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CHAPTER 1

Introduction

The behaviour of colloidal particles and their interactions is a classic research subject in

physical-chemistry . The attainment of a faithful description of the behaviour of small particles has

been, for many years, the goal of numerous fundamental studies and of relevance for uncountable

technological applications, e.g., in biology, energy and the environmental sector.

In surface science (1), a colloid is any particle that has some linear dimension between 10�9

m (10 Å) and 10�6m (10 µm), see Figure 1.1. Additionally, large molecules or finely subdivided

bulk matter can also be considered colloids if they are formed by particles in the spatial range of

10�9 to 10�6 m. Thus, in the thermodynamic sense, macromolecular colloids are true solutions.

Subdivided bulk matter, on the other hand, forms a two-phase (at least) system with the medium.

The di↵erence between macromolecular colloids and subdivided bulk matter is the relationship

that exists between the colloidal particle and the medium in which it is embedded.

Due to the wide definition of colloids, they comprise an extensive multitude of material systems

of great interest (Figure 1.2) in scientific and technological fields (1–4). One conspicuous example

of a complex fluid is petroleum.

As result of the impressive progress that molecular engineering has experienced over the past

several years, diverse colloidal systems (liquid crystals, biomaterials, colloidal crystals) have been
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Figure 1.1: Scales sketch of di↵erent colloids.

Figure 1.2: Diverse types of colloidal systems (dispersions).
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successfully used, for instance, in display fabrication for medicine and optoelectronic applications

(see Figures 1.3 and 1.4).

a) b)

Figure 1.3: (a) Crystal liquid and (b) Magnetic colloid application in medicine.

Figure 1.4: Photonic crystal.

Usually, colloids are dispersed in a solvent, and frequently the liquid is a polar substance

(such as water). Tipically, a dissolved macroparticle acquires an electrical charge due to the

adsorption/desorption of ions on its surface. When the particle is in suspension, and due to its

electrical charge, the combined e↵ect between Coulomb forces and thermal agitation of the free

ions dispersed in the fluid produces an Electric Double Layer (EDL). The EDL is a physicochemical

key concept which refers to the atmosphere created by the ionic distribution of an electrolyte

around an electrically charged colloid or surface (see Figure 1.5).
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Charged colloid
a) b)

Figure 1.5: (a) Simple representation of the Electric Double Layer and (b) detailed model of the
interface.

Since the past century, the EDL has been investigated by means of experiments, theoretical

models and computer simulations. However, the detailed information about the charge density

profiles is not easily accessible to direct measurements. On the other hand, the most fundamental

theories and computer simulations of the EDL can provide, fortunately, the primordial quantities

of the problem, that is, the ionic distribution functions.

The point-ions model of an electrolyte has been the basis of the celebrated Gouy-Chapman

theory and, in general, of the Poisson-Boltzmann (PB) description of the EDL, however, since

the 1980s, a huge quantity of evidences has proved that the PB formalism has notable deficien-

cies because of its neglect of the very relevant ionic-size correlations. As a consequence, the

simplest PB theory (i.e., without a ”Stern layer”) is unable to predict the novel phenomenon

of charge reversal (5). Charge reversal is a recently reported ”anomaly”, which corresponds to

the unexpected inversion of the polarity of the e↵ective colloidal charge (viz., that including the

native macroparticle charge plus that of the adsorbed ions) and, in the past years, this fascinating

phenomenon have mustered a great deal of scientific interest in the literature ((6 , 7)). Notably,

steric e↵ects (that is, ionic-size correlations) have been started to be included in EDL approaches

since two decades ago, mainly via modern integral equations theories for charged fluids (6). Along

these lines, in the last years, diverse research groups have developed rigorous theoretical methods

to describe the structural properties of EDL systems with di↵erent geometries. As an example,

Guerrero et al.(8) found that valence is not the only relevant mechanism, but the di↵erences in

ionic sizes have to be also considered. These same authors investigated the totally asymmetric

spheric (size and valence) EDL theory using the HNC/MSA integral equation, and found that, far



5

from the point of zero charge, the asymmetric EDL characteristics are not the same than those

corresponding to a electrolyte of same charge and size of counterions (Figure 1.6).

(a)
(b) (c)

(d)

Figure 1.6: Potential in the Helmholtz plane as a function of the surface charge, for a totally
asymmetric spherical EDL. Theories:(a) PB-Stern, (b) asymmetric PB Stern, (c) HNC/MSA same
ionic size, (d) HNC/MSA di↵erent ionic size (8).

When an external electrical field is imposed to an equilibrium colloidal suspension an abun-

dant collection of interesting transport processes arise. These relevant emerging e↵ects include

electrophoresis, streaming potentials, electroosmosis, etc (1 , 9). Among them, clearly, the most

salient electrokinetic instance is that corresponding to the electrophoresis of macroparticles. As it

is well-known, this nonequilibrium process consists in the motion of a charged colloid, immersed

in a supporting medium (tipically an electrolytic solution), prompted by the force originated by

the presence of the applied field. Electrophoresis is a paradigmatic technique of characterization

and separation in biology (in the form of gel electrophoresis) and, in general, in surface science

represents one of the methods par excellence to determine the stability/aggregation, charge and

form of an enormous diversity of colloidal entities. From a fundamental perspective, the relevance

of electrophoresis can be summarized by the words of Dukhin “...electrokinetic phenomena and,

accordingly, the presence of surface charges in the boundary region between the liquid and the

solid were the rule, rather than the exception, since practically every investigated inorganic and

organic substance showed a charge on contact with a liquid, especially when the liquid was distilled

water...” (9). Understandably, the quest for an adequate theoretical account of electrophoresis

is a concurred and vintage problem in physical-chemistry. Nowadays, the most widely-accepted

description of the colloidal mobility is that by O’Brien and White (10), which embodies the re-
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tardation and relaxation contributions due to the distorted ionic cloud of a point-ions bathing

electrolyte. In simple words, this approach obtains the electrophoretic velocity by solving, at a

Poisson-Boltzmann level, the hydrodynamical equations associated to a colloidal suspension.

Recently, the Primitive Model Electrophoresis (PME) has been developed in the electrokinetics

of coulombic fluids (11 , 12). PME allows to explain the electrophoretic mobility data in a wide

range of ionic concentration, even for the case of colloidal suspension with multivalent electrolytes,

improving the standard electrokinetic model of Wiersema, OBrien and White (10 , 13). Quesada

et al. (14) have published an experimental data verification of the PME electrokinetics theory

(see Figure 1.7).
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Figure 1.7: Electrophoretic mobility of a spherical colloid as function of 2:1 electrolyte concen-
tration. Circles correspond to experimental data, continuous line to PME theory and dashed lines
to punctual ion theory based in PB equation (14).

In the present dissertation, we describe the construction of an experimental setup for the

measurement of electrophoretic mobilities of microparticles. We also validate and present prelim-

inary results for the electrokinetic velocities of latex and silica colloids. These experimental data

have been fitted via the well-known O’Brien and White theory of electrophoresis and, in addition,

we report various derived colloidal properties such as the colloidal charge, and the surface and

Helmholtz electrostatic potentials (described in Section 2). The work is divided in five chapters.

The first is a brief introduction about colloids and their applications. In Chapter 2 the theoretical

framework used to describe the equilibrium and transport properties of our system is presented.

In Chapter 3, we explain the experimental arrangement used for the electrophoretic mobility mea-

surements. In Chapter 4 the results obtained from experimental and their theoretical fitting are
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exposed and discussed. Finally, a Conclusions and Forthcoming Research Chapter 5 is included.





CHAPTER 2

Theoretical framework

2.1 The classical Poisson-Boltzmann theory in planar geometry

Poisson-Boltzmann equation

Planar geometry

Let us consider a charged plate in the presence of a m-component electrolyte, as it is shown

in Figure 2.1. The ionic cloud around the charged surface is the so-called the electrical double

layer. In order to describe it, we start from the Poisson equation 2.1:

r2�(~x) = �⇢(~x)
✏0✏r

(2.1)

where �(~x) and ⇢(~x) are the mean electrostatic potential and the charge density per volume unit

at position ~x, respectively; ✏0 is the vacuum permittivity, and ✏r is the relative permittivity of the

solvent e.g., ✏r = ✏w/✏0 = 80 for water at room temperature.

In planar geometry, the mean electrostatic potential and the ion distribution depend only on
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Figure 2.1: Schematic representation of the di↵use electrical double layer in planar geometry.
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the distance to the charged plate. In this instance, the Poisson equation and charge density per

volume unit can be written as:

d2�(x)

dx2
= �⇢(~x)

✏0✏r
(2.2)

⇢(x) =
mX

i=1

ni(x)zie0 (2.3)

with e0 the magnitude of the electron charge, zi the valence of ionic species i, and ni(x) the

number of particles per volume unit as a function of the distance to the charge plate for the

species i.

Formally, the number of particles per volume can be written as equation 2.4 (15 , 16)

ni(x) = n0
i exp

✓
� Wi(x)

kBT

◆
, (2.4)

where n0
i
= ni(x ! 1) is the value of the number ion density in the bulk electrolyte (far away

from the charged plate), kB is the Boltzmann constant, T is the temperature, and Wi(x) is

the so-called potential of mean force, which is the necessary work to bring an ion from the bulk

electrolyte to the position x.

Let us approximate the potential of mean force by the electrostatic work required to bring an

ion from the bulk electrolyte to the position x:

Wi(x) = (�(x)� �1)e0zi. (2.5)

If the following boundary conditions are assumed

�1 = lim
x!1

�(x) = 0, (2.6)

and

�01 = lim
x!1

d�(x)

dx
= 0, (2.7)

the potential of mean force reduces to

Wi(x) = �(x)e0zi. (2.8)
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Then, Eq. 2.4 can be written as

ni(x) = n0
i exp

✓
� �(x)e0zi

kBT

◆
, (2.9)

which resembles to a Boltzmann factor. If Eq.2.9 is substituted in Eq.2.3 we obtain:

⇢(x) =
mX

i=1

n0
i exp

✓
� �(x)e0zi

kBT

◆
zie0. (2.10)

Using Eq. 2.10 in Eq. 2.2, the Poisson-Boltzmann equation is obtained for planar geometry:

d2�(x)

dx2
= �

P
m

i=1 n
0
i
zie0exp

✓
� �(x)e0zi

kBT

◆

✏0✏r
(2.11)

The linear Poisson-Boltzmann equation in planar geometry

For �(x)e0zi
kBT

< 1, the exponential function can be approximated by its two first terms in a

series expansion ex = 1 + x+ x
2

2! +
x
3

3! + ... to yield

d2�(x)

dx2
= �

P
m

i=1 n
0
i
zie0 +

P
m

i=1 n
0
i
zie0

✓
� �(x)e0zi

kBT

◆

✏0✏r
. (2.12)

Using the electroneutrality condition,

mX

i=1

n0
i zie0 = 0, (2.13)

it is possible to write the linearized Poisson-Boltzmann equation as

d2�(x)

dx2
=

✓P
m

i=1 n
0
i
z2
i
e20

✏0✏rkBT

◆
�(x). (2.14)

This equation is also known as the Debye-Hückel approximation, which can be also written as

d2�(x)

dx2
= 2D�(x), (2.15)
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where D is the Debye k�parameter

D =

✓P
m

i=1 n
0
i
z2
i
e20

✏0✏rkBT

◆1/2

. (2.16)

The solution of Eq. 2.15 is of the form:

�(x) = constant⇥ exp(�Dx). (2.17)

The Debye-Hückel approximation is a particular case of the non-linear Poisson-Boltzmann

theory. This approximation is useful for weak surface charge densities of the charged plate.

The non-linear Poisson-Boltzmann equation in planar geometry

Interestingly, the non-linear Poisson-Boltzmann equation in planar geometry can be solved

analytically for a binary charge symmetric electrolyte. In this instance, z+ = �z� = z for a

z : z salt (e.g., NaCl or MgSO4). Also, n0
+ = n0

� = n0, which can be obtained from the bulk

electroneutrality condition (see Eq. 2.13) for a binary electrolyte:

n0
+z+e0 + n0

�z�e0 = 0. (2.18)

Eq. 2.11 can be writen for a z : z salt as

d2�(x)

dx2
= �

n0
+z+e0exp

✓
� �(x)e0z+

kBT

◆
+ n0

�z�e0exp

✓
� �(x)e0z�

kBT

◆

✏0✏r
, (2.19)

or

d2�(x)

dx2
= �

n0ze0exp

✓
� �(x)e0z

kBT

◆
+ n0(�z)e0exp

✓
� �(x)e0(�z)

kBT

◆

✏0✏r
. (2.20)

if the mathematical identity sinh(x) = e
x�e

�x

2 is used, it is possible to reduce Eq. 2.20 to

d2�(x)

dx2
=

2n0ze0
✏0✏r

sinh

✓
�(x)e0z

kBT

◆
. (2.21)
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Multiplying both sides of Eq. 2.21 by 2d�(x)
dx

yields

2
d�(x)

dx

d2�(x)

dx2
=

2n0ze0
✏0✏r

sinh

✓
�(x)e0z

kBT

◆
2
d�(x)

dx
, (2.22)

or

d

dx

✓
d�(x)

dx

◆2

=
4n0ze0
✏0✏r

sinh

✓
�(x)e0z

kBT

◆
d�(x)

dx
(2.23)

Integrating Eq. 2.23

Z
x
0

1
d

✓
d�(x)

dx

◆2

=

Z
x
0

1

4n0ze0
✏0✏r

sinh

✓
�(x)e0z

kBT

◆
d�(x), (2.24)

yields

✓
d�(x)

dx

◆2

=
4n0kBT

✏0✏r

✓
cosh

✓
�(x)e0z

kBT

◆
� 1

◆
. (2.25)

The first term was obtained using the boundary condition �01 = limx!1
d�(x)
dx

= 0 in

Z
x
0

1
d

✓
d�(x)

dx

◆2

=

✓
d�(x)

dx

◆2
�����

x
0

1

=

✓
d�(x0)

dx0

◆2

, (2.26)

while the second term of 2.25 was calculated using
R
sinh(ax) = 1

a
cosh(ax) + C

and the boundary condition �1 = limx!1�(x) = 0 in

Z
x
0

1

4n0ze0
✏0✏r

sinh

✓
�(x)e0z

kBT

◆
d�(x) =

4n0ze0
✏0✏r

kBT

e0z
cosh

✓
�(x)e0z

kBT

◆����
x
0

1
, (2.27)

which reduces to

Z
x
0

1

4n0ze0
✏0✏r

sinh

✓
�(x)e0z

kBT

◆
d�(x) =

4n0kBT

✏0✏r

✓
cosh

✓
�(x0)e0z

kBT

◆
� 1

◆
. (2.28)

If this mathematical identity cosh(x)� 1 = 2 sinh2(x2 ) is used in Equation 2.25, it is possible

to obtains:
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✓
d�(x)

dx

◆2

=
8n0kBt

✏0✏r
sinh2

✓
�(x)✏0z

2kBt

◆
. (2.29)

Eq.2.29 can be also written as

d�(x)

dx
= �

s
8n0kBt

✏0✏r
sinh

✓
�(x)✏0z

2kBt

◆
. (2.30)

Notice that the function sinh(x) = e
x�e

�
x

2 is positive for x > 0, and negative for x < 0. The

negative sign in 2.30 implies that positive values of the mean electrostatic potential, �(x) > 0,

have associated a negative slope, d�(x)
dx

< 0, while for �(x) < 0 the slope of the mean electrostatic

potential is positive d�(x)
dx

> 0. This allows to satisfy the condition �1 = limx!1�(x) = 0 in

the bulk electrolyte.

The Debye kD-parameter for a z : z electrolyte can written as

kD =

s
e2

P2
i=1 n

0
i
z2
i

✏0✏rkBT
=

s
2e20n

0z2

✏0✏rkBT
. (2.31)

If we multiply kD by 2kBT

ze0
, we obtain

2kBT

ze
kD =

s
4k2

B
T 2

z2e20

s
2e20n

0z2

✏0✏rkBT
=

s
8n0kBT

✏0✏r
. (2.32)

Substituting Eq. 2.32 in Eq.2.30 yields

d�(x)

dx
= �2kBT

zeo
kD sinh

✓
�(x)eoz

2kBT

◆
. (2.33)

Let us consider the change of variables  (x) = e0z

2kBT
�(x) in Eq. 2.33 to obtain

d (x)

dx
= �kD sinh( (x)), (2.34)

which can be re-written as

d (x)

sinh( (x))
= �kDdx. (2.35)
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Considering that
R

dx

sinh(x) = ln(tanh(x2 )) + lnC, Eq.2.33 can be integrated to yield

ln

✓
tanh

✓
 (x)

2

◆◆
+ lnC = �kDx. (2.36)

The integration constant can be easily found considering that at the closest approach position

of ions, x = x0, the mean electrostatic potential is  0 =  (x0) :

lnC = �kDx0 � ln

✓
tanh

✓
 0

2

◆◆
. (2.37)

Replacing Eq. 2.37 in Eq. 2.36 produces

ln

✓
tanh

✓
 (x)

2

◆◆
� kDx0 � ln

✓
tanh

✓
 0

2

◆◆
= �kDx, (2.38)

which can be recast as

ln

✓
tanh  (x)

2

tanh  0
2

◆
= �kDx+ kDx0, (2.39)

to obtain finally the mean electrostatic potential as a function of the distance:

tanh

✓
 (x)

2

◆
= tanh

✓
 0

2

◆
exp(�kD(x� x0)), (2.40)

or

tanh

✓
e0z�(x)

4kBT

◆
= tanh

✓
e0z�0
4kBT

◆
exp(�kD(x� x0)). (2.41)

Surface charge density, integral and di↵erential capacities

The surface charge density of the ionic cloud (total charge per area unit) is given by:

�00 =

Z 1

x0

⇢(x)dx = �4n0e0z

kD
sinh

✓
�(x)e0z

2kBT

◆
. (2.42)

Let us define �0 as the surface charge density of the charged plate. Using the electroneutrality

condition �0 = ��00 it is found that
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�0 =
4n0e0z

kD
sinh

✓
�0e0z

2kBT

◆
. (2.43)

For �(x)e0z
2kBT

< 1 it is possible approximate sinh(x) ⇡ x and hence

�0 =
4n0e0z

kD

✓
�0e0z

2kBT

◆
=

2n0e20z
2

✏0✏rKBT

✏0✏r
kD

(2.44)

which can be simplified as

�0 = ✏0✏rkD�0. (2.45)

Let us define the ratio between the surface charge density at the charged plate, �0, and the

mean electrostatic potential, �0, as the integral capacitance per area unit K0 = �0
�0
. In the

linearized Poisson-Boltzmann (Debye-Hückel) theory the integral capacitance is proportional to

the kD-parameter:

K0 =
�0
�0

= ✏0✏rkD. (2.46)

Physically, this result is analogous to the capacity of a charged plates capacitor, with a surface

charge density �0 and ��0 in each plate, separated by a distance 1
kD

at a di↵erence of electrostatic

potential �0. It is also possible to define the di↵erential capacity as C0 =
d�0
d�0

. In the Debye-Hückel

approximation the integer and di↵erential capacities are the same:

C0 = K0 =
d�0
d�0

= ✏0✏rkD. (2.47)

In the non-linear Poisson-Boltzmann theory, the di↵erential capacity can be obtained from

Eq. 2.43:

C0 =
d�0
d�0

=
2n0e20z

2

kDkBT
cosh

✓
�0e0z

2kBT

◆
. (2.48)

2.2 The linearized Poisson-Boltzmann theory in spherical geome-

try

The Poisson equation in spherical coordinates can be written as
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r2�(r) =
1

r2
d

dr

✓
r2

d�

dr

◆
= �⇢(r)

✏0✏r
. (2.49)

Let us consider a charged sphere of radius a0 surrounded by ions, which have a closest approach

distance x0 = a0 + d (see Figure 2.2). As it was done in the planar geometry, substituting Eq

2.9. in Eq. 2.49 for a binary z : z electrolyte yields

r2�(r) = �

P
m

i=1 n
0
i
zie0exp

✓
� �(x)e0zi

kBT

◆

✏0✏r
, (2.50)

which can be also written as

r2�(r) = �2n0ze0
✏0✏r

sinh

✓
�(x)e0z

kBT

◆
. (2.51)

Using the definition of the Debye kD-parameter for a z : z electrolyte given in Eq. 2.31, and

using the change of variable  (r) =
e�(x)
kBT

, it is possible to recast Eq. 2.51 as

r2 (r) =
k2
D

z
sinh(z (r)). (2.52)

For  (r) < 1, sinh(x) ⇡ x and Eq. 2.52 can be linearized:

r2 (r) = k2D (r), (2.53)

or

r2�(r) = k2D�(r). (2.54)

The solution of Eq. 2.54 is of the form:

�(r) = constant⇥ x0
r
exp(�kD(r � x0)). (2.55)

The charge of the di↵use electrical double layer, Q0
0, is given by

Q0
0 =

Z 1

x0

4⇡r2⇢(r)dr = �4⇡✏0✏r�0x0(1 + kDx0), (2.56)
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Figure 2.2: Schematic representation of the di↵use electrical double layer in spherical geometry.
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Using the electroneutrality condition Q0+Q0
0 = 0, where Q0 is the charge of the nanoparticle,

it is possible to write the mean electrostatic potential at x = x0 using Eq. 2.56 as

�0 =
Q0

4⇡✏0✏rx0(1 + kDx0)
. (2.57)

Substituting Eq. 2.57 in Eq. 2.55 gives:

�(r) =
1

4⇡✏0✏r

Q0

1 + kDx0

exp(�kD(r � x0))

r
, (2.58)

which is the mean electrostatic potential as a function of the distance in the linearized Poisson-

Boltzmann theory.

It is straightforward to show that Eq. 2.57 can be written as:

�0 =
Q0

4⇡✏0✏rx0
+

�Q0

4⇡✏0✏r(x0 +
1
kD

)
. (2.59)

Physically, this means that the di↵erence of the mean electrostatic potential in the spherical

electrical double layer can be viewed as that produced by a spherical capacitor.

2.3 The Poisson-Boltzmann integral equation

The representation of the electrical double layer used in this thesis is based on the well-known

restricted primitive model of a binary electrolyte. In this description, a colloid is represented by a

hard and uniformly charged sphere of radius RM and surface charge density (�0 = QM/4⇡R2
M
),

where QM= ZMe0 is the colloidal charge, ZM is the valence of the colloid, and e is the protonic

charge. The spherical macroion is surrounded by an equally-sized z:1 electrolyte, asymmetric

in valence, with monovalent counterions and multivalent coions. Ions are represented by hard

spheres of diameter a with point charges qi = zie embedded at their centers, such that zi is the

valence of the ionic species i. The spherical macroion and all ions are immersed in a continuum

aqueous solvent characterized by a dielectric constant ✏ = 78.5 at a temperature T = 298 K in

all instances.

The pair interaction potential between any pair of charged particles in spherical geometry,

used in the integral equation theory, is given by:
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Uij(r) =

(
1, r < ri + rj

zizje
2
0

4⇡✏0✏r
, r � ri + rj

(2.60)

where the subscripts i, j = M , +, -; and r denotes the distance between the centers of two

charged particles of types i and j with radii ri and rj , respectively.

The closest approach distance between the ions of diameter a and the macroion of radius RM

is the so-called Helmholtz plane rH = RM + (a/2) (see Figure 2.3).

Figure 2.3: Schematic representation of the model system.

The integral equation description is obtained by solving numerically the Ornstein–Zernike

equations using approximate closures. The Ornstein–Zernike equations describing the ionic cloud

around a single macroion can be written as

hMj(r) = CMj(r) +
X

k=�,+

⇢k

Z
hMk(t)ckj(

��~r � ~t
��)dV , for j = �,+ (2.61)

where hMj(r) = gMj(r) � 1 are the total ionic correlation functions, and gMj(r) are the ionic

radial distribution functions. Here, the direct correlation functions between ions and the spherical

colloid are specified using the hypernetted-chain (HNC) closure cMj(r) = ��UMj(r)+hMj(r)�
ln[hMj(r) + 1]. If ion-ion direct correlation functions are approximated by the ionic electrostatic

energy ckj(
��~r � ~t

��) = (zkzje2)/(4⇡✏0✏
��~r � ~t

��) the integral equation version of the non-linear
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Poisson–Boltzmann theory is obtained.

From the ionic profiles obtained from the non-linear Poisson–Boltzmann theory it is possible

to calculate several thermodynamic and electrical properties of the charged particles in solution.

Specifically, the integrated charge, the electric field, and the mean electrostatic potential around

a spherical macroion can be written, respectively, as

P (r) = zM +
X

k=�,+

Z
r

0
zi⇢igi(t)4

2 dt, (2.62)

E(r) =
e0

4⇡✏0✏

P (r)

r2
, (2.63)

and

 (r) = �
Z

r

1
E(t)dt =

Z 1

r

E(t)dt. (2.64)

Physically, the integrated charge is the net charge (in units of e0) enclosed in a sphere of radius

r centered in the macroion, and is a measure of the neutralization capacity of the surrounding

electrolyte. The electric field is proportional to the electrostatic component of the mean force

that a charged particle experience due to its coulombic interaction with the colloidal particle and

the ions of the electrolyte. The mean electrostatic potential quantifies the electrostatic screening

of the bare colloidal charge by the electrolyte. The mean electrostatic potential evaluated close

to the Helmholtz plane has been conventionally associated with the so-called zeta potential, ⇣.

This last quantity is usually defined as the mean electrostatic potential at the slipping plane in

electrokinetic phenomena.

2.4 The O’Brien and White theory of electrophoresis

Consider a single and charged spherical colloid, of radius R and surface charge density �0,

immersed in a point-ions binary electrolyte. In addition, the solvent is considered a continuous

medium and all the system has a uniform dielectric constant, ✏, and is at a temperature T . If an

external electrical field, ~E0, is applied, the colloid experiences a drift which, after some transient,

takes a constant value ~U0, that we will name as the electrophoretic velocity of the macroparticle.

For simplicity, from now on, we will describe the dynamics in terms of coordinate axes whose

origin coincides with the center of the sphere. If the electrolyte behaves as a newtonian fluid of

dynamic viscosity ⌘ and the asssociated Reynolds number is small, the governing equations of the

system are (10):
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⌘r2~u(~r)�rp(~r) = ⇢c(~r)r (~r), (2.65)

where ~u(~r), p(~r), ⇢c(~r), and  (~r) are, respectively, the velocity, pressure, volumetric charge

density, and electrostatic potential at a distance ~r of the origin. In particular, ⇢c(~r) =
P

i
ezi⇢i(~r),

such that e is the protonic charge, and zi and ⇢i(~r) are the valence and volumetric number density

of the electrolytic species i. Note that

⇢i(~r) = ⇢igi(~r), (2.66)

with ⇢i and gi(~r) being the bulk density and the distribution function of each ionic component.

Since the electrolyte is an incompressible fluid

r · ~u(~r) = 0. (2.67)

On the other hand, the electrostatic potential fulfills the Poisson equation

r2 (~r) = � 1

✏0✏r
⇢c(~r). (2.68)

Complementary, the ionic species follow the equations

r · (⇢i(~r)~vi(~r)) = 0 (2.69)

and

� �i(~vi(~r)� ~u(~r))� ezir (~r)� kBTr ln ⇢i(~r) = ~0, (2.70)

where �i is the ionic drag coe�cient and kB is the Boltzmann constant. The pair of preceding

equations can be combined as

r · (kBTr⇢i(~r) + ezi⇢i(~r)r (~r)� �i⇢i(~r)~u(~r)) = 0. (2.71)

The corresponding boundary conditions are:
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~u(R) = 0, (2.72)

~u(1) = �U0 êx, (2.73)

 (R) = ⇣, (2.74)

�r (1) = E0 êx, (2.75)

⇢i(1) = ⇢i (2.76)

and

~vi(R) · n̂ = 0, (2.77)

or else,

(ezir (R) + kBTr ln ⇢i(R)) · n̂ = 0. (2.78)

It must be noted that, in the above equations, all the variables are stationary non-equilibrium

quantities. Thus, to proceed to the numerical solution of this set of non-linear partial di↵erential

equations, we express any variable, A(~r), in the general perturbative form:

A(~r) = Aeq(r) + �A(~r), (2.79)

with Aeq(r) being the value at equilibrium of A(~r). Inserting those perturbation forms in the

governing equations and keeping the first-order terms, we arrive to the following system for the

�A functions:

r2� (~r) = � 1

✏0✏r
�⇢c(~r), (2.80)
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⌘r2~u(~r)�rp(~r) = ⇢eqc (r)r� (~r) + �⇢c(~r)r eq(r) (2.81)

and

r · (kBTr�⇢i(~r) + ezi⇢
eq

i
(r)r� (~r) + ezi�⇢i(~r)r eq(r)� �i⇢

eq

i
(r)~u(~r)) = 0, (2.82)

such that

�⇢c(~r) =
X

i

ezi�⇢i(~r). (2.83)

We must emphasize that the determination of the perturbation (i.e., non-equilibrium) un-

knowns �A(~r) assumes the prior knowledge of the quantities A at equilibrium. In particular, in

the classical description by O’Brien and White

~u eq(r) = ~0, (2.84)

by definition of equilibrium, and

 eq(r) =  PB(r). (2.85)

In the previous equation,  PB(r) is the electrostatic potential that accomplishes the Poisson-

Boltzmann equation, i.e.,

 PB(r) = �kBT

ezi
ln gi(r), (2.86)

where gi(r), for i = �,+, are the solutions to the pair of Poisson-Boltzmann integral equations,

discussed in Section 2.3.

Finally, and following the clever mathematical procedure devised by O’Brien and White (10),

the previous system of can be recast as a set of ordinary di↵erential equations that can be solved

via any usual numerical technique.

Once the numerical determination of all the functions �A is completed, the value of the

colloidal electrophoretic mobility, µ, is given by
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µ =
U0

E0
. (2.87)

Specifically, to obtain µ in this thesis we have used a Fortran code, developed by González-

Tovar (11 , 12), that solves numerically the O’Brien and White theory via a robust combination

of the Finite Element and Runge-Kutta methods.



CHAPTER 3

An experimental set up for microscopic

colloids characterization

In the present chapter we described the setup developed to measure colloidal electrophoretic

mobilities at the University of Sinaloa.

In the year 2003 the Faculty of Physics and Mathematics of the Universidad Autónoma de

Sinaloa acquired an equipment for electrophoretic mobility measurements, the Zetameter 3.0. In

the year 2005 the equipment was packaged and stored and, afterwards, was not used anymore.

In the present work we describe the process to refurbish the equipment with the purpose of

implement an experimental colloids laboratory. The stored equipment was aged, some parts did

not work properly and other did not work at all. We restored and also carried out the process of

maintaining the measurement cell and the optical and video components attached.

3.1 Experimental set up

The experimental setup used for electrophoretic mobility measurements is shown in Figure

3.1. The entire arrangement consists of:
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Figure 3.1: Zeta meter equipment used in the present work to measure electrophoretic mobility
of SiO2 and PS microparticles.
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• Electrophoretic cell (Type GT-2 cell, see Figure 3.2 (a)). It holds the sample for viewing

under the microscope. It consists of two electrode chambers connected by an optically

polished electrophoresis tube (10 cm long and 4 cm diameter) The cell body consists of two

Polytetrafluoroethylene (Teflon) sections with a fused quartz section in the center. Each

Teflon section contains a portion of the cell tube and an electrode chamber. The quartz

centre section is for analyzing the colloidal suspensions using the microscope.

• Electrodes. Each cell requires two electrodes, an anode and cathode. We used a Molyb-

denum cylinder anode (see Figure 3.2 (b)). This electrode was designed to combine with

gaseous oxygen as it evolves from the anode, preventing false colloids migration (due to

gas production). It can be used with all samples, however, it turns from a metallic color

to blue-black or black due to an oxide layer created during the its prolonged use. The

Cathode that we used is a Platinum rod cathode. Platinum material can be used for any

systems without any specific conductance limitation. The oxide layer is not created using

this material. It is possible to acquired a platinum Rod anode, but it is too expensive.

• Display unit. The data display shows several parameters such as: number of colloids that

have been tracked, their average zeta potential (or electrophoretic mobility) and the statis-

tical standard deviation of the values measured (see Figure 3.2 (c)). Also, temperature and

average specific conductance can be measured, then they are reported in the display unit.

It consists of:

i. A Power On/O↵ Switch

ii. Microscope Module Control. The light intensity can be varied to improve the micro-

scope illumination (by varying the brightness)

iii. Output Jacks. They receive the plugs attached to the electrode leads.

iv. Function switch. This switch controls the power supply and the options that it controls

are:

(a) Stand by: Send the DC voltage applied to the output jacks to zero.

(b) Energize electrodes: Energize the electrodes to the voltage selected (V ).

(c) Specific conductance: Energize the output jacks to measure the specific conduc-

tance of the sample (µS/cm).

(d) K factor test: This reads the K factor used to measure the specific conductance

of the electrophoresis cell. This can be varied depending on the cell used.

v. Voltage setting switch. Using this switch, the DC voltage applied can be selected

(from 20 to 300V).

vi. Display units switch. The display can show the results of the measures in time (s),

electrophoretic mobility (µm/s per V/cm) and zeta potential (mV ) units.
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vii. Ocular micrometer switch. The microscope eyepiece has three di↵erent tracking dis-

tances (they are printed into the ocular micrometer), full, quarter and eight scale. This

scale is chosen depending on the colloid velocity.

viii. Keypad. This is used as a joystick to select the particles movement.

• Microscope module. The microscope module used in this work is shown in Figure 3.2 (c).

Is a Unitron FSB-4x microscope with standard objectives 4x, Standard eyepieces 20x and

magnifications 80x. To make particle tracking, a CCD is coupled to the microscope (HI-

TACHI KP-M2U) and the images in real time are observed using a video monitor (HITACHI

VM-122OU). In figure 3.2 (d) an image of a calibration experiment (Silica particles) is

shown.

(a) (b) (c)

(d) (e)

Figure 3.2: The di↵erent components of the Zeta meter equipment. a) Electrophoretic cell. b)
Molibdene electrode. c) Display unit. d) Microscope module. e) Video monitor.

The electrophorectic mobility measurements are direct and manual. The electrophoresis cell is

filled with the sample (⇡ 20ml), then an electric field is applied and the colloidal particles start to

migrate from anode to cathode or from cathode to anode (this direction indicates if their electrical

charge is positive or negative). The colloids velocity is proportional to their electrophoretic mobility

(see Section 2).

The colloids movement is observed and tracked with the CCD coupled to the microscope

(Figure 3.2). First a particle is selected, then using the joystick it is tracked, when the particle

crosses the reticle with the scale selected, the joystick is pressed and then it is released as the
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particle crosses the end of the scale in the grid. We tracked twenty particles and then the sample

was change. Three samples were measured for each experiment varying salt concentration and

salts type to analyze.

3.2 Experimental samples

The particles used in this work were: Silica (SiO21.16µm) and Polystyrene (PS 1.6µm). The

particle concentration was fixed at �m = 0.0005%. The salts used in this study were: NaCl and

CaCl2. To study the role of the ionic strength in the particle electrophoretic mobilities, the salt

concentration was varied from 1mM to 500mM (in the case of NaCl).

To study only the role of the variation in the ionic strength due to the salt concentration and

not due to variations in the pH of the particle suspension, the salts were diluted in bu↵er solution

of low ionic strength at pH7. A bu↵er solution is an aqueous solution consisting of a mixture

of a weak acid and its conjugate base or a weak base and its conjugate acid. This composition

enables the stabilization of the medium pH. The chemical compound used in the preparation of

pH7 bu↵er solution was NaH2PO4. In order to obtain the precise pH value, a small amount of

NaOH was added. The contribution to the ionic strength was negligible ⇡ 1.13mM

3.3 Zeta-meter Calibration

To calibrate the zeta meter equipment, we used Min-U-Sil particles, which are an inexpensive

silica particles produced by crushing sandstone. The particle diameter is ⇡ 1.6.µM . In table 3.1

some chemical characteristics are presented.

(%)

SiO2 (Silicon Dioxide) 99.4
Fe2O3(Iron Oxide) 0.031
Al2O3 (Aluminum Oxide) 0.26
TiO2 (Titanium Dioxide) 0.01

Tabla 3.1: Typical Chemical Analysis of Min-U-Sil particles, %.

To prepare the calibration solution we prepared a suspension of 100mg/l of Min-U-Sil particles

and 10gr of NaCl. First we prepared a stock suspension by adding 10gr of Min-U-Sil and 10gr of

NaCl in one liter of distilled water. Then we prepared the test suspensions by adding 10ml of the

stock suspension to one liter of distilled water. Finally we measure the Zeta Potential of the test

suspension and the average will be about �56± 3mV with a standard deviation between 2 and
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4.

3.4 Optimal concentration for mobility measurements

With the purpose of finding the optimal concentration of particle suspension for electrophoretic

mobility measurements, we prepared particle suspensions with di↵erent concentration ranging

from �m = 1⇥10�4 to 0.1%. The optimal concentration was found when particle electrophoretic

mobility “saturated”, regardless of the particle concentration. We used a concentration above

this optimal value in order to assure that the electrophoretic mobility results obtained were not

dependent of particle concentration. The results of particle electrophoretic mobility as a function

of particle concentration are shown in Figure 3.3 for the Min U Sil particles diluted in bu↵er

solution at pH7. This was repeated for the rest of particle suspensions. Finally, all the particle

suspensions studied in the present work were diluted at a concentration of �m = 0.0005%.
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Figure 3.3: Electrophoretic mobility of Min-U-Sil particles as function of particle concentra-
tion. When the electrophoretic mobility saturated, we found the optimal concentration for elec-
trophoretic mobility measurements.
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Results and discussion

In this chapter we present the results of electrophoretic mobility obtained using the Zeta meter

equipment installed in the University of Sinaloa the Zetameter 3.0 described in Section 3. We

also present the results obtained using the theoretical fitting developed by Dr. Enrique González

Tovar and Dr. Ivan Guerrero Garćıa at the University of San Luis Potośı.

4.1 Experimental electrophoretic mobility

To compare the results obtained with our zeta meter, we measured electrophoretic mobilities

using a Zetasizer of Brookhaven company. This device uses Phase Analysis Light Scattering

(PALS). Firstly, a laser beam is used to illuminate the particles within the sample. Then, the

incident laser beam passes through the sample and the scattered light is detected. When the

electric field is applied to the suspension, the movement of the particles causes a fluctuation on

the light intensity with a frequency proportional to the particle velocity due to the Doppler e↵ect.

The experiments performed with our refurbished optical zetameter and the commercial light

scattering zetameter were performed under the same conditions (same PS particles, particle con-

centration and temperature of the sample), which have been already described specifically in
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Section 3.

In Figure 4.1 the results of the measurements of the electrophoretic mobility for PS microparti-

cles obtained with both zetameters (Zetameter 3.0 and ZetaPALS) are presented. The electrolyte

used for the experiment was NaCl (electrolyte 1:1). The concentration was varied from 0 to 0.5

M .
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Figure 4.1: Comparison of electrophoretic mobility as function of NaCl concentration for PS
microparticles using two di↵erent zetameters (Zetameter 3.0 and ZetaPALS).

In figure 4.2 we present the electroforetic mobility results associated to PS microparticles

immersed in a 2:1 (CaCl2) electrolyte. The electrolyte concentration was varied from 0 to 0.1 M .

A good agreement between the measurements performed with the two zetameters was ob-

tained for the two electrolytes studied (NaCl and CaCl2).

It is important to note that our optical zetameter allowed us to measure at higher electrolyte

concentrations than the concentration allowed by the Zeta PALS equipment (see Figure 4.1 and

4.2). While the zetameter 3.0 allowed us to measure electrolyte concentration up to 0.5M (when

NaCl was used) the Zeta PALS allowed us to measure up to a 0.1 M concentration of electrolyte.

For the CaCl2 electrolyte the maximum electrolyte concentration measured was 0.1 M and

0.01 M for the Zetameter 3.0 and ZetaPALS respectively.
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Figure 4.2: Electrophoretic mobility of PS microparticles as a function of the CaCl2 concentration
using two di↵erent zetameters (Zetameter 3.0 and ZetaPALS).
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These results show that as the electrolyte concentration increases, the electrophoretic mobility

reduces. As can be observed in Figure 4.1, the electrophoretic mobility reaches its minimum

value at 0.15 M and after that it remains constant even if the electrolyte concentration further

increases. On the other hand, we observed that at ionic concentrations higher than 0.5 M the PS

microparticles started to aggregate. Thus, such experimental measurements were not considered.

The ionic strength is defined as:

I = �1

2

nX

i=1

Z2
i Ci (4.1)

where Zi is the valence of the ions and Ci is the concentration of the dissolved ions. Notice

that the magnitude of the electrophoretic mobility in the presence of divalent counterions (CaCl2

electrolyte displayed in Figure 4.2) is lower than the electrophoretic mobility in the presence of

monovalent counterions (NaCl electrolyte displayed in Figure 4.1) at the same salt concentration,

and for all ionic concentrations measured. This is consistent with a higher ionic strength of 2:1

electrolytes regarding 1:1 salts at the same ionic concentration.

4.2 Theoretical Fitting

The theoretical fitting was performed in two parts. In the first part an equilibrium problem is

solved. We supposed that the colloid is at equilibrium state and the fluid is moving. The ionic

double layer of a binary electrolyte is generated around an electrical charged colloid using the non

linear Poisson-Boltzmann theory.

We have considered 1:1 and 2:1 electrolytes, with an ionic diameter equal to 5 Å, surrounding

a macroion with a diameter of 8000 Å.

In the second part, the electrophoretic mobility, including hydrodynamic e↵ects due to the

solvent, is calculated as a perturbation. The non-linear Poisson-Boltzmann theory in equilibrium

is used as a reference system to calculate the stationary electrophoretic mobility according to a

non-equilibrium theoretical scheme proposed by O’Brien and White.

4.2.1 Charge density calculation

In our experiments, we used di↵erent particles (see Section 3.2). Unfortunately we did not

know the real particle charge density. Hence, to calculate it, we used a theoretical fitting. We cal-

culated numerically the electrophoretic mobility for di↵erent charge densities when the electrolyte
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concentration was fixed. This calculation was repeated until the numerical electrophoretic mobil-

ity matched the experimental mobility. The associated surface charge density is the electrokinetic

charge of the macroion.

In Figures 4.3 and 4.4, the electrokinetic surface charge density calculated with the theoretical

fitting is shown as a function of the ionic concentration for the 1:1 and 2:1 electrolytes, respectively.
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Figure 4.3: Charge density as function of electrolyte concentration for a electrolyte type 1:1
calculated using a theoretical fitting.

According to the Smoluchowski equation in the planar limit, the electrophoretic mobility is

proportional to the zeta potential. If the ionic strength increases, the zeta potential decreases

at a fixed colloidal charge in the Debye-Hückel approximation. Then, the behaviour observed

experimentally in Figs. 4.1 and 4.2 is consistent with the Debye-Hückel approximation and the

Smoluchowski equation in the planar limit for a constant bare colloidal charge. The use of the

theoretical fitting allow us to estimate the electrokinetic charge associated to the electrophoretic

mobilities measured experimentally. The most important feature observed in both Figs. 4.3 and

4.4 is the non-monotonic behaviour of the electrokinetic colloidal charge as a function of the ionic

concentration.
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Figure 4.4: Charge density as function of electrolyte concentration for a electrolyte type 2:1
calculated using a theoretical fitting.

Another important property that can be estimated from the theoretical fitting is the mean

electrostatic potential at the colloidal surface and at the Helmholtz plane. Conventionally, this

last quantity is associated to the zeta potential. The zeta potential is one of the most important

parameters characteristic of charged colloids in electrochemistry, and it is usually defined as the

mean electrostatic potential at the shear plane of the colloid, when the charged colloidal particle

moves due to the influence of an electric field.

4.2.2 Electrostatic potential calculation

Once we have found the electrokinetic charge associated to the experimental electrophoretic

mobilities, as a function of the ionic concentration, we have calculated the mean electrostatic po-

tential at the colloidal surface (represented by  0) and the electrostatic potential at the Helmholtz

plane (represented by  H ) via the non-linear Poisson-Boltzmann theory . These quantities are

shown in Figures 4.5 and 4.6 for the 1 : 1 and 2 : 1 electrolytes, respectively.

In both figures, we observe that  H decreases as a function of the electrolyte concentration.

This trend is consistent qualitatively with the Smoluchowski equation in the planar limit assuming

a constant bare colloidal charge. It is interesting to observe that the non-monotonic behaviour of

the electrokinetic charge displayed in Figure 4.4, for a 2:1 electrolyte at high ionic concentrations,

is strong enough to promote the non-monotonic behaviour of  0 in Figure 4.6.
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Figure 4.5: Plane Potential( 0) and Potential at the Helmholtz plane ( H) as function of elec-
trolyte concentration for a electrolyte 1:1 calculated using a theoretical fitting.
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Figure 4.6: Plane Potential( 0) and Potential at the Helmholtz plane ( H) as function of elec-
trolyte concentration for a electrolyte 2:1 calculated using a theoretical fitting.
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Conclusions and forthcoming research

The main objective of this thesis has been the construction of a reliable experimental and

theoretical setup to determine the electrophoretic mobility of colloidal particles.

Such task comprised several stages, viz.:

- The restoration and refurbishing of an aged and inactive optical equipment to measure

electrophoretic mobilities (for particles in the range of micrometers). That also included the

maintenance of the measurement cell and of the optical and video components attached.

- The calibration of the apparatus and the completion of reliability tests of its resulting values,

via comparisons with data provided by alternative laser-based equipments in operation.

- The incorporation of a theoretical protocol, based in the well-known electrokinetic formalism

by O’Brien and White, in order to fit the experimental mobilities. Such procedure allows the

determination of zeta potentials and/or electrokinetic colloidal charges.

- The realization of a series of preliminary experiments to obtain the mobility of latex and

silica particles immersed in univalent electrolyte environments.

The present work has opened a new investigation line of experimental research, which consti-

tutes the first contribution of the University of Sinaloa in this topic. For the performing of the
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experimental research we established the first bases of a laboratory of colloids at the Universidad

Autónoma de Sinaloa.

As a final example of a very interesting result obtained as a part of this work, we present an

evidence of the phenomenon of reversed electrophoretic mobility.
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Figure 5.1: Electrophoretic mobility as function of electrolyte concentration (NaCl). The e↵ect
known as reversed electrophoretic mobility can be observed at electrolyte concentrations higher
than 0.2M

Finally, in the near future, we aim to improve and refine our experimental setup, in order to

consolidate this technique as one of the bases of a pioneering laboratory in materials science at

the Universidad Autónoma de Sinaloa.

We present an alternative to commercial devices for particle imaging, taking into account

several aspects: the use of new technologies, straightforward assembling, e�ciency, user-friendly

interface and low cost. This way, we have performed the assembling of a cheap portable device

”The Raspberry Pi microcontroller” system in a conventional microscope. We printed pieces using

a 3D printer for the assembly of the Raspberry Pi and the Raspberry Pi Noir camera for images

acquisition in a Laborlux S optical microscope (see Figure 5.2)
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Figure 5.2: Assembly of Raspberry Pi and the Pi Noir camera in the Laborlux S microscope using
the 3D printed pieces.
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The images of 4µm PS microparticles acquired with our set up were compared with the

obtained with a NIKON confocal microscope which uses an ATV Marlin FT-131 camera to image

acquisition. In figure 5.3 the images obtained with the two di↵erent set ups are shown. In Figure

5.3 (a) the image was acquired with the Nikon Confocal and Figure 5.3 (b) with our arrangement

(conventional microscope and Raspberry Pi).

a) b)

Figure 5.3: Images acquired with a) Nikon confocal microscope with its camera and b) Raspberry
Pi Camera module coupled in the Laborlux S conventional microscope to 4µm PS particles.

Using the experimental set up shown, we would be able to automatize the particle tracking to

measure electrophoretic mobility by coupling the Raspberry Pi and its camera to our Zeta meter.

On the other hand, and regarding the theoretical aspects of the problem, we plan to make use of

modern electrokinetic approaches that embody relaxation and finite-size ionic e↵ects. Notably,

such novel formalisms have been able to explain, from first principles, the occurrence of reversed

electrophoretic mobilities.
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Álvarez, R. Ion size correlations and charge reversal in real colloids. Colloids and Surfaces A:

Physicochemical and Engineering Aspects 2005, 267, 24–30.

[15] McQuarrie, D. Statistical Mechanics. 2000. Sausalito, Calif.: University Science Books 2004,

12, 641.

[16] Hansen, J. P.; McDonald, I. R. Theory of simple liquids. 1960.


