposals with
other methods proposed by Fujieda et al. [21] and Andrearczyk et al. [19], where
the Accuracy rate for the models trained from scratch on the DTD dataset is
evaluated. The bold values shown in Table 3.16 indicate that the results are quite
comparable with those of the other methods. The results show that the proposals
are computationally lightweight. Generally, it can observe the algorithm’s efficiency
for CIFAR-10 in Table 3.8. This dataset can be compared in the literature because
it is one of the most important in the deep learning area. As for FMD, it is
mentioned that there are algorithms with a performance above that obtained;
however, it differs from the central concept in combining both approaches and
considering the wavelet pooling method.

Table 3.16: Performance evaluation and comparison with other methods indicated as
accuracy (%)—DTD dataset.

Test1 Test2
Topic T-CNN Wavelet

CNN
DWTaP MaxP DWTaP

Trainable params
(millions)

23.4 14.1 12.3 12.3 12.3

DTD (%) 27.8 35.6 34.16 43.5 43.02

Besides, Tables 3.9–3.12 show that the Loss metric achieves a high index in the
training sets compared to Table 3.8; this learning behavior is because the sets
being evaluated are different. In this case, CIFAR-10 accounts for more than
1000 images per class, unlike for the sets with small data such as DTD and
FMD. Therefore, the size of the dataset is one more parameter to consider for the
contribution of the research, where overfitting is prevented, and it maintains a
similitude in the Accuracy of the model. In this context, the impact of considering
DWTP and its different configurations inside CNN learning is analyzed through
the different experiments. The main observations are: (a) To consider a DWTP
configuration in the learning stage that presents a learning uniformity; (b) the
use of a DWTP configuration to reduce the number of features is desirable to
preserve relevant information; and (c) although some tests upon optimizer change
have a good response towards other methods. The DWTP method also increases
its classification performance. However, note that this approach depends on the
dataset’s type.

4
Conclusions.

In this chapter, the conclusions of the research project, the perspective of experiments,
and future work are described.

Contents

4.1 Conclusions. 77
4.2 Future work. 79

76

4.1. Conclusions. 77

4.1 Conclusions.

This research has presented some approaches to the extensive use and variety of
wavelet transform applications, which, together with deep learning techniques, can
optimize its performance and contribute to solving tasks for detecting objects in
digital images. There are several specific contributions to this research work.

First approach:

• In order to classify the information received by the drone camera and detect
if the object is located within the image plane, it was possible to establish
two datasets in the spatial domain (original image) and in the wavelet
domain (image preprocessed with the two-Dimensional Discrete Wavelet
Transform), which makes it possible to analyze the information and apply
deep learning on the characteristic patterns based on the training of a
Convolutional Neural Network. In the case of wavelet information, this
reduces the number of parameters trained within the network and maintains
the relevant characteristics in each captured image. This allows having a
distinction and a high performance in classification by the binary classifier
(model trained with CNN). The classifier is successful with both training sets.
Still, using the set in the wavelet domain significantly improves the detection
performance, as opposed to having images in the spatial domain as input
to the ConvNet architecture. In addition, the wavelet dataset was useful in
mitigating overfitting by generalizing the learning during the training stage.

• Information in the wavelet domain is known to improve the learning of the
Convolutional Neural Network because the learning model achieved high
binary classification performance. The use of this new method of textured
object detection has been adapted in the field of aerial navigation. The
images acquired from the on-board camera of the drone are classified frame
by frame. The acquired information is transformed to the wavelet domain
in conjunction with the ROS system and the learning model. This three-
level transform exhibits important approximation and detail characteristics.
These characteristics maintain an energy distribution, with the approximation
dataset retaining most of the properties of the original image.

• To conclude, the application has a high Accuracy score, where the prediction
output shows the two possible combinations in the scene; textured object
(Texture) or not textured object (NotTexture). It is essential to mention that
the system predicts almost twice the transmission of the camera frames.

4.1. Conclusions. 78

Second approach:
In this work, spectral analysis can be incorporated into the CNN architecture,
according to some architectures reported in the literature.

• It was possible to establish the reconstruction of the convolutional layers,
the way to generalize the learning, and the reduction of the feature map of a
classification system based on deep learning.

• From the spatial information and the two feature maps in the spectral domain,
it was possible to feed the three-input architecture - one model. In particular,
the fusion of the additionally created feature maps does not limit the learning
to spectral features.

• The learning model has improved texture classification Accuracy, using a
smaller number of parameters to train concerning the existing models.

• The training learning behavior analysis shows that textured features generated
additionally may be helpful for CNN architectures, mainly when using small
datasets.

Third approach:
Localization and object detection tasks using visual information are challenging,
especially when objects exhibit repetitive texture. However, these tasks open up
the opportunity for various applications using Micro Aerial Vehicles equipped with
on-board cameras for object detection and recognition, e.g., for package pickup,
place recognition, landing zone detection, and many more.

• It was possible to apply spectral analysis in combination with deep neural
networks to improve the detection and recognition stage. In particular, in
this proposal, it was proposed to use the spectral feature maps (additionally
created) with the prior learning of the CNN.

• It has been demonstrated that the model applied achieves the elimination
of overfitting and higher Accuracy in texture classification with a minimum
increase in the number of parameters to be trained.

• Tests performed on the simulation shows some interesting results. The
prediction model shows the creation of a generalized perception of the texture
attached to the objects. Furthermore, despite having a low classification rate,
the model is shown to classify most of the test classes correctly.

Fourth approach:

• One of the ideas was to implement wavelet pooling, a method capable of
preserving helpful information to improve the performance of texture and
material classification in images. Wavelet pooling is introduced inside the
proposed VGG architecture as a layer. This layer performs the same function

4.2. Future work. 79

as the traditional methods; however, the difference is that instead of using a
subsampling technique on neighborhood regions, this technique is based on the
multilevel decomposition of the input image using wavelet analysis. As a result,
four new subsets of features contribute to model learning: approximation,
vertical details, diagonal details, and horizontal details.

• Using the wavelet pooling method was shown to achieve acceptable
classification performance. Moreover, wavelet pooling performs matching and
outperforms some traditional methods used in CNN learning.

• The proposed method outperforms all other pooling sets, e.g., for the CIFAR-
10 dataset, it achieves 89.70% on the test set. The DTD dataset shares a
similar performance when changing the optimizer with 43%. In the case
of the FMD set, the performance achieved was 22% in the detailed version
and 30% with the Ave method, possessing similarities in its three training
sets. Integrating DropOut, Data Augmentation, and Batch Normalization
also positively react to the proposed methods, improving the classification
performance.

• The proposed methodology in its decomposition stage can result in a better
reduction in image features. In addition, sub-bands at different levels can be
considered in learning and could result in better Accuracy. The results show
that some methods perform better than others depending on the dataset,
hyperparameter configurations, and the design of the CNN architecture.

• On the other hand, CNN is characterized by the random aspect in the election
of filters of the convolution layers. Therefore, as a further investigation, we
can add stability to the selected filters inside the pooling layer.

4.2 Future work.

The results obtained in the first approach of this work are promising. Thus
establishing a new opportunity in the evaluation and implementation of feature
extraction methods, taking into account new wavelet features to extend object
detection, improve texture characterization, and especially couple it to a much
more complex autonomous navigation system. While in the second approach of this
work can be deepened by selecting other texture features and CNN architectures in
pattern recognition in image restoration, classification tasks, and object detection
applications. Also, based on this work and the third approach, tests can be
performed in real-world scenarios. The fourth approach to the use of wavelet

4.2. Future work. 80

pooling will allow in the future to test other texture features and change the
wavelet base to analyze which base works best for pooling.

Moreover, aerial robotics can apply the proposed architecture and pooling method
in pattern recognition, classification tasks, and object detection. Therefore, this is
ideal for designing an object classification system for aerial navigation, where the
main feature is the analysis of repetitive patterns such as textures. Furthermore, it
will investigate possible methods to improve the architecture in order to reduce
computational costs while preserving classification performances.

A
Appendix.

Contents

A.1 Training Process Using Regularization Techniques and
Pooling. 82

A.1.1 DTD Dataset. 82
A.1.2 FMD Dataset. 83

A.2 Multiple Confusion Matrix. 85
A.2.1 CIFAR-10 Dataset . 85
A.2.2 DTD Dataset. 86
A.2.3 FMD Dataset. 88

A.3 Classification Report with Evaluation Metrics. 90
A.3.1 CIFAR-10 Dataset. 90
A.3.2 DTD Dataset. 90
A.3.3 FMD Dataset. 93

81

A.1. Training Process Using Regularization Techniques and Pooling.82

A.1
Training Process Using Regularization Tech-
niques and Pooling.

A.1.1 DTD Dataset.

0 10 20 30 40 50 60 70
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(%
)

Training and validation accu & loss

MaxP training acc
MaxP validation acc
MaxP+DO training acc
MaxP+DO validation acc
MaxP+DO+DA training acc
MaxP+DO+DA validation acc
MaxP+DO+DA+BN training acc
MaxP+DO+DA+BN validation acc

DTD47

(a) MaxPooling-Acc

0 10 20 30 40 50 60 70
Epochs

0

2

4

6

8

10

12

14

Lo
ss

 (%
)

Training and validation accu & loss
MaxP training loss
MaxP validation loss
MaxP+DO training loss
MaxP+DO validation loss
MaxP+DO+DA training loss
MaxP+DO+DA validation loss
MaxP+DO+DA+BN training loss
MaxP+DO+DA+BN validation loss

DTD47

(b) MaxPooling-Loss

0 20 40 60 80 100 120
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(%
)

Training and validation accu & loss
AveP training acc
AveP validation acc
AveP+DO training acc
AveP+DO validation acc
AveP+DO+DA training acc
AveP+DO+DA validation acc
AveP+DO+DA+BN training acc
AveP+DO+DA+BN validation acc

DTD47

(c) AvePooling-Acc

0 20 40 60 80 100 120
Epochs

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Lo
ss

 (%
)

Training and validation accu & loss
AveP training loss
AveP validation loss
AveP+DO training loss
AveP+DO validation loss
AveP+DO+DA training loss
AveP+DO+DA validation loss
AveP+DO+DA+BN training loss
AveP+DO+DA+BN validation loss

DTD47

(d) AvePooling-Loss

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(%
)

Training and validation accu & loss
DWTP training acc
DWTP validation acc
DWTP+DO training acc
DWTP+DO validation acc
DWTP+DO+DA training acc
DWTP+DO+DA validation acc
DWTP+DO+DA+BN training acc
DWTP+DO+DA+BN validation acc

DTD47

(e) DWTPooling-Acc

0 20 40 60 80 100
Epochs

0

2

4

6

8

10

12

14

Lo
ss

 (%
)

Training and validation accu & loss
DWTP training loss
DWTP validation loss
DWTP+DO training loss
DWTP+DO validation loss
DWTP+DO+DA training loss
DWTP+DO+DA validation loss
DWTP+DO+DA+BN training loss
DWTP+DO+DA+BN validation loss

DTD47

(f) DWTPooling-Loss

Figure A.1: Cont.

A.1. Training Process Using Regularization Techniques and Pooling.83

0 10 20 30 40 50 60 70
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(%
)

Training and validation accu & loss

DWTaP training acc
DWTaP validation acc
DWTaP+DO training acc
DWTaP+DO validation acc
DWTaP+DO+DA training acc
DWTaP+DO+DA validation acc
DWTaP+DO+DA+BN training acc
DWTaP+DO+DA+BN validation acc

DTD47

(g) DWTaPooling-Acc

0 10 20 30 40 50 60 70
Epochs

0

5

10

15

20

Lo
ss

 (%
)

Training and validation accu & loss
DWTaP training loss
DWTaP validation loss
DWTaP+DO training loss
DWTaP+DO validation loss
DWTaP+DO+DA training loss
DWTaP+DO+DA validation loss
DWTaP+DO+DA+BN training loss
DWTaP+DO+DA+BN validation loss

DTD47

(h) DWTaPooling-Loss

0 10 20 30 40 50 60 70
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(%
)

Training and validation accu & loss
DWTdP training acc
DWTdP validation acc
DWTdP+DO training acc
DWTdP+DO validation acc
DWTdP+DO+DA training acc
DWTdP+DO+DA validation acc
DWTdP+DO+DA+BN training acc
DWTdP+DO+DA+BN validation acc

DTD47

(i) DWTdPooling-Acc

0 10 20 30 40 50 60 70
Epochs

0

1

2

3

4

5

6

Lo
ss

 (%
)

Training and validation accu & loss

DWTdP training loss
DWTdP validation loss
DWTdP+DO training loss
DWTdP+DO validation loss
DWTdP+DO+DA training loss
DWTdP+DO+DA validation loss
DWTdP+DO+DA+BN training loss
DWTdP+DO+DA+BN validation loss

DTD47

(j) DWTdPooling-Loss

Figure A.1: Learning behavior for baseline architecture + pooling, increasing DropOut,
Data Augmentation, and Batch Normalization—DTD dataset.

A.1.2 FMD Dataset.

0 10 20 30 40 50
Epochs

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(%
)

Training and validation accu & loss
MaxP training acc
MaxP validation acc
MaxP+DO training acc
MaxP+DO validation acc
MaxP+DO+DA training acc
MaxP+DO+DA validation acc
MaxP+DO+DA+BN training acc
MaxP+DO+DA+BN validation acc

FMD10

(a) MaxPooling-Acc

0 10 20 30 40 50
Epochs

0

1

2

3

4

5

6

7

Lo
ss

 (%
)

Training and validation accu & loss
MaxP training loss
MaxP validation loss
MaxP+DO training loss
MaxP+DO validation loss
MaxP+DO+DA training loss
MaxP+DO+DA validation loss
MaxP+DO+DA+BN training loss
MaxP+DO+DA+BN validation loss

FMD10

(b) MaxPooling-Loss

Figure A.2: Cont.

A.1. Training Process Using Regularization Techniques and Pooling.84

0 10 20 30 40 50 60 70
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(%
)

Training and validation accu & loss
AveP training acc
AveP validation acc
AveP+DO training acc
AveP+DO validation acc
AveP+DO+DA training acc
AveP+DO+DA validation acc
AveP+DO+DA+BN training acc
AveP+DO+DA+BN validation acc

FMD10

(c) AvePooling-Acc

0 10 20 30 40 50 60 70
Epochs

0

1

2

3

4

5

6

7

Lo
ss

 (%
)

Training and validation accu & loss
AveP training loss
AveP validation loss
AveP+DO training loss
AveP+DO validation loss
AveP+DO+DA training loss
AveP+DO+DA validation loss
AveP+DO+DA+BN training loss
AveP+DO+DA+BN validation loss

FMD10

(d) AvePooling-Loss

0 10 20 30 40 50
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

(%
)

Training and validation accu & loss

DWTP training acc
DWTP validation acc
DWTP+DO training acc
DWTP+DO validation acc
DWTP+DO+DA training acc
DWTP+DO+DA validation acc
DWTP+DO+DA+BN training acc
DWTP+DO+DA+BN validation acc

FMD10

(e) DWTPooling-Acc

0 10 20 30 40 50
Epochs

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

 (%
)

Training and validation accu & loss
DWTP training loss
DWTP validation loss
DWTP+DO training loss
DWTP+DO validation loss
DWTP+DO+DA training loss
DWTP+DO+DA validation loss
DWTP+DO+DA+BN training loss
DWTP+DO+DA+BN validation loss

FMD10

(f) DWTPooling-Loss

0 10 20 30 40 50
Epochs

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

(%
)

Training and validation accu & loss

DWTaP training acc
DWTaP validation acc
DWTaP+DO training acc
DWTaP+DO validation acc
DWTaP+DO+DA training acc
DWTaP+DO+DA validation acc
DWTaP+DO+DA+BN training acc
DWTaP+DO+DA+BN validation acc

FMD10

(g) DWTaPooling-Acc

0 10 20 30 40 50
Epochs

1

2

3

4

5

6

Lo
ss

 (%
)

Training and validation accu & loss
DWTaP training loss
DWTaP validation loss
DWTaP+DO training loss
DWTaP+DO validation loss
DWTaP+DO+DA training loss
DWTaP+DO+DA validation loss
DWTaP+DO+DA+BN training loss
DWTaP+DO+DA+BN validation loss

FMD10

(h) DWTaPooling-Loss

0 10 20 30 40
Epochs

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(%
)

Training and validation accu & loss
DWTdP training acc
DWTdP validation acc
DWTdP+DO training acc
DWTdP+DO validation acc
DWTdP+DO+DA training acc
DWTdP+DO+DA validation acc
DWTdP+DO+DA+BN training acc
DWTdP+DO+DA+BN validation acc

FMD10

(i) DWTSPooling-Acc

0 10 20 30 40
Epochs

0

1

2

3

4

Lo
ss

 (%
)

Training and validation accu & loss
DWTdP training loss
DWTdP validation loss
DWTdP+DO training loss
DWTdP+DO validation loss
DWTdP+DO+DA training loss
DWTdP+DO+DA validation loss
DWTdP+DO+DA+BN training loss
DWTdP+DO+DA+BN validation loss

FMD10

(j) DWTdPooling-Loss

Figure A.2: Learning behavior for baseline architecture + pooling, increasing DropOut,
Data Augmentation, and Batch Normalization—FMD dataset.

A.2. Multiple Confusion Matrix. 85

A.2 Multiple Confusion Matrix.

The multiple confusion matrix is an N×N table that summarizes the level of success
in the predictions of a classification model: that is, the correlation between the
label and the classification of the model.

A.2.1 CIFAR-10 Dataset

Airp
lan

e

Auto
mob

ile

Bird Cat Dee
r

Dog Fro
g

Hors
e

Sh
ip

Tru
ck

Predicted Label

Airplane

Automobile

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

Tr
ue

 L
ab

el

919 10 25 5 6 1 5 4 15 10

5 968 0 1 0 0 2 0 2 22

25 4 843 24 31 29 28 11 3 2

17 1 26 750 38 88 49 19 4 8

5 0 19 18 897 10 34 16 1 0

5 2 15 93 22 820 16 22 2 3

3 2 19 17 6 0 949 1 1 2

7 0 11 13 22 18 5 920 1 3

43 20 5 2 0 0 2 2 914 12

8 40 3 4 1 1 3 2 5 933

0

200

400

600

800

count of predictions

(a) Max

Airp
lan

e

Auto
mob

ile

Bird Cat Dee
r

Dog Fro
g

Hors
e

Sh
ip

Tru
ck

Predicted Label

Airplane

Automobile

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

Tr
ue

 L
ab

el

928 8 18 8 3 0 2 3 19 11

4 957 0 0 2 0 1 0 6 30

38 3 834 28 33 12 29 16 2 5

19 3 30 765 30 63 45 22 9 14

9 1 32 25 858 15 27 30 1 2

8 2 18 117 19 784 13 33 1 5

8 1 19 21 2 6 936 3 3 1

9 3 8 9 14 11 3 936 0 7

41 14 2 0 1 1 1 1 918 21

10 40 0 3 1 0 1 4 7 934

0

200

400

600

800

count of predictions

(b) Ave

Airp
lan

e

Auto
mob

ile

Bird Cat Dee
r

Dog Fro
g

Hors
e

Sh
ip

Tru
ck

Predicted Label

Airplane

Automobile

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

Tr
ue

 L
ab

el

895 6 30 11 3 0 3 7 33 12

4 966 0 0 1 0 0 1 4 24

23 1 846 19 27 30 38 10 5 1

9 3 44 765 33 89 31 11 10 5

7 1 31 21 884 15 26 12 2 1

3 3 17 90 21 836 12 16 1 1

3 2 15 20 5 2 951 0 2 0

7 0 10 15 16 20 2 926 1 3

21 11 6 5 2 0 0 2 936 17

6 37 1 4 0 0 3 1 6 942

0

200

400

600

800

count of predictions

(c) DWT

Airp
lan

e

Auto
mob

ile

Bird Cat Dee
r

Dog Fro
g

Hors
e

Sh
ip

Tru
ck

Predicted Label

Airplane

Automobile

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

Tr
ue

 L
ab

el

895 7 23 11 6 4 2 8 23 21

4 968 0 0 0 1 1 1 2 23

32 1 831 32 44 18 22 14 4 2

9 4 23 788 28 85 33 15 5 10

3 1 19 25 916 9 14 13 0 0

5 1 17 96 28 828 6 16 1 2

7 1 15 21 6 6 938 2 3 1

3 1 9 11 31 7 1 935 1 1

29 16 3 3 3 0 2 2 931 11

7 40 3 3 0 2 0 0 5 940

0

200

400

600

800

count of predictions

(d) DWTa

Figure A.3: Cont.

A.2. Multiple Confusion Matrix. 86

Airp
lan

e

Auto
mob

ile

Bird Cat Dee
r

Dog Fro
g

Hors
e

Sh
ip

Tru
ck

Predicted Label

Airplane

Automobile

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

Tr
ue

 L
ab

el

896 11 21 9 8 0 5 6 29 15

5 961 2 1 0 1 2 0 7 21

44 1 796 29 43 30 30 18 6 3

17 3 44 718 43 97 39 25 6 8

3 0 27 14 887 13 31 24 1 0

6 1 32 130 29 751 15 29 3 4

5 4 23 37 8 7 911 3 1 1

7 2 11 8 32 19 3 911 3 4

42 14 4 6 1 0 2 0 918 13

14 45 3 2 1 1 3 1 7 923

0

200

400

600

800

count of predictions

(e) DWTd
Figure A.3: In this case, each confusion matrix correlates with the five models obtained
for the CIFAR-10 dataset.

A.2.2 DTD Dataset.

ba
nd

blo
t

bra
i

bu
bb

bu
mp

che
q

cob
w

cra
c

cro
s

cry
s

do
tt

fib
r

fle
c

fre
c

fril ga
uz

gri
d

gro
o

ho
ne

int
e

kn
it

lac
e

line marb matt mesh pa
is

pe
rf

pit
t

ple
a

po
lk

po
ro

po
th

sca
l

sm
ea

spi
r

spr
i

sta
i

str
a

str
i

stu
d

sw
ir

ve
in

waff wov
e

wrin zig
z

Predicted Label

band

blot

brai

bubb

bump

cheq

cobw

crac

cros

crys

dott

fibr

flec

frec

fril

gauz

grid

groo

hone

inte

knit

lace

line

marb

matt

mesh

pais

perf

pitt

plea

polk

poro

poth

scal

smea

spir

spri

stai

stra

stri

stud

swir

vein

waff

wove

wrin

zigz

Tr
ue

 L
ab

el

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 3 0 1 0 0 0 0 0 1 1

0 2 0 0 0 0 0 0 1 0 0 0 3 1 0 0 0 0 0 0 1 2 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 4 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 1 2 0 0 1 0 1 0 0 1 0 0 0 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 3 0 0 0 0 0 2 0 1

0 0 0 3 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 3 1 1 1 0 0 0 0 0 0 0 2 0 1 0

0 0 1 0 3 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 2 0 1 0

0 0 0 0 0 9 0 0 3 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 11 0 2 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 6 2 0 0 1 2 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 12 0 0 1 1 0 0 0 1 2 0 0 0 1 0

0 1 0 0 0 0 0 1 0 6 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 3 1 0 0 0 2 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0 5 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 2 0 0 3 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 2 0 0 7 0 0 0 0 0 1 0 0 2 0 0 0 1 0 0 0 1 0 0 2 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 10 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 13 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 6 0 0 1 0 5 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 1 1 1 1 0 1 0 0 5 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 10 0 0 0 0 1 1 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 2 0 0 0 0 0 2 0 0 0 0 1 0 1 0 8 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0

0 2 0 0 0 1 1 0 0 0 0 0 3 0 0 0 0 0 0 0 1 1 0 0 1 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 1

0 0 2 0 0 0 0 1 0 0 0 1 0 0 0 0 0 3 0 5 0 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0 2 1 0 1 1 0 1 0 0 0 0 0 10 1 0 0 1 0

0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 13 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 4 0 0 0 0 10 0

0 0 0 0 0 0 0 1 0 0 0 0 3 0 0 0 0 0 0 0 4 1 0 3 1 0 0 0 2 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 1 5 0 0 0 0 0 0 3 3 0 0 0 0 0 2 0 0 0 0 0 0 0 0

0 0 0 0 0 1 2 2 1 0 0 0 0 0 0 0 4 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2

0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 5 0 0 0 0 8 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 4 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 6 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 3 0 0 0 0 0 0 4 0 0 2 5 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 2 0 0 0 1 0 1 0 1 0 6 0 0 1 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0

0 1 0 1 0 1 0 0 0 0 2 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 5 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 0

0 1 0 0 0 0 0 0 2 1 0 1 2 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 1 0 0 4 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 16 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 3 0 0 0 1 0 0 0 0 2 0 0 0 0 1 0 0 4 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0

0 1 0 1 0 0 0 0 0 2 0 1 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 1 2 0 2 0 1 0 0 0 0 0 1 0

0 0 0 0 0 0 2 0 1 0 1 2 2 1 1 0 0 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 2 1 2 0 0 0 0 0 1 2 0 0 1 0 3 0 0 0 0 0 2 0 0 0 2 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 1 2 0 0 0 0 5 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 2 0 0 1 3 1 0 0 0 0 5 0 0 0 0 0 1 0 0

1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 12 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 1 0 0 0 5 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0

0 3 1 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 3 0 0 0 0 3 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 1

0 2 1 2 0 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 3 0 0 0 0 0 0 3 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 1 0 0 2 0 0 12 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 1 0 0 1 0 0 0 1 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0

0 0 1 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 1 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 3 1 1 0 0 1 1 2 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 3 1 0 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 8

0

2

4

6

8

10

12

14

16

count of predictions

Figure A.4: Experiment 1 with SGD Optimizer—the confusion matrix correlates with
the best model (DWTaP) obtained for the DTD dataset.

A.2. Multiple Confusion Matrix. 87

ba
nd

blo
t

bra
i

bu
bb

bu
mp

che
q

cob
w

cra
c

cro
s

cry
s

do
tt

fib
r

fle
c

fre
c

fril ga
uz

gri
d

gro
o

ho
ne

int
e

kn
it

lac
e

line marb matt mesh pa
is

pe
rf

pit
t

ple
a

po
lk

po
ro

po
th

sca
l

sm
ea

spi
r

spr
i

sta
i

str
a

str
i

stu
d

sw
ir

ve
in

waff wov
e

wrin zig
z

Predicted Label

band

blot

brai

bubb

bump

cheq

cobw

crac

cros

crys

dott

fibr

flec

frec

fril

gauz

grid

groo

hone

inte

knit

lace

line

marb

matt

mesh

pais

perf

pitt

plea

polk

poro

poth

scal

smea

spir

spri

stai

stra

stri

stud

swir

vein

waff

wove

wrin

zigz

Tr
ue

 L
ab

el

13 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

0 1 0 0 2 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 1 2 0 0 2 0 0 0 0 0 0 1 1 0 4 0 0 0 0 0 0 0 0 0 0 0 0

0 0 3 0 0 0 1 1 0 0 0 0 0 0 0 0 1 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 5 0 1

0 0 0 7 0 0 0 1 0 0 0 0 2 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 2 0 0 0 1 0 0 0 0 0 0

0 0 2 0 3 0 0 0 0 1 0 0 1 0 0 0 0 0 2 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 2 0 1 1 0 0 0

0 0 0 0 0 13 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1

0 0 0 0 0 0 15 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 2 11 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 2 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 1

0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 9 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 6 0 0 1 0 0 1 0 5 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 1 2 0 0 1 0 0 0 1 2 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 15 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 10 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0

0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 5 0 3 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 0 2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 10 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1

0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 1 0 7 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 1

0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 7 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 3 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 3 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 10 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 1 0 0 0 0

0 0 0 1 0 0 0 1 2 0 0 0 0 0 1 0 0 0 0 1 0 8 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 11 0

0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 2 0 0 0 0 0 1 0 3 3 0 1 0 0 0 0 0 0 1 0 0 0 2 1 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 11 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 2 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 4 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 3 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 7 0 0 3 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 3 0 1 0 0 0 0 1 0 0 4 4 0 0 0 0 1 0 0 0 0 0 1 0 0 0

1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 12 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0

0 0 0 1 1 0 0 2 0 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 2 0 0 5 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 9 1 1 0 0 0 2 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 3 0 0 0 0 0 0 1 0 0 0 2 0 1 0 0 1 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 1 1 0 1 0 0 0 0

0 0 1 0 2 0 0 0 4 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 1 0 2 0 0 1 0 0 0 0

0 0 1 0 1 0 2 0 0 1 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 1 1 0 0 0 1 0 3 0 0 0 0 0 2 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 2 0 0 0 1 0 0 0 0 5 0 0 0 2 1 1 0 1 0 0

0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 2 1 0 0 0 1 0 0 0 1 0 1 0 1 5 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 10 0 0 0 1 0 0 0 0

1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 11 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 11 0 0 0 0 0 0

0 0 0 1 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 1 0 0 0 0 0 8 1 0 0 1 0

1 0 1 0 0 0 0 1 1 0 0 0 0 0 3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 0 0 0 0 0 1 5 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 12 0 0

0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 2 0 0 0 0 0 0 2 0 0 0 0 0 2 0 0 1 0 0 2 2

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 4 0 10

0

2

4

6

8

10

12

14

count of predictions

(a) MaxP

ba
nd

blo
t

bra
i

bu
bb

bu
mp

che
q

cob
w

cra
c

cro
s

cry
s

do
tt

fib
r

fle
c

fre
c

fril ga
uz

gri
d

gro
o

ho
ne

int
e

kn
it

lac
e

line marb matt mesh pa
is

pe
rf

pit
t

ple
a

po
lk

po
ro

po
th

sca
l

sm
ea

spi
r

spr
i

sta
i

str
a

str
i

stu
d

sw
ir

ve
in

waff wov
e

wrin zig
z

Predicted Label

band

blot

brai

bubb

bump

cheq

cobw

crac

cros

crys

dott

fibr

flec

frec

fril

gauz

grid

groo

hone

inte

knit

lace

line

marb

matt

mesh

pais

perf

pitt

plea

polk

poro

poth

scal

smea

spir

spri

stai

stra

stri

stud

swir

vein

waff

wove

wrin

zigz

Tr
ue

 L
ab

el

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1

1 4 0 0 0 0 0 1 0 0 0 0 2 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 2 2 0 0 0 1 0 0 0 0

0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 1 0 0 0 0 2 0 1 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 4 0 1

0 0 0 7 0 0 2 1 0 0 0 0 1 0 0 1 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 3 0 0 0 0 2 0 0 0 0 0 0 0 0 2 1 0 1 0 0 0 0 0 2 0 0 0 1 0 0 2 1 0 0 0 0 0 0 0 1 0 0 0

1 1 0 0 0 13 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 14 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 2 10 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 1 3 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 8 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 0 0 1 0 0 1

0 0 0 0 0 1 0 0 0 0 5 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 7 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1

0 0 0 0 0 0 2 0 0 0 0 9 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 6 1 0 0 0 1 0 0 1 0 0 0 0 1 0 1 3 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 2 0 0 0 0 8 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0

0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 1 0 0 0 0 0 0 0 0 0 0 4 0 0 1 0

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 8 0 0 1 0 0 1 0 0 2 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 8 0 0 1 0 1 0 0 0 0 0 0 3 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 2 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 6 1 0 1 0 0 0 0 0 1 0 0 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 9 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 2 0 0 0 0 0 1 0 0 0 0 0

0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 8 0 0 0 2 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0

0 0 0 0 0 0 1 4 1 0 0 0 0 0 0 0 0 0 0 0 0 8 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 0 0 0 0 13 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 2 0 0 1 0 0 0 0 0 2 0 4 1 0 0 0 0 0 0 1 0 1 0 0 0 2 1 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0 0 0 3 0 0 0 0 0 0 0 0 0 1 0 1 3 0 0 0 1 0 0 2 0 0 0 0 1 2 1 0 0 1 0 0 0 1 0

0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 6 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 1 0 4 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 4 0 0 0 0 1 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 3 0 0 0 0 0 0 2 0 0 4 3 1 0 0 0 1 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 7 0 0 0 2 0 0 0 0 1 0 0 1 0 0 0 0 0

0 0 0 1 0 1 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 10 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 2 2 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 3 0 0 5 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 13 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 2 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 1 1 2 0 0

0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 1 0 2 3 0 2 0 1 0 0 0 1 0 0 0

0 0 1 0 1 0 2 0 0 0 0 0 1 0 0 0 3 1 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 1 5 0 0 0 0 0 0 0 0 0 0 0

0 0 0 2 2 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2 0 0 0 0 6 0 0 0 0 0 0 1 0 0 0

0 1 1 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 6 1 0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 9 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 15 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 2 0 0 0 1 0 7 2 0 0 0 0

0 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 2 1 0 0 0 0 1 7 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 12 0 0 0

0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 2 0 1 1 2 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 5 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 1 2 4 1

0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 2 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 9

0

2

4

6

8

10

12

14

count of predictions

(b) DWTaP.
Figure A.5: Experiment 2 with Adam Optimizer—the confusion matrix correlates with
the two best models (MaxP and DWTaP) for the DTD dataset.

A.2. Multiple Confusion Matrix. 88

A.2.3 FMD Dataset.

fabric foliage glass leather metal paper plastic stone water wood

Predicted Label

fabric

foliage

glass

leather

metal

paper

plastic

stone

water

wood

Tr
ue

 L
ab

el

1 1 0 2 0 6 2 0 0 3

0 8 0 1 0 5 0 0 0 1

1 2 0 2 1 4 2 0 0 3

0 1 0 3 0 8 2 0 0 1

1 3 0 3 0 5 1 0 0 2

1 2 0 4 0 7 0 0 0 1

0 3 0 2 1 4 2 0 0 3

0 1 0 6 0 3 0 0 0 5

1 2 0 4 0 6 0 0 0 2

2 3 1 3 0 4 2 0 0 0

0

1

2

3

4

5

6

7

8

count of predictions

Figure A.6: Experiment 1 with SGD Optimizer—The confusion matrix correlates with
the best model (DWTdP) obtained for the FMD dataset.

A.2. Multiple Confusion Matrix. 89

fabric foliage glass leather metal paper plastic stone water wood

Predicted Label

fabric

foliage

glass

leather

metal

paper

plastic

stone

water

wood

Tr
ue

 L
ab

el
1 0 3 3 1 1 0 2 1 3

0 7 1 1 0 3 1 0 0 2

0 0 8 1 0 3 0 1 2 0

1 0 1 4 1 2 0 2 0 4

0 0 2 1 0 1 1 3 2 5

2 0 3 1 0 6 2 0 0 1

1 1 4 1 0 3 3 0 1 1

0 0 0 4 0 1 0 5 0 5

0 0 2 3 0 3 2 0 5 0

0 0 1 4 1 1 0 1 1 6

0

1

2

3

4

5

6

7

8

count of predictions

(a) AveP.

fabric foliage glass leather metal paper plastic stone water wood

Predicted Label

fabric

foliage

glass

leather

metal

paper

plastic

stone

water

wood

Tr
ue

 L
ab

el

0 2 0 3 1 1 1 4 2 1

0 10 0 0 0 0 0 2 1 2

0 1 0 1 1 4 2 4 2 0

0 2 0 0 1 4 1 1 2 4

0 0 0 1 0 2 0 5 4 3

0 1 0 1 0 5 3 3 2 0

0 1 0 3 0 6 1 0 2 2

0 0 0 3 1 2 0 8 1 0

0 0 0 0 0 5 1 2 7 0

0 1 0 1 0 1 0 7 3 2

0

2

4

6

8

10

count of predictions

(b) DWTdP.

Figure A.7: Experiment 2 with Adam Optimizer—the confusion matrix correlates with
the two best models (AveP and DWTdP) for the DTD dataset.

A.3. Classification Report with Evaluation Metrics. 90

A.3 Classification Report with Evaluation Metrics.

A.3.1 CIFAR-10 Dataset.

Table A.1: Classification report for CIFAR-10 dataset. In this case, each pooling method
is evaluated considering DropOut, Data Augmentation, and Batch Normalization.

Method MaxP AveP DWTP DWTaP DWTdP

Class P R F1 P R F1 P R F1 P R F1 P R F1 Test

airplane 0.890.92 0.90 0.860.93 0.89 0.920.90 0.90 0.900.90 0.90 0.860.90 0.88 1000
automobile0.920.97 0.95 0.930.96 0.94 0.940.97 0.95 0.930.97 0.95 0.920.96 0.94 1000

bird 0.870.84 0.86 0.870.83 0.85 0.850.85 0.85 0.880.83 0.86 0.830.80 0.81 1000
cat 0.810.75 0.78 0.780.77 0.77 0.810.77 0.78 0.800.79 0.79 0.750.72 0.73 1000
deer 0.880.90 0.89 0.890.86 0.87 0.890.88 0.89 0.860.92 0.89 0.840.89 0.86 1000
dog 0.850.82 0.83 0.880.78 0.83 0.840.84 0.84 0.860.83 0.84 0.820.75 0.78 1000
frog 0.870.95 0.91 0.880.78 0.83 0.890.95 0.92 0.920.94 0.93 0.880.91 0.89 1000
horse 0.920.92 0.92 0.880.94 0.91 0.940.93 0.93 0.930.94 0.93 0.900.91 0.90 1000
ship 0.960.91 0.94 0.950.92 0.93 0.940.94 0.94 0.950.93 0.94 0.940.92 0.93 1000
truck 0.940.93 0.94 0.910.93 0.92 0.940.94 0.94 0.930.94 0.93 0.930.92 0.93 1000
acc 0.89 0.89 0.89 0.90 0.8710000

A.3.2 DTD Dataset.

A.3. Classification Report with Evaluation Metrics. 91

Table A.2: Experiment 1 with SGD Optimizer—classification report for the DTD dataset.

Method MaxP AveP DWTP DWTaP DWTdP

Class P R F1 P R F1 P R F1 P R F1 P R F1 Test

band 0.67 0.44 0.53 0.75 0.50 0.60 0.71 0.56 0.63 0.83 0.56 0.67 0.12 0.06 0.08 18
blot 0.00 0.00 0.00 0.33 0.06 0.10 0.08 0.06 0.06 0.13 0.11 0.12 0.00 0.00 0.00 18
brai 0.17 0.06 0.08 0.13 0.11 0.12 0.29 0.11 0.16 0.10 0.06 0.07 0.11 0.06 0.07 18
bubb 0.17 0.06 0.08 0.64 0.39 0.48 0.30 0.33 0.32 0.20 0.17 0.18 0.10 0.11 0.11 18
bump 0.73 0.44 0.55 0.43 0.17 0.24 0.00 0.00 0.00 1.00 0.17 0.29 0.00 0.00 0.00 18
cheq 0.48 0.67 0.56 0.75 0.50 0.60 0.65 0.61 0.63 0.69 0.50 0.58 0.33 0.33 0.33 18
cobw 0.48 0.67 0.56 0.68 0.72 0.70 0.52 0.72 0.60 0.61 0.61 0.61 0.12 0.06 0.08 18
crac 0.45 0.28 0.34 0.33 0.44 0.38 0.33 0.44 0.38 0.29 0.33 0.31 0.11 0.11 0.11 18
cros 0.16 0.44 0.24 0.36 0.56 0.43 0.24 0.50 0.33 0.27 0.67 0.38 0.00 0.00 0.00 18
crys 0.35 0.33 0.34 0.60 0.50 0.55 0.53 0.44 0.48 0.29 0.33 0.31 0.11 0.11 0.11 18
dott 0.80 0.22 0.35 0.15 0.11 0.13 0.42 0.28 0.33 0.50 0.28 0.36 0.00 0.00 0.00 18
fibr 0.17 0.28 0.21 0.41 0.39 0.40 0.35 0.44 0.39 0.30 0.39 0.34 0.12 0.33 0.18 18
flec 0.15 0.44 0.22 0.13 0.39 0.19 0.18 0.17 0.17 0.17 0.56 0.26 0.10 0.17 0.13 18
frec 0.43 0.56 0.49 0.64 0.78 0.70 0.93 0.78 0.85 0.50 0.72 0.59 0.21 0.67 0.32 18
fril 0.21 0.22 0.22 0.53 0.44 0.48 0.60 0.50 0.55 0.36 0.28 0.31 0.00 0.00 0.00 18
gauz 0.38 0.17 0.23 0.32 0.33 0.32 0.39 0.39 0.39 0.45 0.28 0.34 0.10 0.22 0.14 18
grid 0.14 0.06 0.08 0.36 0.44 0.40 0.40 0.56 0.47 0.40 0.56 0.47 0.00 0.00 0.00 18
groo 0.18 0.33 0.23 0.17 0.39 0.24 0.32 0.61 0.42 0.22 0.44 0.29 0.00 0.00 0.00 18
hone 0.50 0.06 0.10 0.50 0.17 0.25 0.42 0.28 0.33 0.00 0.00 0.00 0.00 0.00 0.00 18
inte 0.36 0.28 0.31 0.40 0.44 0.42 0.38 0.44 0.41 0.83 0.28 0.42 0.17 0.06 0.08 18
knit 0.13 0.50 0.21 0.43 0.56 0.49 0.57 0.44 0.50 0.25 0.56 0.34 0.00 0.00 0.00 18
lace 0.14 0.28 0.18 0.29 0.33 0.31 0.22 0.44 0.30 0.24 0.72 0.36 0.07 0.17 0.10 18
line 0.41 0.72 0.52 0.52 0.67 0.59 0.53 0.56 0.54 0.71 0.56 0.63 0.11 0.06 0.07 18
marb 0.21 0.33 0.26 0.43 0.33 0.38 0.23 0.28 0.25 0.25 0.17 0.20 0.06 0.11 0.07 18
matt 0.29 0.44 0.35 0.35 0.39 0.37 0.40 0.33 0.36 0.36 0.28 0.31 0.07 0.22 0.11 18
mesh 0.50 0.06 0.10 0.50 0.17 0.25 0.50 0.44 0.47 0.20 0.06 0.09 0.17 0.06 0.08 18
pais 0.19 0.22 0.21 0.34 0.72 0.46 0.31 0.56 0.40 0.33 0.44 0.38 0.50 0.06 0.10 18
perf 0.40 0.22 0.29 0.46 0.33 0.39 0.35 0.44 0.39 0.46 0.33 0.39 0.50 0.06 0.10 18
pitt 0.24 0.33 0.28 0.00 0.00 0.00 0.25 0.22 0.24 0.24 0.22 0.23 0.00 0.00 0.00 18
plea 0.60 0.17 0.26 0.30 0.33 0.32 0.37 0.56 0.44 0.75 0.17 0.27 0.00 0.00 0.00 18
polk 0.50 0.17 0.25 0.42 0.56 0.48 0.62 0.56 0.59 0.56 0.28 0.37 0.00 0.00 0.00 18
poro 0.05 0.06 0.05 0.50 0.28 0.36 0.13 0.11 0.12 0.17 0.22 0.19 0.07 0.17 0.10 18
poth 0.26 0.44 0.33 0.38 0.67 0.48 0.45 0.72 0.55 0.31 0.89 0.46 0.07 0.39 0.12 18
scal 0.00 0.00 0.00 0.33 0.11 0.17 0.22 0.11 0.15 0.00 0.00 0.00 0.12 0.06 0.08 18
smea 0.00 0.00 0.00 0.22 0.11 0.15 0.14 0.11 0.12 0.20 0.06 0.09 0.00 0.00 0.00 18
spir 0.50 0.11 0.18 0.20 0.11 0.14 0.30 0.17 0.21 0.25 0.22 0.24 0.36 0.22 0.28 18
spri 0.75 0.17 0.27 0.50 0.33 0.40 0.50 0.33 0.40 0.33 0.11 0.17 1.00 0.06 0.11 18
stai 0.10 0.17 0.12 0.17 0.06 0.08 0.25 0.17 0.20 0.22 0.28 0.24 0.22 0.33 0.27 18
stra 0.31 0.50 0.38 0.38 0.67 0.48 0.40 0.56 0.47 0.24 0.28 0.26 0.00 0.00 0.00 18
stri 0.81 0.72 0.76 0.55 0.67 0.60 0.73 0.61 0.67 0.75 0.67 0.71 0.25 0.28 0.26 18
stud 0.64 0.50 0.56 0.60 0.67 0.63 0.55 0.61 0.58 0.64 0.39 0.48 0.20 0.50 0.28 18
swir 0.50 0.11 0.18 0.29 0.22 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 18
vein 0.25 0.28 0.26 0.43 0.33 0.38 0.46 0.33 0.39 0.75 0.17 0.27 0.14 0.28 0.19 18
waff 0.55 0.67 0.60 0.79 0.61 0.69 0.52 0.78 0.62 0.52 0.67 0.59 0.25 0.56 0.34 18
wove 0.25 0.22 0.24 0.40 0.56 0.47 0.45 0.50 0.47 0.39 0.50 0.44 0.14 0.22 0.17 18
wrin 0.00 0.00 0.00 0.30 0.17 0.21 0.20 0.06 0.09 0.29 0.11 0.16 0.00 0.00 0.00 18
zigz 0.18 0.11 0.14 0.30 0.39 0.34 0.27 0.22 0.24 0.42 0.44 0.43 0.00 0.00 0.00 18
acc 0.27 0.39 0.39 0.34 0.13 846

A.3. Classification Report with Evaluation Metrics. 92

Table A.3: Experiment 2 with Adam Optimizer—classification report for the DTD dataset.

Method MaxP AveP DWTP DWTaP DWTdP

Class P R F1 P R F1 P R F1 P R F1 P R F1 Test

band 0.65 0.72 0.68 0.71 0.67 0.69 0.82 0.78 0.80 0.75 0.50 0.60 0.21 0.33 0.26 18
blot 0.50 0.06 0.10 0.10 0.06 0.07 0.22 0.11 0.15 0.33 0.22 0.27 0.00 0.00 0.00 18
brai 0.23 0.17 0.19 0.00 0.00 0.00 0.16 0.17 0.16 0.25 0.11 0.15 0.00 0.00 0.00 18
bubb 0.54 0.39 0.45 0.43 0.17 0.24 0.40 0.44 0.42 0.47 0.39 0.42 0.00 0.00 0.00 18
bump 0.18 0.17 0.17 0.18 0.11 0.14 0.25 0.06 0.09 0.38 0.17 0.23 0.00 0.00 0.00 18
cheq 0.65 0.72 0.68 0.60 0.67 0.63 0.93 0.72 0.81 0.76 0.72 0.74 0.42 0.28 0.33 18
cobw 0.65 0.83 0.73 0.67 0.89 0.76 0.61 0.94 0.74 0.52 0.78 0.62 0.29 0.11 0.16 18
crac 0.39 0.61 0.48 0.55 0.61 0.58 0.77 0.56 0.65 0.38 0.56 0.45 0.33 0.11 0.17 18
cros 0.39 0.61 0.48 0.23 0.50 0.31 0.40 0.44 0.42 0.34 0.61 0.44 0.00 0.00 0.00 18
crys 0.59 0.56 0.57 0.47 0.50 0.49 0.44 0.78 0.56 0.42 0.44 0.43 0.14 0.28 0.19 18
dott 0.62 0.28 0.38 0.45 0.28 0.34 0.36 0.22 0.28 0.50 0.28 0.36 0.00 0.00 0.00 18
fibr 1.00 0.33 0.50 0.53 0.50 0.51 0.65 0.61 0.63 0.60 0.50 0.55 0.09 0.17 0.12 18
flec 0.32 0.39 0.35 0.15 0.28 0.20 0.30 0.39 0.34 0.32 0.33 0.32 0.21 0.22 0.22 18
frec 0.88 0.83 0.86 0.74 0.78 0.76 0.88 0.83 0.86 0.68 0.83 0.75 0.17 0.44 0.25 18
fril 0.59 0.56 0.57 0.58 0.39 0.47 0.53 0.56 0.54 0.80 0.44 0.57 0.08 0.06 0.06 18
gauz 0.38 0.28 0.32 0.39 0.39 0.39 0.28 0.28 0.28 0.58 0.39 0.47 0.12 0.28 0.17 18
grid 0.56 0.56 0.56 0.56 0.56 0.56 0.41 0.67 0.51 0.33 0.44 0.38 0.00 0.00 0.00 18
groo 0.25 0.39 0.30 0.32 0.50 0.39 0.37 0.39 0.38 0.27 0.44 0.33 0.00 0.00 0.00 18
hone 0.29 0.39 0.33 0.47 0.44 0.46 0.24 0.28 0.26 0.33 0.33 0.33 0.00 0.00 0.00 18
inte 0.36 0.56 0.43 0.41 0.39 0.40 0.50 0.67 0.57 0.53 0.50 0.51 0.25 0.06 0.09 18
knit 0.45 0.56 0.50 0.36 0.67 0.47 0.50 0.50 0.50 0.50 0.44 0.47 0.17 0.28 0.21 18
lace 0.33 0.44 0.38 0.37 0.39 0.38 0.50 0.56 0.53 0.24 0.44 0.31 0.12 0.39 0.19 18
line 0.65 0.61 0.63 0.57 0.72 0.63 0.72 0.72 0.72 0.62 0.72 0.67 0.44 0.39 0.41 18
marb 0.43 0.17 0.24 0.26 0.28 0.27 0.43 0.33 0.38 0.36 0.22 0.28 0.10 0.17 0.12 18
matt 0.48 0.61 0.54 0.41 0.39 0.40 0.57 0.44 0.50 0.50 0.17 0.25 0.08 0.28 0.12 18
mesh 0.33 0.22 0.27 0.43 0.33 0.38 0.55 0.33 0.41 0.43 0.33 0.38 0.20 0.11 0.14 18
pais 0.45 0.50 0.47 0.41 0.72 0.52 0.48 0.67 0.56 0.43 0.50 0.46 0.29 0.22 0.25 18
perf 0.33 0.39 0.36 0.50 0.50 0.50 0.35 0.44 0.39 0.34 0.56 0.43 0.00 0.00 0.00 18
pitt 0.14 0.06 0.08 0.25 0.28 0.26 0.13 0.11 0.12 0.15 0.11 0.13 0.17 0.06 0.08 18
plea 0.53 0.50 0.51 0.44 0.39 0.41 0.32 0.44 0.37 0.37 0.39 0.38 0.25 0.11 0.15 18
polk 0.48 0.67 0.56 0.50 0.61 0.55 0.44 0.44 0.44 0.53 0.56 0.54 0.00 0.00 0.00 18
poro 0.36 0.28 0.31 0.17 0.06 0.08 0.29 0.28 0.29 0.17 0.28 0.21 0.06 0.11 0.08 18
poth 0.53 0.50 0.51 0.45 0.56 0.50 0.65 0.61 0.63 0.54 0.72 0.62 0.11 0.50 0.18 18
scal 0.29 0.33 0.31 0.33 0.22 0.27 0.46 0.67 0.55 0.35 0.33 0.34 0.00 0.00 0.00 18
smea 0.00 0.00 0.00 0.08 0.06 0.06 0.12 0.06 0.08 0.18 0.11 0.14 0.00 0.00 0.00 18
spir 0.19 0.17 0.18 0.23 0.17 0.19 0.50 0.28 0.36 0.28 0.28 0.28 0.33 0.11 0.17 18
spri 0.56 0.28 0.37 0.57 0.22 0.32 0.56 0.50 0.53 0.50 0.33 0.40 0.00 0.00 0.00 18
stai 0.56 0.28 0.37 0.32 0.33 0.32 0.57 0.44 0.50 0.33 0.33 0.33 0.17 0.22 0.19 18
stra 0.56 0.56 0.56 0.38 0.44 0.41 0.59 0.56 0.57 0.47 0.50 0.49 0.00 0.00 0.00 18
stri 0.44 0.61 0.51 0.60 0.67 0.63 1.00 0.67 0.80 0.60 0.83 0.70 0.26 0.44 0.33 18
stud 0.44 0.61 0.51 0.60 0.67 0.63 0.61 0.61 0.61 0.73 0.61 0.67 0.38 0.33 0.35 18
swir 0.33 0.44 0.38 0.43 0.33 0.38 0.41 0.39 0.40 0.35 0.39 0.37 0.00 0.00 0.00 18
vein 0.22 0.28 0.24 0.30 0.33 0.32 0.45 0.28 0.34 0.37 0.39 0.38 0.12 0.28 0.17 18
waff 0.67 0.67 0.67 0.71 0.56 0.63 0.60 0.67 0.63 0.63 0.67 0.65 0.19 0.56 0.29 18
wove 0.43 0.67 0.52 0.35 0.44 0.39 0.45 0.72 0.55 0.38 0.28 0.32 0.24 0.28 0.26 18
wrin 0.50 0.11 0.18 0.40 0.11 0.17 0.33 0.44 0.38 0.31 0.22 0.26 0.00 0.00 0.00 18
zigz 0.36 0.56 0.43 0.45 0.56 0.50 0.60 0.50 0.55 0.47 0.50 0.49 0.04 0.06 0.05 18
acc 0.43 0.42 0.48 0.43 0.15 846

A.3. Classification Report with Evaluation Metrics. 93

A.3.3 FMD Dataset.

Table A.4: Experiment 1 with SGD Optimizer—classification report for the FMD dataset.

Method MaxP AveP DWTP DWTaP DWTdP

Class P R F1 P R F1 P R F1 P R F1 P R F1 Test

fabric 0.000.00 0.00 0.070.07 0.07 0.000.00 0.00 0.290.13 0.18 0.140.07 0.09 15
foliage 0.000.00 0.00 1.000.33 0.50 1.000.73 0.85 0.730.73 0.73 0.310.53 0.39 15
glass 0.000.00 0.00 0.330.07 0.11 0.120.07 0.09 0.380.20 0.26 0.000.00 0.00 15
leather 0.120.80 0.21 0.170.33 0.23 0.170.20 0.18 0.170.47 0.25 0.100.20 0.13 15
metal 0.000.00 0.00 0.110.20 0.14 0.190.20 0.19 0.170.13 0.15 0.000.00 0.00 15
paper 0.430.40 0.41 0.150.13 0.14 0.300.20 0.24 0.000.00 0.00 0.130.47 0.21 15
plastic 0.000.00 0.00 1.000.13 0.17 0.430.20 0.27 0.330.13 0.19 0.180.13 0.15 15
stone 0.120.07 0.09 0.220.13 0.17 0.220.40 0.29 0.300.20 0.24 0.000.00 0.00 15
water 0.040.07 0.05 0.600.60 0.60 0.330.47 0.39 0.470.53 0.50 0.000.00 0.00 15
wood 0.000.00 0.00 0.210.47 0.29 0.250.40 0.31 0.250.53 0.34 0.000.00 0.00 15
acc 0.13 0.25 0.29 0.31 0.14 150

Table A.5: Experiment 2 with Adam Optimizer—classification report for the FMD
dataset.

Method MaxP AveP DWTP DWTaP DWTdP

Class P R F1 P R F1 P R F1 P R F1 P R F1 Test

fabric 0.060.07 0.06 0.200.07 0.10 0.060.07 0.06 0.110.13 0.12 0.000.00 0.00 15
foliage 0.820.60 0.69 0.880.47 0.61 0.920.73 0.81 1.000.80 0.89 0.560.67 0.61 15
glass 0.500.07 0.12 0.320.53 0.40 0.290.13 0.18 0.200.20 0.20 0.000.00 0.00 15
leather 0.120.13 0.12 0.170.27 0.21 0.130.13 0.13 0.210.33 0.26 0.000.00 0.00 15
metal 0.140.13 0.14 0.000.00 0.00 0.000.00 0.00 0.250.07 0.11 0.000.00 0.00 15
paper 0.250.13 0.17 0.250.40 0.31 0.310.33 0.32 0.170.07 0.10 0.170.33 0.22 15
plastic 0.250.07 0.11 0.330.20 0.25 0.330.20 0.25 0.360.27 0.31 0.110.07 0.08 15
stone 0.330.60 0.43 0.360.33 0.34 0.300.60 0.40 0.170.27 0.21 0.220.53 0.31 15
water 0.350.80 0.49 0.420.33 0.37 0.470.53 0.50 0.500.40 0.44 0.270.47 0.34 15
wood 0.250.27 0.26 0.220.40 0.29 0.350.40 0.38 0.220.33 0.26 0.140.13 0.14 15
acc 0.29 0.30 0.31 0.29 0.22 150

B
Appendix.

In this appendix, some codes have been used in the proposed approaches. In addition,
the link to Github, where we can find the complete experiments and codes.

Contents

B.1 Algorithm 1: Binary Classification. 95
B.2 Algorithm 2: Modeltlvgg16_3Input1Model. 98
B.3 Algorithm 3: PyWavelets. 100
B.4 Algorithm 4: Wavelet Pooling Layer. 101

94

B.1. Algorithm 1: Binary Classification. 95

B.1 Algorithm 1: Binary Classification.

Algorithm design for CNN training. The first training code developed with
Keras and TensorFlow is shown below. It is a binary classifier that allows
classifying into two unique classes. See at https://github.com/JanManuell/
ThesisPhD-1ProposedApproach.git.

Listing B.1: CNN - Train code.
1 # -*- coding: utf -8 -*-
2 """
3 Created on Tue Aug 6 11:39:17 2019
4 Proceso completo para clasificaci\’on y detecci\’on de texturas en un ambiente

simulado.
5 Entrenamiento de una RedNeuronal (Codigo -copia)
6 Al final se gr\’afica el proceso de entrenamiento y validaci\’on.
7 @author: jm
8 """
9 import os, shutil

10 from keras import layers
11 from keras import models
12 from keras import optimizers
13 from keras.preprocessing.image import ImageDataGenerator
14 import matplotlib.pyplot as plt
15 from keras import backend as K
16

17 img_width , img_height = 64, 64
18

19 #DIRECTORIO DE IMAGENES DE TEXTURAS y NO TEXTURAS
20 original_dataset_dir = ’/home/jm/Escritorio/CNNWavelet_Texture/Datasets/Data5/

tex_a ’
21 original_dataset_dir1 = ’/home/jm/Escritorio/CNNWavelet_Texture/Datasets/Data5/

scene_a ’
22 #DIRECTORIO PARA DATASET CON IMAGENES DE ENTRENAMIENTO ,VALIDACIoN Y TEST
23 base_dir = ’/home/jm/Escritorio/CNNWavelet_Texture/Datasets/Testing5_a ’
24 os.mkdir(base_dir)
25

26 train_dir = os.path.join(base_dir , ’train’)
27 os.mkdir(train_dir)
28 validation_dir = os.path.join(base_dir , ’validation ’)
29 os.mkdir(validation_dir)
30 test_dir = os.path.join(base_dir , ’test’)
31 os.mkdir(test_dir)
32 #DIRECTORIO CON IMG ENTRENAMIENTO TEXTURAS
33 train_texture_dir = os.path.join(train_dir , ’textura ’)
34 os.mkdir(train_texture_dir)
35 #DIRECTORIO CON IMG ENTRENAMIENTO NO TEXTURAS
36 train_nottex_dir = os.path.join(train_dir , ’nottext ’)
37 os.mkdir(train_nottex_dir)
38 #DIRECTORIO CON IMG VALIDACION TEXTURAS
39 validation_texture_dir = os.path.join(validation_dir , ’textura ’)
40 os.mkdir(validation_texture_dir)
41 #DIRECTORIO CON IMG VALIDACION NO TEXTURAS
42 validation_nottex_dir = os.path.join(validation_dir , ’nottext ’)
43 os.mkdir(validation_nottex_dir)
44 #DIRECTORIO CON IMG TEST TEXTURAS
45 test_texture_dir = os.path.join(test_dir , ’textura ’)

https://github.com/JanManuell/ThesisPhD-1ProposedApproach.git
https://github.com/JanManuell/ThesisPhD-1ProposedApproach.git

B.1. Algorithm 1: Binary Classification. 96

46 os.mkdir(test_texture_dir)
47 #DIRECTORIO CON IMG TEST TEXTURAS
48 test_nottex_dir = os.path.join(test_dir , ’nottext ’)
49 os.mkdir(test_nottex_dir)
50 #COPIA LAS PRIMERAS 700 IMG TEXTURAS A TRAIN_TEXTURE_DIR
51 #fnames = [’ImgAtest {}. jpg ’.format(i) for i in range (700)]
52 fnames = [’test -{}. jpg’.format(i) for i in range (700)]
53 for fname in fnames:
54 src = os.path.join(original_dataset_dir , fname)
55 dst = os.path.join(train_texture_dir , fname)
56 shutil.copyfile(src , dst)
57 #COPIA LAS SIGUIENTES 150 IMG TEXTURAS A VALIDATION_TEXTURE_DIR
58 fnames = [’test -{}. jpg’.format(i) for i in range (700, 850)]
59 for fname in fnames:
60 src = os.path.join(original_dataset_dir , fname)
61 dst = os.path.join(validation_texture_dir , fname)
62 shutil.copyfile(src , dst)
63 #COPIA LAS SIGUIENTES 150 IMG TEXTURAS A TEST_TEXTURE_DIR
64 fnames = [’test -{}. jpg’.format(i) for i in range (850, 954)]
65 for fname in fnames:
66 src = os.path.join(original_dataset_dir , fname)
67 dst = os.path.join(test_texture_dir , fname)
68 shutil.copyfile(src , dst)
69 #COPIA LAS PRIMERAS 700 IMG NO TEXTURAS A TRAIN_NOTTEXTURE_DIR
70 fnames = [’test -{}. jpg’.format(i) for i in range (700)]
71 for fname in fnames:
72 src = os.path.join(original_dataset_dir1 , fname)
73 dst = os.path.join(train_nottex_dir , fname)
74 shutil.copyfile(src , dst)
75 #COPIA LAS SIGUIENTES 150 IMG NO TEXTURAS A VALIDATION_NOTTEXTURE_DIR
76 fnames = [’test -{}. jpg’.format(i) for i in range (700, 850)]
77 for fname in fnames:
78 src = os.path.join(original_dataset_dir1 , fname)
79 dst = os.path.join(validation_nottex_dir , fname)
80 shutil.copyfile(src , dst)
81 #COPIA LAS SIGUIENTES 150 IMG NO TEXTURAS A TEST_NOTTEXTURE_DIR
82 fnames = [’test -{}. jpg’.format(i) for i in range (850, 954)]
83 for fname in fnames:
84 src = os.path.join(original_dataset_dir1 , fname)
85 dst = os.path.join(test_nottex_dir , fname)
86 shutil.copyfile(src , dst)
87

88 #Checking format of Image:
89 if K.image_data_format () == ’channels_first ’:
90 input_shape = (3, img_width , img_height)
91 else:
92 input_shape = (img_width , img_height , 3)
93

94 model = models.Sequential ()
95 model.add(layers.Conv2D (32, (3, 3), activation=’relu’,input_shape=input_shape))
96 model.add(layers.MaxPooling2D ((2, 2)))
97 model.add(layers.Conv2D (64, (3, 3), activation=’relu’))
98 model.add(layers.MaxPooling2D ((2, 2)))
99 model.add(layers.Conv2D (128, (3, 3), activation=’relu’))

100 model.add(layers.MaxPooling2D ((2, 2)))
101 model.add(layers.Conv2D (128, (3, 3), activation=’relu’))
102 model.add(layers.MaxPooling2D ((2, 2)))
103 model.add(layers.Flatten ())
104 #model.add(layers.Dropout (0.5))
105 model.add(layers.Dense (512, activation=’relu’))
106 model.add(layers.Dense(1, activation=’sigmoid ’))
107 #Configuring the model for training
108 model.compile(loss=’binary_crossentropy ’,

B.1. Algorithm 1: Binary Classification. 97

109 optimizer=optimizers.RMSprop(lr=1e-4),
110 metrics =[’acc’])
111 #Using ImageDataGenerator to read images from directories
112 #Rescales all images by 1/255
113 train_datagen = ImageDataGenerator(rescale =1./255)
114 validation_datagen = ImageDataGenerator(rescale =1./255)
115 test_datagen = ImageDataGenerator(rescale =1./255)
116

117 train_generator = train_datagen.flow_from_directory(
118 train_dir ,
119 target_size =(64, 64),
120 batch_size =20,
121 class_mode=’binary ’)#Because you use binary_crossentropy loss , you need

binary labels.
122 validation_generator = validation_datagen.flow_from_directory(
123 validation_dir ,
124 target_size =(64, 64),
125 batch_size =20,
126 class_mode=’binary ’)
127 test_generator = test_datagen.flow_from_directory(
128 test_dir ,
129 target_size =(64, 64),
130 batch_size =20,
131 class_mode=’binary ’)
132

133 #Fitting the model using a batch generator
134 history = model.fit_generator(
135 train_generator ,
136 steps_per_epoch =100,
137 epochs =10,
138 validation_data=validation_generator ,
139 validation_steps =50)
140

141 #Saving the model
142 model.save(’model5_a.h5’)
143

144 test_loss , test_acc = model.evaluate_generator(test_generator , steps =50)
145 print(’test acc:’, test_acc)
146 print(’test loss:’, test_loss)
147

148 #Displaying curves of loss and accuracy during training
149 acc = history.history[’acc’]
150 val_acc = history.history[’val_acc ’]
151 loss = history.history[’loss’]
152 val_loss = history.history[’val_loss ’]
153

154 epochs = range(1, len(acc) + 1)
155 plt.plot(epochs , acc , ’-g’, label=’Training acc’)
156 plt.plot(epochs , val_acc , ’b’, label=’Validation acc’)
157 plt.title(’Training and validation accuracy ’)
158 plt.xlabel(’Epochs ’)
159 plt.ylabel(’Accuracy ’)
160 plt.legend ()
161

162 plt.figure ()
163

164 plt.plot(epochs , loss , ’-g’, label=’Training loss’)
165 plt.plot(epochs , val_loss , ’b’, label=’Validation loss’)
166 plt.title(’Training and validation loss’)
167 plt.xlabel(’Epochs ’)
168 plt.ylabel(’Accuracy ’)
169 plt.legend ()
170 plt.show()

B.2. Algorithm 2: Modeltlvgg16_3Input1Model. 98

B.2 Algorithm 2: Modeltlvgg16_3Input1Model.

Architecture design with three inputs for multiclass classification. It is based on
the fusion of information in the spatial and wavelet domain. The architecture has a
functional basis with multiple inputs with random connections between layers. See
at https://github.com/JanManuell/ThesisPhD-2ProposedApproach.git.

Listing B.2: Architecture design - code.
1 """ ### ** Arquitectura Multiple Input Model **: Wavelet CNN"""
2 print("[INFO] Dise -o de la arquitectura ...")
3 # define two sets of inputs
4 inputA = Input(shape =(300 ,300 ,3))
5 inputB = Input(shape =(150 ,150 ,3))
6 inputC = Input(shape =(75 ,75 ,3))
7

8 l1 = MaxPooling2D(pool_size =(2, 2), strides =(2,2), name=’block1_Pool ’)(inputA)
9 #l3 = MaxPooling2D(pool_size =(2, 2), strides =(2 ,2), name=’block3_Pool ’)(inputA)

10

11 # Input original image starts
12 conv1 = Conv2D (64, (3, 3), strides=1, padding=’same’, activation=’relu’, name=’

block1_conv1 ’)(inputA)
13 conv2 = Conv2D (64, (3, 3), strides=2, padding=’same’, activation=’relu’, name=’

block1_conv2 ’)(conv1)
14 # level one decomposition starts
15 conv1_1 = Conv2D (64, (3, 3), strides=1, padding=’same’, activation=’relu’, name

=’block1_conv3 ’)(inputB)
16 # concate level one and level two decomposition
17 concat1 = concatenate ([conv2 , conv1_1 , l1, inputB])
18 conv3 = Conv2D (128, (3, 3), strides=1, padding=’same’, activation=’relu’, name=

’block2_conv1 ’)(concat1)
19 conv4 = Conv2D (128, (3, 3), strides=2, padding=’same’, activation=’relu’, name=

’block2_conv2 ’)(conv3)
20 # level two decomposition starts
21 conv2_1 = Conv2D (64, (3, 3), strides=1, padding=’same’, activation=’relu’, name

=’block2_conv3 ’)(inputC)
22 conv3_1 = Conv2D (128, (3, 3), strides=1, padding=’same’, activation=’relu’,

name=’block2_conv4 ’)(conv2_1)
23

24 l2 = MaxPooling2D(pool_size =(2, 2), strides =(2 ,2), name=’block2_Pool ’)(concat1)
25

26 # concate level two and level three decomposition
27 concat2 = concatenate ([conv4 , conv3_1 , l2, inputC])
28 conv6 = Conv2D (256, (3, 3), strides=1, padding=’same’, activation=’relu’, name=

’block3_conv1 ’)(concat2)
29 conv7 = Conv2D (256, (3, 3), strides=2, padding=’same’, activation=’relu’, name=

’block3_conv2 ’)(conv6)
30 conv8 = Conv2D (512, (3, 3), strides=1, padding=’same’, activation=’relu’, name=

’block4_conv1 ’)(conv7)
31 conv9 = Conv2D (512, (3, 3), strides=2, padding=’same’, activation=’relu’, name=

’block4_conv2 ’)(conv8)
32

33 avep1 = GlobalAveragePooling2D(name=’block4_Pool ’)(conv9)
34 output = Dense(nClasses , activation=’softmax ’, name=’predictions ’)(avep1)
35

36 # create model with two inputs
37 model = Model ([inputA ,inputB ,inputC], output)

https://github.com/JanManuell/ThesisPhD-2ProposedApproach.git

B.2. Algorithm 2: Modeltlvgg16_3Input1Model. 99

38 model.summary ()
39

40 [INFO] Dise -o de la arquitectura ...
41 Model: "model_1"
42 ___
43 Layer (type) Output Shape Param # Connected to
44 ===
45 input_1 (InputLayer) (None , 300, 300, 3) 0
46 ___
47 block1_conv1 (Conv2D) (None , 300, 300, 64) 1792 input_1 [0][0]
48 ___
49 input_2 (InputLayer) (None , 150, 150, 3) 0
50 ___
51 block1_conv2 (Conv2D) (None , 150, 150, 64) 36928 block1_conv1 [0][0]
52 ___
53 block1_conv3 (Conv2D) (None , 150, 150, 64) 1792 input_2 [0][0]
54 ___
55 block1_Pool (MaxPooling2D) (None , 150, 150, 3) 0 input_1 [0][0]
56 ___
57 concatenate_1 (Concatenate) (None , 150, 150, 134 0 block1_conv2 [0][0]
58 block1_conv3 [0][0]
59 block1_Pool [0][0]
60 input_2 [0][0]
61 __

62 input_3 (InputLayer) (None , 75, 75, 3) 0
63 __

64 block2_conv1 (Conv2D) (None , 150, 150, 128 154496 concatenate_1 [0][0]
65 __

66 block2_conv3 (Conv2D) (None , 75, 75, 64) 1792 input_3 [0][0]
67 ___
68 block2_conv2 (Conv2D) (None , 75, 75, 128) 147584 block2_conv1 [0][0]
69 ___
70 block2_conv4 (Conv2D) (None , 75, 75, 128) 73856 block2_conv3 [0][0]
71 __

72 block2_Pool (MaxPooling2D) (None , 75, 75, 134) 0 concatenate_1 [0][0]
73 __

74 concatenate_2 (Concatenate) (None , 75, 75, 393) 0 block2_conv2 [0][0]
75 block2_conv4 [0][0]
76 block2_Pool [0][0]
77 input_3 [0][0]
78 __

79 block3_conv1 (Conv2D) (None , 75, 75, 256) 905728 concatenate_2 [0][0]
80 ___
81 block3_conv2 (Conv2D) (None , 38, 38, 256) 590080 block3_conv1 [0][0]
82 ___
83 block4_conv1 (Conv2D) (None , 38, 38, 512) 1180160 block3_conv2 [0][0]
84 ___
85 block4_conv2 (Conv2D) (None , 19, 19, 512) 2359808 block4_conv1 [0][0]
86 ___
87 block4_Pool (GlobalAveragePooli(None , 512) 0 block4_conv2 [0][0]
88 __
89 predictions (Dense) (None , 47) 24111 block4_Pool [0][0]
90 ==
91 Total params: 5,478 ,127
92 Trainable params: 5,478 ,127
93 Non -trainable params: 0
94 __

B.3. Algorithm 3: PyWavelets. 100

B.3 Algorithm 3: PyWavelets.

Creation of datasets (test, train, and valid) and application of the Discrete
Wavelet Transform in grayscale. The full version can be found at the link
https://github.com/JanManuell/ThesisPhD-3ProposedApproach.git.

Listing B.3: PYWT - Wavelet Transforms in Python
1 #Metodologia 2DWT
2 """
3 G. R. Lee , R.Gommers , F. Wasilewski , K. Wohlfahrt , A. OLeary (2019).
4 PyWavelets: A Python package for wavelet analysis.
5 Journal of Open Source Software , 4(36), 1237,
6 https ://doi.org /10.21105/ joss .01237
7 """
8 import pywt # Wavelet transform of image
9 import pywt.data

10 import cv2
11 from sklearn import preprocessing
12 min_max_scaler = preprocessing.MinMaxScaler ()
13

14 n_imagenes = 846
15 n_imagenes1 = 3931
16 n_imagenes2 = 863
17 alto = 150
18 ancho = 150
19 #alto1 = 75
20 #ancho1 = 75
21 canales = 1
22 #canalesx = 1
23 testA_x = np.zeros ((n_imagenes , ancho , alto , canales), dtype = np.float32)
24 trainA_x = np.zeros((n_imagenes1 , ancho , alto , canales), dtype = np.float32)
25 validA_x = np.zeros((n_imagenes2 , ancho , alto , canales), dtype = np.float32)
26

27 testH_x = np.zeros ((n_imagenes , ancho , alto , canales), dtype = np.float32)
28 trainH_x = np.zeros((n_imagenes1 , ancho , alto , canales), dtype = np.float32)
29 validH_x = np.zeros((n_imagenes2 , ancho , alto , canales), dtype = np.float32)
30

31 testV_x = np.zeros ((n_imagenes , ancho , alto , canales), dtype = np.float32)
32 trainV_x = np.zeros((n_imagenes1 , ancho , alto , canales), dtype = np.float32)
33 validV_x = np.zeros((n_imagenes2 , ancho , alto , canales), dtype = np.float32)
34

35 testD_x = np.zeros ((n_imagenes , ancho , alto , canales), dtype = np.float32)
36 trainD_x = np.zeros((n_imagenes1 , ancho , alto , canales), dtype = np.float32)
37 validD_x = np.zeros((n_imagenes2 , ancho , alto , canales), dtype = np.float32)
38

39 size=len(test_x)
40 print("Cantidad de imagenes:",size)
41

42 #Se descomprime cada imagen de la lista creada.
43 for i in range(0, size):
44 img1 = test_x[i] #Imagenes
45 x = cv2.cvtColor(img1 ,cv2.COLOR_RGB2GRAY)
46

47 max_lev = 1 # how many levels of decomposition to draw
48

49 for level in range(0, max_lev + 1):

https://github.com/JanManuell/ThesisPhD-3ProposedApproach.git

B.4. Algorithm 4: Wavelet Pooling Layer. 101

50 # compute the 2D DWT
51 c = pywt.wavedec2(x, ’haar’, mode=’periodization ’, level=level)
52 # Reconstruction
53 #N=1, Img aproximacipn canales BGR.
54 IMGba =((c[0]))
55 imga = np.expand_dims(IMGba , axis = 2)
56 #Save Data
57 testA_x[i] = imga

B.4 Algorithm 4: Wavelet Pooling Layer.

Creation of the wavelet layer using Keras.Layers methods. The script shows
the full DWTP version. The approximation and detail versions can be
found inside the link, respectively. See at https://github.com/JanManuell/
ThesisPhD-4ProposedApproach.git.

Listing B.4: DWTP - Wavelet Pooling in Keras Layers
1 import keras.backend as K
2 from keras.layers import Layer
3

4 def dwt(x, data_format=’channels_last ’):
5

6 """
7 DWT (Discrete Wavelet Transform) function implementation according to
8 "Multi -level Wavelet Convolutional Neural Networks"
9 by Pengju Liu , Hongzhi Zhang , Wei Lian , Wangmeng Zuo

10 https :// arxiv.org/abs /1907.03128
11 """
12

13 if data_format == ’channels_last ’:
14 x1 = x[:, 0::2, 0::2, :] #x(2i-1, 2j-1)
15 x2 = x[:, 1::2, 0::2, :] #x(2i, 2j-1)
16 x3 = x[:, 0::2, 1::2, :] #x(2i-1, 2j)
17 x4 = x[:, 1::2, 1::2, :] #x(2i, 2j)
18

19 elif data_format == ’channels_first ’:
20 x1 = x[:, :, 0::2, 0::2] #x(2i-1, 2j-1)
21 x2 = x[:, :, 1::2, 0::2] #x(2i, 2j-1)
22 x3 = x[:, :, 0::2, 1::2] #x(2i-1, 2j)
23 x4 = x[:, :, 1::2, 1::2] #x(2i, 2j)
24

25 x_LL = x1 + x2 + x3 + x4
26 x_LH = -x1 - x3 + x2 + x4
27 x_HL = -x1 + x3 - x2 + x4
28 x_HH = x1 - x3 - x2 + x4
29

30 if data_format == ’channels_last ’:
31 return K.concatenate ([x_LL ,x_LH ,x_HL ,x_HH],axis=-1)
32 elif data_format == ’channels_first ’:
33 return K.concatenate ([x_LL ,x_LH ,x_HL ,x_HH],axis =1)
34 class DWT_Pooling(Layer):
35 """
36 Custom Layer performing DWT pooling operation described in :

https://github.com/JanManuell/ThesisPhD-4ProposedApproach.git
https://github.com/JanManuell/ThesisPhD-4ProposedApproach.git

B.4. Algorithm 4: Wavelet Pooling Layer. 102

37

38 "Multi -level Wavelet Convolutional Neural Networks"
39 by Pengju Liu , Hongzhi Zhang , Wei Lian , Wangmeng Zuo
40 https :// arxiv.org/abs /1907.03128
41

42 # Arguments :
43 data_format (String): ’channels_first ’ or ’channels_last ’
44

45 # Input shape :
46 If data_format=’channels_last ’:
47 4D tensor of shape: (batch_size , rows , cols , channels)
48 If data_format=’channels_first ’:
49 4D tensor of shape: (batch_size , channels , rows , cols)
50

51 # Output shape
52 If data_format=’channels_last ’:
53 4D tensor of shape: (batch_size , rows/2, cols/2, channels *4)
54 If data_format=’channels_first ’:
55 4D tensor of shape: (batch_size , channels*4, rows/2, cols /2)
56 """
57

58 def __init__(self , data_format=None ,** kwargs):
59 super(DWT_Pooling , self).__init__ (** kwargs)
60 self.data_format = K.normalize_data_format(data_format)
61

62 def build(self , input_shape):
63 super(DWT_Pooling , self).build(input_shape)
64

65 def call(self , x):
66 return dwt(x, self.data_format)
67

68 def compute_output_shape(self , input_shape):
69 if self.data_format == ’channels_first ’:
70 return (input_shape [0], input_shape [1]*4 , input_shape [2]//2 ,

input_shape [3]//2)
71 elif self.data_format == ’channels_last ’:
72 return (input_shape [0], input_shape [1]//2 , input_shape [2]//2 ,

input_shape [3]*4)

C
Appendix

C.1 List of terms and abbreviations

CNN/ConvNet Convolutional Neural Network.
IWT Inverse Wavelet Transform.
MAV Micro Aerial Vehicle.
UAV Unmanned Aerial Vehicle.
SSD Single Shot MultiBox Detector.
GPU Graphics Processing Unit.
YOLO You Only Look Once.
ROS The Robot Operating System.
OpenCV Open Source Computer Vision Library.
VGG Very Deep Convolutional Network.
DTD Describable Texture Database.
FMD Flickr Material Database.
KT2B KTH-TIPS-2B.
DWTP Discrete Wavelet Transform Pooling.
DWTaP Discrete Wavelet Transform Approximation Pooling.
DWTdP Discrete Wavelet Transform Detail Pooling.
AveP Ave-Pooling.
MaxP Max-Pooling.
2D-WT Two-Dimensional Wavelet Transform.
2D-DWT Two-Dimensional Discrete Wavelet Transform.
DWT Discrete Wavelet Transform.
M-MA Mallat-Multiresolution Analysis.
2D-FWT Fast Two-Dimensional Wavelet Transform.
ANNs Artificial Neural Networks.
ReLU Rectified Linear Unit.
SGD Stochastic Gradient Descent optimizer.
FCN Fully Connected Layers.
RGB Red Green Blue.
CPU Central Processing Unit.
BSD Berkeley Software Distribution.
API Application Programming Interface.
ROI Region of Interest.

103

Bibliography
[1] C. Vargas-Olmos, Procesamiento de señales y solución de problemas con la transformada

wavelet. Ph.d. dissertation, Instituto de Investigación en Comunicación Óptica, UASLP, San
Luis Potosí, México, 2017.

[2] C. C. Aggarwal et al., “Neural networks and deep learning,” Springer, vol. 10, pp. 978–3,
2018.

[3] M. Rivera, “Reeuso de redes preentrenadas (cimat).” [Online]. Available:
http://mrivera/cursos/aprendizaje_profundo/preentrenadas/preentrenadas.html#transferencia-
de-conocimiento-de-redes-preentrenadas-a-nuevos-problemas.

[4] F. Chollet, Deep learning with Python. Shelter Island, NY: Manning Publications Co, 2018.

[5] R. Group, “What is gradient descent?.” [Online], 2021. Available: https://www.robofied.com/.

[6] A. A. Cabrera-Ponce and J. Martínez-Carranza, “Onboard cnn-based processing for target
detection and autonomous landing for mavs,” in Mexican Conference on Pattern Recognition,
pp. 195–208, Springer, 2020.

[7] C. Vargas-Olmos, “Procesamiento de imágenes con métodos de ondeleta,” m.s. thesis, Instituto
de Investigación en Comunicación Óptica, UASLP, San Luis Potosí, México, jun 2010.

[8] Y. Bazi and F. Melgani, “Convolutional svm networks for object detection in uav imagery,”
Ieee transactions on geoscience and remote sensing, vol. 56, no. 6, pp. 3107–3118, 2018.

[9] N. S. Vassilieva, “Content-based image retrieval methods,” Programming and Computer
Software, vol. 35, no. 3, pp. 158–180, 2009.

[10] L. O. Rojas Pérez and J. Martínez Carranza, “Autonomous drone racing with an opponent:
a first approach,” Computación y Sistemas, vol. 24, no. 3, pp. 1271–1279, 2020.

[11] V. Alcalá-Rmz, V. Maeda-Gutiérrez, L. A. Zanella-Calzada, A. Valladares-Salgado, J. M.
Celaya-Padilla, and C. E. Galván-Tejada, “Convolutional neural network for classification of
diabetic retinopathy grade,” in Mexican International Conference on Artificial Intelligence,
pp. 104–118, Springer, 2020.

[12] J. M. Tapia-Téllez and H. J. Escalante, “Data augmentation with transformers for text
classification,” in Mexican International Conference on Artificial Intelligence, pp. 247–259,
Springer, 2020.

[13] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, pp. 436–444,
2015.

[14] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, vol. 1. MIT Press: Cambridge,
MA, USA, 2017.

[15] T. Williams, R. Li, et al., “An ensemble of convolutional neural networks using wavelets
for image classification,” Journal of Software Engineering and Applications, vol. 11, no. 02,
p. 69, 2018.

[16] P. Liu, H. Zhang, W. Lian, and W. Zuo, “Multi-level wavelet convolutional neural networks,”
IEEE Access, vol. 7, pp. 74973–74985, 2019.

[17] J. Piao, Y. Chen, and H. Shin, “A new deep learning based multi-spectral image fusion
method,” Entropy, vol. 21, no. 6, p. 570, 2019.

104

Bibliography 105

[18] D. De Silva, S. Fernando, I. T. S. Piyatilake, and A. Karunarathne, “Wavelet based edge
feature enhancement for convolutional neural networks,” in Eleventh International Conference
on Machine Vision (ICMV 2018), vol. 11041, pp. 751–760, SPIE, 2019.

[19] V. Andrearczyk and P. F. Whelan, “Using filter banks in convolutional neural networks for
texture classification,” Pattern Recognition Letters, vol. 84, pp. 63–69, 2016.

[20] S. Fujieda, K. Takayama, and T. Hachisuka, “Wavelet convolutional neural networks for
texture classification,” arXiv preprint arXiv:1707.07394, 2017.

[21] S. Fujieda, K. Takayama, and T. Hachisuka, “Wavelet convolutional neural networks,” arXiv
preprint arXiv:1805.08620, 2018.

[22] T. Williams and R. Li, “Wavelet pooling for convolutional neural networks,” in International
Conference on Learning Representations, 2018.

[23] C. Ben Chaabane, D. Mellouli, T. M. Hamdani, A. M. Alimi, and A. Abraham, “Wavelet
convolutional neural networks for handwritten digits recognition,” in International Conference
on Hybrid Intelligent Systems, pp. 305–310, Springer, 2017.

[24] H. Gholamalinejad and H. Khosravi, “Vehicle classification using a real-time convolutional
structure based on dwt pooling layer and se blocks,” Expert Systems with Applications,
vol. 183, p. 115420, 2021.

[25] A. Ferrà, E. Aguilar, and P. Radeva, “Multiple wavelet pooling for cnns,” in Proceedings of
the European Conference on Computer Vision (ECCV) Workshops, pp. 0–0, 2018.

[26] A. de Souza Brito, M. B. Vieira, M. L. S. C. de Andrade, R. Q. Feitosa, and G. A. Giraldi,
“Combining max-pooling and wavelet pooling strategies for semantic image segmentation,”
Expert Systems with Applications, vol. 183, p. 115403, 2021.

[27] Q. Li and L. Shen, “3d waveunet: 3d wavelet integrated encoder-decoder network for neuron
segmentation,” arXiv preprint arXiv:2106.00259, 2021.

[28] A. Alijamaat, A. NikravanShalmani, and P. Bayat, “Multiple sclerosis lesion segmentation
from brain mri using u-net based on wavelet pooling,” International journal of computer
assisted radiology and surgery, vol. 16, no. 9, pp. 1459–1467, 2021.

[29] Y. Pi, N. D. Nath, and A. H. Behzadan, “Convolutional neural networks for object detection
in aerial imagery for disaster response and recovery,” Advanced Engineering Informatics,
vol. 43, p. 101009, 2020.

[30] S. Dionisio-Ortega, L. O. Rojas-Perez, J. Martinez-Carranza, and I. Cruz-Vega, “A deep
learning approach towards autonomous flight in forest environments,” in 2018 International
Conference on Electronics, Communications and Computers (CONIELECOMP), pp. 139–
144, IEEE, 2018.

[31] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional
neural networks,” Advances in neural information processing systems, vol. 25, 2012.

[32] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time
object detection,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 779–788, 2016.

[33] S. Jung, S. Hwang, H. Shin, and D. H. Shim, “Perception, guidance, and navigation for indoor
autonomous drone racing using deep learning,” IEEE Robotics and Automation Letters,
vol. 3, no. 3, pp. 2539–2544, 2018.

Bibliography 106

[34] S. G. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,”
IEEE transactions on pattern analysis and machine intelligence, vol. 11, no. 7, pp. 674–693,
1989.

[35] P. Mallikarjuna, A. T. Targhi, M. Fritz, E. Hayman, B. Caputo, and J.-O. Eklundh, “The
kth-tips2 database,” Computational Vision and Active Perception Laboratory, Stockholm,
Sweden, vol. 11, 2006.

[36] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi, “Describing textures in the
wild,” in Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 3606–3613, 2014.

[37] L. Sharan, R. Rosenholtz, and E. H. Adelson, “Accuracy and speed of material categorization
in real-world images,” Journal of Vision, vol. 14, no. 10, 2014.

[38] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” arXiv preprint arXiv:1409.1556, 2014.

[39] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny images,”
2009.

[40] S. G. Mallat, “Multifrequency channel decompositions of images and wavelet models,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 37, no. 12, pp. 2091–2110,
1989.

[41] R. A. Gopinath, H. Guo, C. S. Burrus, and L. S. Burrus, “Introduction to wavelets and
wavelet transforms: a primer,” 1997.

[42] J. S. Walker, A primer on wavelets and their scientific applications. Broken Sound Parkway
NW: Chapman and hall/CRC, 2nd ed. ed., 2008.

[43] S. Mallat et al., “A wavelet tour of signal processing: the sparce way,” AP Professional,
Third Edition, London, 2009.

[44] T. Nguyen, Wavelets and filter banks. Wellesley-Cambridge Press, 1996.

[45] A. Harr, “Theorie der orthogonalen funktionensysteme,” Math Anal, vol. 69, 1910.

[46] A. Rosebrock, Deep learning for computer vision with python: Starter bundle. PyImageSearch,
2017.

[47] W. S. McCulloch and W. Pitts, A Logical Calculus of the Ideas Immanent in Nervous
Activity, p. 15–27. Cambridge, MA, USA: MIT Press, 1988.

[48] F. Rosenblatt, “The perceptron: a probabilistic model for information storage and
organization in the brain.,” Psychological review, vol. 65, no. 6, p. 386, 1958.

[49] F. Rosenblatt, “Principles of neurodynamics. perceptrons and the theory of brain mechanisms,”
tech. rep., Cornell Aeronautical Lab Inc Buffalo NY, 1961.

[50] M. Minsky and S. Papert, “Perceptrons cambridge,” MA: MIT Press. zbMATH, 1969.

[51] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D.
Jackel, “Backpropagation applied to handwritten zip code recognition,” Neural computation,
vol. 1, no. 4, pp. 541–551, 1989.

[52] T. Williams and R. Li, “Advanced image classification using wavelets and convolutional
neural networks,” in 2016 15th IEEE international conference on machine learning and
applications (ICMLA), pp. 233–239, IEEE, 2016.

Bibliography 107

[53] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackel,
“Handwritten digit recognition with a back-propagation network,” Advances in neural
information processing systems, vol. 2, 1989.

[54] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[55] M. Ranzato, Y.-L. Boureau, Y. Cun, et al., “Sparse feature learning for deep belief networks,”
Advances in neural information processing systems, vol. 20, 2007.

[56] M. A. Nielsen, Neural networks and deep learning, vol. 25. Determination press San Francisco,
CA, USA, 2015.

[57] C.-Y. Lee, P. W. Gallagher, and Z. Tu, “Generalizing pooling functions in convolutional
neural networks: Mixed, gated, and tree,” in Artificial intelligence and statistics, pp. 464–472,
PMLR, 2016.

[58] M. D. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang, Q. V. Le, P. Nguyen, A. Senior,
V. Vanhoucke, J. Dean, et al., “On rectified linear units for speech processing,” in 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing, pp. 3517–3521, IEEE,
2013.

[59] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 1251–1258, 2017.

[60] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception
architecture for computer vision,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 2818–2826, 2016.

[61] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778,
2016.

[62] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and
H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile vision applications,”
arXiv preprint arXiv:1704.04861, 2017.

[63] S. University, “Adaptive adaline neuron using chemical memistors,” 1960. Cited on page 106.

[64] G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for machine learning lecture 6a
overview of mini-batch gradient descent,” Cited on, vol. 14, no. 8, p. 2, 2012.

[65] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[66] G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for machine learning,” Coursera,
video lectures, vol. 264, no. 1, pp. 2146–2153, 2012.

[67] F. Lin, T. Hou, Q. Jin, and A. You, “Improved yolo based detection algorithm for floating
debris in waterway,” Entropy, vol. 23, no. 9, p. 1111, 2021.

[68] K. T. Gribbon and D. G. Bailey, “A novel approach to real-time bilinear interpolation,” in
Proceedings. DELTA 2004. Second IEEE international workshop on electronic design, test
and applications, pp. 126–131, IEEE, 2004.

[69] V. Patel and K. Mistree, “A review on different image interpolation techniques for image
enhancement,” International Journal of Emerging Technology and Advanced Engineering,
vol. 3, no. 12, pp. 129–133, 2013.

Bibliography 108

[70] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source multi-robot
simulator,” in 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS)(IEEE Cat. No. 04CH37566), vol. 3, pp. 2149–2154, IEEE, 2004.

[71] L. Joseph, Robot operating system (ros) for absolute beginners: Robotics Programming Made
Easy. India: Apress, 2018.

[72] Y. LeCun et al., “Generalization and network design strategies,” Connectionism in perspective,
vol. 19, no. 143-155, p. 18, 1989.

[73] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a
simple way to prevent neural networks from overfitting,” The journal of machine learning
research, vol. 15, no. 1, pp. 1929–1958, 2014.

[74] G. Lee, R. Gommers, F. Waselewski, K. Wohlfahrt, and A. O’Leary, “Pywavelets: A python
package for wavelet analysis,” Journal of Open Source Software, vol. 4, no. 36, p. 1237, 2019.

[75] L. Brigato and L. Iocchi, “A close look at deep learning with small data,” in 2020 25th
International Conference on Pattern Recognition (ICPR), pp. 2490–2497, IEEE, 2021.

[76] N. Srivastava, “Improving neural networks with dropout,” University of Toronto, vol. 182,
no. 566, p. 7, 2013.

[77] A. Mikołajczyk and M. Grochowski, “Data augmentation for improving deep learning in image
classification problem,” in 2018 international interdisciplinary PhD workshop (IIPhDW),
pp. 117–122, IEEE, 2018.

[78] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” in International conference on machine learning, pp. 448–
456, PMLR, 2015.

[79] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-
propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.

	Acknowledgment
	List of Figures
	List of Tables
	Introduction.
	Background.
	Wavelet Analysis.
	Multiresolution Analysis
	2D Discrete Wavelet Transform

	Convolutional Neural Networks
	Pooling Method
	Transfer Learning
	Evaluating Deep Learning Models

	Proposed approach.
	Object Detection in Aerial Navigation using Wavelet Transform and Convolutional Neural Networks: A first Approach.
	Materials and Methods.
	Experimental Results.

	System for Image Texture Classification using Deep Learning and Wavelet Features.
	Materials and Methods.
	Experimental Results.

	Texture Classification for Object Detection in Aerial Navigation using Transfer Learning and Wavelet-based Features.
	Materials and Methods.
	Experimental Results.
	Texture Classification in Aerial Navigation.

	Texture and Materials Image Classification Based on Wavelet Pooling Layer in CNN.
	Materials and Methods.
	Experimental Results.

	Discussion

	Conclusions.
	Conclusions.
	Future work.

	Appendix.
	Training Process Using Regularization Techniques and Pooling.
	DTD Dataset.
	FMD Dataset.

	Multiple Confusion Matrix.
	CIFAR-10 Dataset
	DTD Dataset.
	FMD Dataset.

	Classification Report with Evaluation Metrics.
	CIFAR-10 Dataset.
	DTD Dataset.
	FMD Dataset.

	Appendix.
	Algorithm 1: Binary Classification.
	Algorithm 2: Modeltlvgg16_3Input1Model.
	Algorithm 3: PyWavelets.
	Algorithm 4: Wavelet Pooling Layer.

	Appendix
	List of terms and abbreviations

	Bibliography

