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Chapter 1

Abstract

Networks are present in many aspects of our daily lives. For exam-
ple, Communication Networks as telephone networks, Social Networks
as Facebook and Twitter, airline networks, road networks, Internet, and
WWW. The networks can be modeled using the tools of the graph the-
ory. For example in a network of papers citations, the vertices are the
papers and the edges the citation between them; in a network of web
pages, the vertices are the web pages and the edges are the hyperlinks
pointing from one page to another; and similarly for friendship networks,
epidemic networks, communication networks, etc. The Real networks are
commonly termed Complex Networks because have been demonstrated
that they have properties more complex than classical random graphs.

One motivation for study networks, is to decipher the local processes
that originate a particular behavior between its components and to pre-
dict wanted or unwanted effects. For example, it would be important
to predict how quickly an epidemic evolves and determinate how the
mechanisms of the network can be used to stop or eradicate it.

With the aim of to decipher the local processes that originate the
topological and dynamical properties of Complex Networks, in the lit-
erature can be found many growth and evolution models. However, at
this time do not exists a general model of network growth that, with the
incorporation of the appropriate processes, to be able to reproduce the
properties found in real-world complex networks. This is due to in the
growth and evolution of complex networks exists unknown process that
shape the topological and dynamical properties of this class of networks.

In this Thesis, is investigated the impact that some local processes
have in the topological properties of Complex Networks. Also are pro-
posed five growth models that reproduce some properties founded in real
Complex Networks.





Chapter 2

Introduction

Contents
2.1 Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Directed and undirected Networks . . . . . . . . . . . . . . . 3

2.1.2 Some properties of Networks . . . . . . . . . . . . . . . . . . 3

2.2 Network Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Networks

A network in general is any system that admits an abstract mathematical represen-
tation as a graph whose nodes (vertices) identify the elements of the system and
in which the set of connecting links (edges) represent the presence of a relation or
interaction among those elements. [1] Because of this, the mathematical tools used
in graph theory are suitable for the study of networks.

2.1.1 Directed and undirected Networks

Networks can be classified as directed or undirected. In directed networks, each
link has an origin node and a destination node, the number of incoming links and
outgoing links that a node ni has is called in-degree (kin(i)) and out-degree (kout(i))
respectively (see Figure 2.1a). In undirected networks, if one node is already con-
nected to other node, then the reverse link is regarded as a new link and it is then
said that both nodes have a link and the number of links that a node ni has is called
degree ki (see Figs. 2.1b).

2.1.2 Some properties of Networks

Some important properties that describe the topology of a network are:

• Degree distribution: This property describes the probability that a node
randomly selected from a network has a certain number of links. In undirected
networks, P (k) describes the probability that a node ni from the network has
k links. In directed networks, P (kin) and P (kout) describe the probability that
a node ni from the network has kin and kout links respectively.
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Figure 2.1: In the figure are shown two network examples, where the circles represent
the nodes and the lines and arrows to the links. a) A directed network comprising
six nodes n0...5 with the in-degree and out-degree values for each one node. b) An
undirected network comprising six nodes n0...5 with the degree values ki.

• Clustering coefficient: This property describes the fraction of links among
the neighbors nodes of a particular node. The Clustering Ci of a node ni in
the network is obtained as follow:

– in directed networks

Ci =
ε

β(β − 1)
,

– in undirected networks

Ci =
2ε

β(β − 1)
,

where β is the number of neighbor nodes that ni has and ε is the number of
links among the neighbor nodes of ni. In order to shed light how the Clustering
is calculated see Figs. 2.2a and 2.2b. Finally, Clustering C of the network is
the average:

C =
1

N

N∑
i=0

Ci

where N is the number of nodes in the network.
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Figure 2.2: Undirected network a) and directed network b) comprising four nodes
n0...3, it is shown how the local clustering C3 of node n3 decreases as the number of
links between his neighbor nodes decreases.

• Shortest Path Length: The minimum quantity of links for to go from a
node ni to another node nj in the network is called the shortest path length
Lij (see Fig. 2.3). When not exist a possible path between two nodes ni and
nj , it is said that Lij =∞.

• Diameter: The greatest Lij from the all possibles Lij in the network is called
Diameter of the Network (see Fig. 2.3).
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L03=1

L04=2

L05=2

L34=1

L35=1

L24=1

L31=2

L51=1
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Figure 2.3: Directed network comprising six nodes n0...5. In the figure are shown
the possible Lij values and the Diameter of the network.

• Island Size distribution (Is): A network may consist of several islands
(usually called clusters or components), where an island is a set of nodes which
is not connected to the rest of the network as depicted in Fig. 2.4. The number
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of islands with a certain size is described by the Island Size distribution. In a
network comprised by islands, the island with the greater quantity of nodes is
called giant island.

Figure 2.4: Directed network comprising nine islands. In the figure are shown eight
islands (enclosed with dotted line) and the giant island (enclosed with solid line).

2.2 Network Study

From 1959, it was assumed that real networks could be modeled as random networks
using the well known random graph model proposed by the Hungarian Mathemati-
cians Paul Erdös and Alfréd Rényi [2](ER model). That is, was supposed that
real networks could be properly modeled connecting their nodes by links randomly
placed. In the ER model it is assumed that initially the network is composed by
N isolated nodes and at each time step two different nodes are selected randomly
and linked with probability p (with p > 0). An important property of networks
generated with this model is that have degree distributions that follow a Poisson
distribution.

In the late 90’s, several publications showed that real-world networks such as
small metabolic networks [3], scientific collaborations networks [4] or large informat-
ics networks (i.e., the Internet [5] or WWW [6, 7]) exhibit topological properties
different from those found in random networks. For example, the degree distribution
P (k) between their nodes decay as a power law P (k) ∼ k−γ [8], have high clustering
coefficient and small diameter, that is, are small world networks [9].

This new class of networks are termed complex networks (CN) due to their
properties, [10] which suggest that a random model is not suitable for their study.
That is, the real networks are more complex than classical random graph [2]. Several
examples of real complex networks are shown in Table 2.1.
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Table 2.1: List of some real-world complex networks with their corresponding type
(d:directed,u:undirected), number of nodes, clustering (C), the average shortest path
length (SPL), diameter (D), exponent γin of the in-degree distribution (P (kin))
and the exponent γout of the out-degree distribution (P (kout)). More examples of
complex networks can be found in Refs. [11, 12, 13]

Network Type Number C SPL D γin γout

of nodes

WWW [14] d 325, 729 0.087 11.2 46 2.1 2.45

U.S. patents [15] d 3, 774, 324 0.067 8.24 26 - -

Internet, AS. [16] u 34, 761 0.0485 3.78 10 1.92 1.92

Network of flights
between airports
of the world. [16]

d 2, 939 0.25 4.18 14 1.74 1.74

Actor colabora-
tion. [16]

u 382, 219 0.16 3.7 13 2.13 2.13

User Friendship
Youtube. [16]

u 1, 134, 890 0.0062 5.55 24 2.14 2.14

Network of
protein interac-
tions. [16]

u 1, 870 0.055 7.07 19 3.04 3.04

Flickr Social net-
work. [16]

d 2, 302, 925 0.108 5.46 23 1.71 1.71
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In the growth of real CN exists local process that shape the topological proper-
ties of these networks. For example, in the WWW network links are not static and,
at any time, a node (web page) may lose a connection to another node (deleting a
hyper-link) and add this same connection to a different node (a rewiring process),
new links can appear in the network (links added), also nodes can be dead (deleting
nodes) and other unknown local process. These local processes are present in other
real networks as Social networks. On the other hand, in other real networks as the
paper citation networks the mentioned local processes are not present, that is, the
papers not dead, the cites between papers are not rewired (links are static), new
cites between old papers can not be appear, but in this type of networks there are
other local processes that shape the topological properties of this type of networks.
Although many real networks do not share the same local processes, they have very
similar topological properties, for example the distribution of links between their
nodes follows a power law.

With the discovery of CN the challenge that exists up today aims to develop
a general model of network growth that, with the incorporation of the appropriate
processes, would be able to reproduce the properties found in real-world CN . In
this regard, a lot of models have been proposed so far [17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30]. Some of them are described in Chapter 3. In this Thesis, is
investigated the impact that some local processes have in the topological properties
of Complex Networks. In particular, is analyzed the effect that the prohibition of
multiple links and its combination with other local process have in network prop-
erties as the in-degree distribution, Clustering and shortest-path. Also are present
two models capable of generate out-degree distributions that follows a power law,
and one model capable of generate island size distributions that decay as a power
law.

This thesis is organized as follows. In Section 3 are described some growth
models for Complex Networks proposed previously. In Section 4 is developed a
growth model that incorporates the multiple links prohibition process. A proposed
growth model that incorporates in joint the internal links, rewiring and multiple
links prohibition is presented in Section 5. Two growth models capable to generate
out-degree distributions that decay as a power law are present in Section 6. In
Section 7, a growth model capable to obtain Island Size and In-degree distributions
with power-law behavior is present. Finally, Discussion and Conclusions are given
in sections 8 and 9 respectively.

On the other hand, it is important to mention that with the models proposed in
Sections 4,5 and 6, four research papers were published [27, 28, 29, 30].
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Related work

With the aim of reproducing the properties found in real networks, a lot of models of
network generation have been proposed, some of these models are described below.

3.1 Barabási-Albert Model (Preferential Attachment)

In 1999, Barabási and Albert (BA) [17] proposed a growth model for undirected CN .
In this model is introduced in first time the preferential attachment concept which
assumes that the probability for a node ni gain new links is directly proportional
to the amount of links that ni has. That is, the BA model is based on the rich-get-
richer approach.

In the BA model, the growth of the network is by node addition and preferential
attachment: initially, there are m0 nodes and as time evolves a new node is added
with m ≤ m0 links. The probability

∏
BA in which a new node is linked to node ni

in the network, is proportional to the degree ki of node ni given by:∏
BA

(ki) =
ki∑
j kj

. (3.1)

In particular, the BA model is able to obtain degree distributions P (k) that
decay as a power law P (k) ∼ k−γ , however it yields a fixed exponent γ = 3 [17] as
depicted in Fig. 3.1. This contrasts to the values of γ found in several real-world
CN , which range 1.05 < γ < 8.94 [8, 11, 16, 31].
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Figure 3.1: In the figure, the solid line represents the degree distribution generated
by the BA model and the dashed line is a power law with exponent γ = 3.
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3.2 Initial Attractiveness

In 2000, Dorogovtsev, Mendes and Samukhin [18] proposed an alternative growth
model for directed CN . In the rest of the thesis we refer to it as DMS model. The
DMS model is mainly based on the BA model with two differences:

1. All the nodes born with a same initial attractiveness A.

2. At each time step a new node and simultaneously m directed links are added
to the network. Such links can come from any of the existing nodes (i.e., they
may come out from the new node, from old nodes, or even from outside of the
network).

Furthermore, in this model the probability
∏
DMS that a node ni in the network

gets a link is proportional to both kin(i) and A, as stated in Eq. 3.2.

∏
DMS

(kin(i)) =
kin(i) +A∑

j

(kin(j) +A)
, (3.2)

In particular, with this model it is possible to obtain In-degree distributions that
follows a power law of the form P (kin) ∼ k−γinin with

γin = 2 +
A

m
. (3.3)

That is, this model is capable to obtain exponents spanning 2 < γin < ∞ for
the in-degree distribution.

3.3 Nonlinear preferential attachment

In 2000, Krapivsky, Redner, y Leyvraz [19] proposed a growth model for directed
CN . This model consider the network growth as follow: at each time step a new
node nnew with one outgoing link (m = 1) is added to the network and links to a
node ni already present in the network with probability∏

(ki) =
kαi∑

j

(kαj )
, (3.4)

where ki is the sum of kout(i) and kin(i) of ni.
In particular, in this model is investigated the effect that a nonlinear preferential

attachment have in the degree distribution. They found that:

1. For α < 1, P (k) follows an exponential distribution.

2. For α > 1 nearly all nodes are connected to a same node. When α > 2

and considering that the network starts with a single node (nroot), all sites
are connected to nroot, thus the network becomes to be a star graph and
P (k) = δN−1(k) where N is the number of nodes in the network.



3.4. Copying 11

3. For α = 1, P (k) decay as a power law with exponent γ = 3.

4. In the limα→1, P (k) decay as a power law with exponent 2 < γ < 3 and
3 < γ <∞.

That is, they found that the scale-free nature of the network is present only
when the preferential attachment is asymptotically linear. In this case the exponent
of the degree distribution can be tuned to any value between 2 and ∞.

3.4 Copying

In 2005, Krapivsky and Redner [20] proposed a growth model for directed CN . In
this model is introduced in first time the copying process. In this model, the growth
of the network is by node addition and copying links. That is, at each time step a
new node ni is added to the network, ni selects a target node randomly and links
to it, as well as to all ancestor nodes (see Fig. 3.2).

n0n4

n5

n3

n1
n2

Figure 3.2: Directed network comprising six nodes n0...5. The figure shows the
the copying process, the node n5 is added and randomly selects the node n2 and
connects to it and to nodes n0 and n1 (dotted arrows).

This model is able to obtain in-degree distribution that follows a power law
(P (kin) ∼ k−γin ) with a fixed exponent γ = 2, and out-degree distribution following
a Poisson distribution.

3.5 Accelerated Growth

In real networks as Internet [5], WWW [32], and co-authorship network [33] the
average degree increases over the time, that is the number of links in the network
increases more rapidly than the number of nodes. This phenomenon is called accel-
erated growth.

The impact of accelerated growth on the in-degree distribution was investigated
by Dorogovtsev and Mendes [21], they proposed a growth model for directed CN
that incorporates the accelerated growth mechanism in the network evolution. The
model is as follow: at each time step a new node nnew is added to the network and
receives β incoming links from random nodes in the network. In the same time step,
c0t

θ (c0 > 0 and 0 < θ < 1) links are distributed on the network, each one of these
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links starts in a randomly selected node and finalizes in a node nj according to the
next probability:

∏
(kin(j)) =

kin(j) +A

(kin(j) +A)
,

which represents the preferential connection. This model is able to obtain in-degree
distribution with power law behavior P (kin) ∼ kγin with:

γ = 1 +
1

1 + θ
.

3.6 Rewiring

In several real networks the links are not static. That is, a node ni connected to
other node nj can disconnect from this and connect to other node nk. This process
is called Rewiring, and is present in real networks as Internet [5] and WWW [32]
for example.

The impact that the rewiring have in the degree distribution P (k) was investi-
gated by Albert and Barabási [25], they proposed a model that incorporates jointly
the rewiring and addition of links in the network. The model follows the next rules:

1. with probability p, m (m < m0) links are added to the network. For each one
link, one end is attached to a randomly selected node and the other end is
attached to a node ni with probability:

∏
(ki) =

ki + 1∑
j(kj + 1)

. (3.5)

2. With probability q, m links are rewired. For each rewire, one link lij (link
that connects to nodes ni and nj) selected randomly is removed and a new
link lij′ is created accordingly to

∏
(kj′) (see Eq. 3.5).

3. With probability 1 − p − q a new node nnew is added to the network and
connects to m nodes presents in the network accordingly to Eq. 3.5.

Albert and Barabási found that the exponent γ of the degree distribution P (k) ∼
k−γ changes with p, q and m, covering a range of exponents from γ = 2 to ∞. In
particular, they found that their model is capable of reproduce the connectivity
distribution of movie actors. [25]

3.7 Internal edges and edge removal

Dorogovtsev and Mendes [26], investigated the effect that both addition and dead
of links have in the degree distribution. They proposed a growth model consisting
in the next rules: at each time step a new node is added to the network, at the
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same time c links are added between pairs of unconnected nodes ni and nj with
probability proportional to the product of their degrees ki · kj . Additionally, c links
between old nodes are removed with equal probability.

They found that their model is able to generate degree distributions P (k) with
power-law behavior P (k) ∼ k−γ , where

γ = 2 +
1

1 + 2c
.

3.8 Aging and Cost

Amaral et al. [22], studied the effect that the aging and cost have in P (k). In their
model, aging refers to the phenomenon in which the younger nodes have higher
probability than old nodes to obtain new links and cost is defined as the the limit
of links that each one node can to have. The model evolves following growth and
preferential attachment as the BA model, but when a node reaches a certain age or
has more than a critical number of links, new links cannot connect to it.

Using numerical simulations, they found that the power law behavior of P (k)

becomes to disappear as the nodes age increases rapidly and when the capacity of
links for each one node is small.

3.9 Gradual Aging

In 2000 Dorgovtsev and Mendes [34], investigated the effect that the gradual aging
of the nodes have in P (k). Their model is by node addition one at each time step
t and preferential attachment. They propose that the probability

∏
for a node ni

(added at the time step ti) gain new links should depend of both his degree and his
age, as:

∏
=

kiτ
−ν
i∑

j kjτ
−ν
j

. (3.6)

where ν ≥ 0 and τi = t − ti . They found that the model is able to generate
distributions of P (k) with power law behavior only when ν < 1 with exponent
3 < γ <∞.





Chapter 4

The impact of multiple links
prohibition in Directed Complex

Networks

In some models as the proposed by Barabási et.al. [17, 25], Amaral et.al. [22] and
Dorogovtsev et.al. [18, 21, 26, 34] are allowed multiple links, that is a node nj could
have more than one link from or to a same node. In contrast, several real CN
do not have multiple links. For example, in a paper citation network an article in
its reference section does not have two identical references, in a friendship network
not exist more than once friendship bond between two individuals. The lack of
multiple links in such networks suggest that the growth and evolution models of
CN should consider such a feature in order to properly describe the topological
properties of this class of networks. With this idea, is proposed a new growth model
for directed CN based on the DMS model (see Initial Attractiveness in Chapter
3). The proposed model prohibits multiple links between pairs of nodes, and it is
designated as multiple links free (MLF ) model.

This Chapter is organized as follows. Section 4.1 considers the DMS model by
taking into account directed multiple links. Section 4.2 outlines the features of the
MLF model. The experiment details and results are shown in Section 4.3. The
analytical considerations for the MLF model are presented in Section 4.4. Finally,
section 4.5 demonstrates that theMLF model is able to reproduce some topological
properties of a real network.

4.1 The DMS model and directed multiple links

As it described in Chapter 3, in DMS model [18] the growth of the network is by
node addition and preferential attachment. That is, at each time step t a new node
and simultaneously m directed links are added to the network. Such links can come
from any of the existing nodes (i.e., they may come out from the new node, from
old nodes, or even from outside of the network). Each one link is connected to a
node ni with probability:

∏
DMS

(kin(i)) =
kin(i) +A∑

j

(kin(j) +A)
, (4.1)
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Figure 4.1: An example of a directed network according to the DMS model. This
particular network comprises five nodes n0, ..., n4 at time t. At time step t + 1,
node n5 is added and simultaneously m = 4 directed links (indicated by dashed
arrows) are also added. Note, in this case, that a double link between n4 and n1

was generated.

where kin(i) and A are the in-degree and initial attractiveness of ni respectively. A
is the same for all the nodes.

It is important to mention that, the DMS model generates multiple links be-
tween any pair of nodes, as depicted in Fig. 4.1. Dorogovtsev, et. al., [18] state
that for large-scale networks (i.e., t >> 0) the probability of emerging multiple links
tends to zero. However, although the probability of emerging multiple links in the
network tends to zero as t→∞, the existence of multiple links generated in earlier
evolution states of the network remain during the whole life of the network. In
contrast, most real CN do not have multiple links. For example, in a paper citation
network an article in its reference section does not have two identical references, in
a friendship network not exist more than once friendship bond between two indi-
viduals. To support this notion, a subset of real networks has been analyzed (see
Table 4.1) and in these networks no multiple links were found. More examples of
networks with no multiple links can be found in [16].

Table 4.1: List of some real-world directed complex networks with their correspond-
ing number of nodes and links between nodes. No multiple links are found in any
of them.

Real-world Number Number
networks of nodes of directed links

The WWW at nd.edu domain network. [14] 325, 729 1, 497, 134

The citation network in the U.S. patents from
1975 to 1999. [15]

3, 774, 324 16, 522, 438
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Real-world Number Number
networks of nodes of directed links

The Internet topology at the autonomous system
level. [35]

39, 280 73, 324

The collaboration network of Arxiv Astro
Physics category (period January 1993 to April
2003). [36]

18, 772 396, 160

The paper citation network of Arxiv High En-
ergy Physics category (period January 1993 to
April 2003). [36]

34, 546 421, 578

The paper citation network of Arxiv High En-
ergy Physics Theory category (period January
1993 to April 2003). [36]

27, 770 352, 807

The email network of a large European Re-
search Institution (period October 2003 to May
2005). [36]

265, 214 420, 045

The collaboration network of Arxiv General Rel-
ativity and Quantum Cosmology category (pe-
riod January 1993 to April 2003). [36]

5, 242 28, 980

The collaboration network of Arxiv Condense
Matter Physics (period January 1993 to April
2003). [36]

23, 133 18, 693

The collaboration network of Arxiv Condense
Matter Physics (period January 1993 to April
2003). [36]

23, 133 18, 693

The directed network of flights between airports
of the world. [16]

2, 939 30, 501
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P
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)

kin

Figure 4.2: Distribution P (kin) obtained with m = 2 and three different values
for A. The symbols (×,©,�) correspond to three numerical simulations of DMS

model considering that links emerge only from every new added node. The line is
the analytical solution of DMS model (Eq. 9 in Ref. [18]). Figure shows that the
behavior of the DMS model is not affected by the origin of the links added to the
network as stated in Ref. [18].

In order to measure the fraction of multiple links generated by DMS model,
only links emerging from every new added node to the network are considered.
Furthermore, the behavior of the DMS model is not affected by the origin of the
links added to the network [18] (see Fig. 4.2).

By using the DMS model, 12 experiments were carried out consisting of two
sets of simulations, one with 6 simulations with m = 2 and another one with 6
simulations with m = 8; both sets used A = 10, 1, 0.1, 0.01, 0.001, and 0.0001. In
every experiment, the network growth from t = 2 up to t = 105 nodes. And the
experiments were performed 103 times and then averaged out. In each experiment
the amount of directed multiple links qdml and the total number of directed links
qdl within the network were measured. With these values the fraction of directed
multiple links Pdml was calculated as follow:

Pdml =
qdml
qdl
≈ qdml

mt
. (4.2)

Note that m is the same for all the nodes and therefore qdl ≈ mt.
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Figure 4.3: Fraction of directed multiple links Pdml obtained by using the DMS

model for several values of A as a function of time t. (a) with m = 2, and (b) with
m = 8. See text for details.

The values for Pdml retrieved from the experiments are shown in Fig. 4.3. It
can be see that as A → 0, the value of Pdml attains a constant value independent
of the size of the network (t). For example, with m = 2 (Fig. 4.3a), Pdml ≈ 49.9%

(dashed line) for A ≈ 0. In this case, for every two directed links added to the
network, one of them is rendered as a directed multiple link. Likewise, for m = 8

(Fig. 4.3b), Pdml ≈ 87.4% (dashed line) for A ≈ 0. From eight directed links added
to the network, seven are directed multiple links.

From the above, it can infer that when the initial attractiveness A approaches
zero, the probability

∏
DMS that a node ni belonging to the network gets a new link

is ruled by the number of incoming links kin(i), as stated by Eq. 4.1. Thus, nodes
nj having no incoming links (kin(j) = 0) exhibit

∏
DMS ≈ 0. Consequently, every

new node has a high probability to link an only one node through its m outgoing
links, thus yielding m− 1 directed multiple links. Accordingly, for A→ 0 the ratio
Pdml now takes the form:

Pdml(m) ≈ m− 1

m
, for A→ 0. (4.3)

To illustrate this process, consider the scenario shown in Fig. 4.4a which de-
scribes the growth of a directed network from t0 up to t1, with A = 1

10000 for all
the nodes. A new node nnew is born at each time step, which is connected through
m = 2 links and t is divided into two time sub-steps τ0 and τ1; each τi is used by
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τ0) first link of n2  

Figure 4.4: a) Growth of a directed network using the DMS model with A = 1
10000

from t0 to t1. b) Growth of a directed network using the DMS model with A = 10,
from t0 to t1.

nnew to connect one link. At t0 the network comprises nodes n0 and n1 without
incoming links. Therefore, according to Eq. 4.1,

∏
DMS takes the value of 1

2 for
each one. At τ0 of t1, node n2 is born and it chooses to link to one of the two nodes
already existing in the network. It is assumed that node n2 links to n0 using its
first link (see τ0 of t1 in Fig. 4.4a). At the end of τ0, the probability

∏
DMS to

get a second link from n2 is 1+0.0001
1+0.0002 ≈ 1 for n0, and 0.0001

1+0.0002 ≈ 0 for n1. At τ1 of
t1, n2 is linked to n0 using its second link (see τ1 of t1 in Fig. 4.4a), thus giving
raise a directed multiple link in the network. At the end of t1, the probability to
get a link from a new node, is

∏
DMS = 2+0.0001

2+0.0002 ≈ 1 for n0 and 0.0001
2+0.0002 ≈ 0 for n1.

Subsequent new nodes will have a higher probability to link to node n0 throughout
their m = 2 outgoing links.

Fig. 4.3 shows that as A >> 0 and t → ∞, then Pdml → 0. If this would be
the case, then the real complex networks would have multiple links in any stage of
their evolution. This contrast with the networks listed in Table 4.1 as they have not
multiple links. This is further understood by noticing that, as A becomes greater
than 1, the difference between subsequents probabilities

∏
DMS associated to node

nj decreases, indicating a random process in the network. In order to clarify this
feature, consider the scenario shown in Fig. 4.4b with A = 10. At t0 the network
comprises nodes n0 and n1 without incoming links. Therefore, according to Eq. 4.1,∏
DMS takes value of 1

2 for both nodes.
At τ0 of t1, node n2 is born and it chooses to link to one of the two nodes already

existing in the network. It is assumed that node n2 links to n0 using its first link
(see τ0 of t1 in Fig. 4.4b). At the end of τ0, the probability

∏
DMS to get a second

link from n2 is 1+10
1+20 ≈

1
2 for n0, and 10

21 ≈
1
2 for n1; thus, when comparing to the case

outlined in Fig. 4.4a (A = 1
10000) with A = 10, the difference of

∏
DMS for nodes n0

and n1 decreases and exhibits a random process. At τ1 of t1, n2 is linked to n1 using
its second link (see τ1 of t1 in Fig. 4.4b). At the end of t1, the probability

∏
DMS

to get a link from a new node, is 1
2 for both n0 and n1. This causes the existence of

a smaller probability for directed multiple links emerge.
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4.2 The MLF model

The MLF model relies on the DMS mechanism with a different assumption in
that each node ni can have any number of incoming links kin(i), but stemming from
different nodes; i.e., it is not allowed that node ni has more than one incoming link
from node nj . It is worth to mention that in the MLF model the links emerge
only from the new nodes added to the network. In essence, the growth in the MLF

model is ruled by node addition with preferential attachment: initially, there exists
two nodes connected by one directed link, and at each subsequent time step a new
node nnew is added to the network with kout = m outgoing links to be connected
to the nodes already existing in the network. Each time step t is divided into m
sub-time steps τj (t → τ0, τ1, ..., τm−1). Additionally, every τj is employed by node
nnew to connect to the network by using its m links. The probability

∏
MLF that

node ni belonging to the network gets a link from nnew is given by:

∏
MLF

(kin(i)) =



0 if ni ∈ Vnew

kin(i) +A∑
nj /∈Vnew

(kin(j) +A)
if ni /∈ Vnew ,

(4.4)

where A is the initial attractiveness of ni and Vnew is the set of nodes that have
received an incoming link from node nnew. Such a set is necessary in order to avoid
the existence of multiple links.

n3 n3τ0) first link of n2 τ1) second link of τ0) first link of  

Figure 4.5: Growth of a directed network using the MLF model from t0 to t2.

In order to shed light on the behavior of the MLF model, consider the scenario
shown in Fig. 4.5 which shows the growth of a directed network from t0 up to t2,
with A = 1 for all the nodes. A new node is born at each time step, which connects
through m = 2 links and t is divided into two time sub-steps τ0 and τ1. At t0 the
network comprises nodes n0 and n1. Node n0 has one incoming link, whereas n1

has none. Therefore, according to Eq. 5.1,
∏
MLF now takes values of 2

3 and 1
3 for

n0 and n1, respectively. At τ0 of t1, node n2 is born and it chooses to link to one of
the two nodes already existing in the network. It is assumed that node n2 links to
n0 using its first link (see τ0 of t1 in Fig. 4.5). Subsequently, since n0 already got an



22
Chapter 4. The impact of multiple links prohibition in Directed

Complex Networks

incoming link from n2, n0 now belongs to set V2. At the end of τ0, the probability∏
MLF to get a second link from n2 is zero and one for n0 and n1, respectively. At

τ1 of t1, n2 is linked to n1 using its second link (see τ1 of t1 in Fig. 4.5) and n1 is
added to V2. At t2, node n3 joins the network and it will link in the same way node
n1 did, and so on for the next new nodes joining the network.

4.3 Experiment details and results

Using numerical experiments, was analyzed the impact that different values of A and
m have on the in-degree distribution P (kin), on the corresponding network clustering
and on the shortest path using the proposedMLF model. Twelve experiments were
carried out: I) four with A = 1 and m = 1, 2, 8, 32; II) four with A = 10−2 and
m = 1, 2, 8, 32; III) four with A = 10−4 and m = 1, 2, 8, 32. In each experiment, the
network growth from 2 up to 104 nodes, repeated 103 times and averaged out.

Fig. 4.6 shows the in-degree distribution P (kin), Fig. 4.7 the CDF of clustering
(C) and Fig. 4.8 the CDF of shortest path length (SPL) of the network obtained
for each experiment. Two different cases can be distinguished and are described as
follows:

• Case 1 (m = 1):
Figs. 4.6a, 4.7b and 4.8c show the experimental results withm = 1. TheMLF

model produces a P (kin) with exponents γMLF , identical to those predicted
by the DMS model (see Eq. 2.3). This is expected since with m = 1 the
existence of directed multiple links is not possible, and therefore both DMS

and MLF models yield similar results. The clustering gives C = 0, which is
also expected since with m = 1 the resulting network is a tree. Finally, the
average of the SPL tends to ≈ 1 as A→ 0.

• Case 2 (m > 1):
Figs. 4.6-4.8 (d-l) shows the experimental results with m = 2, 8 and 32,
respectively. Contrary to the case with m = 1 presented above, one can see
that the MLF model yields P (kin) distributions with γMLF → 1, as A → 0

and m attains values larger than one. This contrasts to the lower bound value
of γDMS ≈ 2 (Eq. 2.3). Finally, the clustering C tends to ≈ 0.5 and the SPL
tends to ≈ 1, as A→ 0.
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Figure 4.6: a, d, g, j) In-degree distributions P (kin) retrieved from numerical ex-
periments with different values of m and A. In the figures, the symbols (©,4,�)
represents the In-degree distribution retrieved from the simulations for each value
of A and the solid lines are power laws with its respective γ exponent.



24
Chapter 4. The impact of multiple links prohibition in Directed

Complex Networks

-1.0 -0.5 0.0 0.5 1.0
0

1

 

 

 A=1
 A=1/100
 A=1/10000

b)

m=1

0.01 0.02 0.03 0.04 0.3 0.4 0.5

0

1

 

 

 

 A=1
 A=1/100
 A=1/10000

e)

m=2

C
D
F
−→

0.15 0.45 0.50

0

1

 

 

 
 A=1
 A=1/100
 A=1/10000

h)

m=8

0.34 0.36 0.44 0.46 0.48 0.50

0

1

 

 

 

 A=1
 A=1/100
 A=1/10000

k)

m=32

Clustering

Figure 4.7: b, e, h, k) Cumulative distribution function (CDF ) obtained respect to
the clustering (C) of the networks.
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Figure 4.8: c, f, i, l) Cumulative distribution function (CDF ) obtained respect to
the shortest path lengths (SPL) of the networks.

From the above experimental results, it can infer that as A → 0 and m >> 1,
the exponent γMLF of P (kin) tends to ≈ 1, the clustering of the network increases
and the average length of the shortest-paths in the network decreases.

4.4 Analytical solution of MLF model

In this section, is developed an analytical solution for the MLF model in the limit
as initial attractiveness of nodes approaches to zero (limA→0).

Recalling that in the DMS model, at each time step a new node is connected
to the network through m directed links, Eq. 4.1 can be written as:

∏
DMS

(kin, t) =
kin + am

(1 + a)mt
, (4.5)

where a = A
m according to the procedure outlined in Ref. [18].
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nα

nβ

nα nα nα

nβ nβ nβ

a) b) c) d)

Figure 4.9: Connection of node nα to nβ through its m outgoing links according to
the DMS model in the limit as initial attractiveness of nodes approaches to zero
(limA→0). See text for details.

From Eq. 4.3 is known that using the DMS model, in limA→0, every new added
node (nnew) has a high probability to connect a single node using its m outgoing
links, yielding m − 1 directed multiple links. This behavior is also denoted by
Dorogovtsev et.al. [18] (in discussion section). With such a result, it is possible
define the probability

Ψdml(x, ε) ≈
ε

x
, in limA→0, (4.6)

where nnew has ε directed multiple links after it has connected to the network using
x links, where x = 1, 2, ...,m.
To elucidate how ε behaves with respect to x, consider Fig. 4.9. In this figure the
node nα links to node nβ through itsm outgoing links. After nα to connects the first
link (x = 1) there are no directed multiple links (ε = 0), thus Ψdml(x, ε) = 0

1 (Fig.
4.9 a); after nα connects the second link (x = 2) there is one directed multiple links
(ε = 1), thus Ψdml(x, ε) = 1

2 (Fig. 4.9 b); after nα connects the third link (x = 3)
there are two directed multiple links (ε = 2), thus Ψdml(x, ε) = 2

3 (Fig. 4.9 c); after
nα connects the x − th link there are x − 1 directed multiple links (ε = x − 1).
Therefore, Eq. 4.6 can be written as:

Ψdml(x) ≈ x− 1

x
, in limA→0. (4.7)

From the above, is possible to define the probability for the x − th link, added by
nnew, to be a directed non-multiple link as:

1−Ψdml(x) ≈ 1− x− 1

x

1−Ψdml(x) ≈ 1

x
, in limA→0. (4.8)

Now is defined P (kin(i), i, t) as being the probability for node ni to have kin(i)

incoming links at time step t. Thus on the average, for an arbitrary node the
probability is given by:
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P (kin, t) =
1

t

t∑
s=1

P (kin(s), s, t). (4.9)

By taking into account that using the MLF model, at each time step t m

non-multiple directed links are added to the network, the temporal evolution for
P (kin(i), i, t) is given by the following master equation:

P (kin(i), i, t+ 1) =

m

p1︷ ︸︸ ︷
first link︷ ︸︸ ︷∏

DMS

(kin − 1, t) (1−Ψdml(1)) + · · ·+

m−th link︷ ︸︸ ︷∏
DMS

(kin − 1, t) (1−Ψdml(m))

P (kin(i) − 1, i, t)

+

p2︷ ︸︸ ︷1−m


first link︷ ︸︸ ︷∏

DMS

(kin, t) (1−Ψdml(1)) + · · ·+

m−th link︷ ︸︸ ︷∏
DMS

(kin, t) (1−Ψdml(m))


P (kin(i), i, t) .

(4.10)

The term labeled as p1 in Eq. 4.10 is associated to the fact that node ni is chosen
so as to acquire the first, second or m− th non-multiple incoming link from nnew;
whereas p2 describes the situation when ni is not chosen to acquire the non-multiple
incoming link.
Simplifying is obtained,

P (kin(i), i, t+ 1) =m
∏
DMS

(kin − 1, t)

(
m∑
x=1

(1−Ψdml(x))

)
P (kin(i) − 1, i, t)

+

[
1−m

∏
DMS

(kin, t)

(
m∑
x=1

(1−Ψdml(x))

)]
P (kin(i), i, t).

(4.11)

By substituting Eq. 4.5 and defining β as:

β =
m∑
x=1

(1−Ψdml(x)) =
m∑
x=1

(
1− x− 1

x

)
=

m∑
x=1

1

x

into Eq. 4.11:

P (kin(i), i, t+ 1) =

[
β(kin − 1 + am)

(1 + a)t

]
P (kin(i) − 1, i, t)

+

[
1−

(
β(kin + am)

(1 + a)t

)]
P (kin(i), i, t),

(4.12)
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By performing the summatory in Eq. 4.12 from i = 1 to t, and by taking account
Eq. 4.9 is obtained

• for the left-hand side:

t∑
i=1

P (kin(i), i, t+ 1) =
t+1∑
i=1

P (kin(i), i, t+ 1)− P (kin(i), t+ 1, t+ 1)

= (t+ 1)P (kin, t+ 1)− δk,0,
(4.13)

where δk,0 means that node are born with zero in-degree (i.e. without incoming
links);

• for the right-hand side:

t∑
i=1

P (kin(i) − 1, i, t) = tP (kin − 1, t) (4.14)

t∑
i=1

P (kin(i), i, t) = tP (kin, t). (4.15)

By inserting Eqs. 4.13, 4.14 and 4.15 into Eq. 4.12, is obtained:

(t+ 1)P (kin, t+ 1)− δk,0 =
β(kin − 1 + am)

(1 + a)
P (kin − 1, t)

+ tP (kin, t)−
β(kin + am)

(1 + a)
P (kin, t). (4.16)

As the number of nodes increases (i.e. t >> 1), P (kin, t) attains a stationary
behavior: P (kin, t+ 1) = P (kin, t) = P (kin); therefore, Eq. 4.16 converts to:

P (kin) =
β(kin − 1 + am)P (kin − 1) + (1 + a)δk,0

1 + a+ β(kin + am)
. (4.17)

Solve the last recurrence equation:

P (kin) =
(1 + a)Γ

(
am+ a+1

β

)
βΓ(am)

Γ(kin + am)

Γ
(
kin + am+ 1 + a+1

β

) (4.18)

P (kin) ≈
(1 + a)Γ

(
am+ a+1

β

)
βΓ(am)

(kin + am)
−
(

1+a+1
β

)
, (4.19)

where Γ(·) is the Gamma function.
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Figure 4.10: a) Experimental results (◦, �, O and �) and the corresponding fittings
using the analytical MLF model (solid line, Eq. 4.18), for m = 2 and different
values of A. Note a perfect match when A = 1

1000 and A = 1
10000 . On the contrary,

for A = 1 and A = 1
100 , the fitting is not good for kin > 10.

Thus, is found the scaling exponent γMLF of the in-degree distribution P (kin):

γMLF = 1 +
A
m + 1∑m
x=1

1
x

. (4.20)

Finally, in the limA→0 the last equation can be writen as: γMLF = 1 + 1∑m
x=1

1
x

,
that is γMLF ≈ 1 as m >> 1.

Fig. 4.10 shows four plots of P (kin) versus kin using the model outlined in this
section (Eq. 4.18) and is compared to the experimental simulations. It is possible
to note a close matching when A = 0.001 and A = 0.0001. This is not the case for
larger values of A (i.e, A = 1). It is pointed that the analytical solution developed
is obtained in the limit as initial attractiveness of nodes approaches to zero.
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4.5 Using the MLF model to reproduce some topological
properties of a real network

To verify that the MLF model is able to reproduce some properties of real complex
networks, the network comprising flights between airports of the world (NFAW ) [16]
was chosen. In this network, the airports correspond to the nodes and the flights to
the links. This network is formed by 2, 939 nodes and 30, 501 non-multiple links. [16]

P
(k
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)
−→

kin −→

Figure 4.11: In the Figure, © represents In-degree distribution of NFAW network
and the solid line a power law function with exponent γ = 1.74.

P
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Figure 4.12: Comparison of the In-degree distribution of NFAW network with the
obtained from the simulation of MLF model.
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Fig. 4.11 shows that the in-degree distribution P (kin) of the NFAW network
decays as a power-law with exponent γ ≈ 1.74. Furthermore, the Clustering and
Diameter of NFAW network are C = 0.25 and D = 14, respectively.

In order to generate a network with topological properties similar to the prop-
erties found in the NFAW network, an experiment that simulates the growth of
a directed network from 40 to 2939 nodes using the MLF model with A = 2 and
m = 40 was performed. With such conditions, the in-degree distribution P (kin)

retrieved from the simulation decays as a power-law with exponent γ ≈ 1.74 close
to the exponent of the NFAW network (see Fig. 4.12). In addition, the Clustering
and Diameter obtained from the simulation are C = 0.217 and D = 13.85, respec-
tively. These values are also close to the values of C and D of the NFAW network
(see Ref. [16]).

With the previous results, it is possible to deduce that theMLF model is capable
of reproduce topological properties of real CN . On the other hand, even though
the MLF model is capable of generate a network with topological properties close
to the properties of the NFAW network, is not possible to ensure that the local
processes incorporated by the MLF model are the only ones involved in the growth
and evolution of the NFAW . However, it is possible think that the MLF model is
a realistic simplification of some of these processes.

In this chapter was proposed a growth model for directed complex networks
called MLF model. The MLF model incorporates the prohibition of multiple links
between pairs of nodes and the Initial attractiveness, with these characteristics the
model is able to generate directed CN with In-degree distribution that decay as a
power law P (kin) ∼ k−γinin with 1 < γin < ∞. That is, the model is capable to
generate all exponents found in the In-degree distribution of directed CN that are
documented [8, 11, 16, 31]. In spite of that, in several real networks exists more local
processes than the incorporated by the MLF model. For example in the WWW

and Social networks, there may be addition and rewiring of links. For this reason, in
the next chapter is developed a growth model that extends the MLF model adding
the internal link addition and rewiring processes.





Chapter 5

The impact of local processes and
the prohibition of multiple links in

the topological properties of
directed Complex Networks

Local processes participate in the growth and evolution of CN , which in turn shape
the topological and dynamical properties of these networks. For example, in the
WWW network, links are not static and, at any time, a node (web page) may loose
a connection to another node (deleting a hyper-link) and add this same connection
to a different node (a rewiring process), also new links can appear in the network
(links added). These local processes are also presents in other CN like the Internet,
social networks and collaboration networks.

In this chapter is investigated the impact that the prohibition of multiple links
in addition with other local processes have in several topological properties of CN .
For that, it is proposed a new growth and evolution model that incorporates the
internal links, rewiring and multiple links prohibition because these processes are
able to vary the value of the exponent γ of P (k) maintaining the power law behavior
(see chapters 3 and 4 for details). In particular, is studied the impact that these
processes have in Clustering (C), Shortest path length (SPL) and the In-degree
distribution (P (kin)) of the networks generated with the proposed model.

This chapter is organized as follows: The proposed model is introduced in Section
5.1. A description of the numerical simulations and its results are showed in Section
5.2. Section 5.3 demonstrates that the proposed model is able to reproduce some
topological properties of a real network.

5.1 Proposed model

In the proposed model, the network grows by adding nodes and links. To connect
the nodes preferential attachment is employed, that is, the probability

∏
that a

node ni belonging to the network gets a link from a node nj is proportional to the
sum of the in-degree of ni and its initial attractiveness A, as follows:
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∏
(kin(i)) =



0 if ni ∈ Vj or ni = nj

kin(i) +A∑
nx /∈Vj ,nx 6=nj

(kin(x) +A)
if ni /∈ Vj and ni 6= nj

,
(5.1)

where Vj is the set of nodes that have received an incoming link from node nj , as
in Ref. [27]. Also, eq. 5.1 prohibits multiple links and loops (a loop is an link that
starts and finalizes in the same node).

In the model, it is assumed that initially (at t0) arem0 nodes with some links be-
tween them and in the following t time-steps either of the three following operations
may happen:

• With probability q, m rewiring’s happen in the network. For each rewiring, a
node nr is randomly selected. The node nr should randomly select a neighbor
ns (ns ∈ Vr) and delete its link to this node (ns no longer belongs to Vr).
Then nr connects to another node following Eq. 5.1.

• With probability p, m new links are added to the network. For each new link,
a node nr present in the network is randomly selected to be the origin of the
new link and the end of the new link is connected to another network’s node
using Eq. 5.1.

• With probability 1−p−q, a new node nnew is added to the network with kout =

m links that must be connected with m different existing nodes accordingly
to Eq. 5.1.

In order to show the behavior of the proposed model, consider Fig. 5.1 which
shows the growth and evolution of a directed network from t0 to t3. Every new node
is born with an initial attractiveness A = 1 and two outgoing links (m = 2). The
probabilities q = 1

3 and p = 1
3 .

At t0, the network only has three nodes, n0, n1 and n2. Following Eq. (5.1), the
probability

∏
of obtaining a new incoming link is 3

5 for n0 and 1
5 for n1 and n2.

At τ0 in t1, a new node n3 is born and it selects an existing node in the network
to connect to. We assume that n3 employs its first link to connect to n0 (see τ0 in
t1 in Fig. 5.1). Now n0 belongs to the V3 set. As τ0 completes, the probability

∏
of receiving a second link from n3 is zero for n0 and 1

2 for n1 and n2. At τ1 of t1,
n3 employs its second link to connect to n2 (see τ1 in t1 in Fig. 5.1) and n2 now
belongs to V3.

Now assume that there is an addition of m = 2 new links at t2. At τ0 of t2, node
n0 is randomly selected to generate a new outgoing link. Following Eq. (5.1), the
probability

∏
at end of t1 of receiving the incoming link from n0 is zero for n0 (loops

are not allowed), 2
4 for n2, 1

4 for n1 and 1
4 for n3. Assume that n0 connects to n1
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 Evolution up to t3 

τ0)first link of n3 

Figure 5.1: Evolution of a directed complex network from t0 to t3 using the proposed
model.

(see τ0 in t2 in Fig. 5.1) and n1 now belongs to V0. At τ1 of t2, node n2 is randomly
selected to generate a new outgoing link. Following Eq. (5.1), the probability

∏
at

end of τ0 in t1 of receiving the incoming link from n2 is zero for n0 and n2, 2
3 for n1

and 1
3 for n3. Assume that n2 connects to n3 (see τ1 of t2 in Fig. 5.1) and n3 now

belongs to V2.
Now assume that there is m = 2 rewiring at t3. At τ0 of t3, node n2 is randomly

selected to perform the rewiring operation. n2 chooses to disconnect from n3 and
so, n3 no longer belongs to set V2. Then, following Eq. (5.1) the probability

∏
at

the end of τ0 in t3 of receiving the incoming link from n2 is zero for n0 and n2, 2
3

for n1 and 1
3 for n3. Assume that n2 connects to n1 (see τ1 in t3 in Fig. 5.1) and n1

now belongs to V2. At τ2 of t3, node n1 is randomly selected to perform the rewiring
operation. n1 chooses to disconnect from n0 and so, n0 no longer belongs to set V1.
Then, following Eq. (5.1) the probability

∏
at the end of τ2 in t3 of receiving the

incoming link from n1 is 3
6 for n0, zero for n1, 2

6 for n2 and 1
6 for n3. Assume that

n1 connects to n2 (see τ3 in t3 in Fig. 5.1) and n2 now belongs to V1.

5.2 Simulation details

In order to study the effects that the proposed model has in the in-degree distribution
P (kin), clustering (C ) and shortest-path length (SPL) of the generated networks,
five experiments were performed using m = 2 and A = 10−4 and different p and q
values. The experiments consisted on running network’s growth simulations starting
from 2 connected nodes and finishing at 104 nodes. Each experiment was repeated
104 times and averaged.
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Figure 5.2: a-b) In-degree distribution P (kin), c-d) CDF for network Clustering,
and e-f) CDF for the Shortest-Path Length of the generated networks. Results
produced with m = 2, A = 0.0001 and different values for p and q.

For the first experiment probabilities q = 0 and p = 0. With these conditions,
P (kin) decays as a power-law in the tail with exponent γ ≈ 1.66 (see Fig. 5.2 a− b).
Additionally, the average length of the SPL in this network is SPL ≈ 1 (see Fig.
5.2 c− d). It can be seen that the clustering value is C ≈ 0.5 (see Fig. 5.2 e− f).
These results are the same results previously obtained by Esquivel et.al. [27].
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In order to measure the impact that the rewiring process has on the P (kin),
C and SPL, p was fixed to zero and q took values of 0.5 and 0.9. With q = 0.5

and q = 0.9, P (kin) decays as a power-law in the tail with exponent γ ≈ 1.35 and
γ ≈ 1.15 respectively (see Fig. 5.2 a). Additionally, the average length of the SPL
in this network is SPL ≈ 1 and SPL ≈ 1.48 for q = 0.5 and q = 0.9 respectively
(see Fig. 5.2 c). It can be seen that the clustering value is C ≈ 0.5 and C ≈ 0.39

for q = 0.5 and q = 0.9 respectively (see Fig. 5.2 d). That is, as the probability q
approximates 1, the γ exponent decreases to ≈ 1, the clustering decreases and the
shortest path length increases.

In order to measure the impact that the rewiring process has on the P (kin),
C and SPL, p was fixed to zero and q took values of 0.5 and 0.9. With q = 0.5

and q = 0.9, P (kin) decays as a power-law in the tail with exponent γ ≈ 1.35 and
γ ≈ 1.15 respectively (see Fig. 5.2 a). Additionally, the average length of the SPL
in this network is SPL ≈ 1 and SPL ≈ 1.48 for q = 0.5 and q = 0.9 respectively
(see Fig. 5.2 e). It can be seen that the clustering value is C ≈ 0.5 and C ≈ 0.39

for q = 0.5 and q = 0.9 respectively (see Fig. 5.2 c). That is, as the probability q
approximates 1 the clustering decreases and the shortest path length increases.

From the results in Fig. 5.2a it is possible to generate the hypothesis that as
q → 1, γ → 1. In order to confirm this hypothesis, new experiments were performed
with q = 0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, 0.99 and p = 0. The exponent γ in function of
q retrieved from the simulations is shown in Fig. 5.3a, as can be seen, the exponent
γ approaches to 1.1 as the rewiring probability tends to 1.

Finally, in order to measure the impact that adding links has on the P (kin), C
and SPL, q was fixed to zero and p took values of 0.5 and 0.9. With p = 0.5 and
p = 0.9, P (kin) decays as a power-law in the tail with exponent γ ≈ 1 (see Fig. 5.2
b). That is, the exponent γ is the same for these values of p. However for p = 0.9,
the P (kin) distribution is rescaled with respect to the P (kin) obtained with p = 0.5,
this behavior is probably because as p→ 1, the number of links increases faster than
the number of nodes and the network becomes dense. It is important to mention
that a similar rescaling behavior is also present in the Barabási-Albert model as
the m parameter increases. [17] Additionally, the average length of the SPL in this
network is SPL ≈ 1.95 and SPL ≈ 1.91 for p = 0.5 and p = 0.9 respectively (see
Fig. 5.2 f). It can also be seen that the clustering value is C ≈ 0.95 and C ≈ 0.96

for p = 0.5 and p = 0.9 respectively (see Fig. 5.2 d).

From Fig. 5.2b it is possible to generate the hypothesis that for 0 < p < 0.5,
γ → 1 and for 0.5 ≤ p < 1, γ ≈ 1. In order to confirm this hypothesis, new
experiments were performed with p = 0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, 0.99 and q = 0.
The exponent γ in function of p retrieved from the simulations is shown in Fig. 5.3b.
This Figure shows that the γ exponent approaches to 1 as the probability p tends
to 1.
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Figure 5.3: a) Values of γ retrieved from the simulations with different values of q
and p = 0. b) Values of γ retrieved from the simulations with different values of p
and q = 0.

From these results it is possible to conclude that the proposed model allows
to obtain exponent values γ ≈ 1 by increasing the rewiring probability q or the
probability of adding links p, without the need to employ large values of m as in
the model previously proposed by Esquivel, et.al.. [27]

5.3 Using the proposed model to reproduce some topo-
logical properties of a real network

To verify that the proposed model is able to reproduce some properties of real
complex networks, we chose the trust network from the online social network Epin-
ions, [16]. In this network, users of Epinions correspond to the nodes and the trust
between the users to the links. This network is formed by 75, 879 nodes and 508, 837

non-multiple links and no loops. [16]
Fig. 5.4a) shows the in-degree distribution P (kin) of the Epinions network that

decays as a power-law with γ ≈ 1.69. Furthermore, the Clustering, average length
of the SPL and Diameter of Epinions network are C = 0.0657, SPL = 4.40 and
D = 15, respectively.

In order to generate a network with similar topological properties to the ones
found in Epinions, an experiment that simulates the growth of a directed network
up to 78, 879 nodes was performed using the proposed model with A = 0.65, p = 0.6,
q = 0.3 andm = 4. With such conditions, the in-degree distribution P (kin) retrieved
from the simulation decays as a power-law with exponent γ ≈ 1.69 close to the
exponent of the Epinions network (see Fig. 5.4b)). In addition, the Clustering, the
average length of the SPL and Diameter obtained from the simulation are C = 0.25,
SPL = 3.51 and D = 13, respectively. Values of SPL and D obtained are also close
to the values of SPL and D for the Epinions network (see Ref. [16]). However the
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value of C retrieved from the simulation is very different.
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Figure 5.4: a) In-degree distribution of Epinions network. b) Comparison of the
In-degree distribution of Epinions network with the obtained from the simulation
of the proposed model (see text for details).

With the previous results, it is possible to deduce that the MLF model with
the incorporation of more local processes is capable of reproduce some topological
properties of real CN . On the other hand, even though the comparison between
the network generated with the proposed model and the real CN Epinions indicates
good fits in some properties, can not be ensured that the local processes incorporated
by the proposed model are the only ones involved in the growth and evolution of
the real Epinions network. Also it is not possible to ensure that the frequency
of rewiring and addition of links that were define in the simulation are the same
as in the evolution of this real network. However, the model can be a realistic
simplification of some of these processes and therefore, the network generated with
the proposed model has some properties close to those exhibited by the real Epinions
network.

In the MLF model presented in the previous Chapter and extended in this
Chapter is considered that all nodes born with the same amount of outgoing links,
that is, is considered that the out-degree is a constant. This consideration is also
present in many models proposed previously as the proposed by Barabási and Al-
bert [17]. This contrast with several real networks where the Out-degree distribution
follows a power law [11, 16, 36]. In order to approximate this type of out-degree
distribution, in the next chapter are developed two growth models capable to gen-
erate directed complex networks with out-degree distributions that decay as power
law P (kout) ∼ k−γoutout .





Chapter 6

Out-degree distribution in
Complex Networks

Among the topological properties of real CN , one of the most studied is the out-
degree distribution. This property describes the probability that a node in the
network has a particular number of outgoing links.

In the literature, there are many growth models for CN that reproduce some
topological properties of real systems. [37] In most of these models, is assumed that
all nodes are born with the same amount of outgoing links (i.e., their out-degree is a
constant), as in the model proposed by Barabási-Albert [38]. In other models, such
as the one proposed by Dorogovtsev et.al [18] and the one proposed by Krapivsky
and Redner [20], the out-degree distribution decays as an exponential or a poisson
distribution, respectively. However, these results differ from the out-degree behavior
of several real CN . For example, in metabolic networks [3], the Internet[5], and
WWW [7] the out-degree decays as a power-law.

In order to approximate this type of out-degree distribution, some growth models
for CN have been proposed. For example, Dorogovtsev et.al. [23] and Bollobás
et.al. [24] have each developed a model capable of producing out-degree distributions
that decay as a power-law with exponent γ = 2 + nr+n+B

m and γ = 1 + 1+δout(α+β)
β+γ ,

respectively. Hence in both models the γ exponent is greater than 2.
In this chapter, are present two growth models capable to generate out-degree

distributions with power law behavior. In the section 6.1, is present a model capa-
ble of generate complex networks with out-degree distribution that follows a power
law P (kout) ∼ k−γout with 0 < γout < 1. In the section 6.2, is present a different
model capable of generate complex networks with out-degree distribution that fol-
lows a power law with 1 < γout < ∞ and also is demonstrated that the proposed
model is able to reproduce the out-degree distribution of the social network of Flickr
users [16].

6.1 Model I

In this section is proposed a simple growth model for directed CN which is able
to generate out-degree distributions that decay as a power-law with exponent 0 <

γout < 1.
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6.1.1 Model details

In the proposed model, the growth of the network is done by adding nodes one at a
time. At the beginning, only the node n0 exists in the network and its out-degree
is 0. Then is considered that the out-degree of any new node nnew added to the
network is determined as follows:

• with probability p where 0 < p < 1, nnew copies the out-degree of a randomly
selected node from the network.

• with complementary probability 1 − p, nnew randomly selects an out-degree
uniformly distributed from 0 to N . That is, node nnew has out-degree
0, 1, 2, . . . N .

From the first rule, it is important to note that as the quantity Qs of nodes
with out-degree s increases, the probability that node nnew has out-degree s also
increases to Qs

N , where N is the total number of nodes in the network. In addition,
due to the second rule new nodes may have out-degree of the order N .

6.1.2 Analytical Solution

In order to get an expression for the out-degree distribution generated by the pro-
posed model, the continuum method [17] is used. The following differential equation
describes the variation of the quantity Qs of nodes with out-degree s with respect
to the total number N of nodes in the network:

dQs(N)

dN
=

g1︷ ︸︸ ︷
p
Qs(N)

N
+

g2︷ ︸︸ ︷
(1− p) 1

N + 1
, (6.1)

term g1 accounts for the situation that a new node copies the out-degree of a ran-
domly selected node in the network. The term g2 describes the random selection of
out-degree for a new node.
Eq. 6.1 can be written in the standard form for a linear differential equation as
follows:

dQs(N)

dN
+

(
−p
N

)
Qs(N) =

1− p
N + 1

, (6.2)

multiplying by the integrating factor e−p
∫

1
N
dN = N−p, is obtained

N−pQs(N) = (1− p)
∫

N−p

N + 1
dN. (6.3)

Since to the integral of Eq. 6.3 is not elementary, the solution retrieved is in terms
of the Hypergeometrical Function 2F1 [39] as follows:

Qs(N) = 2F1[1, 1− p; 2− p;−N ]N + kNp, (6.4)
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where k is a constant. To obtain the out-degree distribution Qs(N), Eq. 6.4 is solved
for s = 1, s = 2, and so on as follows:

• for Q1(N), it should be considered the initial condition

Q1(2) =
1− p

2
.

This initial condition is due to the fact that at the beginning, the network is
formed only by node n0 with no outgoing links, that is N = 1. For this case
the quantity Q1(1) of nodes with out-degree s = 1 is zero (Q1(1) = 0). When
the node n1 is added (N = 2), the probability for node n1 to have out-degree
s = 1 is 1−p

2 . Solving Eq. 6.4 for the initial condition Q1(2) = 1−p
2 , one gets:

Q1(N) =2F1[1, 1− p; 2− p;−N ]N

+

[
1− p

2
− 2F1[1, 1− p; 2− p;−2](2)

]
Np2−p, (6.5)

• for Q2(N), it should be considered the initial condition

Q2(3) =
1− p

3
.

This initial condition is due to the fact that, before adding node n2, only nodes
n0 and n1 are in the network (N = 2) and any of them has s ≥ 2, therefore
Q2(2) = 0. When node n2 is added (N = 3), the probability that node n2 has
out-degree s = 2 is 1−p

3 . Solving Eq. 6.4 for the initial condition Q2(3) = 1−p
3 ,

is obtained:

Q2(N) =2F1[1, 1− p; 2− p;−N ]N

+

[
1− p

3
− 2F1[1, 1− p; 2− p;−3](3)

]
Np3−p. (6.6)

From the previous results in Eqs. 6.5 and 6.6, can be deduced that:

Qs(N) =2F1[1, 1− p; 2− p;−N ]N

+

[
1− p
s+ 1

− (s+ 1)2F1[1, 1− p; 2− p;−(s+ 1)]

]
Np(s+ 1)−p. (6.7)

Normalizing Eq. 6.7 one gets

Qs(N)

N
=2F1[1, 1− p; 2− p;−N ]

+

[
1− p
s+ 1

− (s+ 1)2F1[1, 1− p; 2− p;−(s+ 1)]

]
Np−1(s+ 1)−p. (6.8)
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Eq. 6.8, shows that the exponent γout of the out-degree distribution obtained
with the proposed model is only determined by the probability p. That is, the
out-degree distribution obtained decays as a power-law

Qs
N
∼ Np−1s−p for 1 << s << N, (6.9)

with exponent γout = p.
On the other hand, can be deduced that as a consequence of the random out-

degree selection by new nodes with probability 1 − p (second rule of the proposed
model), the average out-degree of the nodes grows with the network size. To validate
this hypothesis, it was calculated analytically the average out-degree s̄ using the
following differential equation:

ds̄(N)

dN
= (1− p)

[
N
2 − s̄(N)

N + 1

]
, (6.10)

that describes the increment of the average out-degree s̄ with respect to the total
number N of nodes in the network. On the right-hand side of Eq. 6.10, the term N

2

describes the mean of the random out-degree uniformly selected from 0 to N by a
new node. Thus, the term N

2 − s̄(N) describes the increment of s̄.
Eq. 6.10 can be written in the standard form for a linear differential equation as
follows:

ds̄(N)

dN
+

1− p
N + 1

s̄(N) =
(1− p)N
2(N + 1)

. (6.11)

Solving Eq. 6.11 one gets

s̄(N) =
N(1− p)− 1

2(2− p)
+

k

(N + 1)1−p . (6.12)

As the total number of nodes in the network increases (N >> 1), we can approxi-
mate Eq.6.12 as follows:

s̄(N) ≈ N(1− p)
2(2− p)

. (6.13)

From Eq. 6.13 it can be seen that, effectively s̄ grows proportionally to the network
size, that is, in the proposed model the average out-degree of nodes tends to infinity
when N →∞.

6.1.3 Validation of the Analytical Solution

In order to validate the analytical solutions for the out-degree distribution (Eq. 6.7)
and average out-degree (Eq. 6.13) of the proposed model, four numerical simulations
was performed using p = 0.1, p = 0.3, p = 0.6, and p = 0.9. In each simulation,
was considered the growth of a directed network from 1 to 104 nodes. Figure 6.1
shows that the results of the numerical simulations and the analytical prediction
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(Eq. 6.7) for the out-degree distribution fit appropriately. On the other hand, was
calculated the average out-degree s̄ in each simulation for different network sizes.
Figure 6.2 shows that the average out-degree retrieved from the simulations and the
analytical prediction (Eq. 6.11) fit also appropriately, that is s̄ grows proportionally
to the network size as stated by Eq. 6.11. It is important to note that when p→ 0

the value of s̄ increments rapidly as the network grows (N >> 1), this happens
because as p → 0 the probability for random out-degree selection by new added
nodes increases and the network tends to become dense. This contrasts with some
large networks that are sparse where the number of edges is much smaller than
the maximum possible and the average out-degree increases slowly as the network
grows. [40] In this context, it is important to note that in the proposed model the
average out-degree increases slowly as p→ 1.
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Figure 6.1: Comparison of the out-degree distribution (symbols) retrieved from the
simulations and the analytical predictions (lines).
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6.2 Model II

At this time, have been proposed several models for growth of CN capable to
generate out-degree distributions with power law behavior [23, 24, 29]. These models
are not able to produce out-degree distributions with γout exponents in the range
between 1 and 2. However, there are real CN where the γout exponent value is
within this interval. For example, the social network of Flickr users [16], the Any
Beat network [41], the online social network Epinions [16] and the network of flights
between airports of the world (OpenFlights) [16] where the γout exponent for the
out-degree distribution of these CN is close to 1.74, 1.71, 1.69 and 1.74 respectively.

In this section is introduced a new model for growth of directed CN that allows
to obtain out-degree distributions that decay as a power-law with exponents in the
range 1 < γout < ∞. That is, the proposed model is able to generate all exponent
values found in documented real CN . [3, 5, 7, 11, 16, 31, 41]

6.2.1 Model details

It has been demonstrated that the growth and evolution of CN is influenced by
local processes that shape its topological and dynamical properties [25]. The model
proposed in here incorporates two local processes for adding new nodes to the
network: a random out-degree selection and a copy of an already present out-degree
value. In many large networks the maximum degree of a node is much smaller than
the number of nodes [16]. Thus, the proposed model assumes that the probability
that a new node nnew selects a random out-degree decreases as the network grows.
This probability is expressed as N−α where N is the total number of nodes in the
network (including nnew) and α is a constant greater than 0. In other words, the
probability that new nodes have an out-degree close to N tends to zero as N >> 1.

In this model, the growth of the network is performed by adding nodes one at a
time. At the beginning, only node n0 is present in the network and its out-degree is
0. Then, the out-degree of any new node nnew added to this network is determined
as follows:

• With probability N−α, nnew randomly selects an out-degree uniformly dis-
tributed from 0 to N−1. That is, nnew may have out-degree 0, 1, 2, . . . , N−1.
It is important to notice that it is possible that nnew has an out-degree of the
order of N − 1.

• With complementary probability 1 − N−α, nnew copies the out-degree of a
randomly selected node from the network. It is important to notice that as
the number Qs of nodes with out-degree s increases, the probability that nnew
has out-degree s also increases to Qs

N−1 .
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6.2.2 Analytical Solution

It is possible to employ the continuum method [17] to obtain the analytical solution
for the proposed model. This method is implemented using the following differential
equation:

dQs(N)

dN
=

g1︷ ︸︸ ︷
N−α

1

N
+

g2︷ ︸︸ ︷
(1−N−α)

Qs(N)

N − 1
(6.14)

The previous equation describes the variation of the number Qs of nodes with out-
degree s with respect to the total number N of nodes in the network. The term g1

describes the situation that a new node randomly selects an out-degree value and
the term g2 the situation that a new node copies this value from a randomly selected
node in the network.
Eq. 6.14 may be written in the standard form for a linear differential equation:

dQs(N)

dN
+
N−α − 1

N − 1
Qs(N) =

N−α

N
. (6.15)

From Eq. 6.15, it is possible to deduce the integrating factor I(N) = e
∫
N−α−1
N−1

dN .
Solving for I(N) produces non elementary functions, which complicate the solution
of Eq. 6.15. In order to obtain an integrating factor in terms of elementary functions,
it is best to simplify Eq. 6.15 as follows:

dQs(N)

dN
+
N−α − 1

N
Qs(N) =

N−α

N
. (6.16)

This simplification has little implications for large values of N , because N −1 ≈
N , as N >> 1. This allows to employ the following integrating factor: I2(N) =

e
∫
N−α−1

N
dN = e−

N−α
α

N . Multiplying Eq. 6.16 by I2(N) produces:

e
−N−α
α

N
Qs(N) =

∫
N−(α+1)e

−N−α
α

N
dN. (6.17)

Solving for Qs(N)

e
−N−α
α

N
Qs(N) =

e
−N−α
α

N
+

∫
e
−N−α
α

N2
dN, (6.18)

Qs(N) = 1 +
Ne

N−α
α Γ

(
1
α ,

N−α

α

)
α1− 1

α

+ kNe
N−α
α , (6.19)

where k is a constant and Γ(·) is the incomplete Gamma function. In order to obtain
the out-degree distribution Qs(N), it is necessary to solve Eq. 6.19 for s = 1, s = 2,
and so on as follows:
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• for Q1(N), consider the initial condition

Q1(2) =
2−α

2
;

this initial condition is due to the fact that, at the beginning the network only
has one node, n0, with no outgoing links (N = 1). When the next node, n1,
is added (N = 2), the probability that node n1 has out-degree s = 1 is 2−α

2 .

Then, solving Eq. 6.19 for the initial condition Q1(2) = 2−α

2 produces:

Q1(N) =1 +
Ne

N−α
α Γ

(
1
α ,

N−α

α

)
α1− 1

α

+

2−(α+1) − 1−
2e

2−α
α Γ

(
1
α ,

2−α

α

)
α1− 1

α

 NeN−αα e
−2−α
α

2
, (6.20)

• for Q2(N), consider the initial condition

Q2(3) =
3−α

3
,

this initial condition is due to the fact that, before adding node n2 only n0 and
n1 exist in the network (N = 2) and both have s < 2, therefore Q2(2) = 0.
When n2 is added (N = 3), the probability that node n2 has out-degree s = 2

is 3−α

3 .

Then, solving Eq. 6.19 with the initial condition Q2(3) = 3−α

3 , one obtains:

Q2(N) =1 +
Ne

N−α
α Γ

(
1
α ,

N−α

α

)
α1− 1

α

+

3−(α+1) − 1−
3e

3−α
α Γ

(
1
α ,

3−α

α

)
α1− 1

α

 NeN−αα e
−3−α
α

3
. (6.21)

From the results in Eqs. 6.20 and 6.21, it is possible to deduce that:

Qs(N) = 1 +
Ne

N−α
α Γ

(
1
α ,

N−α

α

)
α1− 1

α

+

(s+ 1)−(α+1) − 1−
(s+ 1)e

(s+1)−α
α Γ

(
1
α ,

(s+1)−α

α

)
α1− 1

α

 NeN−αα e
−(s+1)−α

α

(s+ 1)
. (6.22)



6.2. Model II 49

Normalizing Eq. 6.22, yields:

Ps(N) =

1 +
Ne

N−α
α Γ

(
1
α
,N
−α
α

)
α1− 1

α
+

(s+ 1)−(α+1) − 1−
(s+1)e

(s+1)−α
α Γ

(
1
α
,
(s+1)−α

α

)
α1− 1

α

 Ne
N−α
α e

−(s+1)−α
α

(s+1)

N
.

(6.23)

Eq. 6.23 describes the out-degree distribution Ps(N) obtained with the proposed
model for 1 < s < N . It can also be noted that, as s → N , Eq. 6.23 predicts that
Ps(N) ≈ 1

Nα+2 . That is Ps(N) decays to 0 rapidly as s→ N and N >> 1, therefore
the power-law behavior exhibits a cut-off (Figure 6.3a).

In order to obtain the scaling exponent of the out-degree distribution, terms Γ(·)
into Eq. 6.23 are simplified using:

Γ(a, x) = Γ(a)− γ(a, x),

where γ(a, x) and Γ(a, x) are the lower and upper incomplete Gamma functions,
respectively. By the following asymptotic property:

γ(a, x)→ xa

a
if x→ 0,

it is possible to write:

Γ(a, x) = Γ(a)− xa

a
if x→ 0. (6.24)

Using Eq. 6.24 it is possible rewrite the Γ(·) terms of Eq. 6.23 as follows:

Γ

(
1

α
,
N−α

α

)
→ Γ

(
1

α

)
− α1− 1

α

N
for N >> 1, (6.25)

Γ

(
1

α
,
(s+ 1)−α

α

)
→ Γ

(
1

α

)
− α1− 1

α

s+ 1
for s >> 1. (6.26)

Substituting Eqs. 6.25 and 6.26 into Eq. 6.23 and considering that s+ 1 ≈ s as
s >> 1, Eq. 6.23 can be expressed as:

Ps(N) ≈ 1

N
+

[
Γ
(

1
α

)
− α1− 1

α

N

]
e
N−α
α

α1− 1
α

+

s−(α+1) − 1−
se

s−α
α

[
Γ
(

1
α

)
− α1− 1

α

s

]
α1− 1

α

 eN
−α
α e

−s−α
α

s
, (6.27)
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Ps(N) ≈ 1

N
+

[
Γ
(

1
α

)
− α1− 1

α

N

]
e
N−α
α

α1− 1
α

+

[
s−(α+2)e

−s−α
α −

Γ
(

1
α

)
α1− 1

α

+ s−1

(
1− e

−s−α
α

)]
e
N−α
α . (6.28)

Using the two first terms of the series expansion of e−
s−α
α ≈ 1− s−α

α in Eq. 6.28
and simplifying

Ps(N) ≈ 1

N
+

[
Γ
(

1
α

)
− α1− 1

α

N

]
e
N−α
α

α1− 1
α

−
Γ
(

1
α

)
α1− 1

α

e
N−α
α

+

[
1

s
− 1

αsα+1
+

1

α

]
e
N−α
α s−(α+1); (6.29)

for s >> 1,
[

1
s −

1
αsα+1 + 1

α

]
→ 1

α , thus it is possible to rewrite Eq. 6.29 as:

Ps(N) ≈ 1

N
+

[
Γ
(

1
α

)
− α1− 1

α

N

]
e
N−α
α

α1− 1
α

−
Γ
(

1
α

)
α1− 1

α

e
N−α
α +

e
N−α
α

α
s−(α+1). (6.30)

Furthermore, in the limit when N →∞, Eq. 6.30 takes the form

Ps ≈
s−(α+1)

α
. (6.31)

Eq. 6.31 shows that the out-degree distribution obtained with the proposed
model decays as a power-law Ps ∼ s−γout for 1 < s < N with scaling exponent
γout = α+ 1.

6.2.3 Validation of the Analytical Solution

To validate the analytical solution of the model as described by Eq. 6.23, four
experiments were executed using α = 0.5, 1, 1.5 and 2. Each of these experiments
simulated the growth of a directed network from N = 1 to 104 nodes. Figure
6.3b shows that the out-degree distribution produced by these experiments and the
analytical predictions by Eq. 6.23 fit appropriately.
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Figure 6.3: a) Analytical solution of the proposed model (Eq. 6.23 in dashed lines)
for N = 104 and different values of α. Notice how the proposed model is able to
obtain out-degree distribution Ps that decays as power law. Also, it is possible
to note that for values of s close to N the Ps decay rapidly (vertical arrow) and
the power law behavior is cut-off. b) Comparison of the out-degree distribution
produced by the experiments (symbols �, �, 4, O) and the analytical prediction
in Eq. 6.23 (solid line) for N = 104 and several values of α.

6.2.4 Comparison with real networks.

To verify that the proposed model is able to reproduce the out-degree distribution
of real CN , the social network of Flickr users [16] was selected.

In this network, the users correspond to the nodes and their friendship connec-
tions to the links. This network has 2, 302, 925 nodes and 33, 140, 017 links. Figure
6.4a shows that the out-degree distribution of the nodes in the Flickr network decay
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as a power-law distribution with γout ≈ 1.74. Figure 6.4b shows that the model
proposed by Eq. 6.23 with α = 0.74 and N = 2, 302, 925 reproduces appropriately
the out-degree distribution of the Flickr network for s > 1.
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Figure 6.4: a) Out-degree distribution of the Flickr social network. b) Comparison
of the out-degree distribution produced by the proposed model (Eq. 6.23) with
α = 0.74 and N = 2, 302, 925 and the actual out-degree distribution of the Flickr
social network.

Although this model produces a good fit with the out-degree distribution of a
real network, it is not possible guarantee that the local processes incorporated in
this model are the only ones involved in the behavior of the out-degree distribution
of the nodes in this network. Unknown processes may help to explain why for s = 1,
this model does not fit. However, the proposed model provides a simplification of
these processes and therefore, reproduces the out-degree distribution of the network.

In many growth models proposed at this time, as the proposed by Barabási
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et.al. [17], Dorogovtsev et.al. [18, 21, 34], Krapivsky et.al. [19, 20], Amaral et al.
[22] and Esquivel et al. [27] is considered that all nodes in the network form only
one component called Giant island, and the new nodes added to the network always
connect to it. However, exists real networks as the US patents [15] comprised by a
set of islands and its island size distribution follows a power law [42]. In order to
approximate this property, a new growth model is developed in the next Chapter.





Chapter 7

Islands in Complex Networks

Many growth models have been proposed with the aim of reproducing some topolog-
ical properties of real Complex Networks (CN) [37], for example the degree distri-
bution, [17] in-degree distribution [20, 27, 28] or out-degree distribution. [24, 29, 30]
However, little has been studied about the Island Size Distribution (Is) which de-
scribes the number of islands with s nodes. An island is a set of nodes which is not
connected to the rest of the network.

Previous models [17, 18, 19, 20, 21, 22, 24, 27, 34] consider that each node added
to the network always connects to existing nodes. In other words, all the nodes in
these models form a single island, which contains all the nodes of the network.
However, in some real networks, as in the U.S. patent’s citation network [15], the
nodes form more than one island and the Is follows a power-law: Is ∼ s−γ [42].

It is hypothesized that a possible cause for the origination of islands in some real
complex networks is that, during network growth some nodes may be born with zero
out-going links (i.e. patents without references to other patents) and this causes
new islands to be generated.

In order to reproduce this property, in this chapter is proposed a CN growth
model able to obtain Is with a power-law behavior.

7.1 Model details

In the proposed model, it is considered that the birth of new islands is governed by
the probability Φ considering two cases:

• 1) Φ = 1
N , where N is the number of nodes in the network. In this case

it is considered that the probability of a new island is born decreases as the
number of nodes in the network increases. This idea is mapped from real
networks as follows: In a network of cites of scientific papers, when there are
few papers (nodes), it is more probable that a new paper does not cite other
papers (generating a new island) because it addresses an entirely new scientific
theme. Conversely, when the quantity of papers increases, the probability that
a new paper addresses an entirely new theme decreases, thus the probability
of generating a new island also decreases.

• 2) Φ = p, where 0 < p < 1. In this case it is considered that the probability
of a new island is born remains constant during the whole life of the network.
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Figure 7.1: Growth of a directed network using the proposed model. At the begin-
ning (t0), only node n0 exists in the network. At the next time step (t1) node n1 is
added to the network and it is assumed that connects to node n0. In t2, node n2 is
added and it is assumed that it does not connect to any node, thus a new island is
generated. In t3, n3 is added and it is assumed that connects to n1 and n0 (dashed
arrow) because n0 has an incoming link from n1. In t4, n4 generates a new island
as n2 in t2. At t5 and t6, nodes n5 and n6 are added and connect to the network as
n3 did at t3.

In the model, the growth of the network is performed by adding one node at each
time step. At the beginning, only node n0 exists in the network and for each new
node nnew added to the network, either one of the following operations is performed:

1. With probability Φ, nnew does not connect to any node in the network. That
is, nnew generates a new island (see Fig. 7.1).

2. With complementary probability 1−Φ, nnew randomly selects a node nr and
connects to it, as well as to all nodes that have one incoming link from nr (see
Fig. 7.1).

7.2 Analytical Solution

The continuum method [17] is employed to obtain the analytical solution for the Is
using the following differential equation:

dIs(N)

dN
=

g1︷ ︸︸ ︷
Φδs,1 +

g2︷ ︸︸ ︷
(1− Φ)

s− 1

N
Is−1(N)︸ ︷︷ ︸
g′2

− s

N
Is(N)︸ ︷︷ ︸
g′′2

 . (7.1)
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Eq. 7.1 describes the variation of the number Is of islands with s nodes with
respect to the total number N of nodes in the network. Term g1 describes the birth
of a new island; that is, it models the situation that a new node nnew does not
connect with any node (first rule of this model). The term g2 depicts the second
rule of the model, term g′2 describes the situation that a new node nnew randomly
selects a node nr belonging to an island with s − 1 nodes and connects to it, thus
Is(N) increases. The term g′′2 describes the situation that a new node nnew randomly
selects a node nr belonging to an island with s nodes and connects to it, thus Is(N)

decreases.
Eq. 7.1 may also be written in the standard form for a linear differential equation:

dIs(N)

dN
+

(1− Φ)s

N
Is(N) =

(1− Φ)(s− 1)

N
Is−1(N) + Φδs,1. (7.2)

In order to investigate the impact that Φ = 1
N and Φ = p have in Is, Eq. 7.2 is

solved for each one of them. For Φ = 1
N , Eq. 7.2 takes the form:

dIs(N)

dN
+

(N − 1)s

N2
Is(N) =

(N − 1)(s− 1)

N2
Is−1(N) +

δs,1
N
. (7.3)

In order to obtain the Is(N), Eq. 7.3 is solved for s = 1, s = 2, and so on. For
s = 1, Eq. 7.3 takes the form:

dI1(N)

dN
+
N − 1

N2
I1(N) =

1

N
; (7.4)

solving Eq. 7.4 gives:

I1(N) = 1−
Ei
(

1
N

)
Ne

1
N

+
k

Ne
1
N

, (7.5)

where k is a constant and Ei(·) is the exponential integral. As N >> 1, Eq. 7.5 can
be approximated as:

I1(N) ≈ 1. (7.6)

Solving Eq. 7.3 for the following s values produces:

Is(N) ≈ 1

s
. (7.7)

That is, with Φ = 1
N the proposed model is able to produce Island Size distri-

butions with a power-law behavior Is ∼ s−γ for 1 < s < N with fixed exponent
γ = 1.

For Φ = p, Eq. 7.2 takes the form:

dIs(N)

dN
+

(1− p)s
N

Is(N) =
(1− p)(s− 1)

N
Is−1(N) + pδs,1. (7.8)

In order to obtain the Is(N), Eq. 7.8 is solved for s = 1, s = 2, and so on. For
s = 1, Eq. 7.8 takes the form:
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dI1(N)

dN
+

(1− p)
N

I1(N) = p. (7.9)

Solving Eq. 7.9 gives:

I1(N) =
pN

(1− p) + 1
+

k

N1−p , (7.10)

where k is a constant. As N >> 1, Eq. 7.10 can be approximated as:

I1(N) ≈ pN

(1− p) + 1
. (7.11)

Solving Eq. 7.8 for the following s values it is possible to deduce that:

Is(N) ≈ (s− 1)!(1− p)s−1pN
s∏

x=1

[x(1− p) + 1]

. (7.12)

Approximating with the Gamma Function Γ(·) is obtained:

Is(N) ≈
Γ
(

1
1−p

)
pN

(1− p)2

Γ(s)

Γ(s+ 1 + 1
1−p)

≈
Γ
(

1
1−p

)
pN

(1− p)2
s
−(1+ 1

1−p )
for s >> 1. (7.13)

From Eq. 7.13, when Φ = p the model is able to produce Island Size distributions
with a power-law behavior Is ∼ s−γ for 1 < s < N with exponent γ = 1 + 1

1−p .
This allows γ to take values from 2 to ∞ when Φ = p.

In order to obtain the analytical solution for the in-degree distribution generated
with the proposed model, the continuum method is used. [17] Hence, the differential
equation that describes the in-degree distribution may be written as follows:

dQi(N)

dN
=

g1︷ ︸︸ ︷
(1− Φ)

Qi−1(N)

N︸ ︷︷ ︸
g′1

+ (i− 1)
Qi−1(N)

N︸ ︷︷ ︸
g′′1



−

g2︷ ︸︸ ︷
(1− Φ)

Qi(N)

N︸ ︷︷ ︸
g′2

− iQi(N)

N︸ ︷︷ ︸
g′′2

+

g3︷ ︸︸ ︷
(1− Φ)δi,0 +

g4︷ ︸︸ ︷
Φδi,0 .

(7.14)
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Figure 7.2: Consider a network comprising of three nodes (n0, n1, n2). In this
network, the in-neighbors of n0 are n1 and n2. Also the number of nodes with three
incoming links is Q3 = 0. There are two possible ways to increase Q3: 1) A new
node n3 randomly selects node n0 and connects to it (g′1 in the figure and Eq. 7.14)
thus Q3 = 1; 2) A new node n3 randomly selects an in-neighbor of n0 and connects
to it (solid line) and to n0 (dashed line), as stated by g′′1 in Eq. 7.14 and this figure.

Eq. 7.14 describes the variation of the number Qi of nodes with i incoming links
with respect to the number N of nodes in the network. The term g1 describes how
the number of nodes with i incoming links increases, g′1 describes how a new node
nnew randomly selects a node nr with i− 1 incoming links and connects to it, and
g′′1 describes how nnew randomly selects an in-neighbor of a node nj that has i− 1

incoming links and connects to it (see Fig. 7.2), thus Qi increases. The term g2

describes how the number of nodes with i incoming links decreases, terms g′2 and
g′′2 perform similar functions as g′1 and g′′1 . Finally, the terms g3 and g4 models the
effect of adding a new node with zero incoming links using the second and the first
rule of the model.

Eq. 7.14 may be written in the standard form for a linear differential equation:

dQi(N)

dN
+ (1− Φ)

(i+ 1)Qi(N)

N
= (1− Φ)

iQi−1(N)

N
+ δi,0. (7.15)

In order to analyze the impact that Φ = 1
N and Φ = p have in Qi, Eq. 7.15 is

solved for each one of them. For Φ = 1
N , Eq. 7.15 takes the form:

dQi(N)

dN
+
N − 1

N2
(i+ 1)Qi(N) =

N − 1

N2
iQi−1(N) + δi,0. (7.16)

Solving Eq. 7.16 for some i values it is possible to deduce that:

Qi(N) ≈ N + 1

(i+ 1)(i+ 2)
. (7.17)

That is, with Φ = 1
N the proposed model is able to produce In-degree distribu-

tions with a power-law behavior Qi ∼ i−γ for 1 < i < N with fixed exponent γ = 2.
This result was previously obtained by Krapivsky and Redner. [20]

For Φ = p, Eq. 7.15 takes the form:
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dQi(N)

dN
+

1− p
N

(i+ 1)Qi(N) =
1− p
N

iQi−1(N) + δi,0. (7.18)

Solving Eq. 7.18 for several i values produces:

Qi(N) ≈ (i)!(1− p)iN
i+1∏
x=1

[(x+ 1)− xp]

. (7.19)

Approximating with the Gamma Function Γ(·) one gets:

Qi(N) ≈
NΓ

(
1

1−p

)
(p− 1)2

Γ(i+ 1)

Γ(i+ 2 + 1
1−p)

≈
NΓ

(
1

1−p

)
(p− 1)2

i
−(1+ 1

1−p )
for i >> 1.

(7.20)

Therefore, if Φ = p the proposed model is able to produce In-degree distributions
with a power-law behavior Qi ∼ i−γ for 1 < i < N with exponent γ = 1 + 1

1−p .
This allows γ to take values from 2 to ∞ when Φ = p.

7.3 Validation of the Analytical Solution

In order to validate the analytical predictions for Is (Eq. 7.7, Eq. 7.13) and Qi
(Eq. 7.17, Eq. 7.20), four experiments were performed. The experiments simulated
the growth of a directed network from N = 1 to 104 nodes following the proposed
model. Fig. 7.3 shows the comparison of Is produced by the experiments and the
analytical predictions, and it is showed that both fit appropriately. Fig. 7.4 shows
the comparison of Qi produced by the experiments and the analytical predictions,
and it is showed that both fit appropriately.

It is important to mention that in this model the case when Φ increases as the
number of nodes increases is not considered. This is because whenN is large enough,
new nodes added to the network would have high probability of not connecting to
other nodes, thus generating new islands. Therefore, the resulting network would
be composed by a great number of isolated nodes.

Also, it is not considered the situation that a new node can connect to nodes
presents in different islands, resulting in the fusion of two or more islands. These
case will be included in future work.



7.3. Validation of the Analytical Solution 61

10
-8
10
-7
10
-6
10
-5
10
-4
10
-3
10
-2
10
-1
10
0
10
1

10
0

10
1

10
2

10
3

b)

s

I s
(N

)

Φ=p, p=0.1
p=0.5
p=0.7

Eq. 7.13

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
0

10
1

10
2

10
3

10
4

a)

Φ=1/N 
Eq. 7.7

Figure 7.3: Comparison of the Is obtained experimentally (symbols � � 4) and
the analytical predictions (solid line). a) Using Φ = 1

N . b) Using Φ = p, with
p = 0.1, 0.5, and 0.7.
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Figure 7.4: Comparison of the Qi obtained experimentally (symbols � � 4) and
the analytical predictions (solid line). a) Using Φ = 1

N . b) Using Φ = p, with
p = 0.1, 0.5, and 0.7.



Chapter 8

Discussion

It has been demonstrated that the growth and evolution of CN is influenced by local
processes that shape its topological and dynamical properties [25]. In this Thesis,
have been proposed new growth models for complex networks that incorporate some
local process.

In the Chapter 4 was presented a growth model named MLF , that incorporates
the initial attractiveness, prohibition of multiple links and constant out-degree. The
model is capable to generate in-degree distributions with power-law behavior with
exponent range from 1 to∞. It was also shown that the model is capable of generate
some properties of the real complex network comprising flights between airports of
the world [16].

In Chapter 5 was presented a model that incorporates the initial attractiveness,
prohibition of multiple links, constant out-degree, addition and rewiring of links
with constant probability. That is, this model extends of MLF model. The model
is capable of generate in-degree distributions with power-law behavior as MLF

model. It was also shown that the model is capable to reproduce some properties
of the social network Epinions [16].

Two models capable of generate out-degree distributions with power-law behav-
ior were presented in Chapter 6, the models include mainly two process: random
out-degree selection and copy of out-degree. The first model, is capable of generate
exponents in the range from 0 to 1. The second model is capable of generate ex-
ponents in range from 1 to ∞, it also was demonstrated that the second model is
capable of reproduce the out-degree distribution of the Flickr social network [16].

In chapter 7 was present a model capable of generating Island size and In-
degree distributions with power-law behavior. The model includes three process,
the constant born of islands, the born of islands dependent of the time, and the
copying of links. The model generates exponents in the range from 2 to ∞ in both
Island size and In-degree distributions.

In general, in this thesis has been made comparisons between some topological
properties of networks generated with the proposed models and those of real complex
networks, and in all the cases were obtained good approximations. Despite of this, it
can not be assure that the local processes incorporated by the proposed models are
the only ones involved in the growth and evolution of each real network. However,
it may be that each corresponding model is a realistic simplification of some of these
processes and therefore, the generated networks have some properties close to those
exhibited by each real network. On the other hand, in this thesis have been studied
the impact of some sets of local process separately. However, it would be interesting
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develop a growth model that incorporate all local process studied in this thesis and
investigate their impact in the topological properties of the networks generated.



Chapter 9

Conclusions

In this Thesis have been proposed some growth models for Complex Networks with
the aim of study the impact that several local processes have in the topological prop-
erties of this class of networks. The proposed models incorporate local processes,
such as initial attractiveness, preferential attachment, prohibition of multiple links,
addition and rewiring of links, constant out-degree, random out-degree and out-
degree copying.

One of the main characteristics of many real complex networks is that do not
have multiple links. A contribution of this thesis was the study of the impact that
the prohibition of multiple links have in some topological properties of the complex
networks. With this aim a growth model was developed, the networks generated
with the model showed that the prohibition of multiple links in joint with other
local processes may be responsible of the existence of real complex networks with
exponents γ < 2 in its In-degree distribution.

Other important characteristic of many real complex networks is that the out-
degree distribution follows a power-law. However many of the proposed growth
models at this time consider a constant out-degree, other models generate out-degree
distributions with exponential or poisson behavior. In this thesis are proposed two
growth models that generate out-degree distribution with power-law behavior, the
models incorporate the random out-degree selection and the out-degree copying
processes. The first model can generate exponents in the range from 0 to 1. The
second model is able to obtain exponents in the range from 1 to ∞. That is, this
model is capable to generate all exponents found in the out-degree distributions of
the real complex networks.

Also, in this thesis is investigated the island size distribution that describes the
probability for an island to have a determined amount of nodes from a network.
It has been found that in some real complex networks the Island size distribution
follows a power law. In this context, a new model capable of reproduce this property
is proposed. The proposed model includes the copy of links, the random and time-
dependent born of islands processes. With these local processes the model is capable
to generate In-degree and Island Size distributions with power-law behavior with
exponent γ tunable from 2 and ∞.

In summary, in this Thesis have been proposed new growth models for complex
networks. With the models it is possible to obtain all exponents γ found in the Out-
degree and In-degree distribution of real complex networks that are documented.
That is, the models are able to generate exponents in the range from 1 to ∞.
Also have been demonstrated that some of the models are able to reproduce other
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properties of complex networks as Clustering, Shortest-path and Diameter.
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