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Introduction

In 1895 D. Hilbert introduced, in an early paper on foundations on geometry, the projective metric

on the positive cone in Rn [15]. The Hilbert projective distance dp (defined on pairs of vectors with

positive elements in corresponding positions) is a pseudo-metric, dp(x, y) = 0 if and only if x = αy

for some scalar α > 0. In a first glance to this metric (more details in Section 1.2), we can see that

its definition is rather complicated, so, the first obvious question consists of asking if there exists

a “less complicated” way to define it, and of course, guarantee that with this definition we still

have the contractive properties that characterize it. The answer is given by Kohlberg and Pratt

[20] who proved that Hilbert’s dp is essentially the only metric defined on the positive cone of Rn

which makes positive linear transformations contractive mappings with respect to this distance.

Any projective metric, say d̃, defined on this cone such that every positive linear transformation is

a contraction with respect to d̃ is equivalent to dp in the following sense: d̃(x, y) = f(dp(x, y)) for

a continuous, positive and strictly increasing function f and for all positive vectors x, y.

Bushell [4] gave elementary derivations of the principal properties of Hilbert’s metric in a general

(Banach space) setting, namely the triangle inequality and completeness criteria in positive cones

contained in different metric spaces. The considered spaces are the positive cone in Rn, the set

of continuous positive functions defined on the unitary interval, the cone of real positive semi-

definite symmetric matrices and Banach lattices. Numerous applications have arisen from this

theory, namely, contributions to the theory of non-negative matrices, positive integral operators,

positive-definite symmetric matrices and the study of solutions to systems of ordinary differential

equations.
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Perhaps the most representative contribution of the usefulness of this distance was made by G.

Birkhoff (1957) who proved the existence and uniqueness of positive eigenvectors for positive linear

transformations on Banach spaces [1]. Birkhoff’s strategy is as follows: uniformly positive bounded

linear transformations map the positive cone of a Banach space into itself. This transformation is

non-expansive with respect to the projective distance, and if the image cone has finite diameter, then

the transformation is a projective contraction. In this case Banach’s fixed point Theorem ensures

the existence and uniqueness of a projective fixed point for the linear transformation, and projective

fixed points are nothing but positive eigenvectors. Furthermore, the contractiveness ensures that

the iterations of the linear transformation on any positive vector converge exponentially fast, in

the projective sense, towards the fixed point. Birkhoff’s strategy has been successfully employed in

the solution of a variety of problems, in particular to prove existence and uniqueness of invariant

measures, and the exponential decay of correlations of convenient observables. To cite a couple of

examples of the above, consider [13] where Ferrero and Schmitt give a proof of the Ruelle’s Perron-

Frobenius Theorem. This corresponds to an analogue of the Perron-Frobenius Theorem but in

the context of symbolic systems, for the Ruelle operator applied in the space of Hölder functions

defined on a subshift of finite type, see [33], for references. The strategy consists of using positive

transformations defined on an invariant cone with respect to a projective metric. Also, in [25]

Liverani investigates the decay of correlations in a class of non-Markov one-dimensional expanding

maps. The method employed relies on the study of the Perron Frobenius operator (PF) applied in

a certain convex cone of functions that is mapped strictly inside itself by this operator. Then, using

Birkhoff’s ideas, he shows that one can associate a Hilbert metric to the above mentioned cone and

that such a metric is contracted by the PF operator. With this contraction, explicit bounds on the

rate of decay of correlations are obtained.

In [6] was established a relation between the rate of projective-convergence of the Markovian

approximations of a one-dimensional Gibbs measures and the decay of correlations of the limiting

Gibbs measure. The result extends straightforwardly to the case of g-measures defined by suffi-

ciently regular g-functions. Their technique relies on a projective comparison of the marginals of

the approximating measures. If the potential defining the Gibbs measure is sufficiently regular,

then the finite range approximations are sufficiently similar “in the projective sense”, and in this

case the mixing rate of the Gibbs measure can be upper bounded by a function of the mixing
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rates of the approximations. Additionally, in this fast approximation regime, the entropy of the

approximations converges toward the entropy of the Gibbs measure. Furthermore, since in this

case the relative entropy of the limiting Gibbs measure with respect to the approximations goes to

zero, then Marton’s bounds [28, 29] ensures the convergence of the approximations in d̄-distance,

where d̄ denotes the Ornstein metric (see (1.2)). In a recent work [27], Maldonado and Salgado

applied our definition of projective convergence to study the approximability of Gibbs measure for

two-body interactions in one dimensional symbolic systems. This technique was also used in the

study of the preservation of Gibbsianness under amalgamation of symbols [7].

In order to study and derive the potential applications of our notion of projective convergence

(which, of course, is bound with the definition of projective distance), we elaborate a rigorous

formalization for this concept and we scrutinize its relation to the d̄-convergence and the vague

convergence. The aim of this work is to explore to what extent the projective convergence as we

define it, is well adapted to study particular classes of processes. We consider in particular the

class of g-measures, which correspond to a convenient generalization of the processes with finite

memory. Due to the manner in which this distance has been defined, their contractive properties

have allowed us to obtain some preliminary results on the set of measures obtained by random

substitutions. This work we leave for a forthcoming study.

Ornstein’s d̄-distance was introduced to give a topological characterization to the Bernoulli

processes. One of the main problems was to define a property that allows one to distinguish

between two of these processes. There are various properties of transformations such as ergodicity,

strong mixing and weak mixing, but none of them distinguish any two Bernoulli shifts. As a

result of the lack of this invariant property, Kolmogorov and Sinai [21, 37] made an adaptation

to Shanon’s entropy notion on the context of information theory and introduced a new invariant,

the entropy, which is easy to calculate and permited to conclude that the Bernoulli shift of two

symbols is not isomorphic to the shift of three symbols. However, Mesalkin [30] showed that the

Bernoulli shifts (1
4 ,

1
4 ,

1
4 ,

1
4) and (1

2 ,
1
8 ,

1
8 ,

1
8 ,

1
8) are isomorphic. The notion of Ornstein’s d̄-distance

made possible to demonstrate the Kolmogorov-Ornstein Isomorphism Theorem which establish the

following statement: two Bernoulli shifts are isomorphic if and only if they have the same entropy.

The necessity of the former condition was proved by Kolmogorov [21, 22] while Ornstein [32]
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showed its sufficiency. In addition, the d̄-distance generates a topological structure well adapted to

the study of important ergodic properties. For instance, d̄-limits of sequences of mixing processes

are mixing, the class of Bernoulli processes is d̄-closed, as well as the entropy is d̄-continuous on

the class of ergodic processes. Bressaud and coauthors, in a study of Markov approximation to

g-measures (chains of complete connection in their nomenclature), found an upper bound for the

speed of d̄-convergence of the approximations related to the regularity of the g-function [3]. In

a related work [8], Coelho and Quas studied the d̄-continuity of g-measures with respect to the

uniform distance between g-functions.

This thesis is organized as follows: the next chapter is devoted to providing the basic definitions

and background, and to the study of some general properties of the projective distance, particularly

the completeness and non separability of the space where defined. We also exhibit concrete examples

of calculations of the projective distance between two particular Markov measures. In Chapter 2 we

study the continuity of the entropy at g-measures satisfying uniqueness and we establish a criterion

for uniqueness based on the speed of convergence and regularity of Markov approximations. We

then study the convergence of Markov approximations to a g-measure and establish a criterium

that guarantees that the projective limit of g-measures is a g-measure. In Chapter 3 we compare

our projective distance with the two known distances: the weak distance and the Ornstein distance

d̄. On one hand we conclude that the topology induced by the projective distance is finer than

the vague topology, on the other hand, two examples are presented showing that, in general, the

d̄-distance and ρ are not comparable. Nevertheless, if we restrict to a certain type of probability

measures, the inequalities established by Marton allows us to establish a comparison of d̄ and ρ in

this particular set of measures. Chapter 4 contains some concluding remarks and perspectives.



CHAPTER 1

Preliminaries

1.1 Symbolic dynamics

Let A, called an alphabet, denote an ordered set of N symbols, often taken to be {0, 1, 2, . . . , N−1}.
Let X := AN be the set of all semi-infinite sequences taken from A, that is X = {aaa = (an)n∈N|an ∈
A}. As usual, the elements of A will be called symbols and words the finite tuples in A. We

denote aaa,bbb, etc, elements of AN. We will use boldfaced symbols not only for infinite sequences

but also for finite ones. The context will make clear whether we deal with a finite or an infinite

sequence. We will use the notation aaamn (n ≤ m,n,m ∈ N) for the finite sequence (word of length

m−n+1) anan+1 . . . am−1am. One can think of an element of the space X as a semi-infinite walk on

the complete directed graph of N vertices which are distinctly labelled. The shift transformation

T is defined by shifting each sequence one step to the left and dropping the first symbol, i.e.,

(Taaa)n = an+1. This transformation is continuous but not invertible. The dynamical symbolic

system (A, T ) is called the full shift on the alphabet A.

To a word aaa ∈ An, n ∈ N, we associate the cylinder set [aaa] := {xxx ∈ AN : xxxn1 = aaa}. Cylinder

1



1. Preliminaries. 2

sets are clopen in the standard Tychonoff topology and generate the corresponding Borel σ-algebra

B(X). We denote by M(X) the set of all Borel probability measures on X and by MT (X) the

subset of T -invariant probability measures. Both M(X) and MT (X) are compact convex sets in

vague topology. The vague topology can be metrized by the distance (see [40] p.148)

D(µ, ν) :=
∑
n∈N

2−n

(∑
aaa∈An

|µ[aaa]− ν[aaa]|

)
(1.1)

It is known thatM(X) as well asMT (X) are convex sets, complete and separable in the vague

topology. Furthermore, they have the structure of a simplex, which, in the case ofMT (X) implies

the uniqueness of the ergodic decomposition [9].

Given µ, ν ∈ M(X), a coupling between µ and ν is a measure λ ∈ M((A×A)N) such that for

all n ∈ N,

∑
bbb∈An

λ[aaa× bbb] = µ[aaa],
∑
aaa∈An

λ[aaa× bbb] = ν[bbb].

Here aaa×bbb = (a1b1)(a2b2) · · · (anbn) ∈ (A×A)n, for each aaa,bbb ∈ An. With J(µ, ν) ⊂M((A×A)N)

we denote the set of all couplings between µ and ν. Ornstein’s d̄-distance is given by

d̄(µ, ν) = inf
λ∈J(µ,ν)

lim sup
n→∞

1

n

n−1∑
k=0

λ(T−k∆̄), (1.2)

where ∆̄ = {ab ∈ A × A : a 6= b} is the complement of the diagonal. Distance d̄ makes M(X) a

complete but non-separable topological space. The same holds when d̄ is restricted to the subspace

of T -invariant measures MT (X) (see [36] for instance).

Coupling techniques have been developed independently for different classical processes. The

books of Lindvall [24] and Thorisson [38] provide the main sources and the basic theory for these

developments.

The coupling techniques consist of looking for the best way to join two given processes or, more

generally, two probability measures. For instance, to study the convergence of a Markov chain, two
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trajectories of the same process starting at different states are built and the idea is to estimate

the time needed for them to meet each other. Since this time depends on the joint law of the

trajectories, the challenge is to find the optimal construction which minimizes this meeting time.

The central idea behind the construction of couplings is illustrated by the following example.

Suppose we flip two biased coins, and the probability to obtain heads is p for the first coin and q for

the second coin with 0 < p < q < 1. This requires constructing a random mechanism simulating

the simultaneous flipping of the two coins in such a way that when the coin associated with the

probability p shows heads, so the other does as well. Call X and Y the results of the first and

second coin respectively, so that X,Y ∈ {0, 1} with the convention that the event “heads” =0. We

want to construct a random vector (X,Y ) such that

P(X = 0) = p = 1− P(X = 1)

P(Y = 0) = q = 1− P(Y = 1)

X ≤ Y

The first two conditions indicate that the probability distribution of the events X and Y express

the result of these two coins having probabilities p and q of being “heads”. The third condition is a

property imposed to the coupling. In particular, the event corresponding to tails for the first coin

and heads for the second, has probability zero.

To obtain such a random vector, a standard procedure consists of using an auxiliary random

variable U , uniformly distributed in the interval [0, 1] and define

X := 111{U≤p} and Y := 111{U≤q}

where 111A is the indicator function of the set A. Then the vector (X,Y ) so defined satisfies the

three conditions above.
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1.2 Motivation

In [15] Hilbert constructed a model for a metric hyperbolic geometry in which there are three non-

collinear points forming a triangle with the length of one side equal to the sum of the lengths of the

other two sides. From this construction Hilbert introduced the notion of projective metric so useful

in the work developed by G. Birkhoff who showed that every linear transformation with a positive

matrix (i.e all the entries of the matrix are positive) may be viewed as a contraction mapping on

the nonnegative orthant. Birkhoff’s approach is geometric and applies to linear transformations in

an arbitrary linear space which map a quite general convex cone into itself.

Hilbert’s metric, which we will denote by dp, dp : Rn+ × Rn+ → [0,∞) is defined as

dp(x, y) = log
maxi(xi/yi)

mini(xi/yi)
.

We obtain a function that satisfies all the requirements of a metric except that dp(x, y) = 0 if

and only if x = λy for some λ > 0.

As we mentioned before, the main property of Hilbert’s metric in studying convergence in

direction is that it contracts under a wide class of linear transformations. In [20] it is shown that

this distance has the equivalent definition as

dp(x, y) = log
M(x, y)

m(x, y)

where M(x, y) := inf{λ ≥ 0 : x ≤ λy} and m(x, y) := sup{λ ≥ 0 : x ≥ λy}. Geometrically, m, M

and d can be depicted as follows: Let K be a positive cone and x, y ∈ K. Replacing x by λx for

a suitable λ > 0, if necessary, will insure that the line through x and y leaves K at two points, a

and b, in the two dimensional subspace spanned by x and y, as shown in the Figure (1.1). By the

definition of m and M , the point x−my is obtained by moving from x in the −y direction until the

nonnegativity constraint is violated. By similar triangles, we see that m = ax/ay and M = xb/yb,

where ay, xb, ax, yb are the distances along this line. Thus
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dp(x, y) = log
M(x, y)

m(x, y)
= log

ayxb

axyb

Then, dp is the logarithm of what is known in projective geometry as the cross ratio of (a, x, y, b).

Figure 1.1: Geometric interpretation of Hilbert’s projective distance.

The cross ratio of any four points a, x, y, b lying in that order on a straight line in any linear

space is defined as R(a, x, y, b) = ayxb/axyb. More precisely, R(a, x, y, b) = ty(1 − tx)/tx(1 − ty),
with x = a+ tx(b− a) and y = a+ ty(b− a). The fundamental property of the cross ratio is that

it is invariant under projections, that is, R(a′, x′, y′, b′) = R(a, x, y, b) whenever a′, x′, y′, b′ are the

intersections of a straight line with the rays through a, x, y and b, respectively. One proof of this

invariance is that Hilbert’s metric dp satisfies that dp(x, y) = dp(λx, λy) for all λ > 0. Also, because
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of its definition, notice that Hilbert’s pseudometric always puts the boundary of the cone at an

infinite distance from any interior point.

In [4] Bushell proved the completeness of the following spaces with respect to the projective

distance.

i) For K = {(x1, x2, . . . , xn) : xi ≥ 0, 1 ≤ i ≤ n} ⊂ Rn.

ii) For K = {x(t) : x(t) ≥ 0 for 0 ≤ t ≤ 1} ⊂ C[0, 1].

iii) In the space of real n × n matrices with norm ||A|| = sup{Ax : ||x|| = 1}, and if K is the

cone of real positive semi-definite symmetric matrices, then the interior of K corresponds to

the cone of real positive definite symmetric matrices.

Considering the completeness of the mentioned metric spaces and using the properties of

Hilbert’s metric, Birkhoff proved that the Perron Frobenius theorem is a consequence of an ap-

plication of the Banach contraction mapping theorem. Up to this point it is evident the impact

that the projective distance has had in the study of existence of fixed points for positive operators

in suitable metric spaces.

In [3], the convergence with respect to d̄ towards a g-measure of the Markov chains obtained

from such given g-measure by cutting the memory to a finite size has been studied. A relation was

found between the decay of the memory and the speed of the approximation. In an analogous way,

as it was mentioned in the Introduction, given a one-dimensional Gibbs measure a relationship was

shown between its Markov approximations (in the projective sense) and a strong mixing property

of the Gibbs limiting measure, that also implies that this measure is Bernoulli (see [6]). The main

tool for doing this is of an algebraic type, that is, they use contraction properties of the iteration

of primitive matrices with respect to the projective metric.

With the background given, it is clear the importance of studying the notion of projective

distance in the space of probability measures defined on symbolic spaces: we start by providing

an appropriate definition, then we explore its relation with the known metrics and finally we show

the properties that the projective distance preserves in different approximation schemes. These
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approximation schemes are important because they give relevant information about the limiting

process from the properties of the approximants. The speed of convergence allows to determine if a

limiting process will inherit particular properties of the sequence used in its approximation without

knowing the process explicitly.

1.3 Projective distance

Definition 1.3.1 Let M+(X) ⊂M(X) be the set of fully-supported Borel probability measures on

X, i.e., µ ∈M+(X) if and only if µ[aaa] > 0 for all aaa ∈ ∪n∈NA
n. We define ρ :M+(X)×M+(X)→

R+ by

ρ(µ, ν) = sup
n∈N

max
aaa∈An

1

n

∣∣∣∣log
µ[aaa]

ν[aaa]

∣∣∣∣ . (1.3)

The function ρ defines a distance on M+(X) which we call projective distance.

Theorem 1.3.2 M+(X) is a complete metric space with respect to ρ.

Proof. Let us first verify that ρ defines a metric. Clearly ρ(µ, ν) ≥ 0 for all µ, ν ∈M+(X), and

ρ(µ, ν) = 0 if and only if µ[aaa] = ν[aaa] for all n ∈ N and aaa ∈ An which readily implies µ = ν. Now,

since for all n ∈ N and aaa ∈ An and each λ ∈M+(X) we have

∣∣∣∣log
µ[aaa]

ν[aaa]

∣∣∣∣ =

∣∣∣∣log
µ[aaa]λ[aaa]

ν[aaa]λ[aaa]

∣∣∣∣ =

∣∣∣∣log
µ[aaa]

λ[aaa]
+ log

λ[aaa]

ν[aaa]

∣∣∣∣ ≤ ∣∣∣∣log
µ[aaa]

λ[aaa]

∣∣∣∣+

∣∣∣∣log
λ[aaa]

ν[aaa]

∣∣∣∣ ,
then ρ(µ, ν) ≤ ρ(µ, λ) + ρ(λ, ν) for all µ, λ, ν ∈M+(X).

Let us now prove thatM+(X) is complete with respect to the distance ρ. For this let {µm}m∈N be

a Cauchy sequence with respect to ρ, which is a Cauchy sequence with respect to D as well. Since

D makesM(X) a complete space, then there exists µ ∈M(X) towards which {µm}m∈N converges.

Now, for each n ∈ N, aaa ∈ An and every m ∈ N, we have e−nρ(µm,µ1)µ1[aaa] ≤ µm[aaa], therefore
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µ[aaa] = lim
m→∞

µm[aaa] ≤ µ1[aaa]e−n supm∈N ρ(µ1,µm) > 0,

which proves that µ ∈M+(X). Finally, since µ[aaa] = limm→∞ µm[aaa], we have

e−n supm≥m0
ρ(µm,µm0 ) ≤ µ[aaa]

µm[aaa]
≤ en supm≥m0

ρ(µm,µm0 )

for each n ∈ N, aaa ∈ An and m0 ∈ N. From this it follows that

ρ(µ, µm0) ≤ sup
m≥m0

ρ(µm, µm0),

which proves that µ is the limit of {µm}m∈N in the projective distance.

As mentioned above, M(X) is separable in the vague topology while it is non-separable with

respect to the topology induced by d̄. In this respect, regarding the projective distance we have

the following.

Theorem 1.3.3 M+(X) is non-separable with respect to ρ.

Proof. We will exhibit a collection {µxxx ∈ M+(X) : xxx ∈ {0, 1}N}, such that ρ(µxxx, µyyy) > 1/2

whenever xxx 6= yyy.

Fix xxx ∈ {0, 1}N, and for each n ∈ N and aaa ∈ {0, 1}n let

q(aaa) = max{1 ≤ k ≤ n : aaak1 = xxxk1}+ 1.

Now, fix α > 1 and let νxxx ∈M+({0, 1}N) be given by

νxxx[aaa] =

{
αn(1 + α)−n if aaa = xxxn1 ,

αq(aaa)−1(1 + α)−q(aaa)2q(aaa)−n if aaa 6= xxxn1 ,
(1.4)

for all n and aaa ∈ {0, 1}n.
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Let us check that νxxx is well defined. For this notice that

∑
aaa∈{0,1}n

νxxx[aaa] = νxxx[xxxn1 ] +
∑

aaa∈{0,1}n\{xxxn1 }

νxxx[aaa],

=

(
α

1 + α

)n
+

1

1 + α

n∑
q=1

(
α

1 + α

)q−1 #{aaa ∈ {0, 1}n : q(aaa) = m}
2n−q

,

=

(
α

1 + α

)n
+

1

1 + α

(
1− (α/(1 + α))n

1− α/(1 + α)

)
= 1,

which proves that the marginals are well normalized. Now, if aaa ∈ An is such that q(aaa) < n, then

q(aaab) = q(aaa) for all b ∈ A, and

∑
b∈{0,1}

νxxx[aaab] =
αq(aaa)−1

(1 + α)q(aaa)

2

2n+1−q(aaa)
= νxxx[aaa].

Otherwise, if aaa = xxxn1 , then

∑
b∈A

νxxx[aaab] = νxxx[aaaxn+1] +
∑

b∈A\{xn+1}

νxxx[aaab]

=

(
α

1 + α

)n+1

+
αn

(1 + α)n+1
=

(
α

1 + α

)n
= νxxx[aaa].

We have proven that the marginals are well normalized and compatible, which ensures that νxxx

is well defined.

For yyy 6= xxx let m = min{k ∈ N : yk 6= xk}. Then we have

ρ(νxxx, νyyy) ≥ lim sup
n→∞

1

n

∣∣∣∣log
νxxx[xxxn1 ]

νyyy[xxxn1 ]

∣∣∣∣ ,
= lim sup

n→∞

1

n
log

(
αn(1 + α)−n

αq(yyy
n
1 )−1(1 + α)−q(yyy

n
1 )2q(yyy

n
1 )−n

)
,

= lim
n→∞

1

n
log

(
αn(1 + α)−n

αm−1(1 + α)−m2m−n

)
= log

(
2α

1− α

)
.
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By taking α = e1/2/(2− e1/2) we obtain ρ(νxxx, νyyy) ≥ 1/2 for all xxx 6= yyy.

Now, consider any surjective map π : A → {0, 1} and for each n ∈ N extend it coordinatewise to

An. We will denote all those coordinatewise extensions with the same letter π. For each xxx ∈ {0, 1}N

the measure µxxx ∈M+(X) is given by

µxxx[aaa] =
νxxx[π(aaa)]

#π−1(π(aaa))
. (1.5)

This measure is well defined since for each n ∈ N

∑
aaa∈An

µxxx[aaa] =
∑

bbb∈{0,1}n
#π−1(bbb)

νxxx[bbb]

#π−1(bbb)
= 1,

and for each aaa ∈ An

∑
a′∈A

µxxx[aaaa′] =
∑
a′∈A

νxxx[π(aaa)π(a′)]

#π−1(π(aaa)π(a′))
,

=
∑

b∈{0,1}

#π−1(b)
νxxx[π(aaa)b]

#π−1(π(aaa)) #π−1(b)
= µxxx[aaa].

Now, for xxx 6= yyy we have

ρ(µxxx, µyyy) = sup
n∈N

1

n
max
aaa∈An

∣∣∣∣log
µxxx[aaa]

µyyy[aaa]

∣∣∣∣ ,
= sup

n∈N

1

n
max
aaa∈An

∣∣∣∣log
νxxx[π(aaa)]

νyyy[π(aaa)]

∣∣∣∣ ,
= sup

n∈N

1

n
max

bbb∈{0,1}n

∣∣∣∣log
νxxx[bbb]

νyyy[bbb]

∣∣∣∣ = ρ(νxxx, νyyy) ≥ 1/2.

In this way we obtain the desired uncountable collection {µxxx ∈ M+(X) : xxx ∈ {0, 1}N} such that

ρ(µxxx, µyyy) ≥ 1/2 whenever xxx 6= yyy.

The d̄ distance is often difficult to calculate because in the definition it is required to find an

optimal coupling between the pair of given measures that reaches this distance. Nevertheless, in
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subsection 3.3 we give two examples where the d̄-distance is computed for two particular Markov

processes. In order to show a comparison with the projective distance we shall show an explicit

calculation of ρ for Markov measures with stochastic and double stochastics transition matrices.

Example 1.3.4 The ρ-distance between two Markov processes with double stochastic transition

matrices.

Let µ, ν two Markov measures with transition matrices M = M(aaa,bbb), N = N(aaa,bbb) doubly

stochastics. The projective distance ρ(µ, ν) can be calculated as

ρ(µ, ν) = lim
n→∞

max
aaan−1
0 ∈An

1

n

∣∣∣∣∣log

(
µ[a0]

∏n−1
j=1 M(aj−1, aj)

ν[a0]
∏n−1
j=1 N(aj−1, aj)

)∣∣∣∣∣
= max

{C:|C|≤|A|}

1

|C|

|C|−1∑
j=1

|ω(cj , cj+1)|

where {C : |C| ≤ |A|} is the set of simple cycles taken from the complete graph K|A| whose vertices

{cj} are the symbols of the alphabet A, the weights on the edges are determined by the matrices

M,N , that is, ω(cj , cj+1) = log
(
M(cj ,cj+1)
N(cj ,cj+1)

)
and |C| is the length of the cycle.

Proof. Consider the (not necesarily unique) decomposition of a sequence aaan−1
0 ∈ An in a prefix

aaap, k(n) := k(n,aaa) simple cycles {Ci : 1 ≤ i ≤ k(n)} and a suffix aaas, that is,

aaan−1
0 = aaap + C1 + · · ·+ Ck(n) + aaas

= a0 → a1 → · · · → ap + C1 + · · ·+ Ck(n) + an−s → · · · → an

with p, s ≤ |A| and Ci = ai1ai2 . . . aim(i)
for 1 ≤ i ≤ k(n). Let wM and wN be the right maximal

eigenvectors from the matrices M y N . For each simple cycle Ci in the decomposition of aaan−1
0

denote ω(Ci) :=
∑m(i)−1

j=1

∣∣∣∣log
M(aij ,aij+1

)

N(aij ,aij+1
)

∣∣∣∣. Analogous notation stands for ω(aaap), ω(aaas) and ω(aaaji ).

Then
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ρ(µ, ν) = lim
n→∞

max
aaan−1
0 ∈An

1

n

∣∣∣∣∣log

(
wM (a0)

∏n−1
j=1 M(aj−1, aj)

wN (a0)
∏n−1
j=1 N(aj−1, aj)

)∣∣∣∣∣
= lim

n→∞
max

C1,C2,...,Ck(n)

1

n

∣∣∣∣∣∣log
wM (a0)

wN (a0)
+ ω(aaap) + ω(aaas) +

k(n)∑
j=1

ω(Cj)

∣∣∣∣∣∣ .
Since the first term of the above sum is always finite it is sufficient to establish the result with

respect to lim
n→∞

max
aaan−1
0 ∈An

1
nω(aaan−1

0 ).

If C = 2|A| max
ai→ai+1

|ω(ai → ai+1)| then

−C ≤ ω(aaap) + ω(aaas) ≤ C

Therefore

max
aaan−1
0

1

n
ω(aaan−1

0 ) ≥ −C
n

+
n− 2|A|

n
max

{Ci:|Ci|≤n}

∑k(n)
i=1 ω(Ci)∑k(n)
i=1 |Ci|

(1.6)

and

max
aaan−1
0

1

n
ω(aaan−1

0 ) ≤ C

n
+ max
{Ci:|Ci|≤n}

∑k(n)
i=1 ω(Ci)∑k(n)
i=1 |Ci|

(1.7)

Consequently

lim sup
n→∞

max
aaan−1
0

1

n
ω(aaan−1

0 ) ≤ lim sup
n→∞

max
{Ci:|Ci|≤n}

1∑k(n)
i=1 |Ci|

k(n)∑
i=1

ω(Ci) ≤ max
{C:|C|≤|A|}

ω(C)
|C|

The inequalities in (1.6) and (1.7) give the desired result.

A similar result can be established for two Markov chains with transition matrices not necessarily

double stochastics.
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Example 1.3.5 Let α, β, γ, δ ∈]0, 1[. Denote by µ and ν respectively, the Markov measures defined

on the binary alphabet with transition matrices given by

M := Mα,β =

(
1− α α

β 1− β

)

and

M̃ := Mγ,δ =

(
1− γ γ

δ 1− δ

)
.

Suppose that the invariant vectors for each matrix are respectively v and ṽ and write qi = log v(i)
ṽ(i)

and φij = log M(i,j)

M̃(i,j)
. Then ρ(µ, ν) = max

i,j,k∈{1,2}

{
|qi|, 1

2 |φjk + φkj |
}

.

1.4 g-measures

A g-function is any Borel measurable function g : X → (0, 1) satisfying
∑

x1
g(xxx) = 1, and if

vark(g) = sup{|g(aaa)− g(bbb)| : a, ba, ba, b ∈ AN, aaak0 = bbbk0} then g is continuous if vark(g)→ 0 as k →∞. A

compatible g-measure is any µ ∈M+
T (X) :=M+(X) ∩MT (X) satisfying

lim
n→∞

µ(x1 = a1|xxxn2 = aaan2 ) := lim
n→∞

µ[a1aaa
n
2 ]

µ[aaan2 ]
= g(aaa), (1.8)

for all aaa ∈ X. This notion is intended to generalize that of Markov chain and was introduced

into ergodic theory by M. Keane in [18]. It has as an ancestor the so called chains with complete

connections studied in probability theory as early as 1935 [31] by Onicescu and Mihoc. Doeblin

and Fortet (1937) proved the first results of the existence of the invariant measure. Harris (1955)

extended the existence results and proved one of the weakest uniqueness condition available. He

called these processes chains of infinite order. Another approach is due to Kalikow (1990) who

introduced random Markov processes as generalizations of n-step Markov chains. He also defined
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the concept of bounded uniform martingale and studied its ergodic properties. At least in the

context of invariant measures, all these notions coincide (see [26]). The concept of g-measures

is related, and under some conditions equivalent, to the notion of equilibrium states [39, 19].

One of the main problems concerning g-measures is whether a given g-function admits a unique

compatible g-measure. Existence of compatible g-measures requires only the continuity of g, while

stronger continuity conditions are needed to ensure uniqueness. For instance, Hölder continuity

of the g-function implies the existence and uniqueness of a compatible g-measure for which strong

mixing holds. Several criteria have been established to ensure uniqueness, all of them relying on

the regularity of the g-function. Consider ∆k(g) = inf{
∑

x0∈A min(g(x0aaa), g(x0bbb)) : aaak1 = bbbk1}.
The following table summarize the different criteria for uniqueness of the measure related to the

g-function.

Space Speed for Uniqueness

Harris (1955) Finite
∑

n≥1

∏n
k=1

(
1− |A|2 vark(g)

)
= +∞

Keane (1972) Finite ∃a ∈ (0, 1), C <∞ : vark(g) ≤ Cak

Walters (1975) Finite
∑

k≥0 vark(log g) <∞
Berbee (1987) Countable

∑
n≥1 exp (−

∑n
k=1 vark(log g)) = +∞

Stenflo (2002) Finite
∑

n≥1

∏n
k=1 ∆k(g) = +∞

Johansson and Oberg (2002) Finite
∑

k≥1 var2
k(log g) <∞

Table 1.1: Conditions for the uniqueness of the g-measure.

As mentioned in the introduction, several works have considered the d̄-continuity of g-measures

under strong regularity conditions for the limit g-function, and have proved in this way that the

limit g-measure has good ergodic properties (the Bernoullicity of the natural extension [8] or the fast

decay of correlation [3]). On the other hand, several examples have been proposed to show that the

continuity of the g-function is not enough to ensure the uniqueness of the corresponding g-measure.

Among those examples we find the already classical Bramson-Kalikow construction [2]. Recently

P. Hulse [16] published a construction inspired on the Ising model with long range interactions of

a g-function where uniqueness fails. For this example, the set of compatible g-measures necessarily

contains non-ergodic measures.



CHAPTER 2

Projective distance and g-measures

2.1 ρ-continuity of the entropy

It is known that the entropy is a d̄-continuous functional in the class of ergodic processes (Theorem

I.9.16 in [36]), while it is only upper semicontinuous with respect to the vague topology (Theorem

I.9.1 in [36]). Before setting this, let us recall the notion of variation of a function.

For φ : X → R and each ` ∈ N, the `-variation of φ is given by

var`φ := max
aaa∈A`

{
sup
xxx∈[aaa]

φ(xxx)− inf
xxx∈[aaa]

φ(xxx)

}
. (2.1)

For φ continuous we have that the speed of convergence of the variation characterizes the

regularity of φ. For instance, Hölder continuity -recall that φ is Hölder continuous if there are

C > 0 and α ∈]0, 1[ such that var`φ ≤ Cα`- corresponds to exponential decreasing of the variation.

Theorem 2.1.1 Assume g admits a unique g-measure µ (in which case this measure is ergodic),

15
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and suppose that {µp}p∈N is a sequence of ergodic measures converging to µ in the projective dis-

tance, then

lim
p→∞

h(µp) = h(µ) ≡ −
∫

log ◦g dµ.

Proof. First we prove that the relative entropy

h(µp|µ) := lim
n→∞

1

n

∑
aaa∈An

µp[aaa] log
µp[aaa]

µ[aaa]
,

which can be easily proved to be non-negative, converges to zero as p→∞. Indeed since

e−nρ(µp,µ) ≤ µp[aaa]

µ[aaa]
≤ enρ(µp,µ)

for each n ∈ N and aaa ∈ An, then

0 ≤ h(µp|µ) = lim
n→∞

1

n

∑
aaa∈An

µp[aaa] log
µp[aaa]

µ[aaa]

≤ lim
n→∞

1

n

∑
aaa∈An

µp[aaa]nρ(µp, µ) = ρ(µp, µ),

and the claim follows. Now, following the arguments in [5, Section 3.2], we readily deduce that

h(µp|µ) = −h(µp)−
∫
X

log ◦g dµp.

Now, since the topology of the projective distance is finer than the vague topology, we necessarily

have

lim
p→∞

∫
X

log ◦g dµp =

∫
X

log ◦g dµ.
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Finally, the Variational Principle for g-measures (see [23] for a proof) establishes that

h(µ) = −
∫
X

log ◦g dµ.

From all above arguments it follows that

lim
p→∞

h(µ)− h(µp) = lim
p→∞

(
−
∫
X

log ◦g dµ− h(µp)

)
= lim

p→∞

(
−
∫
X

log ◦g dµp − h(µp)

)
= lim

p→∞
h(µp|µ) = 0,

and the proof is complete.

2.2 Canonical Markov approximation

Given µ ∈ M(X), for each ` ∈ N, the canonical `-step Markov approximation to µ is the only

measure µ` ∈M(X) satisfying

µ`[aaa
n
1 ] = µ[aaa`1]

n−∏̀
j=1

µ[aaaj+`j ]

µ[aaaj+`−1
j ]

, (2.2)

for all aaa ∈ X and n ≥ `.

It is well known and easily proved that µ` → µ as `→∞ in the vague topology. In this respect,

concerning the g-measures, we have the following theorem.

Theorem 2.2.1 Let g : X → [0, 1] be a continuous g-function and µ ∈ M(X) a compatible g-

measure. For each ` ∈ N let µ` ∈ M(X) be the canonical `-step Markov approximation. Then

µ` → µ as `→∞ in the projective distance. Furthermore,

ρ(µ`, µ) ≤ var` log ◦g.
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Proof. First note that for all aaa ∈ X and n ≤ m we have

µ[aaan1 ]

µ[aaan2 ]
=

∑
aaamn+1∈Am−n

µ[aaam1 ]

µ[aaam2 ]
× µ[aaam2 ]

µ[aaan2 ]
= Ep

(
µ[aaam1 ]

µ[aaam2 ]

)
,

with p : Am → (0, 1) a probability distribution given by

p(bbb) =

{
[bbbm2 ]/µ[bbbn2 ] if bbbn1 = aaan1 ,

0 otherwise.

It follows from this, and taking the limit m→∞, that

min
xxx∈[aaa`1]

g(xxx) ≤ µ[aaan1 ]

µ[aaan2 ]
≤ max

xxx∈[aaa`1]
g(xxx), (2.3)

for all aaa ∈ X and ` ≤ n.

For n ≤ ` we have µ`[aaa
n
1 ] = µ[aaan1 ] for all aaa ∈ X. On the other hand, for n > ` and aaa ∈ X by writing

µ[aaan1 ] =
n−`−1∏
j=1

µ[aaanj ]

µ[aaanj+1]
× µ[aaann−`],

µ`[aaa
n
1 ] =

n−`−1∏
j=1

µ[aaaj+`j ]

µ[aaaj+`j+1]
× µ[aaann−`],

we readily obtain

∣∣∣∣log
µ[aaan1 ]

µ`[aaa
n
1 ]

∣∣∣∣ ≤ n−`−1∑
j=1

{∣∣∣∣∣log
µ[aaanj ]

µ[aaanj+1]
− log

µ[aaaj+`j ]

µ[aaaj+`j+1]

∣∣∣∣∣
}
.

Inequalities (2.3) imply
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1

n

∣∣∣∣log
µ[aaan1 ]

µ`[aaa
n
1 ]

∣∣∣∣ ≤ 1

n

n−`−1∑
j=1

{
max

xxx∈[aaaj+`j ]
log ◦g(xxx)− min

xxx∈[aaaj+`j ]
log ◦g(xxx)

}
≤ var` log ◦g,

for all aaa ∈ X and n ∈ N, from which it follows that ρ(µ`, µ) ≤ var` log ◦g, and the proof is done.

2.3 The ρ-convergence of the g-measures

We begin this section with two results that relate the convergence of a sequence of g-measures with

the projective convergence of their corresponding g-functions. Since the concept of g-measures can

be seen as an extension of the process with finite memory, we also consider Markov measures in

our estimations.

In this paragraph we explore the relationship between convergence of g-functions and the pos-

sible convergence in projective distance of the corresponding g-measures. An analogous result,

concerning the d̄-distance, was obtained by Coelho and Quas in [8]. Before stating our result, let

us fix some notation.

Let G ⊂ C0(X) denote the set of g-functions, i. e. the set of continuous functions g : X → (0, 1)

satisfying
∑

a∈A g(axxx) = 1, ∀xxx ∈ X. Now, for g ∈ G denote by M(g) ⊂ M(X) the simplex made

of all probability measures compatible with g (or g-measures) as defined in Equation (1.8).

For φ : X → R and ` ∈ N, let us denote svar`φ =
∑`

k=1 varkφ where varkφ is defined as in

Equation (2.1). We will say that a locally constant function φ : X → R has range ` ∈ N whenever

xxx`1 = yyy`1 ⇒ φ(xxx) = φ(yyy).

Clearly, for a locally constant function of range `, varnφ = 0 for all n ≥ `. It is not hard to prove

that if g ∈ G is locally constant of range `+1, thenM(g) contains a unique `-step Markov measure

(see Appendix 4 for details). We have the following.
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Theorem 2.3.1 Let {g` ∈ G}`∈N be a sequence of locally constant functions converging to g in the

sup-norm, and such that for each ` ∈ N the function g` is locally constant of range `+ 1. If

lim
`→∞

|| log(g/g`)||esvar` log ◦g` = 0,

then the sequence {µ`}`∈N, where µ` is the unique measure in M (g`), converges in projective

distance. Furthermore, the limit measure µ ∈M(X) is the unique measure in M(g).

Proof. First note that for all m ≥ `, varm log ◦g` = 0 and that both µm and µ` are m-step

Markov measures. From Proposition 3 in the Appendix, it follows that

ρ(µm, µ`) ≤ 2|| log(gm/g`)||emin(svar` log ◦g`,svarm log ◦gm)

≤ 2(|| log(g/g`)||+ || log(g/gm)||)emin(svar` log ◦g`,svarm log ◦gm)

≤ 2|| log(g/g`)|esvar` log ◦g` + 2|| log(g/gm)|esvarm log ◦gm ,

for all m ≥ `. The hypothesis of the theorem implies that {µ`}`∈N is a Cauchy sequence in

projective distance, and by Theorem 1.3.2 it must converge in projective distance to a certain

measure µ ∈M(X).

Now, since g = lim`→∞ g` in the sup-norm, then necessarily g ∈ G. Let ν ∈ M(g) and for each

` ∈ N let ν` be its canonical `-step Markov approximation. Let h` be the locally constant g-function

associate to ν`, i. e. h`(xxx) = ν[xxx`+1
1 ]/ν[xxx`1] for all xxx ∈ X. According to inequalities (2.3) we have

min
yyy∈[xxx`1]

log ◦g(yyy) ≤ log ◦h`(xxx) ≤ max
yyy∈[xxx`1]

log ◦g(yyy),

and from this || log(g/h`)|| ≤ var` log ◦g. Then again using Lemma 3 we have

ρ(µ`, ν`) ≤ 2|| log(g`/h`)||esvar` log ◦g`

≤ 2(|| log(g/h`)||+ || log(g`/g)||)esvar` log ◦g`

≤ 2(var` log ◦g + || log(g`/g)||)esvar` log ◦g` .
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Now, since var` log ◦g` = 0 and

var` log ◦g ≤ var` log ◦g` + || log(g`/g)|| = || log(g`/g)||,

it follows that

ρ(µ`, ν`) ≤ 4|| log(g`/g)||esvar` log ◦g` ,

which ensures that {ν`}`∈N converges to µ, but according to Theorem 2.2.1, it converges to ν as

well, therefore µ = ν and the proof is finished.

Example 2.3.2 Consider the sequence of g-functions {g` : {−1, 1}N → (0, 1)}`∈N given by

g`(xxx) =
exp(β x1

∑`
k=2 xk k

−2)

exp(+β
∑`

k=2 xk k
−2) + exp(−β

∑`
k=2 xk k

−2)
.

Clearly {g`}`∈N uniformly converges to the g : {−1, 1}N → (0, 1) given by

g(xxx) =
exp(β x1

∑∞
k=2 xk k

−2)

exp(+β
∑∞

k=2 xk k
−2) + exp(−β

∑∞
k=2 xk k

−2)
.

Furthermore, we compute the following expressions to obtain
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log

(
g`(xxx)

g(xxx)

)
= log

exp
(
β x1

∑`
k=2 xk k

−2
)

exp (β x1
∑∞

k=2 xk k
−2)


+ log

(
e+β(

∑`
k=2 xk k

−2+
∑∞
k=`+1 xk k

−2) + e−β(
∑`
k=2 xk k

−2+
∑∞
k=`+1 xk k

−2)

e(β
∑`
k=2 xk k

−2) + e(−β
∑`
k=2 xk k

−2)

)

= β x1

(∑̀
k=2

xk k
−2 −

∞∑
k=2

xk k
−2

)

+ log

exp
(
+β
∑∞

k=`+1 xkk
−2
) (

1 + exp
(
−2β

∑∞
k=2 xk k

−2
))

1 + exp
(
−2β

∑`
k=2 xkk

−2
)


= β(1− x1)

∞∑
k=`+1

xk k
−2 + log

 1− exp
(
−2β

∑∞
k=2 xk k

−2
)

1− exp
(
−2β

∑`
k=2 xk k

−2
)


from where it follows that

|| log(g`)/g|| < 2β
∞∑

k=`+1

k−2 < 2β `−1

Similarly, we calculate

exp(svar` log ◦g`) = exp

(∑̀
m=1

max
aaa∈Am

{
sup
xxx∈[aaa]

[
β
∑̀
k=2

(x1 − 1)xk k
−2 − log(1 + e−2β

∑`
k=2 xk k

−2
)

]

− inf
xxx∈[aaa]

[
β
∑̀
k=2

(x1 − 1)xk k
−2 − log(1 + e−2β

∑`
k=2 xk k

−2
)

]})

≤ exp(4β
∑̀
k=2

(k − 1) k−2) < exp(4β log(`)).

According to Theorem 2.3.1, the sequence {µ` ∈M(g`)} converges in the projective distance to

the unique g-measure µ ∈M(g`), provided `4β`−1 → 0 when `→∞, i. e., provided β < 1/4.
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Theorem 2.3.3 Suppose that {g` ∈ G}`∈N is a sequence of locally constant functions such that for

each ` ∈ N the function g` is locally constant of range `. Let µ` be the Markov measure defined by
µ`[aaa

`
1]

µ`[aaa
`
2]

= g`(aaa). If
∑∞

`=1 `ρ(µ`, µ`+1) < ∞ then there is µ ∈ M(X) such that ρ(µ`, µ) → 0, and the

sequence {g`} converges to a unique function g ∈ C(X). Furthermore, µ ∈M(g).

Proof. Since the series
∑∞

`=1 `ρ(µ`, µ`+1) is convergent it follows that ρ(µ`, µ`+1) → 0 when

` → ∞. From this condition it is easy to deduce that {µ`} is a Cauchy sequence with respect to

the distance ρ and therefore convergent to a certain µ ∈M(X) (see Theorem 1.3.2).

Suppose ` > m. By using a telescopic product we obtain

g`(aaa)

gm(aaa)
=

`−m∏
k=1

gm+k(aaa)

gm+k−1(aaa)

=
`−m∏
k=1

µm+k[aaa
m+k
1 ]

µm+k[aaa
m+k
2 ]

× µm+k−1[aaam+k
2 ]

µm+k−1[aaam+k
1 ]

.

By the definition of ρ it is clear that e−nρ(µn,µn−1) ≤ µn[aaan1 ]
µn−1[aaan1 ] ≤ e

nρ(µn,µn−1) for all n. Hence

exp

(
−2

`−m∑
k=1

(m+ k)ρ(µm+k, µm+k−1)

)
≤ g`(aaa)

gm(aaa)
≤ exp

(
2
`−m∑
k=1

(m+ k)ρ(µm+k, µm+k−1)

)
.

Since

exp

(
2
`−m∑
k=1

(m+ k)ρ(µm+k, µm+k−1)

)
≤ exp

(
2
∞∑

k=`+1

kρ(µk, µk−1)

)

it follows that

∣∣∣∣∣∣∣∣log

(
g`
gm

)∣∣∣∣∣∣∣∣ ≤ ∞∑
k=`+1

kρ(µk, µk−1)
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This implies that that {g`} is a Cauchy sequence, so it is convergent to a unique g ∈ C(AN). It

only remains to show that µ ∈M(g). Indeed,

∞ >
∞∑
`=1

`ρ(µ`, µ`+1) ≥
∞∑
`=k

`ρ(µ`, µ`+1)

≥ k
∞∑
`=k

ρ(µ`, µ`+1)

≥ kρ(µk, µ`+1).

for all ` ≥ k. Then by letting `→∞ it follows that limk→∞ kρ(µk, µ) = 0. Hence by the definition

of g` we obtain the inequalities

g`(aaa) exp (−`ρ(µ`, µ)) ≤ µ[aaa`1]

µ[aaa`2]
≤ g`(aaa) exp (`ρ(µ`, µ))

which means that

lim
`→∞

µ[aaa`1]

µ[aaa`2]
= lim

`→∞
g`(aaa) = g(aaa).

and the proof is done.



CHAPTER 3

Comparison with the weak distance D and the Ornstein’s

metric d̄

3.1 Comparison of the projective distance with the weak distance

This chapter is devoted to compare our projective distance with two known metrics: the one

introduced by Ornstein and the weak metric. We start by proving that the convergence of a

sequence with respect to the projective distance implies the corresponding convergence in the weak

distance.

Proposition 1 The vague topology is coarser than the one induced by ρ (the projective topology).

Proof. Let µ, ν ∈ M+(X) be such that ρ(µ, ν) < log(2). Then for all n ∈ N and aaa ∈ An we

have e−nρ(µ,ν)ν[aaa] < µ[aaa] < enρ(µ,ν)ν[aaa], which implies |µ[aaa] − ν[aaa]| < (enρ(µ,ν) − 1)ν[aaa], and from

this follows

25
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D(µ, ν) <
∑
n∈N

2−n(enρ(µ,ν) − 1) = 2
eρ(µ,ν) − 1

2− eρ(µ,ν)
<

4

3
ρ(µ, ν).

which proves our assertion.

The natural question now, is to know if the projective topology is strictly stronger than the

vague topology. The answer is affirmative and is shown in the following example, where we exhibit

a sequence of measures that converges with respect to the weak distance D but is not ρ-convergent.

Example 3.1.1 Uniform marginals.. Consider A the alphabet with two symbols, say A = {0, 1}.
For each n ∈ N, consider the uniform measure U defined on An as Un[aaan1 ] = 1

2n for all aaan1 ∈ An.

There exists a sequence of Markov measures {µ(n)}∞n=1 such that

i) D(µ(n), U)→ 0 as n→∞

ii) ρ(µ(n), U) > ε for a given ε > 0

Proof. Let 0 < ε < 1. Consider the transition matrices Mn and M̃n defined respectively as

Mn(aaan1 , bbb
n
1 ) = 1

2n for all aaan1 , bbb
n
1 ∈ An and

M̃n(aaan1 , bbb
n
1 ) =


(

1−ε
2

)n
if aaan1 = bbbn1 = 000n1 or aaan1 = bbbn1 = 111n1(

1
2

)n−1 −
(

1−ε
2

)n
if aaan1 = 000n1 and bbbn1 = 111n1 or aaan1 = 111n1 and bbbn1 = 000n1(

1
2

)n
otherwise

where 000n1 denotes the word with ai = 0 for all 1 ≤ i ≤ n and similarly for 111n1 . It is easy to check

that M̃n is doubly stochastic. Indeed,

∑
bbbn1

M̃(aaan1 , bbb
n
1 ) =

∑
aaan1

M̃(aaan1 , bbb
n
1 ) = (2n − 2)

(
1

2n

)
+

(
1− ε

2

)n
+

(
1

2

)n−1

−
(

1− ε
2

)n
= 1.
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Since both matrices are doubly stochastic their invariant vector is 1
2n12n , where 12n denotes the

vector with 2n entries each one equals to 1. We then calculate

D(µ(n), U) =
∞∑
k=1

1

2k

∑
aaak1∈Ak

|µ(n)[aaak1]− U(ak1)|

=
∞∑
k=n

1

2k
=

1

2n−1

which proves our claim in condition (ii). On the other hand we compute

ρ(µ(n), U) = sup
n∈N

max
aaan1

1

n

∣∣∣∣log
µn[aaan1 ]

U [aaan1 ]

∣∣∣∣
≥ sup

n∈N

1

n
max{| log(1− ε)n|, | log(2− (1− ε)n)|}

≥ | log(1− ε)| ≥ ε.

This means that the given sequence is not ρ-convergent.

3.2 Comparison of the projective distance with the Ornstein’s dis-

tance d̄

3.2.1 B-processes and the relevance of d̄.

In 1958-1959 Kolmogorov introduced the concept of entropy as an invariant for measure preserving

transformation. On the other hand, in 1970, Ornstein brought up some new approximation concepts

which enabled him to establish that entropy was a complete invariant for a class of transformations

known as Bernoulli shifts. Several works came later and showed that a large class of transformations

of physical and mathematical interest are isomorphic to Bernoulli shifts. The work by Ornstein in

[32] is concerned with the proof that two Bernoulli shifts with the same entropy are isomorphic. The

idea behind the proof involves the introduction of the d̄-distance (defined in Chapter 1, equation
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1.2) which is the object of our comparison with our projective distance ρ, and some ideas about

partitions and approximation by periodic transformations, which will not be discussed here.

Suppose π = (p1, p2, . . . , pk), with pi > 0 and
∑

i pi = 1. There is a unique measure µ defined

on the σ- algebra generated by the cylinder sets, such that for [aaanm] = {xxx ∈ X : xi = ai,m ≤ i ≤ n},
the measure µ is given by µ[aaanm] =

∏n
i=m pai . Recall that the shift transformation ((Txxx)n = xn+1)

with the product measure µ determined by the distribution π is called the Bernoulli shift.

Let A, B be finite sets. A Borel measurable map F : AZ → BZ is a stationary code if

F (Txxx) = TF (xxx) for all xxx ∈ AZ. A process Y = {Yn} is a B-process if there exists an independent

and identical distributed process (i.i.d.) X = {Xn} and a stationary code F such that Y = F (X).

Ornstein’s paper ([32]) describes some of the properties of Bernoulli processes. In particular he

shows that the B-processes are precisely the closure of the mixing n-step Markov processes in the

d̄ metric, and that entropy is an invariant for B-processes.

In ergodic theory the so called isomorphism theorem allowed the introduction of other character-

izations for the B-processes. One of them corresponds to the block independent process (BIP): this

process is the extension of a measure µn on An to a product measure on (An)∞, then transporting

this to a Tn-invariant measure µ̃ on A∞ defined by the formula

µ̃(xxxmn1 ) =

m∏
j=1

µn

(
xxx

(j−1)n+n
(j−1)n+1

)

xxxmn1 ∈ Amn, m ≥ 1 and the condition that

µ̃(xxxji ) =
∑
xxxi−1
1

∑
xxxmnj+1

µ̃(xxxmn1 )

for all i ≤ j ≤ mn and all xxxji .

The independent n-blocking of an ergodic process µ is the block independent process defined
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by the restriction µn of µ to An. An ergodic process µ is almost block independent (ABI) if given

ε > 0 there is an N such that if n ≥ N and µ̃ is the independent n-blocking of µ then d̄(µ, µ̃) < ε.

The proof of the following fundamental theorem can be found in [36](Theorem IV.1.9).

Theorem 3.2.1 An ergodic process is almost block independent if and only if it is a B-process.

An almost block-independent process is the d̄-limit of mixing Markov processes.

This theorem establishes that a process is a B-process if it is in the d̄-closure of the set of the

k-step Markov processes aperiodic, stationary and ergodic. The main work made for this part of

the thesis was to establish homologous results in the context of the g-measures. For this objective,

we first proved that in general, the projective and the Ornstein’s distance are not comparable (see

the next two sections); once we proved that, we restricted our study to a class of measures where

both distances could be explicitly calculated: the Markov measures. With the studied examples

we conjectured that in this family of processes both distances were equivalent; then, since the

convenient generalization of the process of finite memory are the g-measures we proved that the

canonical Markovian approximations to a g-measure are ρ-convergent, but it remains to determine

under what kind of conditions the limit in the d̄-distance of Markovian convergent sequences is a

g-measure.

3.2.2 A d̄-convergent sequence but not ρ-convergent

It is well known that the d̄-topology is finer than the vague topology, and it remains to know how

to place the projective topology with respect to the d̄-topology. Below we will prove that ρ is

not coarser than d̄. With this, and a construction based on g-measures which we will present in

Subsection 3.2.3, we will be able to complete the proof that ρ and d̄ are not in general comparable.

Theorem 3.2.2 There exists a sequence {µp ∈ M+(X)}p∈N converging in d̄-distance, but not in

the projective distance.

Proof. Let µxxx ∈ M+(X) be as in the proof of Theorem 1.3.3. We will exhibit a sequence

{xxxp ∈ {0, 1}N}p∈N such that {µxxxp}p∈N converges with respect to d̄.
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Fix xxx ∈ {0, 1}N and for each p ∈ N let xxxp ∈ {0, 1}N be such that

(xxxp)k =

{
1− xk if k ∈ pN + 1,

xk if k /∈ pN + 1.

Consider the measures µxxxp and µxxx as defined in Equation (1.5). Remember that for each

yyy ∈ {0, 1}, the measure µyyy ∈ M(X) is induced by a corresponding measure νyyy ∈ M({0, 1}N),

defined in Equation (1.4), via a projection π : A → {0, 1}. Let τ : A → A be a permutation

satisfying τ(a) ∈ π−1(1−π(a)) for each a ∈ A and with this, for each n ∈ N define the permutation

τp : An → An such that

τp(aaa)k =

{
τ(ak) if k ∈ pN + 1,

ak if k /∈ pN + 1.

We will denote all those permutations with the same symbol τp. With this we define the coupling

λp ∈ J(µxxxp , µxxx) such that for each aaa× bbb ∈ (A×A)n

λp[aaa× bbb] =

{
µxxx[aaa] if bbb = τp(aaa),

0 otherwise.

The permutation τ is designed so that |ak − xk| = |τp(aaa)k − (xxxp)k| for all 1 ≤ k ≤ n. This

ensures that µxxx[aaa] = µxxxp [τp(aaa)], from which it follows that λp is a coupling. By using this coupling

we obtain

d̄(µxxx, µxxxp) ≤ lim sup
n→∞

1

n

n∑
k=1

λp(T
−k∆̄)

= lim sup
n→∞

1

n

n∑
k=1

λp{aaa× bbb ∈ (A×A)N) : ak 6= bk}

= lim sup
n→∞

#({1, 2, . . . , n} ∩ (pN + 1))

n
=

1

p
.

In this way we have proved that µxxx = limp→∞ µxxxp in d̄-distance.



3. Comparison with the weak distance D and the Ornstein’s metric d̄. 31

Theorem 1.3.3 ensures that ρ(µxxxp , µxxxp′ ) > 1/2 for all p 6= p′. The theorem follows by taking

µp := µxxxp .

3.2.3 A ρ-convergent sequence but not d̄-convergent

We start this section with the description of the construction made by P. Hulse [16]. As mentioned

in the introduction, in the context of the chains with complete connections, a fundamental question

consists not only of determining the existence of g-measures but also of establishing conditions that

guarantee its uniqueness. It is well known that uniqueness holds when g depends on only finitely

many coordinates, however, in general, g-measures are not unique. Bramson and Kalikow [2]

provide the first example of a positive, continuous g for which there is more than one g-measure.

Hulse’s example constructs two sequences of g-measures, say {g`}`∈N, {g′`}`∈N, that converge to a

common continuous limit g : X → [0, 1] (which construction is based on Bramson and Kalikow’s

approach), while the corresponding sequence of g-measures {µ`}`∈N and {µ′`}`∈N do not converge to

the same limit measure. This allow us to exhibit a simplex (made of all the convex combinations of

the two different limiting measures) of compatible g-measures, which will be useful for our example

of a sequence satisfying the condition that gives the title to this section.

Let A = {−1, 1} and for a ∈ A, ā = −a. Let χ ∈ C(X) be the function defined as χ(xxx) = x0.

Consider ψ(t) = et

et+e−t , t ∈ R. Fix 0 < δ < 1
4 and an integer κ ≥ 4. Hulse constructed sequences

{h` ∈ R}∞`=0, {h′` ∈ R}∞`=0, {J` ∈ R+}∞`=1 {Λ` ∈ Z+}∞`=0, (3.1)

whose characteristics will be given later. With these sequences he defined functions g`, g
′
` by

g`(1xxx) = ψ

(∑̀
k=1

κJk〈xxx〉Λk + h`

)

g′`(1xxx) = ψ

(∑̀
k=1

κJk〈xxx〉Λk + h′`

)
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where 〈xxx〉Λ = Λ−1
∑Λ

k=1 xk. For each ` ∈ N, both g` and g′` are constants inside each cylinder

of length Λ`, therefore Walters’ criterion (logarithm with summable variations [40]) ensures the

existence and uniqueness of g-measures µ` and µ′` compatible with g` and g′` respectively.

The sequences mentioned previously are constructed inductively so that {h`} is decreasing,

h′` < h` and

µ`(χ) > κ−1 + 2δ, µ′`(χ) = κ−1 + δ, ` ≥ 0. (3.2)

Before starting with his construction some previous definitions and results are needed.

Consider the Ruelle operator Lg defined by

Lgf(xxx) =
∑

yyy∈T−1xxx

g(yyy)f(yyy) (g ∈ G, f ∈ C(X),xxx ∈ X).

For this part of the construction we will assume that A is a well ordered set and X = AN is

partially ordered in the usual way: xxx ≤ yyy if xk ≤ yk for all k. If Y, Y ′ are subsets of an ordered set,

let Y ×≥ Y ′ denote the set {(yyy,yyy′) ∈ Y × Y ′ : yyy ≥ yyy′}. Given xxx,yyy ∈ X, g, g′ ∈ G, we say that g

stochastically dominates g′ if

∑
b≥a

g(bxxx) ≥
∑
b≥a

g′(byyy) for all a ∈ A (3.3)

Suppose that x, yx, yx, y ∈ X, k ∈ N and xxx ≥ yyy. Then for all increasing function f ∈ C(X)

∑
b≥a

g(bxxx′) ≥
∑
b≥a

g′(byyy′) for all (xxx′, yyy′) ∈ T−ixxx×≥ T−iyyy, 0 ≤ i ≤ j − 1, a ∈ A

=⇒ Ljgf(xxx) ≥ Ljg′f(yyy). (3.4)

This is because (3.3) implies P(A ×≥ A|xxx′, yyy′) = 1 for all such (xxx′, yyy′) and hence Pj(Aj ×≥
Aj)|xxx,yyy) = 1.
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Finally, the following two lemmas will be useful in the construction.

Lemma 3.2.3 Let g ∈ G be continuous.

i) If f ∈ C(X) is increasing, then L`g is increasing for all ` ≥ 1.

ii) If there is a unique g-measure µ, then L`g → µ(f) uniformly as `→∞, for all f ∈ C(X).

The results given in the previous lemma can be derived from the Ruelle-Perron-Frobenius the-

orem.

Lemma 3.2.4 Let g ∈ G be continuous and positive, with a unique g-measure µ. Then, given

f ∈ C(X) and ε > 0, there exists δ > 0 such that

g′ ∈ G, ||g − g′|| < δ =⇒ |µg′(f)− µ(f)| < ε

for all g′-measures µg′.

With the background given, we can describe Hulse’s proof for the non-uniqueness of g-measures.

As it was mentioned before, fix 0 < δ < 1
4 and an integer κ ≥ 4. Let `0 = 0 and choose h0, h

′
0 so

that ψ(h0)− ψ(−h0) = κ−1 + 3δ and ψ(h′0)− ψ(−h′0) = κ−1 + δ. It follows that µ0(χ) > κ−1 + 2δ

and µ′0(χ) = κ−1 + δ. Suppose that the terms in the sequences (3.1) have been defined for some

` ≥ 0. Define

J`+1 = (h` − h′`)/(κ+ 1) and h`+1 = h` − J`+1 (3.5)

Let ε = µ`(χ)− (κ−1 + 2δ) > 0. Using (3.2) and Lemma 3.2.3 we can choose j so that

Ljg`χ(1̄11) > κ−1 + 2δ + ε/2. (3.6)

By the conditions in (3.2) and the Ergodic Theorem, it is possible to choose Λ`+1 so that if
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E = {xxx : 〈xxx〉Λ`+1
> κ−1 + 2Λ−1

`+1j}

then µ′`(E) > 1− ε/4. It follows from (3.5) that g`+1 stochastically dominates g′`, and so, since the

characteristic function of the set E is increasing, µ`+1(E) > 1 − ε/4. Note also that if xxx ∈ E and

yyy ∈ T−1xxx for some 0 ≤ i ≤ j − 1, then 〈yyy〉Λ`+1
> κ−1, and so g`+1(1yyy) ≥ g`(1yyy). Since g` ≤ g`+1 it

follows from (3.4) that

Ljg`+1
χ(xxx) ≥ Ljg`χ(1̄11) for all xxx ∈ E.

Therefore,

µ`+1(χ) ≥ Ljg`χ(1̄11)− 2µ`+1(Ec) (3.7)

> κ−1 + 2δ (3.8)

From Lemma (3.2.4) we have that µ′`+1(χ) is continuous as a function of h′`+1, and by symmetry,

µ′`+1(χ) = 0 if h′`+1 = 0; thus, we can choose h′`+1(0 < h′`+1 < h`+1) so that µ′`+1(χ) = κ−1 + δ.

This completes the induction.

Let h = lim`→∞ h`. Then lim`→∞ h
′
` = h also, since (3.5) implies

h` − h`+1 =
h` − h′`
κ+ 1

and so lim`→∞(h` − h′`) = 0. Define g by

g(1xxx) = ψ

( ∞∑
k=1

κJk〈xxx〉Λk + h

)

Note that
∑∞

`=1 J` = h0 − h, so g is well defined.

Then ||g`− g|| → 0 and ||g′`− g|| → 0 as `→∞, whereas µ`(χ)−µ′`(χ) > δ for all `. Therefore,

by Lemma 3.2.4, g does not have a unique g-measure.
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The example of non-unique g-measure given by Hulse, is slightly modified to fit in our context.

The alphabet A in our case is arbitrary but finite, and we consider an appropiate projection

π : A → {−1, 1} such that #π−1({1}) = #π−1({−1}) = b#A/2c. If the cardinality of A is odd,

the projection π maps on {−1, 0, 1} with the same mentioned conditions and π(a) = 0 for some

a ∈ A. Consider the set of sequences defined by Hulse: {h` ∈ R+}∞`=0, {h′` ∈ R+}∞`=0, {J` ∈ R+}∞`=1,

and {Λ` ∈ N}∞`=0. With these define the locally constant functions {g`, g′` : X → [0, 1]}`∈N given by

g`(xxx) = ψ

(
π(x1)

(∑̀
k=1

Jk〈π(xxx)〉Λk + h`

))
,

g′`(xxx) = ψ

(
π(x1)

(∑̀
k=1

Jk〈π(xxx)〉Λk + h′`

))

where again 〈π(xxx)〉Λ = Λ−1
∑Λ

k=1 π(xk) for each Λ ∈ N. According to the Hulse’s construction

there exists g ∈ C(X) such that lim`→∞ g` = lim`→∞ g
′
` = g but g has at least two compatible

g-measures.

From Hulse’s construction Theorem 2.2.1 the next result readily follows.

Theorem 3.2.5 There exists a sequence {µ` ∈M+(X)}`∈N converging in the projective distance,

but not in the d̄-distance.

Proof. Let g : A → [0, 1] be the g-function in Hulse’s construction above, and let M(g)

the collection of all the compatible g-measures. Since M(g) is not a singleton, then it necessarily

contains non-ergodic measures, for instance any strict convex combination of two different extremal

measures. Let µ be such a non-ergodic measure. Now, for each ` ∈ N, let µ` be the `-step Markov

approximation to µ, as defined in Equation (2.2). According to Theorem 2.2.1, the sequence {µ`}`∈N

converges to µ in the projective distance. It is known that d̄-limits of mixing measures are mixing

(see Theorem I.9.17 in [36] for instance). Since µ is fully-supported, then µ` is a mixing measure

for each ` ∈ N but since µ is not even ergodic, then {µ`}`∈N cannot converge in d̄-distance.
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3.2.4 Marton’s inequality

This section is devoted to use the Marton’s inequality (see [29] and [28]) to establish a comparison

between the Ornstein’s distance and the projective metric. Before giving the corresponding analysis,

let us provide some definitions. Suppose that µ, ν are probability distributions on X, then the

variational distance between µ and ν is

|µ− ν|n =
∑
aaan1

|µ(aaan1 )− ν(aaan1 )|.

The informational divergence of µ with respect to ν for n-marginals is defined as

Dn(µ|ν) :=
∑
aaa∈An

µ[aaa] log
µ[aaa]

ν[aaa]
.

Then Pinsker’s inequality establishes the following simple but powerful relation between varia-

tional distance and informational divergence

|µ− ν|n ≤
√

1

2
Dn(µ|ν)

Based on the preceding inequality, Marton derives bounds on the d̄-distance by informational

divergence as it follows. Let ν be a Markov measure on An, that is, ν(aaan1 ) = ν(a1)
∏n
k=2 ν(ak|ak−1)

and assume that

max
k

sup
x,y∈A

|ν[·|y]− ν[·|x]| = 1− α, α > 0. (3.9)

By imposing conditions only on the measure ν, Marton established that for any probability

measure µ on An

d̄(µ, ν) ≤ 1

α

√
1

2n
Dn(µ|ν)
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According to this theorem we can establish a comparison between the d̄-distance and our pro-

jective metric, given a Markov measure satisfying the condition in (3.9) and any other probability

measure defined on An. Indeed, given the definition of projective measure, it is easy to see for all

n ∈ N we have the following inequalities

e−nρ(µ,ν) ≤ µ[aaan1 ]

ν[aaan1 ]
≤ enρ(µ,ν).

It follows that

Dn(µ, ν) ≤
∑
aaa∈An

µ[aaa]nρ(µ, ν) = nρ(µ, ν).

Therefore

d̄(µ, ν) ≤ 1

α

√
1

2n
Dn(µ|ν)

≤
√

2

2α

√
ρ(µ, ν).

It should be noticed that Marton’s inequality is not applicable only in the case where ν is a

Markov measure with the property given in (3.9).

In the space of the bi-infinite sequences, AZ, A a finite alphabet, if a stronger condition on ν is

imposed, Marton inequality also is true and we could establish a comparation between d̄ and ρ in

such symbolic spaces. The condition required is: Let ν be a stationary measure on AZ and write

γk = sup
N

sup
xxx0−N ,yyy

0
−N :xxx0−k,yyy

0
−k

|ν(·|xxx0
−N )− ν(·|yyy0

−N |.

If
∑∞

k=1 γk = 1− α, α > 0, then for any n and any probability measure µ on An,

d̄(µ, ν) ≤ 1

α

√
1

2n
Dn(µ|ν)
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The condition
∑∞

k=1 γk < 1 is a very strong mixing condition.

Condition (3.9) may not hold for a segment of a stationary mixing Markov chain. Still, Marton

derive the following bound. The condition required holds automatically if ν is mixing.

Let ν a stationary Markov measure defined on AZ and assume that for some k,

sup
x,y∈A

|ν(xk|a0 = x)− ν(xk|a0 = y)| = 1− α

with α > 0. Then for n = tk and any distribution µ on An

d̄(µ, ν) ≤ k3/2

α

√
2

n
Dn(µ|ν).

3.3 The ρ and d̄ distance attained by two particular Markov mea-

sures.

In this section we show two examples of the explicit calculation of the Ornstein’s d̄-distance. As

far as we know, these are the only explicit calculi made in the literature, and the main reason for

this, as we mentioned before, lies on the difficulty of finding an optimal coupling between the given

measures.

Before showing the mentioned examples, we will give an equivalent definition for the d̄- distance,

which will be useful for describing the ideas used by Ellis in [11], where he calculated the Ornstein

distance between two particular Markov chains.

Suppose that k ≤ n, k, n ∈ N. The frequency of the block aaak1 in the sequence xxxn1 is defined by

f(aaak1|xxxn1 ) = #{i ∈ [1, n− k + 1] : xxxi+k−1
i = aaak1}

where # denotes cardinality. The relative frequency is defined by dividing the frequence by the

maximum possible number of ocurrences, that is
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p(aaak1|xn1x
n
1x
n
1 ) =

f(aaak1|xxxn1 )

n− k + 1

The relative frequency defines a measure on Ak called the empirical distribution of overlapping

k-blocks of xxxn1 . The limiting frequence of aaak1 in the infinite sequence xxx is defined by

p(aaak1|xxx) = lim
n→∞

p(aaak1|xxxn1 )

given that this limit exists. A sequence xxx is said to be typical for a measure µ if for each k the

empirical distribution of each k-block converges to its theoretical probability µ(aaak1).

Given two words of length n, say xxxn1 , yyy
n
1 , consider the per-letter Hamming distance:

dn(xxxn1 , yyy
n
1 ) =

1

n

n∑
k=1

δ(xk, yk) where δ(x, y) =

{
0 if x = y

1 if x 6= y

Then a pseudometric, d̄(xxx,yyy), can be defined on X := AN by

d̄(xxx,yyy) = lim sup
n→∞

dn(xxxn1 , yyy
n
1 )

Thus, if xxx is a typical sequence for the process µ and yyy is typical sequence for the process ν,

then d̄(xxx,yyy) is the limiting upper density of changes needed to convert a typical sequence for one

process into a typical sequence for the other. That is, d̄(xxx,yyy) is the limiting per-letter Haming

distance between xxx and yyy. The equivalence of this definition for d̄ and the joining definition can be

seen in [36], Section I.9.

Example 3.3.1 Consider A = {0, 1} and 0 < α < 1/2. According to Ellis [11] if µα, µᾱ ∈ M(X)

denote the symmetric two-state Markov measures with transition matrices given as

Mα =

(
1− α α

α 1− α

)
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and

Mᾱ =

(
α 1− α

1− α α

)

respectively, then the d̄-distance for these pair of measures is d̄(µα, µᾱ) = 1−2α
2 .

To see this, consider xxx as a typical sequence for the measure µα and let yyy be a typical sequence

for µᾱ. The sequence xxx contains a limiting α-fraction of 1’s while the sequence yyy contains a limiting

(1−α)-fraction of 1’s, so that xxx and yyy must disagree in at least a limiting (1−α)−α
2 -fraction of places,

so that d̄(xxx,yyy) ≥ 1−2α
2 .

To establish the other inequality we need to define the partition distance. If P,Q are partitions

of a standard measurable space (X,M(X)) both indexed in a fix finite set and λ ∈M(X) then

|P −Q|λ =
1

2

∑
j∈A

λ(P j∆Qj)

where P j , Qj are the atoms of the given partitions and ∆ denotes the symmetric difference P j∆Qj =

(P j \Qj) ∪ (Qj \ P j). Now, consider the eight-state Markov process with transition matrix



0 0 α 0 1− 2α 0 α 0

0 0 0 α 0 1− 2α 0 α

α 1− α 0 0 0 0 0 0

1− α α 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

α 1− α 0 0 0 0 0 0

1− α α 0 0 0 0 0 0


and distribution λ = (1/4, 1/4, α/4, α/4, (1 − 2α)/4, (1 − 2α)/4, α/4, α/4). Then the measures µα

and µᾱ are coupled through the above matrix. To see this let A = 1 ∪ 3 ∪ 4 ∪ 5, B = 2 ∪ 6 ∪ 7 ∪ 8,
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C = 1 ∪ 3 ∪ 4 ∪ 6 and D = 2 ∪ 5 ∪ 7 ∪ 8. By lumping the states into the atoms A,B we obtain µα

and by lumping the states into the two atoms C,D this yields µᾱ. Then the process with the above

transition matrix and partitions P = {A,B} and Q = {C,D}, attains the partition distance:

|P −Q|λ =
1

2

∑
j∈A

λ(P j∆Qj)

=
1

2
[λ(A∆C) + λ(B∆D)]

=
1

2
[λ(5 ∪ 6) + λ(6 ∪ 5)]

=
1

2

[
2

(1− 2α)

4
+ 2

(1− 2α)

4

]
=

1− 2α

2
.

This implies that d̄(µα, µᾱ) ≤ (1−2α)
2 .

On the other hand, the example 1.3.4 shows how to calculate the projective distance between two

Markov processes with doubly stochastic transition matrices. Such distance a corresponds to

ρ(µα, µᾱ) = max
{C:|C|≤|A|}

1

|C|

|C|−1∑
j=1

|ω(cj , cj+1)|

= max
{C:|C|≤2}

1

|C|

|C|−1∑
j=1

∣∣∣∣log
M(j, j + 1)

Mα(j, j + 1)

∣∣∣∣
= max

{
log

1− α
α

, log
α

1− α
,
1

2

(
log

1− α
α

+ log
α

1− α

)}
=

∣∣∣∣log

(
α

1− α

)∣∣∣∣
This particular case allows one to conjecture that in the space of n-step Markov measures the

three metrics, D, ρ and d̄, are equivalent. With the following example we formulate the same

conjecture, but the argument presented by Ellis to calculate d̄ requieres a more technical analysis.

To be precise, we need to introduce the definition of d̄ in terms of partitions P , P -names and
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P -histories (the details can be seen in [32]). We present the example with the aim of showing the

ease in the calculi of ρ with respect to d̄.

Example 3.3.2 Let α, β, γ, δ be given numbers taken from the interval (0, 1). In ([12]) the distance

d̄ is calculated between two Markov measures denoted by µ, ν, with stochastic transition matrices

given, respectively, by

Mα,β =

(
1− α α

β 1− β

)

and

Mγ,δ =

(
1− γ γ

δ 1− δ

)
.

They assume that either γ = α − u, δ = β + w with u,w ≥ 0 (in that case, the Markov

chain is said to be written in proper form I) or γ = α + u, δ = β + w with u,w > 0 (which is

called Markov chain written in proper form II). If any of the following three conditions holds, then

d̄(µ, ν) = δ
γ+δ −

β
α+β .

(i) β + γ + δ ≤ 2 and (α− γ)(β + γ − 1) ≤ (δ − β)γ

(ii) α+ β + γ ≤ 2 and (δ − β)(β + γ − 1) ≤ (α− γ)β

(iii) α+ β = γ + δ

We compare the above distance with our projective distance using the Example 1.3.5. For this

purpose, it is easy to see that the left invariant vectors of these stochastic matrices are respectively

vα,β =
(

β
α+β ,

α
α+β

)
and vγ,δ =

(
δ

γ+δ ,
γ
γ+δ

)
. Then

ρ(µ, ν) = max

{∣∣∣∣log
β(γ + δ)

δ(α+ β)

∣∣∣∣ , ∣∣∣∣log
α(γ + δ)

γ(α+ β)

∣∣∣∣ , 1

2

∣∣∣∣log
(1− α)(1− β)

(1− γ)(1− δ)

∣∣∣∣}
We emphasize again, that the calculation of ρ for this type of Markov measures is irrespective

of the conditions imposed by Ellis.



CHAPTER 4

Remarks and open questions

With Theorems 3.2.2 and 3.2.5 we have established the incomparability of the d̄-topology and the

projective topology in the set of fully-supported probability measures. It is, nevertheless, not clear

if this incomparability remains in the restriction to the class of invariant probability measures. It

is not hard to verify that the projective distance between two Markov measures can be computed

by means of a finite algorithm taking the parameters defining the measures as inputs. One can also

argue that the output value varies continuously or, at worst, piecewise continuously with the input

parameters. This does not seem to be the case of the d̄ distance, which suggests that in the class

of Markov measures the projective topology is coarser than the d̄ topology.

Theorem 2.3.1 establishes a new criterion for uniqueness of g-measures based on the speed of

convergence of locally constant approximations to the g-function. It can be related to a similar

criterion ensuring convergence in d̄-distance established by Coelho and Quas in [8]. Although in our

case we cannot deduce that the limit measure satisfies the Bernoulli property, we can nevertheless,

ensure that the limit measure inherits the mixing property of the Markov approximations, and

thanks to Theorem 2.1.1, that the entropy is continuous with respect to the projective distance at

the limit measure.
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Example 2.3.2 is the g-measure analog of the one-dimension Ising model with long range interaction,

for which a phase transition has been proven to occur (see [10, 14] for details). The analogy suggests

that the uniqueness of the associated g-measure must break at high values of the parameter β. This

transition should be detectable through a criterion involving the regularity of the g-function and

the speed of convergence of the Markov approximations.

The projective distance appears to be suited for the study of measures obtained by random substi-

tutions as the one we have characterized in [34]. We can prove that for a certain class of random

substitutions, the substitution process is a contraction in the projective distance, and that the

unique attractor has the mixing property. The study of these kinds of processes and their charac-

terization in terms of the projective distance is the subject of a forthcoming work.



Appendix A

A.1. Primitive matrices

A n×n real matrix M is said to be primitive if M ≥ 0 (i. e. none of its entries is negative) and for

some k ∈ N, Mk > 0 (i. e. all the entries of Mk are positive). The primitivity index of a primitive

matrix M is the smallest integer ` such that M ` > 0. The Perron-Frobenius Theorem ensures that

the spectral radius (i. e. the maximal norm of its eigenvalues) of a primitive matrix M is achieved

by a simple positive eigenvalue λ with positive right and left eigenvectors vvv and www respectively.

The function dp : (0,∞)n × (0,∞)n → [0,∞) such that

dp(xxx,yyy) := max
1≤i≤n

log
xi
yi
− min

1≤i≤n
log

xi
yi
, (4.1)

defines a projective pseudo-distance which becomes a distance when is restricted to the simplex of

probability vectors. A refined version of the Perron-Frobenius Theorem which we can find in [35],

establishes that the action of a n × n primitive matrix M with primitivity index `, over the cone

(0,∞)n defines a contraction with respect to the projective pseudo-distance dp. More precisely, for

all xxx,yyy ∈ (0,∞)n we have

dp(Mxxx,Myyy) ≤ dp(xxx,yyy) and dp(M
`xxx,M `yyy) ≤ τMdp(xxx,yyy), (4.2)

where

45
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τM =
1−

√
mini,j,k,l

M`(i,j)M`(k,l)
M`(i,l)M`(k,j)

1 +
√

mini,j,k,l
M`(i,j)M`(k,l)
M`(i,l)M`(k,j)

. (4.3)

The coefficient τM is the so called Birkhoff’s contraction coefficient.

Proposition 2 Let P,Q : {1, 2, . . . , n} × {1, 2, . . . , n} → (0, 1) be stochastic by columns, i. e.,∑n
i=1 P (i, j) =

∑n
i=1Q(i, j) = 1 for each j ∈ {1, 2, . . . , n}. Suppose that

e−ε ≤ P (i, j)/Q(i, j) ≤ eε

for some ε > 0 and each i, j ∈ {1, 2, . . . , n}. Then the maximal eigenvalue of both matrices is 1,

and the associated positive right eigenvectors u, v are such that

dp(u, v) ≤ ε

1−min(τP , τQ)
,

where τP and τQ are the Birkhoff coefficients of P and Q respectively.

Proof. First note that an n×n positive matrix M , stochastic by columns, preserves the simplex

of probability vectors ∆ = {u ∈ [0, 1]n :
∑n

i=1 u(i) = 1}. Therefore, according to Inequality (4.2)

and Banach’s fixed point Theorem, the transformation u 7→ Mu has a unique fixed point v ∈
∆, which necessarily coincides with a positive eigenvector of M associated to the eigenvalue 1.

Furthermore, because of the contractiveness of M with respect to dp, we have v = limn→∞M
nu for

all u ∈ ∆. Hence there cannot be another positive eigenvector which implies that 1 necessarily is

the maximal eigenvalue of M . In this way we prove in particular that 1 is the maximal eigenvalue

of both P and Q with unique eigenvectors u, v ∈ ∆ respectively.

Let us assume now that τQ ≤ τP , then



Appendix A. 47

dp(u, v) ≤ lim
N→∞

N∑
n=0

dp(Q
nu,Qn+1u) + dp(Q

N+1, v),

≤ dp(u,Qu)
∞∑
n=1

τnQ =
dp(u,Qu)

1− τQ
=
dp(Pu,Qu)

1− τQ
.

Finally, since e−ε ≤ P (i, j)/Q(i, j) ≤ eε for all i, j ∈ {1, 2, . . . , n}, then

e−ε ≤
∑n

k=1 P (i, j)u(j)∑n
k=1Q(i, j)u(j)

≤ eε

for all 1 ≤ i ≤ n, and from this

dp(Pu,Qu) = max
1≤i≤n

log
(Pu)(i)

(Qu)(i)
− min

1≤i≤n
log

(Pu)(i)

(Qu)(i)
≤ 2ε.

A.2. Markov canonical approximations

A `-step Markov measure µ ∈M+(X) corresponds to a locally constant g-function gµ : X → (0, 1)

given by

gµ(xxx) =
µ[xxx`+1

1 ]

µ[xxx`+1
2 ]

,

and such that µ is the unique gµ-measure, i. e. M(gµ) = {µ}. The function gµ defines a primitive

matrix Mµ : A` ×A` → [0, 1] as follows:

Mµ

(
aaa`1, bbb

`
1

)
=

{
gµ(aaab`) if aaa`2 = bbb`−1

1 ,

0 otherwise.
(4.4)

It is easily verified that M `
µ > 0 and that 1 is Mµ’s maximal eigenvalue with right eigenvector

v : A` → (0, 1) such that v(aaa) = µ[aaa]. From Proposition 2 we derive the following.
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Proposition 3 Let µ, ν ∈M+(X) be two `-step Markov measures, and let gµ, gν ∈ G be the locally

constant g-functions associated to µ and ν respectively. Then

ρ(µ, ν) ≤ 2|| log(gµ/gν)||emin(svar`gµ,svar`gν).

Proof. Let vµ be such that vµ(aaa) = µ[aaa] for all aaa ∈ A`, and similarly for vν . Then, Proposition 2

directly implies that

dp(vµ, vν) ≤ 2|| log(gµ/gν)||
1−min(τµ, τν)

.

It can be easily verified that τµ < 1 − exp (−svar` log ◦gµ), and similarly for τν . From this it

follows that

dp(vµ, vν) ≤ 2|| log(gµ/gν)||emin(svar` log ◦gµ,svar` log ◦gν).

Let us recall that ρ(µ, ν) = supN∈N maxaaa∈AN |log(µ[aaa]/ν[aaa])| /N . If the supreme is not reached

at N < `, then

ρ(µ, ν) = sup
N∈N

max
aaa∈AN

∣∣∣∣∣∣ 1

N

n−∑̀
N=1

log

 gµ
(
aaan+`
n

)
gν

(
aaan+`
n

)
+

1

N
log

µ[aaaNN−`+1]

ν[aaaNN−`+1]

∣∣∣∣∣∣
= sup

N∈N
max
aaa∈AN

∣∣∣∣∣∣ 1

N

n−∑̀
N=1

log

 gµ
(
aaan+`
n

)
gν

(
aaan+`
n

)
+

1

N
log

vµ
(
aaaNN−`+1

)
vν
(
aaaNN−`+1

)
∣∣∣∣∣∣

≤ max (|| log(gµ/gν)||, || log(vµ/vν)||) .

On the other hand, if the supreme is achieved at some N < ` then
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ρ(µ, ν) ≤ max
aaa∈AN

1

N

∣∣∣∣log

(∑
bbb∈AN−` vµ(aaabbb)∑
ccc∈AN−` vν(aaaccc)

)∣∣∣∣
≤ max

aaa∈AN

∣∣∣∣∣∣log

 ∑
bbb∈AN−`

vµ(aaabbb)

vν(aaabbb)
× vν(aaabbb)∑

ccc∈AN−` vν(aaaccc)

∣∣∣∣∣∣
≤ max

aaa∈AN

∣∣∣∣log max
bbb∈AN−`

vµ(aaabbb)

vν(aaabbb)

∣∣∣∣ = || log(vµ/vν)||.

Finally, since both vµ and vν are probability vectors, we have

|| log(vµ/vν)|| ≤ max
aaa∈A`

log
vν(aaa)

vν(aaa)
− min
aaa∈A`

log
vν(aaa)

vν(aaa)
≡ dp(vµ, vν),

and with this

ρ(µ, ν) ≤ max (|| log(gµ/gν)||, dp(vµ, vν))

≤ 2|| log(gµ/gν)||emin(svar` log ◦gµ,svar` log ◦gν).
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