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RESUMEN

La eficiencia, el costo y la estabilidad son las tres caracteristicas mas importantes que
un dispositivo fotovoltaico debe cumplir para poder considerarse como posible
producto comercial. En los ultimos afios un nuevo tipo de celdas ha captado el interés
de la comunidad cientifica, cuyo componente principal es una perovskita hibrida
organica-inorganica. Los dispositivos estudiados han logrado eficiencias hasta de
20%, empleando métodos de depdsito sencillos. Estos grandes avances se han
logrado con el empleo de la perovskita CH3sNH3Pblz como material absorbedor de
radiacion, sin embargo, debido a su naturaleza, estas celdas carecen de una
estabilidad confiable. En este trabajo se emplea la técnica de blow-drying como un
meétodo alterno para obtener peliculas delgadas de CH3NHzPblz a partir de soluciones
con diferente concentracion, empleando aire caliente (25% humedad relativa, 90 °C)
como gas de arrastre y condiciones de humedad controlada durante la formacion de
los depositos. Mediante FTIR se verificd la quimica superficial de los depositos, los
cuales mostraron cierta hidratacion cuando se emple6 aire a 25 °C, misma que fue
eliminada al emplear aire caliente. Ademas, los depdsitos obtenidos por esta técnica
consistieron en estructuras entrecruzadas conformadas por pequefios granulos, de
acuerdo con lo observado mediante MEB. La cobertura de los sustratos estuvo
influenciada por la concentracién de las soluciones empleadas para obtener los
depdsitos, obteniendo un mejor recubrimiento al emplear una solucién de
concentracion 0.434 M. Por otro lado, se estudié la estabilidad de los depédsitos
obtenidos al ser expuestos a ambientes con humedades de 25%. En esta prueba
destacé la estabilidad de los depdsitos obtenidos empleando una solucion 0.434 M,
cuya resistencia a la degradacién se extendié a mas de 12 dias en ambientes con
25% de humedad.

Palabras clave: perovskita, pelicula delgada, blow-drying, celdas solares



ABSTRACT

Stability is still a property that limits the commercialization of perovskite solar cells.
Thus, with the development of continuous deposition methods, it is essential to
determine their feasibility in terms of stability and the efficiency of the devices
produced. In this work, a hot air blow-drying (HABD) method is proposed as an
alternative for the deposition of CHzNHsPblz (MAPbI) perovskite thin-films. The ability
of HABD to produce homogeneous and stable thin-films was systematically studied
and compared with those produced with air at standard conditions (25 °C, 25% relative
humidity). The MAPDI thin-films were characterized by infrared spectroscopy and X-
ray diffraction revealing that air temperature rules the film hydration. Partial
degradation after using air at standard conditions was observed in contrast with the
stable and pure perovskite phase obtained when using air heated at 90 C°. The
influence of solution concentration on the surface coverage was determined by
scanning electron and atomic force microscopies. It was found that 4 uL of precursors
solution (0.434 M) produced a homogeneous MAPDI thin-film with ~180 nm thickness
and smooth surface (Rg ~ 29 nm) covering a 6.25 cm?area. Moreover, the outstanding
optical and electrical properties of MAPbl were not affected by the deposition
procedure. Remarkably, degradation tests demonstrate that our HABD method is
capable of producing stable MAPDI thin-films with excellent resistance to degradation
at ambient conditions (up to 15 days), which makes it a promising low-cost and easy

to use method for the continuous fabrication of perovskite solar cells.

Keywords: perovskite, thin-films, blow-drying, solar cells
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CHAPTER 1 GENERAL INTRODUCTION

1. GENERAL INTRODUCTION

Nowadays, environmental concerns are a real trend. As the population grows, more
energy Is required to sustain human activities, resulting in over-exploiting natural
resources, and generating excessive waste. Moreover, the world still depends on fossil
fuels to satisfy the energy demand, not to mention that the world economy strongly
depends on this issue. However, there is no way to stop fossil fuel consumption without
risking the economy, so the strategy to stop the environmental pollution is reducing
this fuel consumption and recurring to alternative energy sources to complement the

energy demand.

In this sense, solar energy is one of the best choices among the renewable energy
sources available, as it can be transformed into heat or electricity. Solar energy results
in a convenient energy source directly transformed into electricity through special
devices known as solar cells. For this reason, several countries have relied on
electricity generation through solar cells. Additionally, there is a constant technological

enhancement regarding solar cells.

Thanks to technological development, there are various generations of solar cells. One
of the most recent involves the development of solar cells employing materials that
promise to surpass the current efficiencies. To make possible the commercialization of
photovoltaic devices, intense research is still in progress regarding efficiency,

scalability, and stability.

In this thesis, one of the materials trending in the photovoltaic research field is studied,
the perovskite. Perovskites are known for their electrical and optical properties, which
make possible the generation of high-efficiency solar cells, the simplicity of the
procedures to synthesize these materials, and also are recognized for their stability

issues.



CHAPTER 1 GENERAL INTRODUCTION

1.1 The perovskite compounds.

Perovskite is the name of a family of compounds which share the formula ABX3. Where
the “A” site is usually occupied by a small cation, the “B” position corresponds to a
heavy metal and the “X” site belongs to a non-metal ion. This formula comes from the
CaTiOs compound, which is referred as the model of a perovskite compound.
Perovskites are known for its peculiar crystal arrangement which characterizes for a
corner-sharing BXe octahedra enclosing the A cation. Figure 1 depicts the crystal
structure of the ideal perovskite along with the possible elements that can be employed
to synthesize a perovskite compound. Due to the versatility of the formula, almost every
element from the periodic table is a good candidate to prepare a perovskite.[1]

a ) b ) Pely'f)\'sl&itcs AB

Cs Bullf Ta W (B

i L.a Ce Pr Nd m.\'m Eu Gd Th Dy Ho Er Tm Yb Lu
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Figure 1 ABXs perovskite structure and composition: a) the corner-sharing octahedra composed of B
cations (in blue) and X anions (colored in red) enclosing the A cation (in gray), b) elements that can be
combined to prepare a perovskite compound, each color corresponds to a specific site[1].

Apart from the inorganic perovskites, there are hybrid perovskites, which are

composed of an organic cation placed in the “A” position, expanding the catalog of



CHAPTER 1 GENERAL INTRODUCTION

perovskite compounds. This kind of perovskites plays a crucial role in the research
field since they were identified as promising compounds for photovoltaic applications.

1.2 Hybrid perovskites

Hybrid perovskites replace the inorganic cation for a suitable organic cation in the “A”
site. Figure 2 displays the main differences between an inorganic perovskite and a
hybrid compound. The “A” site is usually occupied by an organic cation like the
methylammonium (see Figure 2b). Hybrid perovskites in general, involve the use of
lead ions and halide elements which build the octahedral structure. Moreover, due to
the size of the organic cation employed to synthesize hybrid perovskites, structural

distortions occur to adjust the space for the components|[2].

Ca™ Ti** o
1 00 —»&
CH,NH,* Pbi - [CH,NH,][Pbl,]

Figure 2 Compositional and structural differences between the inorganic perovskite (a) and the hybrid
perovskite (b) compound[2].
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For the case of hybrid perovskite compounds, the methylammonium lead iodide is
recognized as the reference. Several modifications taking this molecule as the basis
can be performed, whether changing the organic part, employing mixtures of organic
molecules, interchanging the lead ion for an equivalent heavy metal, or changing the
composition of the “X” anion by mixtures of halogens. These modifications can lead to
hybrid perovskite with different properties to overcome certain issues in photovoltaic
applications. In this work, the methylammonium lead iodide was selected as the
material of study because it is considered the base material. We employed this
characteristic to establish a synthetic methodology that could be adapted to different

perovskite compositions.

Hybrid perovskites characterize for their optical and electrical properties, which is one
of the reasons they are considered promising materials for high-efficiency solar cells.
Taking the methylammonium lead iodide as a reference, it can absorb an important
fraction of the electromagnetic spectrum. With an energy gap of 1.56 eV its optical
absorption covers from the ultraviolet region to the near-infrared section. Additionally,

the absorption range can be modulated by changing the composition of the “X” anion.

Along with its optical absorption modulation, the electrical properties make possible
the transport of electrical species in thin-films, which is an advantage compared with
other materials employed in solar cells, like silicon. Over the years, important features
like the diffusion length of electrical species, the binding energy, and the sensitivity of
the conductivity have been studied, allowing the correlation between the high

efficiencies in photovoltaic applications and the physical properties.

Despite the signs of progress made on understanding the physical properties, it is still
not possible to visualize the application of hybrid perovskite materials in real-life
photovoltaic devices. The main disadvantage of hybrid perovskites is stability, which is

an essential factor that needs to be assured in order to develop a solar cell. Figure 3
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depicts some of the external factors that compromise the stability of a perovskite
compound. As can it be seen, some of the factors are highly related with real-life
applications, like moisture and heat. Recalling that a solar cell is an outdoor device that

must resist direct exposition to weather conditions.

\
\ QRSO
Light
Electric-field
/ < Halide perovskite

High temperature

Figure 3 External factors that affect the stability of a hybrid perovskite compound|3].

The stability issues have become the main problem for these compounds, encouraging
the researchers to find alternatives and develop strategies to obtain stable hybrid
perovskites. This has given a result not only partially stable compounds but also the

development of synthetic methodologies under environmental conditions.

In the early stages of hybrid perovskite development, the synthesis of
methylammonium iodide strictly included inert atmosphere due to the risk of premature
degradation of the compound. During this time, the spin coating deposition technique

was the most employed methodology to obtain perovskite thin films. The simplicity of

T
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the method allowed the possibility of synthesizing thin films in an inert atmosphere box.
However, the films needed to be stored under the same conditions until its

characterization.

Although spin-coating allowed the obtention of high-quality thin-films, the procedure
was limited to small area deposition, which was the second problem to be overcome
during the early stages of development. New deposition methods were required to
achieve large-area depositions, or that could be scalable, in order to offer possible
commercialization of perovskite photovoltaic devices.

As a result, several methods were developed to obtain hybrid perovskite thin-films in
large-area substrates. Some examples are the slot-die coating, the spray-coating, or
the roller-coating technique. These methodologies, in combination with certain
strategies to obtain more stable perovskite compounds make possible the adaptation
of the synthesis to a continuous deposition of hybrid perovskite thin-films. In this work,
a supporting method known as blow-drying was employed as the main deposition
technique. Blow-drying consists in usually blowing an inert gas over the as-synthesized
thin-film to eliminate residual solvent from the film and complete the perovskite
formation. Most of the times this is a secondary methodology which comes after a spin-
coating or slot-die deposition. However, is has the potential to be employed to

synthesize perovskite materials itself.

All the advances mentioned above were achieved because of the possibility of
synthesizing hybrid perovskite materials from precursor solutions. Another recognized
advantage of the hybrid perovskite materials is that the reagents are salts that can be
dispersed in specific solvents. Clearly, the management of a precursor solution is
easier and allows the use of simple deposition methodologies or its adaptation to the

solution deposition.
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In general, the synthesis of a hybrid perovskite involves the chemical reaction of the
organic compound, which is an organic halide, and the inorganic part, which usually is
a lead halide salt. In order to disperse the reagents, a coordination solvent is needed.
Among the solvents available, N-N, dimethylformamide, and dimethylsulfoxide are the
most employed coordination solvents. These molecules have the capacity to
coordinate with the lead halide salt and, at the same time, contain the organic cation.
The formation mechanism of the perovskite compound involves the substitution of the
coordination solvent for the organic cation. This process is promoted by the
evaporation of the coordination solvent, which is the objective of the deposition
method. In the case of this work, dimethylformamide was chosen as the coordination
solvent due to its relatively high boiling point and the ease of coordinating with iodo-

plumbates, which constitutes an important step in the formation of perovskite.

Because of the advantages that offer hybrid perovskites, from their synthesis to the
application, these materials have become a real trend in the photovoltaic research
field—resulting in important advances in high-efficiency devices and stable devices

under laboratory tests.

1.3 Perovskite solar cells

Perovskite solar cells are those devices that include in their architecture a hybrid
perovskite material. The structure of this kind of cell consists of a p-i-n heterojunction,
where the intrinsic semiconductor is the perovskite. In order to achieve the photovoltaic
effect, the perovskite needs to be surrounded by different semiconductors on each side
so that when the electromagnetic radiation reaches the perovskite film, the exciton
species (electrons and holes) are collected by specific semiconductors, avoiding direct

recombination within the perovskite film.

In a dye-sensitized solar cell (DSSC), hybrid perovskites were used for the first time,
achieving an efficiency of 3.2%. After this application, the use of hybrid perovskites

increased considerably, going from DSSC to mesoporous thin-films and finally to solid
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thin-films. Along with developing its kind of photovoltaic device, the efficiencies
obtained by these devices increased in a matter of years. Figure 4 depicts the
efficiency achieved by perovskite solar cells compared to the efficient development of
other thin-film devices. To date, the efficiency of a perovskite photovoltaic device is
around 23%, which is a significant breakthrough considering that this efficiency was

achieved in about ten years from its first application.

The perovskite efficiency increase showed in Figure 4 motivates the researchers to
continue improving the photovoltaic device production, implementing continuous
deposition techniques, and enhancing the perovskite content to increase stability. It is
believed that the new generation of photovoltaic devices can be developed based on
hybrid perovskite compounds, although much work still needs to be done to achieve

this.
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Figure 4 Comparison of the increase in photovoltaic efficiency for various thin-film technologies[4]
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Thus, this work is divided into various chapters with the aim of presenting a
comprehensive study: in chapter 2, the motivation of the project is stated, along with
the objectives of the research work. Chapter 3 is dedicated to a well-documented
exploration of the fundamentals, from the material to the solar cell application, closing
with the state of the art of perovskite photovoltaics. The development of a thin-film
deposition methodology is aboard in chapter 4, along with the corresponding
characterization of the perovskite material and its application in a solar cell device.

Finally, chapter 5 includes the general conclusions about the project.
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CHAPTER 2 MOTIVATION OF THE PROJECT

2. MOTIVATION OF THE PROJECT

Global energy consumption and the current environmental concerns require renewable
energy sources to decrease fossil fuel exploitation gradually. As an alternative,
photovoltaic devices offer the possibility of transforming solar energy into electricity
cleanly. Moreover, new photovoltaic technologies are emerging in the research field,
promising the development of more efficient devices. Among them, perovskite
materials have shown impressive advances in the development of new generation
photovoltaic devices. However, more research is still in progress, focused on the
synthesis of thin-films under environmental conditions, using deposition methods that
allow continuous production, and looking for alternatives to increase the chemical

stability of the materials.

Therefore, this thesis aims to provide an alternative procedure for the production of
perovskite thin-films, which can be applied under environmental conditions opening
the possibility to be scalable. Additionally, we have contributed by generating
comprehensive knowledge on the stability of the materials obtained by the proposed
method and the study of properties and application prospects of perovskite thin-films

in solar cells.

2.1 Hypothesis

Perovskite thin-flms can be developed by the blow-drying deposition method.
Moreover, by using hot air instead of air at room temperature, the evaporation rate of
the solvent can be increased, enabling the fast perovskite formation and complete
elimination of the solvent from the material. Additionally, the environmental conditions
do not affect the material purity. The synthesized material is suitable for the

construction of a solar cell under ambient conditions.
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2.2 General Objective

To synthesize the perovskite CH3NH3sPbls thin-films through the blow-drying deposition
method, evaluate the chemical stability of the thin-flms, and demonstrate their
application in solar cells.

2.3 Specific objectives

To develop the methodology to obtain perovskite thin-films by blow-drying deposition

under room temperature conditions.

To synthesize perovskite thin-films under different conditions by varying the
concentration and volume of precursor solutions.

To determine the physical and chemical properties of the perovskite thin-films obtained
by the different deposition procedures and synthesis parameters.

To evaluate the chemical stability of the perovskite thin-films obtained by blow-drying
deposition.

To evaluate the performance of perovskite thin films as part of a photovoltaic device

used under room temperature and humidit