

Universidad Autónoma de San Luis Potosí

Facultad de Ingeniería

Centro de Investigación y Estudios de Posgrado

"EL USO DE LA GEOMÁTICA EN LA CARACTERIZACIÓN GEOMÉTRICA Y MORFOLÓGICA DE LA CALDERA DE ILOPANGO, "REPÚBLICA DE EL SALVADOR"

TESIS

Que para obtener el grado de:

MAESTRA EN CIENCIAS EN GEOLOGÍA APLICADA

Presenta:

GEOL. LAURA PAOLA CALDERÓN CUCUNUBÁ Alumna becada por CONACYT CVU: 789263

> Asesor: Dra. María Cristina Noyola Medrano

Co-asesor: Dr. Gerardo de Jesús Aguirre Díaz

San Luis Potosí, S. L. P.

Agosto de 2018

19 de abril de 2018

GEOL. LAURA PAOLA CALDERÓN CUCUNUBÁ PRESENTE.

En atención a su solicitud de Temario, presentada por los Dres. María Cristina Noyola Medrano y Gerardo de Jesús Aguirre Díaz Asesora y Co-asesor de la Tesis que desarrollará Usted, con el objeto de obtener el Grado de Maestra en Ciencias en Geología Aplicada. Me es grato comunicarle que en la Sesión del H. Consejo Técnico Consultivo celebrada el día 19 de abril del presente, fue aprobado el Temario propuesto:

TEMARIO:

EL USO DE LA GEOMÁTICA EN LA CARACTERIZACIÓN GEOMÉTRICA Y MORFOLÓGICA DE LA CALDERA DE ILOPANGO, "REPÚBLICA DE EL SALVADOR"

INTRODUCCIÓN.

- LA GEOMÁTICA EN EL ESTUDIO DE CALDERAS VOLCÁNICAS. 1.
- MARCO GEOLÓGICO Y TECTÓNICO DE EL SALVADOR Y DE LA 2. CALDERA DE ILOPANGO.
- TÉCNICAS DE ANÁLISIS MORFOESTRUCTURAL PARA LA CALDERA DE 3. ILOPANGO.
- RELACIÓN ENTRE LA FORMA Y ESTRUCTURA DE LA CALDERA DE 4. ILOPANGO.
- GENERAL SOBRE RASGOS Y PARÁMETROS DISCUSIÓN 5. MORFOMÉTRICOS CON LA TECTÓNICA DE LA CALDERA DE ILOPANGO. CONCLUSIONES. REFERENCIAS.

ANEXOS.

"MODOS ET CUNCTARUM RERUM MENSURAS AUDEBO"

FACULTAD DE **INGENIERÍA**

Av. Manuel Nava 8 Zona Universitaria • CP 78290 San Luis Potosi, S.L.P tcl. (444) 826 2330 a 39 fax (444) 826 2336 www.uasio.mx

*etn.

"95 Años como Primera Universidad Autónoma en México"

¡Orgullosa por esta meta cumplida!

Dedicado a mis papás, Andrés, mis nenas, mis asesores y mi familia

AGRADECIMIENTOS INSTITUCIONALES

Quiero expresar mis sinceros agradecimientos al Instituto de Geología de la Facultad de Ingeniera, perteneciente a la Universidad Autónoma de San Luis Potosí y a todas las personas que hacen parte de este, por tener la fortuna de hacer parte de este equipo de trabajo el cual me permitió crecer como Geóloga y me formó como Maestra en Ciencias en Geología Aplicada enfocada en geomorfología y en geomática.

También agradezco a mi asesora Dra. María Cristina Noyola Medrano, por su guía, apoyo, confianza y conocimiento aportado durante el desarrollo de la obtención de este grado y del trabajo de tesis. Así mismo agradezco al Dr. Gerardo de Jesús Aguirre Díaz perteneciente a la UNAM, con sede en Juriquilla, por su co-asesoría, guía, conocimiento aportado, e inclusión a su proyecto CONACYT de ciencia básica No. 240447 "Peligrosidad para México de super-erupciones originadas en Centroamérica: El caso de la Caldera de Ilopango, El Salvador, y su influencia en el declive del Imperio Maya", del cual surge el proyecto de esta tesis.

Agradezco a mis sinodales Dr. Margarito Tristán, M.C. Jorge Aceves y Dr. Miguel Morales, por sus aportes, correcciones, ayuda y guía para lograr el objetivo del trabajo de tesis y formación como Maestra en Ciencias en Geología Aplicada. Agradezco al Ministerio de Medio Ambiente y Recursos Naturales (MARN) de El Salvador por facilitar el modelo digital de elevación de LIDAR sobre el área de estudio de la tesis.

También quiero agradecer a el Consejo Nacional de Ciencia y Tecnología (CONACYT) organismo que me apoyó económicamente por medio de la BECA durante todo el tiempo de mi maestría, apoyo que me permitió financiar mi maestría, intercambios y sobrevivir como extranjera en México. Gracias a lo anterior logré cumplir mis metas y mis estudios de maestría en el tiempo propuesto.

Y por último agradezco a la ciudad de San Luis Potosí, lugar que me acogió durante estos dos años de maestría con su diverso clima, ciudadanos, variedad alimenticia y tranquilidad. Así mismo agradezco a México, país que me recibió como residente temporal estudiante para cumplir metas y conocer su diversidad, aún con la dificultad del lento y complicado proceso migratorio que hay en la ciudad de San Luis Potosí, el cual alcanzó a perjudicar el financiamiento total de la beca otorgada por CONACYT. A pesar de lo anterior regreso a Colombia feliz de haber cumplido mis metas en México y de que las puertas quedan abiertas para un posible regreso.

RESUMEN vi
ABSTRACTvii
INTRODUCCIÓN1
I. Justificación2
II. Hipótesis2
III. Objetivos
IV. Localización
V. Generalidades de la República de El Salvador5
1. LA GEOMÁTICA EN EL ESTUDIO DE LAS CALDERAS VOLCÁNICAS9
1.1. Caldera9
1.1.1. Definición9
1.1.2. Clasificación de calderas11
1.1.3. Teorías de formación16
1.1.4. Morfología y geometría de las calderas19
1.3. Técnicas geomáticas21
1.4. Análisis morfométricos sobre áreas volcánicas23
2. MARCO GEOLÓGICO Y TECTÓNICO DE EL SALVADOR Y DE LA CALDERA DE ILOPANGO 24
2.1. Antecedentes sobre la geología general de El Salvador24
2.2. Antecedentes sobre tectónica regional de El Salvador27
2.3. Geoformas volcánicas y tectónicas principales de El Salvador
2.4. Antecedentes de la región central de El Salvador y la Caldera de Ilopango
2.5. Tectónica local de la región central de El Salvador y la Caldera de Ilopango40
3. TÉCNICAS DE ANÁLISIS MORFOESTRUCTURAL PARA LA CALDERA DE ILOPANGO
3.1. Métodos de interpolación para la construcción de MDE45
3.2. Obtención de parteaguas para delimitar geoformas volcánicas
3.3. Parámetros morfométricos derivados de un MDE50
3.4. Rasgos morfométricos derivados de un MDE55
3.5. Sombreado
3.6. Determinación de lineamientos59
4. RELACIÓN ENTRE LA FORMA Y ESTRUCTURA DE LA CALDERA DE ILOPANGO63
4.1. Topografía de la Caldera de Ilopango63

ÍNDICE

4.2. Nuevo límite topográfico de la Caldera de Ilopango	68
4.3. Parámetros y rasgos morfométricos de la Caldera de Ilopango	71
4.4. Datos morfométricos de la Caldera de Ilopango	74
4.5. Determinación y delimitación de lineamientos, fallas, colapsos y domos	79
DISCUSIÓN GENERAL SOBRE LOS RASGOS Y PARÁMETROS MORFOMÉTRICOS CON ECTÓNICA DE LA CALDERA DE ILOPANGO	LA 86
5.1. El método de interpolación para el MDE del Lago de Ilopango	86
5.2. Límite topográfico, forma e información cuantitativa de la Caldera de Ilopango	89
5.3. Análisis de parámetros y rasgos morfométricos	91
5.4. Colapsos, domos y lineamientos	92
ONCLUSIONES	95
EFERENCIAS	96
NEXOS	101

ÍNDICE DE FIGURAS

Figura 1. Localización de la Caldera de Ilopango	4
Figura 2. Hidrología de El Salvador.	7
Figura 3. Volcanes activos de El Salvador.	8
Figura 4. Tipos de colapso.	13
Figura 5. Estilos de colapso	15
Figura 6. Clasificación de caldera con los posibles estilos de colapso	16
Figura 7. Etapas de formación de calderas	19
Figura 8. Principales estructuras y elementos morfológicos de las calderas definidas.	.19
Figura 9. Mapa geológico de la República de El Salvador	26
Figura 10. Modelo diagramático de la posible geometría de las fallas del frente de arc	со у
de tectónica regional de El Salvador y Nicaragua.	28
Figura 11. Marco tectónico de América Central	29
Figura 12. Falla de rumbo dextral San Vicente	31
Figura 13. Fallas normales	31
Figura 14. Estratovolcán San Vicente	32
Figura 15. Caldera de Coatepeque.	32
Figura 16. Domos asociados a la Caldera de Ilopango	33
Figura 17. Maares	33
Figura 18. Perfiles estratigráficos de las subunidades de la unidad TBJ	36
Figura 19. Sección vertical de la parte SW de la Caldera de Ilopango	37
Figura 20. Mapa geológico de la Caldera de Ilopango	39
Figura 21. Subdivisión de la Zona de Falla de El Salvador	42
Figura 22. Fases de evolución de la ZFES	43
Figura 23. Carta Batimétrica del Lago de llopango	46
Figura 24. Diagrama de metodología de la generación del MDEc	.49
Figura 25. Diagrama de metodología para generar el límite topográfico de la Caldera	1 de
llopango	.50
Figura 26. Conjunto de celdas agrupadas 3x3	.51
Figura 27. Directiones de orientación con los respectivos colores que son asignados a	las
ceidas para identificar el aspecto.	52
Figura 28. Conjunto de ceidas agrupadas 3x3.	52
Figura 29. Diagrama de la superficie compuesta representando la curvatura teniendo) en
cuenta la elevación de las celdas.	.53
Figura 30. Bioque diagrama de la representación de la curvatura.	.54
Figura 31. Extracción de parametros morfometricos en la Caldera de Hopango	.55
Figura 32. Extracción de rasgos mortometricos en la Caldera de Hopango	.5/
Figura 33. Procedimiento para obtener el sombreado del MDEC.	.58
Figura 34. Sombreado del MDEc de 5m, con luz del sol ubicada a 45° de altitud	.60
Figura 35. Delimitación de lineamientos y escarpes usando parametros y ras	gos 61
Figura 36 Metodología de la determinación de lineamientos y fallamiento sobre el á	irea
de la Caldera de Ilonango	.62
Figura 37. Histograma de frecuencias de los datos topográficos sobre la Caldera	de
Ilopango	63
Figura 38. Análisis de tendencia sobre los datos topográficos de la Caldera de Ilopar	1g0.
-	64
Figura 39. Semivariograma del conjunto de datos topográficos de la Caldera de Ilopar	1g0.
	64

Figura 40. Raster del modelo de predicción topografía del interior del Lago de Ilopa	ango
a partir de la técnica de Kriging simple	65
Figura 41. MDEc del área de la Caldera de Ilopango.	66
Figura 42. Evaluación del MDEc del área de la Caldera de Ilopango	67
Figura 43. Cuencas cuyos afluentes llegan al interior de la caldera	68
Figura 44. Primer límite topográfico de la Caldera a partir del parteaguas	69
Figura 45. Delimitación de estructuras no asociadas a la caldera	69
Figura 46. Limite topográfico final de la Caldera de Ilopango	70
Figura 47. Mapa de pendiente de la Caldera de Ilopango.	71
Figura 48. Mapa de curvatura de la Caldera de Ilopango	72
Figura 49. Mapa de aspecto de la Caldera de Ilopango.	73
Figura 50. Mapa de canales de la Caldera de Ilopango	73
Figura 51. Mapa de crestas de la Caldera de Ilopango	74
Figura 52. Representación de la forma y datos cuantitativos del Lago de Ilopango	75
Figura 53. Representación de la forma y datos cuantitativos de la Caldera de Ilopa	ingo
	75
Figura 54. Perfil A-A'	77
Figura 55. Perfil B-B'	78
Figura 56. Mapa de lineamientos identificados sobre el área de la Caldera de Ilopa	ngo. 80
Figura 57. Mapa de lineamientos e inferencia de la forma poligonal de la Caldera llananza	a de
Figura 58. Estructura poligonal que muestra la Falla de San Vicente desplazand estructura volcánica	01 lo la 81
Figura 59 . Mana de escarpes sobre el área de la Caldera de Ilonango	
Figura 60. Mapa de extrapolación de los lineamientos NW sobre la Caldera de Ilopa	ngo. 84
Figura 61. Mapa de colapsos sectoriales (deslizamiento) sobre la Caldera de Ilopa	ngo. 85
Figura 62. Mapa de domos sobre la Caldera de Ilopango. Modificado de Hernár (2015)	1dez 85
Figura 63. Comparación de estadísticas de validación y gráficos de los diferentes t de interpolación usados.	ipos 86

ÍNDICE DE TABLAS

Tabla 1. Volcanes con erupciones conocidas	6
Tabla 2. Volcanes activos que presentan actividad sísmica, fumarólica y fuentes terma	les,
pero no se conoce registro histórico de erupciones	6
Tabla 3. Clasificación de calderas	.12
Tabla 4. Estratigrafía de la Caldera de Ilopango y correlación entre la nomenclat	ura
usada por los diferentes autores	.35
Tabla 5. Principales características de las erupciones TB4 a la TBJ	.38
Tabla 6. Clasificación de pendientes	.51
Tabla 7. Descripción de los rasgos morfométricos con sus segundas derivadas	.56
Tabla 8. Datos cuantitativos extraídos del MDEc para la caldera y el Lago de Ilopango	76
Tabla 9. Media del error estandarizado más cercana al cero	.88
Tabla 10. La Media cuadrática más pequeña	.88
Tabla 11. La Media Cuadrática estandarizada más cercana al 1	.88
Tabla 12. El Error estándar promedio más cercano a la Media cuadrática.	.88
Tabla 13. Comparación de los datos cuantitativos obtenidos por el MDEc	.90
Tabla 14. Valores de altitud y azimut de la orientación de un foco de luz (el Sol)	.92

RESUMEN

La escasa información geomorfológica de la Caldera de Ilopango, ubicada al oriente de San Salvador (capital de la República de El Salvador), no ha permitido establecer un vínculo entre las diferentes formas volcánicas observadas y los mecanismos tectono-estructurales, los cuales pueden proporcionar las bases para establecer el mecanismo que pudo haber dado paso a la formación de la caldera. Por lo tanto, este trabajo pretende contribuir con la caracterización cuantitativa y cualitativa de las geoformas volcánicas y estructurales de la Caldera de Ilopango ubicadas al interior y proximidades de ésta a partir del tratamiento y análisis de Modelos Digitales de Elevación (MDE).

El material utilizado en este trabajo son dos MDE generados por tecnología LIDAR (*Light Intensity Detection and Ranging*), con una resolución espacial de 1 y 5 m, y datos batimétricos del Lago de Ilopango. Con este material se extrajo el límite topográfico de la caldera, los parámetros morfométricos (pendiente, curvatura y aspecto) y los rasgos morfométricos (crestas y canales). A partir de los anteriores se delimitó los colapsos debido a los deslizamientos en masa, domos, lineamientos y escarpes asociados a fallamiento, además de obtener datos morfométricos (área, perímetro, cota máxima y mínima, altitud y pendiente promedio, entre otros).

Los resultados obtenidos permiten concluir que la Caldera de Ilopango presenta una forma poligonal relacionada directamente con el control estructural y cuya forma ha podido ser producto del desplazamiento de la falla de rumbo dextral de San Vicente, cuya orientación es E-W, y la cual ha desplazado aproximadamente 2 km la caldera hacia el oriente. Por otra parte, los lineamientos, escarpes y domos presentan una orientación preferente hacia el NW-SE asociadas a posibles fallas extensionales. Además, la diferencia de distintas geoformas semicirculares permitió definir el posible control geomorfológico de diferentes eventos caldéricos sobre la Caldera de Ilopango; aún así es posible establecer que la tectónica influye directamente sobre la geometría de la Caldera de Ilopango, y por lo tanto pudo haber sido la precursora de ésta.

Palabras clave: Centroamérica, volcanes, MDE, análisis morfométrico, Caldera de colapso.

ABSTRACT

The limited geomorphological information of the Ilopango Caldera located at east of San Salvador (Capital of the Republic of El Salvador), has not allowed to establish a link between different volcanic forms observed and tectonic-structural mechanisms, which can provide the bases to establish the mechanism that could have given way to the formation of the caldera. Therefore, this work aims to contribute quantitative and qualitative characterization of the volcanic and structural geoforms of the Ilopango Caldera located in and near of this, based on the treatment and analysis of Digital Elevation Models (DEM).

The material used in this work are two DEM generated by LIDAR (*Light Intensity Detection and Ranging*) technology, with a spatial resolution of 1 and 5 meters, and bathymetric data from Lake Ilopango. With this material topographic boundary of the caldera, morphometric parameters (slope, curvature and aspect) and morphometric features (ridges and channels) was extracted. From the previous ones, gravitational collapses of landslides, domes, lineaments and escarpments associated with faulting were delimited, in addition was obtaining morphometric data (area, perimeter, maximum and minimum height, altitude and average slope, among others).

The results obtained allow us to conclude that the Ilopango Caldera presents a polygonal form directly related to the structural control and whose shape may have been the product of the displacement of the strike-slip fault of San Vicente, whose orientation is E-W, and which has displaced approximately 2 km the caldera towards the east. On the other hand, the lineaments, escarpments and domes have a preferential orientation towards NW-SE associated with possible extensional faults. In addition, the difference of different semicircular geoforms allowed explaining the possible geomorphological control of different caldera events on the Ilopango Caldera; even so it is possible to establish that tectonics directly influences the geometry of the Ilopango Caldera, and therefore could have been the precursor of it.

Key words: Central America, volcanoes, DEM, morphometric analysis, Caldera collapse.

INTRODUCCIÓN

Las imágenes satelitales ópticas, de radar y los Modelos Digitales de Elevación (MDE) son productos geomáticos obtenidos a partir de diferentes técnicas y metodologías de adquisición, las cuales desde su existencia han dado lugar a diversos y variados análisis, cuyos resultados permiten evaluar cualitativa y cuantitativamente las características propias del terreno (estructura, composición, origen, entre otros). Por lo tanto, a través de la aplicación de técnicas de la geomática en el análisis gemorfológico se ha podido determinar y analizar las estructuras volcánicas y tectónicas que han modelado el terreno (Toutin, 2008; Cheng *et al.*, 2016; Del Soldato *et al.*, 2018).

La Caldera de Ilopango está ubicada al oriente de San Salvador (capital de la República de El Salvador), y hace parte del arco volcánico de Centroamérica. Actualmente ésta se encuentra ocupada por un lago cuyo tamaño es de 12 x 7 km, motivo por el cual lo hace muy turístico. Así como es llamativo turísticamente lo es científicamente ya que esta caldera ha presentado actividad volcánica desde el periodo Cuaternario hasta la actualidad, en donde la última erupción pudo haber sido la precursora del colapso demográfico y económico a gran escala en todo el sur del Imperio Maya (Dull *et al.*, 2001), y su última actividad volcánica fue la efusión de un domo en el centro de la caldera, entre los años 1879 y 1880. Por lo anterior, ésta se encuentra activa y es capaz de producir grandes erupciones en el futuro (Mann *et al.*, 2004, Aguirre-Díaz *et al.*, 2016a, Saxby *et al.*, 2016).

De la mano con la actividad volcánica, se encuentra la amplia actividad tectónica de la región de El Salvador, la cual tiene su origen debido a la interacción entre la placa de Cocos, la placa Caribe y la placa norteamericana. La margen convergente entre las dos primeras dio origen al arco volcánico de Centroamérica, pero la interacción entre las dos últimas generó un sistema transtensional en la placa del Caribe donde se encuentra la República de El Salvador. Por lo anterior la región donde se encuentra la caldera presenta un sistema estructural complejo que ha afectado en los últimos años a El Salvador con diferentes eventos sísmicos; un ejemplo es el sismo superficial de 6.6 Mw del 13 de febrero del 2001 que se presentó a lo largo de una falla de rumbo dextral (Falla San Vicente) en el segmento de San Vicente (desde la Caldera de Ilopango hasta las laderas del Volcán San Vicente), el cual generó daños significativos en la infraestructura del país y causó numerosas muertes (Canora *et al.*, 2010).

Las rocas no consolidadas y un relieve dinámico de arco volcánico activo junto con periodos fuertes de lluvias y huracanes, permiten la formación de procesos exógenos (erosión, movimientos en masa e inundaciones), y desastres desde ordenes pequeños hasta catástrofes grandes como terremotos, erupciones volcánicas, lahares, deslizamientos, erosión e inundaciones, todos ellos responsables de bastantes pérdidas de vida, propiedades y desarrollo económico en la República de El Salvador (Lexa *et al.*, 2011).

En el caso específico de la Caldera de Ilopango, la aplicación de algunas técnicas de la geomática han sido utilizadas para el cálculo de volúmenes de material volcánico sin drenar a partir de MDE, así como la delimitación de zonas de peligrosidad a partir de los resultados del volumen de material volcánico emitido durante la erupción que dio origen a la ignimbrita de Tierra Blanca Joven (Hernández-Hernández, 2017). Por otra parte, el trabajo de Novola-Medrano et al. (2016) demuestra la utilidad del uso de los MDE para el análisis geoespacial de la Caldera de Ilopango y establece la diferencia de exactitud que se puede lograr dependiendo del método que da origen al MDE y de su resolución espacial. Considerando la información que existe sobre la Caldera de Ilopango y los procedimientos geomáticos que se han generado para el estudio de la misma, en este trabajo se reporta el uso y análisis de MDE de 1 y 5 m de resolución espacial, generados por tecnología LIDAR (Light Intensity Detection and Ranging), así como la generación de un raster batimétrico a partir de datos de batimetría obtenidos in situ por Sánchez-Esquivel (2016), con la finalidad de extraer información de rasgos y parámetros morfométricos que puedan ayudar a comprender mejor la tectónica de la Caldera de Ilopango, aspectos que permiten dar idea de la posible formación de esta impresionante estructura volcánica e incidir en el análisis de zonas de riesgo geológico.

I. Justificación

La escasa información geomorfológica de la Caldera de Ilopango no ha permitido establecer un vínculo entre las diferentes formas volcánicas observadas y los mecanismos tectono-estructurales, los cuales pueden proporcionar las bases para establecer el mecanismo que pudo haber dado paso a la formación de la caldera. Por lo tanto, este trabajo pretende contribuir con la caracterización cuantitativa y cualitativa de las geoformas volcánicas y estructurales de la Caldera de Ilopango ubicadas al interior y proximidades de ésta. Así mismo este trabajo generará información geoespacial digital para complementar los resultados obtenidos en el proyecto CONACYT de ciencia básica No. 240447 titulado "Peligrosidad para México de super-erupciones originadas en Centroamérica: El caso de la caldera de Ilopango, El Salvador y su influencia en el declive del Imperio Maya".

II. Hipótesis

Los análisis geomorfológicos permiten explicar y establecer el origen de los diferentes rasgos del relieve tanto en la Tierra como en otros planetas, de tal manera que la forma que actualmente presenta la Caldera de llopango está íntimamente relacionada con el sistema estructural generado por la tectónica regional en El Salvador, y así mismo refleja su proceso de formación. Y, el uso de la geomática permite extraer datos cuantitativos y cualitativos de las geoformas, la geología y los rasgos estructurales de la caldera. Estos datos podrán ayudar a explicar en parte, el origen de esta estructura volcánica.

III. Objetivos

Objetivo General

Determinar y cuantificar la geometría del cráter de la Caldera de Ilopango y de las estructuras volcánicas y tectónicas asociadas mediante el análisis geomorfológico a partir del procesamiento digital de MDE-LIDAR y de datos batimétricos.

Objetivos Particulares

- 1. Analizar datos batimétricos del Lago de Ilopango para obtener la topografía interna de la caldera.
- 2. Analizar datos LIDAR y datos batimétricos para extraer el límite topográfico y los datos morfométricos de la caldera.
- 3. Extraer y analizar rasgos y parámetros morfométricos a partir de los MDE-LIDAR y batimetría.
- 4. Delimitar e identificar lineamientos, escarpes y desplazamientos de los rasgos estructurales de la caldera.
- 5. Identificar los domos internos de la caldera, y relacionar la posible tendencia estructural entre estos mediante MDE-LIDAR y batimetría.
- 6. Relacionar los rasgos morfoestructurales con el origen, la estructura y tectónica de la Caldera de Ilopango.

IV. Localización

La Caldera de llopango se encuentra ubicada al oriente de San Salvador (capital de la República El Salvador; Figura 1). En su interior se encuentra un cuerpo de agua conocido como el Lago de llopango, cuyo diámetro mayor de aproximadamente 12 km. La Caldera de llopango forma parte del arco volcánico de Centroamérica que se extiende de Guatemala a Costa Rica a lo largo del margen activo de pacífico, asociado a la subducción de la placa de Cocos bajo la placa del Caribe, las cuales convergen a una velocidad de 70-80 mm/año con un componente oblicuo (Canora *et al.*, 2010; Figura 11).

Figura 1. Localización de la Caldera de Ilopango. **A.** Mapa del área de la Caldera de Ilopango. **B.** Bloque 3D del área de la Caldera de Ilopango.

V. Generalidades de la República de El Salvador

Ubicado en Centroamérica, El Salvador se encuentra limitando al norte y al oriente con Honduras, al poniente con Guatemala y al sur con el Océano Pacifico. Tiene una superficie de 21.040 km² la cual está dividida en 14 departamentos agrupados en tres zonas: oriental, central y occidental, y en el cual habitan 6.520.675 personas (Oficina de Información Diplomática, 2017).

La República de El Salvador tienen un total de 59 cuerpos de agua en los que se encuentran incluidos lagos, lagunas, embalses, manglares y esteros, y 360 ríos que son considerados de importancia, los cuales están agrupados en diez regiones hidrográficas, donde la más importante es la cuenca de Rio Lempa; pero lo más curioso es que es el único país de Centroamérica cuyas vertientes drenan totalmente hacia el Océano Pacifico (Oficina de Información Diplomática, 2017; Figura 2).

En el país hay dos cadenas montañosas que atraviesan el país de este a oeste, una se localiza en la parte sur y es paralela al Océano Pacífico, mientras que la otra cadena se encuentra más al norte. En esta última se encuentran volcanes de edades mayores a dos millones de años, los cuales actualmente están inactivos; además en esta misma se localiza El Pital, el pico más alto del país con 2730 m de altura (Oficina de Información Diplomática, 2017; Figura 3). Y en la cadena más sur se encuentran los volcanes con edades menores a los dos millones de años, los cuales son aproximadamente 50 volcanes, y dentro de estos 23 han sido clasificados como activos incluyendo la Caldera de Ilopango (Demetrio-Escobar, 2002; Tabla 1, Tabla 2 y Figura 3).

La República de El Salvador, está sujeto a frecuentes erupciones volcánicas y sismos de origen volcánico y tectónico, que afectan a grandes grupos poblacionales, generando impacto en su economía (Oficina de Información Diplomática, 2017). La erupción más reciente de ceniza y gases tóxicos fue la del volcán Chaparrastique, en San Miguel, en diciembre del 2013, y entre 1573 y 2001 ha habido un total de 55 terremotos (Oficina de Información Diplomática, 2017).

No.	Volcán	Altura (msnm)	Tipo de volcán	Tipo de roca predominante	Localización	Última erupción
1	Santa Ana	2,382	Estrato volcán	Basalto de olivino y piroxeno	Santa Ana	1904
2	Izalco	1,965	Estrato volcán	Basalto de olivino y augita	Sonsonate	1966
3	San Marcelino	1,480	Cono de escorias	Basalto de olivino y augita	Sonsonate	1722
4	San Salvador	1,850	Estrato volcán	Basalto y andesita	San Salvador	1917
5	El Playón	660	Cono de escorias	Basalto de olivino y augita	San Salvador	1658-1659
6	Islas Quemadas	450	Domo de lava	Dacita y Horblendita	San Salvador	1879-1880
6	Ilopango	438	Caldera	Dacita, Pómez	San Salvador	429 d.C.
7	San Miguel	2,130	Estrato volcán	Basalto de olivino y augita	San Miguel	1976
8	Conchagüita	550	Estrato volcán	Basalto	Isla del Golfo de Fonseca	1892

Tabla 1. Volcanes con erupciones conocidas. Modificado de Demetrio-Escobar (2002).

Tabla 2. Volcanes activos que presentan actividad sísmica, fumarólica y fuentes termales, pero no se conoce registro histórico de erupciones. Modificado de Demetrio-Escobar (2002).

No.	Volcán	Altura (msnm)	Tipo de volcán	Tipo de roca predominante	Localización
9	Caldera de Coatepeque	746	Caldera	Andesita Piroxeno	Santa Ana
10	San Vicente	2,173	Estrato volcán	Andesita Piroxeno	San Vicente
11	Тесара	1,592	Estrato volcán	Basalto de Olivino	Usulután
12	Conchagua	1,250	Estrato volcán	Andesita Hiperstena	La Unión
13	Cuyanausul	1,840	Estrato volcán	Basalto y Andesita	Ahuachapán
14	Laguna Seca El Pacayal (Chinamenca)	1,200	Estrato volcán	Basalto y Andesita	San Miguel
15	Limbo (Ojo de Agua)	1,373	Cono de escorias	Basalto-Andesita	San Miguel
16	Cerro las Ramas	1,958	Estrato volcán	Basalto de Olivino	Sonsonate
17	Laguna Verde	1,829	Estrato volcán	Basalto de Olivino	Ahuachapán
18	Chingo	1,777	Estrato volcán	Basalto y Andesita	Santa Ana
19	Cerro de las Ninfas	1,760	Estrato volcán	Basalto de Olivino	Ahuachapán
20	Cerro de los Naranjos	1,960	Estrato volcán	Basalto de Olivino	Sonsonate
21	Cerro Chambala	600	Estrato volcán	Basalto	San Miguel
22	Volcán de Usulután	1,450	Estrato volcán	Basalto	Usulután
23	Cerro de Taburete	1,172	Estrato volcán	Basalto de Olivino y Andesita	Usulután

Figura 2. Hidrología de El Salvador. Modificado de MARN (2011).

Figura 3. Volcanes activos de El Salvador. Modificado de SNET (2011).

1. LA GEOMÁTICA EN EL ESTUDIO DE LAS CALDERAS VOLCÁNICAS

1.1. Caldera

1.1.1. Definición

Diferentes autores han definido a las calderas de acuerdo con sus estudios. En la Enciclopedia de Volcanes (Lipman, 2000), en el capítulo de calderas las define como "una gran depresión volcánica, más o menos de forma circular, cuyo diámetro excede en gran medida al de cualquier depresión volcánica incluido conductos volcánicos", también indica que en general las calderas son formadas por el colapso del techo de un magma reservorio superficial, y la formación de estas se encuentra acompañado de grandes volúmenes de material magmático. Así mismo define como calderas pequeñas aquellas cuyo diámetro es menor a 5 km asociada a erupciones de lava en las crestas de volcanes andesíticos y basálticos, mientras que las calderas grandes que alcanzan como máximo los 75 km de dimensión han sido formadas por erupciones de grandes volúmenes de ignimbritas. Por lo tanto, Lipman define que "en general, el diámetro de las calderas incrementa en proporción con el volumen asociado a la erupción".

Posteriormente Mouginis-Mark y Rowland (2001) definen a las calderas terrestres como "*depresiones mayores a 1 km a lo largo de la forma debido al colapso gravitacional en un complejo de almacenamiento de magma evacuado o parcialmente evacuado (cámara magmática)*", así mismo hacen diferencia con las calderas "*pit craters*" cuyo diámetro es menor a 1 km, y las cuales son formadas por el colapso dentro de un conducto de magma en la zona de las fracturas profundas (Walker, 1988) o por explosiones superficiales generadas por el acenso del magma (MacDonald, 1973); y definen a las calderas de colapso de otros planetas como "*depresiones que tienen un diámetro mayor a 10 km*".

Cole *et al.* (2005) sugiere una terminología que indica la preservación y complejidad de las calderas:

<u>Caldera:</u> "estructura volcánica generalmente grande, la cual es principalmente el resultado del colapso o subsidencia de la parte superior de una cámara magmática durante o inmediatamente después de la actividad eruptiva".

<u>Complejo Caldérico:</u> "calderas anidadas o superpuestas espacialmente y estructuralmente asociadas de diferentes edades, como las estructuras generalmente se conservan de forma deficiente o incompleta, las ignimbritas deben asignarse solo sobre la base de criterios vulcanológicos". <u>Cauldron:</u> "caldera erosionada en la cual la mayoría del acompañamiento eruptivo de las calderas de colapso ha sido removida por la erosión, y donde las unidades sedimentarias o volcánicas antiguas bajo el suelo de la caldera están ahora expuestas".

<u>Estructura en anillo</u>: "una cámara magmática o cámaras expuestas por la profunda erosión (generalmente mayor a 2km) debajo de una estructura caldérica definida".

Así mismo Acocella (2007) define las calderas de colapso como "depresiones subcirculares en áreas volcánicas, cuyo diámetro es considerado más grande que los conductos explosivos o cráteres, posiblemente alcanzando decenas de kilómetros; así mismo las calderas pueden ser caracterizadas por una variable cantidad de subsidencia desde los pocos metros hasta pocos kilómetros. Su forma puede ser subcircular a elíptica (comúnmente) reflejando la posible influencia del control tectónico. Las calderas son formadas bajo varias condiciones tectono-magmáticas como volcanismo félsico de arco, máfico y félsico oceánico, continental divergente, ambiente félsico de strike-slip y máfico de hot-spot. De acuerdo con esta variabilidad, existe la tendencia de que las erupciones explosivas félsicas están relacionadas a la formación de calderas de corto tiempo (horas a días) desencadénate de eventos catastróficos, y al contrario con las calderas formadas por la efusión de actividad máfica usualmente son formadas en un lapso más largo (días a años)".

Y Merle *et al.* (2010) propone la siguiente definición: "*una caldera es una gran depresión circular de piso plano delimitada por taludes verticales que pueden truncar horizontalmente la parte superior de un volcán*".

De las anteriores definiciones se logra concluir que "la caldera es una depresión volcánica subcircular a elíptica (comúnmente) que refleja la posiblemente influencia del control tectónico (Acocella, 2007) y cuyo piso es relativamente plano delimitado por fallas verticales (Merle et al., 2010). Las dimensiones de una caldera debido al colapso gravitacional pueden ser mayor a 1 km en el planeta Tierra y mayor a 10 km en otros planetas, pero las calderas "pit craters" debidas al colapso dentro de un conducto de magma en un edificio volcánico son menores a 1km (Mouginis-Mark y Rowland, 2001). Las calderas se caracterizan por una variable cantidad de subsidencia desde pocos metros hasta pocos kilómetros (Acocella, 2007); éste colapso gravitacional es debido a la subsidencia del techo de un magma reservorio superficial por la evacuación total o parcial de magma dentro de la cámara magmática (Mouginis-Mark y Rowland, 2001), durante o inmediatamente después de la actividad eruptiva (Cole et al., 2005).

Las calderas comúnmente se encuentran acompañadas por volúmenes grandes de material magmático y en general, el diámetro de estas incrementa en proporción con el volumen asociado a la erupción (Lipman, 2000). Las calderas son formadas bajo varias condiciones tectonomagmáticas y de acuerdo con esta variabilidad, existe la tendencia de que las erupciones explosivas félsicas están relacionadas a la formación de calderas de corto tiempo (horas a días) desencadénate de eventos catastróficos, y al contrario con las calderas formadas por la efusión de actividad máfica las cuales son formadas en un lapso más largo (días a años; Acocella, 2007)".

1.1.2. Clasificación de calderas

A lo largo de los estudios enfocados a las calderas de colapso, se han realizado muchos intentos para clasificarlas de acuerdo con sus similitudes en uno o varios aspectos. Uno de los primeros en resumir la clasificación usada durante la primera parte del siglo 20 fue Williams (1941) quien generó una clasificación de acuerdo con los diferentes tipos de eventos volcánicos combinando muchas características morfológicas V estructurales contrastantes, incluvendo el uso de ejemplos de campo como subtipos de caldera (Cole et al., 2005 y Poppe, 2012). Posteriormente por la redefinición del término de calderas como a una "gran depresión de colapso", Williams y McBirney (1979) dejaron solo la clasificación de colapso propuesta por Williams (1941) en cuya modificación incluyeron nuevos ejemplos de campo, y descartaron otros (Cole et al., 2005).

Sin embargo, los estudios sobre calderas siguieron ampliándose y los nuevos datos disponibles sobre calderas mostraron una amplia gama de características como respuesta al proceso de colapso, tales como la morfología de la estructura o del proceso de subsidencia, características que no se tenían en cuenta en la anterior clasificación, la cual se basaba solo en el área de yacimiento y el volumen de la erupción con ejemplos de campo encasillarlos o clasificados en tipos bien definidos (Cole *et al.*, 2005 y Poppe, 2012). Esto llevó a Lipman *et al.* (1997, 2000) a establecer una clasificación más realista, reconociendo una amplia gama de características asociadas con las estructuras, dividiéndolos en *Pistón, Trampada, Hundimiento, Despedazado y Embudo* (Figura 5). Pero incluso esta clasificación es restrictiva ya que muchas calderas tienen morfologías que pueden atribuirse a más de un proceso de colapso y / o estilo estructural. (Cole *et al.*, 2005).

La nueva clasificación propuesta por Lipman *et al.* (1997, 2000) fue reconfirmada por Cole *et al.* (2005), quien además sugirió distinguir entra las calderas bien definidas y estructuras erosionadas más antiguas, definiendo, *Caldera, Complejo Caldérico, Cauldron y Estructura en anillo*, lo que permitiría indicar la preservación y complejidad de la caldera (ver más atrás 1.1.1.).

Aun así, mencionó que el método más simple para agrupar las calderas es por medio de su composición dominante, tales como calderas "Basáltica", "Peralcalina", "Andesítica-dacítica" y "riolítica", pero que esta no pretendía ser una clasificación, ya que muchas calderas pueden contener más de un tipo eruptivo. Sin embargo, la nomenclatura se utiliza en casos en que los procesos de colapso no son claros o en estudios centrados en un grupo de calderas con una composición eruptiva promedio común (Poppe, 2012).

A pesar de que Roche *et al.* (2000) estuviera de acuerdo con la clasificación de Lipman *et al.* (1997, 2000), este realiza unos arreglos a la clasificación (Tabla 3 y Figura 5). Más adelante Aguirre-Díaz (2008) propone la existencia de tres tipos de calderas definidos como: *Calderas de cima, Calderas clásicas y Calderas tipo graben* (Figura 4), los cuales pueden generarse por los diferentes estilos de colapso teniendo en cuenta la clasificación de Lipman *et al.* (1997), definidos como *Colapso tipo pistón, Colapso tipo trampada y Colapso tipo despedazado.* La relación entre el tipo de caldera y estilo de colapso se resumen en la Figura 6.

Por último, se deduce que la geometría de las calderas está relacionada con el tamaño de la erupción, la profundidad y el ancho de la cámara magmática. Los diferentes tipos de clasificación propuestos por los anteriores autores se resume en la Tabla 3.

Williams (1941)	Williams y McBirney (1979)	Lipman (1997, 2000)	Roche <i>et</i> al. (2000)	Cole <i>et al.</i> (2005)	Aguirre (2008)
<u>Explosión</u>					
<u>Colapso</u>				<u>Caldera</u>	<u>Calderas clásicas</u>
Krakatoa	<u>Krakatoa</u>	<u>Pistón</u>	<u>Pistón</u> Fallas hacia el interior Fallas hacia el exterior	Pistón	Pistón
	<u>Valles</u>	<u>Trampada</u>	Trampada	Trampada	Trampada
Kilauea	<u>Hawaiiano</u>	<u>Despedazado</u>	<u>Despedazado</u>	Despedazado	Despedazado
Glen Coe	<u>Katmai</u>	<u>Hundimiento</u>	<u>Hundimiento</u>	Hundimiento	
Katmai	<u>Galapagos</u>	<u>Embudo</u>	<u>Embudo</u>	Embudo	
Diverso	<u>Atitlán</u>				
Criptovolcánico	<u>Masaya</u>				
<u>Erosión</u>				<u>Cauldron</u>	
<u>Graben volcánio</u> Cima					<u>Calderas tipo</u> <u>graben</u> Calderas de cima
Sector					<u>Garacitas de cima</u>
<u>Conductos volcánicos</u> <u>o canales de fisura</u>				<u>Estructura en</u> <u>anillo</u>	
<u>Principales</u> <u>depresiones volcano-</u> <u>tectónicas</u>					

Tabla 3. Clasificación de calderas modificado de Cole et al. (2005) y Poppe (2012)

Tipos de calderas

Existen diferentes tipos de calderas de colapso que han sido propuestos y clasificados por Aguirre-Díaz (2008):

<u>Calderas de cima (*Summit calderas*):</u> estos se forman en la cima de grandes volcanes y están relacionados con productos piroclásticos de pequeño volumen (Figura 4A). El ejemplo típico es "*Crater Lake*" en EUA, y "Ceboruco" en Nayarit, México.

<u>Calderas clásicas (*Classic calderas*):</u> tienen forma semicircular a irregular de varios kilómetros de diámetro relacionados a grandes volúmenes de productos piroclásticos (Figura 4B). Estas calderas suelen comenzar generalmente con una caída de pómez, seguido de grandes flujos piroclásticos que forman ignimbritas. Los ejemplos característicos son "*Yellowstone*" en EUA, "*Campi Flegrei*" en Italia, y "Los Humeros" en México.

<u>Calderas tipo graben (*Graben caldera*):</u> son estructuras explosivas de colapso volcánico-tectónico producto de erupciones de gran volumen que forman ignimbrita. Estas erupciones ocurren a lo largo de varios conductos controlados por fisuras a lo largo de las fallas principales del graben, y de los bloques intra-graben causando el colapso de todo el graben o de un sector de este (Figura 4C). Algunos ejemplos son "*Taupo*" en Nueva Zelanda y "La Pacana" en Chile.

Figura 4. Tipos de colapso. **A**. Caldera tipo cima. **B**. Caldera clásica. **C**. Caldera tipo graben. Modificado de Aguirre-Díaz (2008).

Estilos de colapso.

Roche *et al.* (2000) propone un nuevo orden a la clasificación de estilos de colapso propuesta por Lipman *et al.* (1997, 2000):

<u>Colapso tipo pistón (*Plate*):</u> el mecanismo de colapso se da por la subsidencia de un bloque coherente, más o menos cilíndrico (pistón/placa), a lo largo de una o más fallas anulares bien definidas. El diámetro de las calderas cuyo estilo de colapso ha sido interpretado como tipo pistón suele ser menor a 10 km, pero a veces sobrepasa este valor. La cantidad de subsidencia generalmente se estima a partir del grosor de los depósitos intracaldéricos, los cuales suelen variar entre 3 km, o raramente hasta 5 km. Las fallas anulares pueden llegarse a observar en calderas erodadas, pero en calderas jóvenes su existencia es inferida por los conductos. Se han propuesto tres geometrías de colapso diferentes para calderas de pistón:

- Fallas de anillo de inmersión hacia el interior (*Inward dipping ring faults*): como lo dice su nombre, las fallas que limitan la placa van en dirección hacia el interior del bloque. A pesar de que se ha involucrado mucho en la literatura, parece tener un problema de espacio para el bloque que se desploma. Esas fallas, de hecho, rara vez se observan en el campo, y en la mayoría de los casos, las fallas de anillo son muy pronunciadas o verticales (Figura 5A1).
- Fallas de anillo de inmersión hacia el exterior (*Outward dipping ring faults*): contrario al anterior, las fallas que limitan la placa van en dirección hacia el exterior de esta. En este caso, no hay problema de espacio, y de acuerdo con datos sísmicos se ha confirmado la existencia de estas fallas anulares, pero con la característica de que son poco profundas y su inclinación varía entre 45° a 80° (Figura 5A2).
- Trampada (*Trapdoor*): la subsidencia se da de manera asimétrica ya que se ve afectado solo por una falla. Este mecanismo se deduce de las variaciones de espesor de los depósitos intracaldera. Se ha observado en *Snowdon*, Gales, donde el punto de hundimiento máximo se localiza cerca del conducto eruptivo principal (Figura 5A3).

<u>Colapso tipo despedazado (piece-meal)</u>: en este mecanismo de colapso, el bloque no es uniforme, ya que se encuentra fragmentado y lo que se observa es un conjunto de bloques, los cuales podrían llegar a verse como un complejo caótico. Este colapso es favorecido por la existencia de redes regionales de fallas, las cuales permiten la formación de múltiples bloques separados por las mismas; la separación de los bloques puede darse en el rango de 0.1 a 2 km como se presenta en la Caldera *Scafell* en Inglaterra. En la práctica, puede ser difícil distinguir fallas sin-colapso de las generadas durante el resurgimiento posterior al colapso (Figura 5B).

<u>Colapso de hundimiento (*Downsag*):</u> en este caso se presenta un hundimiento por flexión, característico de superficies extensionales y compresionales. En la mayoría de las calderas, los datos de campo sugieren que el colapso *downsag* actúa junto con fallas para acomodar el hundimiento. En *Glen Coe*, Escocia, la extensión causada por la flexión descendente generó grietas superficiales de cientos de metros de profundidad en los márgenes de la caldera (Figura 5C). <u>Colapso tipo embudo (*Funnel*</u>): Este modelo difiere de los otros ya que está basado en la morfología de la caldera en vez del mecanismo de colapso. De acuerdo con datos de núcleos de perforación y anomalías de gravedad negativas, sugieren que algunas calderas presentan una depresión acampanada, en forma de embudo la cual está rellena de brechas, las cuales disminuyen hacia el interior. Este tipo de morfología se da principalmente en calderas de poco diámetro (<2 a 4km), pero raramente se ha presentado en calderas más grandes (Figura 5D).

Actualmente, las calderas de colapso tipo embudo y tipo hundimiento ya no se consideran calderas de colapso. Por eso en la clasificación de Aguirre-Díaz (2008) no son consideradas.

Figura 5. Estilos de colapso. Modificado de Roche et al. (2000)

Figura 6. Clasificación de caldera con los posibles estilos de colapso. Modificado de Aguirre-Díaz (2008).

1.1.3. Teorías de formación

Smith y Bailey (1968) proponen siete estados para el desarrollo de las calderas donde se encuentran eventos volcánicos, estructurales y sedimentarios, los cuales son indicadores importantes para conocer el estado de evolución de la caldera.

Estado 1. Tumescencia regional y generación de fracturas en anillo

En esta etapa se produce una hinchazón progresiva en la superficie, debido a la intrusión de magma en niveles superficiales de la corteza en un periodo relativamente largo. Este proceso de extensión sobre la cámara magmática permite la formación de fracturas radiales y concéntricas, las cuales eventualmente dan espacio a la formación de erupciones pequeñas de piroclastos a lo largo de fracturas de anillo (Figura 7A).

Estado 2. Erupciones que forman caldera

En un momento óptimo, la tumescencia regional (Estado 1) finaliza por la erupción de grandes volúmenes de ignimbrita desde los sistemas de fracturamiento interno (Figura 7B). Esta erupción reduce la presión en la cámara de magma y prepara el escenario para el colapso. La duración de

este proceso no se conoce con certeza, pero aun así han tratado de extrapolar los tiempos a partir de las erupciones históricas de grandes volúmenes de piroclastos (*Krakatoa* en 1883, *Katmai* en 1912, Vesubio en el año 79 d.C. y Tambora en 1815), los cuales tuvieron una duración, como máximo de días. Por lo tanto, se ha llegado a estimar que estas erupciones pueden durar alrededor de 10 años.

Estado 3. Colapso de caldera

La erupción y el colapso son procesos lógicamente concurrentes, especialmente cuando se producen grandes volúmenes de materiales. Sin embargo, debe producirse un colapso importante como consecuencia de la eliminación eruptiva del magma; por lo tanto, el hundimiento final debe seguir a las principales erupciones que forman la caldera (Estado 2). El colapso suele estar acompañado por la formación de brechas heterolíticas y de diques (Figura 7C).

Estado 4. Volcanismo de pre-resurgencia y sedimentación

Se da inmediatamente posterior al colapso de la caldera y debe ser un momento de desequilibrio extremo, tanto en la cámara de magma como dentro de la caldera. Debido a que las paredes de la caldera se encuentran empinadas e inestables, sufren derrumbes, avalanchas y deslizamientos en masa generan volúmenes importantes de material rocoso. Con la restauración parcial de la presión del magma, esta sedimentación puede ir acompañada de erupciones de flujos de lava y formación de domos a lo largo de fracturas anulares o fisuras que unen la caldera. En este momento, los lagos también pueden comenzar a formarse en el piso de la caldera (Figura 7D).

Estado 5. Tumescencia

En esta etapa el suelo de la caldera se levanta e hincha debido a la entrada de nuevo magma al plutón subvolcánico (cámara de magma). Esto conduce a un reasentamiento del piso de la caldera (levantamiento del centro) y, por lo tanto, permite el desarrollo de espacio para pequeñas cuencas limitadas por fallas del borde estructural (Figura 7E). La tumescencia de las calderas Valles, Toba y probablemente *Creede* y *Timber Mountain* se elevaron sobre los lagos, y no parece irrazonable sugerir que lo mismo ha ocurrido en otras calderas. Los lagos son una parte tan integral de la historia posterior al colapso de calderas y su ausencia debe ser inusual. En la mayoría de las calderas los lagos son drenados, comúnmente, por una sola corriente principal como consecuencia de la tumescencia.

Estado 6. Volcanismo principal de fractura en anillo

Es la etapa de mayor actividad volcánica posterior a la subsidencia la cual tiene una duración más larga que cualquier otra etapa, excepto tal vez por la primera (Estado 1). Esta etapa finaliza con la última erupción del ciclo de la caldera y puede requerir una subdivisión adicional en algunas calderas, marcada por la variación en la composición de los productos de erupción. Los volcanes de esta etapa comúnmente se ven favorecidos por las fisuras y fracturas anulares que ha formado la caldera, y se encuentran intercalados con o sobre los sedimentos lacustres no deformados y con el relleno de la caldera que se acumuló después del resurgimiento (Figura 7F).

Estado 7. Actividad hidrotermal y mineralización

La actividad hidrotermal y la mineralización pueden acompañar a todas las etapas de la formación de la caldera, llegando a dominar el último estado de la evolución de la caldera. Las erupciones de ignimbrita formadoras de caldera probablemente no produzcan vacimientos grandes de minerales, ya que tal actividad explosiva tiende a dispersar las concentraciones de metales que se acumulan en las partes superiores de la cámara magmática precaldera, pero las estructuras resultantes de la caldera pueden ser importantes posteriores eventos magmáticos. para Muchas mineralizaciones son millones de años más jóvenes que el colapso de la caldera, donde la caldera sirvió principalmente como un control estructural para las intrusiones tardías y los sistemas hidrotermales asociados. Algunas calderas muestran poca evidencia de actividad hidrotermal asociada o carecen de esta.

Figura 7. Etapas de formación de calderas. **A.** Tumescencia regional. **B.** Erupciones. **C.** Colapso. **D.** Volcanismo de pre-resurgencia. **E.** Tumescencia. **F.** Volcanismo principal de fractura en anillo. Modificado de Smith y Bailey (1968).

1.1.4. Morfología y geometría de las calderas

A continuación, se presentan las principales estructuras y elementos morfológicos de las calderas definidas por Lipman (2000) a través de un esquema muy generalizado el cual proporciona una base para discutir las relaciones entre los procesos de erupción y hundimiento (Figura 8).

Figura 8. Principales estructuras y elementos morfológicos de las calderas definidas. Modificado de Lipman (2000).

a. Borde topográfico (anillo topográfico)

Es la parte superior del escarpe interno y encierra tanto el área que subsidió y el área de los escarpes generados por la caída de rocas y deslizamiento. Para las calderas jóvenes el borde topográfico define la extensión total del área de hundimiento, mientras que, para las calderas antiguas, la erosión tiende a agrandar el borde topográfico original y por lo tanto rediseña el diámetro topográfico aparente.

b. Pared topográfica interna

Es un acantilado escarpado el cual en su etapa de maduración va tomando un perfil cóncavo que se aplana hacia la base y se vuelve más empinado hacia la parte superior por procesos de remoción en masa, lo que permite la ampliación del borde topográfico de la caldera. En la base de la pared, el relleno intracaldérico puede depositarse directamente sobre las fallas estructurales (borde estructural) de la caldera que no han sido modificadas por la caída gravitacional. En promedio las pendientes de la pared topográfica interna presentan entre 25° (típico) a 45° (límite superior).

c. Collar de colapso

Es el área del volumen de roca (material removido) descansando entre la pared topográfica y el borde estructural de la caldera. Las pendientes a lo largo del collar de colapso son suaves (entre 10-15°).

d. Borde estructural (fallas en anillo)

Normalmente son fallas casi verticales bastante sumergidas, las cuales pueden profundizarse hasta llegar a niveles por encima de la cámara magmática. En muchas calderas la tectónica regional tiende a influenciar en la geometría del colapso. Estas calderas con fallas fuertemente poligonales parecen ser mucho menos comunes que aquellas con fallas en anillo. En calderas profundamente erosionadas pueden llegarse a ver expuestas.

e. Relleno de caldera

Es la acumulación de kilómetros de espesor dentro del área de subsidencia, la cual puede incluir depósitos de erupciones asociadas, ignimbrita, brechas de los deslizamientos de las paredes y hasta depósitos volcánicos derivados de otros centros volcánicos. La distribución y volumen de estos dan evidencia de la sincronización y geometría de subsidencia, y proporciona evidencia clave de las etapas que la caldera ha presentado en su formación.

f. Piso estructural de la caldera

Es la superficie de suelo precaldérico que subsidó, en contraste con el suelo caldérico topográfico el cual se encuentra expuesto en la superficie dentro de la caldera. Pocas calderas pueden mostrar el piso estructural de la caldera, solo si han sido erodadas hasta tal punto, pero muchas veces este piso desaparece o es destruido por el magma que lo ha llegado a alcanzar. Aun así, las calderas más enrodadas pueden contener múltiples eventos de subsidencia asociados a erupciones sucesivas de ignimbritas o por tectonismo regional posterior.

g. Cámara magmática subcaldera

Estas cámaras magmáticas son preservadas como plutones solidos o batolitos, y llegan a encontrarse expuestos a causa de una profunda erosión. Estos plutones comúnmente han sido emplazados a pocos kilómetros de superficie de las regiones volcánicas, y algunos relacionan la geometría del colapso con la forma del plutón, un ejemplo en las calderas de "trampada" sugiere que la máxima subsidencia se ve influenciada por la porción más superficial de la cámara magmática. Por otro lado, han llegado a concluir que cualquier caldera mayor a 20 km de diámetro debe necesariamente estar subyacida por una cámara magmática de gran escala.

1.3. Técnicas geomáticas

La superficie terrestre modelada por los procesos hidrológicos, atmosféricos, y geomorfológicos, juega un papel muy importante en la modulación de estos, a menudo tan fuerte que es de vital importancia la comprensión de la naturaleza y magnitud de estos procesos (Wilson, 2012). Por esa razón, es necesario la integración sistemática de técnicas y metodologías de adquisición, almacenamiento, análisis, presentación, uso y distribución de información espacial, conjunto de técnicas conocidas como geomática (Mena-Frau *et al.*, 2007).

La geomática, disciplina resultante de la unión de las ciencias de la tierra y la informática es aplicada en el manejo de recursos naturales, agricultura de precisión, análisis de fenómenos medioambientales, planificaciones urbanas, entre otros. Parte de los productos geomáticos esenciales son las imágenes satelitales ópticas y de radar, y los MDE (Mena-Frau, 2005; Mena-Frau *et al.*, 2007).

Los MDE permiten representar la superficie a un rango cada vez mayor y sofisticado con el fin de facilitar el análisis topográfico y la visualización del terreno, especialmente en zonas de difícil acceso (Wilson, 2012). Cada día se requieren MDE más precisos, detallados y actualizados, ya que son de crucial importancia para el análisis cuantitativo y el modelado de geología y geomorfología, tales como medición morfométrica y volumétrica precisa de las características volcánicas, estudio de fenómenos de remoción en masa, entre otros (Wilson, 2012). En la actualidad los MDE más precisos se han obtenido gracias a la tecnología LIDAR.

El detector de intensidad de luz y rango aerotrasportado LIDAR (Light Intensity Detection and Ranging) es un sistema activo de detección remota que consiste en un escáner láser, un sistema de posicionamiento global (GPS) y un sistema de navegación inercial (INS) generalmente montado en un pequeño avión (Favalli et al., 2009). El escáner láser transmite breves pulsos de láser a la superficie terrestre los cuales se reflejan o dispersan de vuelta al escáner, y durante el viaje el instrumento registra el tiempo de viaje de la luz del láser hasta el suelo y viceversa (Favalli et al., 2009). Por otro lado, el INS determina los valores de balanceo, cabeceo y rumbo de la aeronave, y el GPS permite determinar la posición de la aeronave cuando el escáner dispara el pulso de láser (Favalli et al., 2009). Cuando se suman los vectores obtenidos por el INS con los del GPS, se obtienen las coordenadas precisas del punto en la superficie del terreno. Los datos LIDAR se ven muy afectados por errores sistemáticos introducidos por la cadena instrumental. pero estos a veces se consideran erróneamente despreciables (Favalli et al., 2009).

Ha habido un aumento significativo en el uso de datos LIDAR para producir MDE precisos con el fin de extraer medidas (parámetros de la superficie terrestre) y características espaciales (objetos de la superficie terrestre), lo que ha facilitado el mapeo geomorfológico. Este último juega un rol esencial en el entendimiento de los procesos superficiales de la Tierra, la geocronología, recursos naturales, peligros naturales, y evolución; dividiendo al terreno en un concepto espacial basado en unidades/entidades los cuales incluye la morfología, genética, composición, estructura y asociaciones ambientales (Bishop et al., 2012). Por lo tanto, a través de la aplicación de técnicas de la geomática en el análisis gemorfológico se ha podido determinar y analizar las estructuras volcánicas y tectónicas que han modelado el terreno (Toutin, 2008; Cheng et al., 2016; Del Soldato et al., 2018).

1.4. Análisis morfométricos sobre áreas volcánicas

Haciendo uso de diferentes productos geomáticos se ha podido realizar estudios morfométricos sobre zonas volcánicas expuestas tanto en superficie como bajo el mar. Tal es el caso aplicado a el volcán submarino activo *Monowai* ubicado en el arco *Tofua-Kermadec*, trabajo realizado por Wormald *et al.* (2012), sobre el cual realizaron el mapeo de la estructura y evolución del centro volcánico haciendo uso de datos batimétricos obtenidos por multi-haz. Con el MDE del área lograron obtener los parámetros y rasgos morfométricos tales como pendiente, aspecto, curvatura y rugosidad para determinar algunas geoformas características del área volcánica tales como fisuras, conos parásitos y geometría de la caldera. Por lo que a partir de los datos obtenidos concluyeron que existen dos calderas anidadas casi perpendiculares a las tendencias de la fallas y fisuras, sugiriendo una interacción fuerte entre los procesos magmáticos y tectónicos, lo que permitió clasificar la zona de *rifting* como transtensional (Wormald *et al.*, 2012).

Otro ejemplo del uso de modelos digitales de elevación lo hizo Kereszturi y Németh (2012) en su estudio de conos de escoria en el campo Volcánico de las Tierras Altas de *Bakony-Balaton* Mio-Plioceno (BBHVF), donde selecciono siete conos adecuados para análisis morfomético (visibles en el campo y que tienen límites identificables), donde calculó los parámetros de básicos del cono, como la altura del cono, el ancho basal y el del cráter, para calcular parámetros como la relación Hco / Wco y el ángulo de inclinación promedio. Por otro lado, en el trabajo de Csatho *et al.* (2008) utilizaron información de datos LIDAR para obtener datos topográficos de alta precisión sobre los cráteres activos del volcán *Erebus*, en la Antartída. Estos datos son efectivos para la extracción de características topográficas, incluidos planos, conos y secciones cónicas, y sirvieron para obtener una descripción cuantitativa de las calderas, los canales de lava y del cráter moderno de *Erebus*, usando mapas geomorfométricos generados a partir del MDE.

2. MARCO GEOLÓGICO Y TECTÓNICO DE EL SALVADOR Y DE LA CALDERA DE ILOPANGO

2.1. Antecedentes sobre la geología general de El Salvador

Desde el siglo diecinueve comenzaron los primeros estudios de volcanología en El Salvador por Goodyear (1880), los cuales fueron ampliados por Sapper (1925) y Lardé (1923 y 1952). Posteriormente, la misión geológica alemana en El Salvador en colaboración con el centro de estudios e investigaciones geotécnicas durante 1967 a 1971 realizaron un amplio estudio geológico y volcanológico de El Salvador, cuyos resultados fueron publicados en 1974 a través del mapa geológico general de la República de El Salvador a escala 1: 500000 (Weber *et al.*,1974; Anexo 1 y 2). En este se logra apreciar que El Salvador es dominado litológicamente por rocas de origen volcánico seguido por depósitos aluviales. Divididos de acuerdo con sus edades, Weber *et al.* (1974) agrupa la litología expuesta en seis formaciones:

Jurásico-Cretácico

Son las rocas más antiguas que se encuentran en El Salvador, son rocas sedimentarias que representan el basamento de todas las formaciones y afloran al noroccidente del país en cercanía a Metapán y el Lago de Guija (Hernández, 2004; Figura 9).

<u>Formación de Metapán:</u> agrupa calizas y conglomerados de cuarzo, areniscas, limolitas, lutitas y caliza rojiza. Algunas de estas se encuentran intercaladas con rocas volcánicas. Esta subdividida en tres unidades, nombradas cronológicamente: Todos Santos, Cobán y Subinal (Weber *et al.*,1974).

Oligoceno-Mioceno

Son las rocas volcánicas más antiguas de El Salvador, y forman la cadena montañosa norte o "Montaña Frontera" cuyo rumbo es NW-SE (Hernández, 2004; Figura 9).

<u>Formación Morazán</u>: en general se encuentran rocas efusivas básicas a intermedias e intermedias a ácidas, también hay presencia de piroclastos y epiclástos volcánicos. En algunas zonas se presenta alteración por influencia hidrotermal (Weber *et al.*,1974).

<u>Intrusivo</u>: pequeños cuerpos de composición granítica a granodiorita, las cuales cortan las rocas sedimentarias de la Formación Metapán, y que han dado lugar al metamorfismo de contacto (Weber *et al.*,1974).

<u>Formación Chalatenango:</u> en general son rocas efusivas y piroclásticas de composición ácida (Weber *et al.*,1974).

Mioceno-Plioceno

Es la unidad que ocupa la mayor parte de la superficie de El Salvador, y que conforma los altos estructurales del Graben Central de El Salvador. Sobre estas formaciones descansan las rocas Holocenas pertenecientes a la actual cadena volcánica (Hernández, 2004; Figura 9).

<u>Formación Bálsamo</u>: principalmente son rocas efusivas de composición andesítica a basáltica, también hay presencia de piroclastos y epiclastos volcánicos, en donde algunos se encuentran intercalados con corrientes de lava (Weber *et al.*,1974).

Pleistoceno – Holoceno

Son las rocas de los edificios volcánicos y de los productos de las emisiones volcánicas de la actual cadena volcánica (establecida en el Graben Central) los cuales se encuentran sobre las unidades de edad Mio-Pliocenas. También comprende sedimentos producto de la activa erosión sobre las regiones topográficamente altas, cuyo depósito abunda sobre la planicie costera, al sur de el Salvador (Hernández, 2004; Figura 9).

<u>Formación Cuscatlán:</u> comprende rocas efusivas andesíticas, basálticas en una de sus unidades y rocas efusivas ácidas a intermedias-ácidas en la otra unidad. También incluye rocas piroclásticas ácidas, epiclastos volcánicos y tobas (Weber *et al.*,1974).

<u>Formación San Salvador</u>: compuesta por rocas efusivas de composición basáltica a andesítica, rocas piroclásticas ácidas y epiclastos volcánicos (Weber *et al.*,1974).

<u>Aluviones:</u> sedimentos intercalados con las rocas piroclásticas (Weber *et al.*,1974).

Figura 9. Mapa geológico de la República de El Salvador. Modificado de Lexa et al. (2011).

2.2. Antecedentes sobre tectónica regional de El Salvador

Desde el Terciario los segmentos del arco volcánico centroamericano de Guatemala, El Salvador y Nicaragua han tenido una significante extensión (Morgan *et al.*, 2008), que está relacionada a la subducción en *rollback* de la placa de Cocos bajo el borde de la placa del Caribe, y de la lenta deriva de la placa del Caribe hacia el oriente respecto con la placa norteamericana, a una tasa 20 mm/año (Morgan *et al.*, 2008). La convergencia entre la placa de Cocos bajo la del Caribe tiene una tendencia NE (Canora *et al.*, 2012), con una velocidad relativa de 70-80 mm/año (Lexa *et al.*, 2011), mientras que la placa de norteamericana se mueve hacia el occidente a una velocidad de 18-20 mm/año (Canora *et al.*, 2012) donde termina en la subducción de la placa

Las placas de Cocos, Caribe, y norteamericana se unen en un punto triple en el cual se encuentran relativamente estables (Morgan *et al.*, 2008). En esta unión, la placa de Cocos no presenta ningún desgarre por lo que subduce bajo la placa norteamericana y la del Caribe de manera uniforme, pero el movimiento diferencial entre la placa del Caribe y la norteamericana se acomoda en una falla transformante (zona de cizalla Motagua-Polochic), que finaliza en el Batolito masivo de Chiapas (Morgan *et al.*, 2008). El arreglo entre estas genera un sistema compresivo sobre la placa norteamericana y una extensión en el costado de la placa del Caribe, lo que implica que Guatemala, El Salvador y Nicaragua son regiones de extensión (Morgan, *et al.*, 2008; Figura 11).

El arco volcánico centroamericano, se extiende por más de 1000 km, desde el volcán Irazú en Costa Rica, hasta el volcán Tacaná en el sur de México (frontera con Guatemala), donde termina abruptamente en la falla Motagua-Polochic (Alonso-Henar *et al.*, 2014). De acuerdo con Alonso-Henar *et al.* (2014) el arco ha sido dividido en tres zonas principales por su orientación, estilo de sus estructuras y geomorfología; de sur a norte las principales estructuras son: La depresión de Nicaragua (desde el norte de Costa Rica hasta el este del Golfo de Fonseca), la Zona de Falla de El Salvador (desde el poniente del Golfo de Fonseca a aproximadamente el borde El Salvador-Guatemala) y la falla de Jalpatagua en Guatemala (desde el sur de Guatemala hasta la Falla Motagua-Polochic; Figura 11).

Alvarado *et al.* (2011), estudió la cinemática de las zonas de extensión de El Salvador y Nicaragua usando datos de velocidad de GPS, mecanismos focales, análisis de MDE y trabajo de campo. A partir de esta información los autores deducen que el área de *forearc* de El Salvador y Nicaragua se está deslizando hacia el NW paralelamente a la trinchera Mesoamericana, a una velocidad aproximada de 15 mm/año respecto a la placa del Caribe, cuyo límite coincide con la Zona de Falla de El Salvador (ZFES) y la depresión de Nicaragua, ya que sobre esa zona hay poco espesor litosférico y un alto gradiente térmico, lo que facilita la formación de estructuras *pull-apart* y volcanismo (Alvarado *et al.*, 2011). El movimiento relativo del *forearc* hacia el NW se debe a la colisión del *ridge* de la placa de Cocos con el continente frente a Costa Rica y no a la subducción oblicua de la placa de Cocos bajo la del Caribe como algunos autores creían, ya que frente a El Salvador la placa de Cocos subduce ortogonalmente a la trinchera (Alvarado *et al.*, 2011; Figura 10).

El frente volcánico activo de El Salvador está localizado a 20 km al sur del arco volcánico del Mioceno, desde el Mioceno tardío, debido a que en esta época migró la trinchera por la subducción en *rollback*, lo cual también generó un cambio afectando el grado de subducción de 50° a 65° aproximadamente. (Mann 2007; Lexa *et al.*, 2011).

Figura 10. Modelo diagramático de la posible geometría de las fallas del frente de arco y de tectónica regional de El Salvador y Nicaragua. Flechas de color verde indican la dirección de movimiento del frente de arco, y los conos muestran la distribución de los volcanes. Modificado de Alvarado *et al.* (2011).

2.3. Geoformas volcánicas y tectónicas principales de El Salvador

La República de El Salvador es un país volcánico casi en su totalidad y ha sido geológicamente influenciado por la tectónica de subducción (placa de Cocos subduciendo bajo la placa del Caribe) y transformante (entre la placa del Caribe y la norteamericana). Los anteriores en conjunto han permitido que desde el Cenozoico se estableciera el sistema volcánico en todo el país y un conjunto de fallamiento principalmente de rumbo dextral que rige la parte más sur del país. Por lo anterior las geoformas tectónicas y volcánicas principales se aprecian en general son:

Figura 11. Marco tectónico de América Central. Modificado de Canora et al. (2014) y Alonso-Henar et al. (2014).

- Fallamiento de rumbo: la parte sur de El Salvador presenta un conjunto de fallas de desplazamiento horizontal denominado ZFES (Canora *et al.*, 2012). Por ello es común encontrar regionalmente fallas de rumbo con componente dextral, de oeste a este en el país. Estas estructuras en general son muy extensas, tal es el caso de la Falla de San Vicente que se observa en la Figura 12 cuya extensión es de ~21 km (Canora *et al.*, 2012).
- Fallamiento normal: aunque no es el fallamiento principal en la ZFES, estas se encuentran asociadas a este sistema. La forma común en que se presentan en la zona es agrupaciones de varias fallas normales con muy poca longitud. En la Figura 13 se observa varias fallas cuyas longitudes no alcanzan más de 2 km, las cuales se encuentran sobre las faldas de la Caldera de Ilopango. Así mismo estas pueden apreciarse en el Segmento Occidental y Segmento Lempa de la ZFES (ver más adelante 2.5).
- Estratovolcanes: es la estructura volcánica que predomina en El Salvador, muchos de estos se ubican en medio de la ZFES y otros pocos se ubican en la cordillera más norte del país. La mayoría de los estos estratovolcanes presentan claros flujos de lavas y cráteres en su cumbre, y son los que han presentado más actividad volcánica en el país. Uno de los estratovolcanes más característicos geomorfológicamente es el volcán San Vicente, el cual está activo, pero no se tiene un registro histórico de erupciones recientes (Figura 14).
- Calderas: estas estructuras no son muy abundantes en El Salvador, pero son claramente distinguibles, tal es el caso de la Caldera de Ilopango y la Caldera de Coatepeque (Figura 15), cuyas estructuras se encuentran actualmente ocupadas por lagos. A pesar de ser las dos estructuras más recientes, anteriores a estas se observan geomorfológicamente antiguas estructuras caldéricas las cuales no se encuentran totalmente competas, ya que están cubiertas por actividad volcánica reciente o afectadas por la geología estructural de la zona.
- <u>Domos:</u> estas estructuras abombadas del terreno se aprecian en todo El Salvador y acompañando a las estructuras volcánicas principales tales como calderas y estratovolcanes, sobre todo en medio de la ZFES. Varían mucho de dimensión, como se puede observar al norte de la Caldera de Ilopango (Figura 16), pero mantienen su forma circular característica, aunque un poco afectada por la fuerte erosión en la zona.
- Maares: cráter volcánico producto de la erupción freatomagmática, cuya característica es su poca profundidad y pequeño diámetro (medio kilómetro de diámetro y entre 30-50 m de profundidad) en comparación a las calderas. Tienen una distribución aleatoria en El Salvador, aunque se encuentran agrupados (entre dos o tres). En la Figura 17 se observan tres *maares* casi circulares ubicados sobre una antigua caldera y al noreste del estratovolcán San Vicente.

Figura 13. Fallas normales las cuales presentan claros escarpes y un buzamiento preferencial hacia el NE. Estas se encuentran sobre las faldas de la Caldera de llopango en el costado sur oriental.

Figura 14. Estratovolcán San Vicente, el cual tiene dos cráteres (en color rojo) y claros flujos de lava en sus faldas. Este se encuentra al SE de la Caldera de Ilopango y en medio de la Caldera Carboneras.

Figura 15. Caldera de Coatepeque, ubicada en el costado occidental de la República El Salvador y junto al estratovolcán Santa Ana (costado occidental de la caldera). Presenta una forma elíptica cuyo diámetro mayor es de aproximadamente 9 km y se encuentra ocupada por el Lago de Coatepeque.

Figura 16. Domos asociados a la Caldera de Ilopango. **A.** Domo Buena Vista. **B.** La Pilona. **C.** Los Morros. (Hernández, 2015).

Figura 17. *Maares* con formas claramente circulares y dimensiones muy similares. Ubicados al oriente de la Caldera de Ilopango y al noreste del estratovolcán San Vicente.

2.4. Antecedentes de la región central de El Salvador y la Caldera de Ilopango

A mitad del siglo veinte Williams y Meyer (1953 y 1955) estudiaron los productos eruptivos de la Caldera de Ilopango, a los cuales denominaron Tierra Blanca debido a su coloración, además propusieron como fue la evolución del Graben de Ilopango, el cual originó el Lago de Ilopango. Luego Weyl (1957) recopila y analiza la información geológica y geoquímica de los depósitos volcánicos encontrados en la cadena costera, pero relacionaron la Tierra Blanca como producto del volcán El Boquerón. Posteriormente, la misión geológica alemana en El Salvador en colaboración con el centro de estudios e investigaciones geotécnicas durante 1967 a 1971, lograron ampliar los estudios de la Tierra Blanca y definir a la Caldera de Ilopango como la fuente de estos depósitos, agrupándolos en las unidades s4 y s3'a (Figura 20), donde el primero solo agrupa los depósitos de la última erupción y el segundo agrupa los depósitos eruptivos subyacentes los cuales llamaron "Tobas de color café" (Hernández,2004; Tabla 4).

Golombek y Carr (1978) registraron los fenómenos sísmicos causados por la extrusión del domo (el cual se manifiesta en el Lago de Ilopango como las Islas Quemadas), durante diciembre de 1879 a marzo de 1880, sismos que relacionaron a los ciclos mareales.

Steen-McIntire (1976) realizaron los primeros estudios petrográficos preliminares de la Tierra Blanca de la última erupción (Hernández, 2004). Luego en 1983 Hart y Steen-McIntyre describieron la estratigrafía de la última erupción y la dividieron en seis subunidades (Figura 18). A esta última erupción la denominaron Tierra Blanca Joven (TBJ) para no confundirla con otros depósitos también denominados Tierra Blanca y propusieron dos etapas eruptivas a la TBJ. Mas tarde Vallance y Houghton (1998) renombra las subunidades de la TBJ de la A a la F y redefinen el proceso eruptivo al cual estuvieron relacionadas (Hernández, 2004; Figura 18). Hernández (2004) realizó la caracterización geomecánica de los depósitos piroclásticos de la TBJ identificando las distintas unidades de la TBJ y redefiniendo algunas de estas, con el fin también de determinar la estabilidad de los taludes compuestos por la TBJ. Posteriormente Chávez et al. (2012) realiza un estudio a mayor detalle de los mecanismos de colapso de los depósitos de la TBI, por lo que subdivide aún más a la unidad de TBI (Figura 18).

Dull *et al.* (2001) fue uno de los primeros en determinar la edad de la última erupción de la Caldera de Ilopango por medio de la datación de C14 en muestras orgánicas encontradas dentro de los depósitos de la TBJ, cuyo evento estimaron fue en el año 429 +/- 20 años d.C.

La Geotérmica italiana (1992) identifico los depósitos subyacientes de la TBJ los cuales denominó TB2, TB3 y TB4, y agrupo a estas tres unidades como Tobas superiores (Ts). Así mismo, bajo éstos identificaron depósitos ignimbríticos y de caídas de ceniza, los cuales nombraron Tobas inferiores (Ti; Hernández,2004; Tabla 4).

La escasa información estratigráfica bajo los depósitos TB4 llevo a Suñé-Puchol *et al.* (2017) a realizar el estudio estratigráfico, geocronológico y petrográfico de los depósitos y unidades asociadas a la Caldera de Ilopango. En este ha logrado identificar nuevas unidades producto de diferentes erupciones de la caldera, generando una columna compuesta, la cual subdivide en tres Grupos de acuerdo con sus características de erupción (Tabla 4):

- <u>Grupo inferior:</u> está representada por las unidades de ignimbritas basales de la estratigrafía expuesta perteneciente a la caldera. El grupo abarca unidades del Pleistoceno medio a superior, en la cual la unidad inferior tiene una edad de 1.77Ma de acuerdo con Lexa *et al.* (2011). En general las ignimbritas son masivas, rosáceas a pardo, soldadas a no soldadas. Pudieran representar las primeras fases de las erupciones explosivas de la caldera previas a la formación de un lago.
- 2. <u>Grupo intermedio</u>: comprende ignimbritas freatomagmáticas de colores claros, ya que hay abundante lapilli acrecional y otros agregados de ceniza. El grupo abarca unidades del Pleistoceno superior al Holoceno, de composición mayormente riolítica, separadas por paleosuelos o superficies de erosión.
- 3. <u>Grupo superior:</u> incluye los depósitos de las ignimbritas de la TB4, TB3, TB2 y TBJ.

Tabla 4. Estratigrafía de la Caldera de Ilopango y correlación entre la nomenclatura usada por los diferentes autores. Modificada de Hernández (2004).

Weber <i>et al.</i> ,1974		Hart y Steen-McIntyre (1983) Vallance y Houghton (1998)		La Geotérmica italiana (1992)			Sunyé-Puchol et al. (2017)
FORMACIÓN SAN SALVADOR		FORMACIÓN SAN SALVADOR		FORMACIÓN SAN SALVADOR			FORMACIÓN SAN SALVADOR
Q'f	Aluviones		Aluviones	(5	Aluviones	Aluviones
s4	Tierra Blanca	TBJ	Tierra Blanca Joven	Т	BJ	Tierra Blanca Joven	
			Pómez de caida	TB2			
s3'a	Tobas de color café		Pómez de caida	TB3		Tobas superiores	Grupo Superior
			Pómez de caida	TB4	Ts		
s3'b Efusivas ácidas					D Domos y flujos de lavas ácidas		
FORMACIÓN CUSCATLAN			FORMACIÓN CUSCATLAN	FORMACIÓN CUSCATLAN		ORMACIÓN CUSCATLAN	FORMACIÓN CUSCATLAN
c3	Efusivas básicas				Mb	Lavas básicas	Grupo intermedio
c2	Efusivas ácidas				Ma	Domos ácidos	
c1	Piroclásticas ácidas				Ti	Tobas inferiores	
]						Grupo inferior

Figura 18. Perfiles estratigráficos de las subunidades de la unidad TBJ (última erupción de la Caldera de Ilopango), según Hart y Steen-McIntyre (1983), Vallance y Houghton (1998), Hernández (2004) y Chávez et al. (2012).

Lexa *et al.* (2011) realiza un estudio geológico y estratigráfico de la parte sur del Área Metropolitana de San Salvador, la cual cubrió los depósitos ubicados en la parte suroccidental de la Caldera de Ilopango, y asoció a diferentes eventos eruptivos que abarcan un periodo de tiempo desde el Mioceno tardío hasta el Holoceno.

De acuerdo con la evolución propuesta por Lexa *et al.* (2011; Figura 19), el basamento de la Caldera de Ilopango, cuyas unidades de flujos de lavas y brechas volcánicas epiclásticas pertenecen a la Formación Bálsamo y es el remanente de un antiguo estratovolcán. Sobre esta formación se encuentran depósitos de ignimbrita, que de acuerdo sus las edades (1.9 - 1.7 Ma) pertenecen a la Formación Cuscatlán, y estarían relacionadas con la formación de una antigua Caldera de Ilopango.

Posterior a ello se da la efusión de lavas andesíticas de edad aproximadamente 1.5 – 0.8 Ma, las cuales estarían asociadas a la formación de un estratovolcán sobre la caldera. Continuando con la evolución de la caldera, entre 0.25-0.05 Ma se emplazan domos extrusivos silícicos, un primer domo ubicado en el anillo de la caldera y un segundo domo ubicado en el suelo de esta. Y por último vienen las erupciones freatoplinianas a plinianas las cuales dieron lugar a la formación de la actual Caldera de Ilopango. Estas erupciones abarcan las unidades desde la TB4 a la TBJ, las cuales cubren un periodo de tiempo de 70.000-1.000 años y pertenecen a la Formación San Salvador (Tabla 5).

Figura 19. Sección vertical de la parte SW de la Caldera de Ilopango. Modificado de Lexa *et al.* (2011).

ID	Tipo de	Espesor	Volumen	Edad estimada
	erupción	(m)	(km³)	
TBJ	Ultrapliniana	1 – 0.5	70	429 +/- 20 años (Dull et al., 2001)
TB2	Freatomagmática	2 - 1	1 - 5	9 mil años
TB3	Freatomagmática	1.5 - 1	1 - 5	19 mil años
TB4	Pliniana	7 - 3	20	36 mil años

Tabla 5. Principales características de las erupciones TB4 a la TBJ. Modificado de Sánchez-Esquivel (2016)

Por otro lado, Mann (2003) realizó el estudio petrográfico en los depósitos intracaldera de llopango indicando que hay un reservorio superficial al cual le es inyectado magma máfico periódicamente. Luego, Mann *et al.* (2004) realizaron la división en subunidades de los depósitos intracaldera revelando así la presencia de antiguos depósitos lacustres.

En el área se han reportado los hallazgos realizados a partir de análisis químicos los cuales permitieron determinar las concentraciones de los gases que emite la Caldera de Ilopango y la posible inyección de magma máfico que produjo la emisión y formación de las Islas Quemadas (López *et al.,* 2004; Richer *et al.,* 2004). Mas tarde, Mehringer *et al.* (2005) realizaron la geoquímica de los depósitos de la TBJ encontrados en el Lago de Yojoa en Honduras, y posteriormente Garrison *et al.* (2012) realiza un estudio geoquímico y petrogenético de los depósitos de la TBJ y de los domos centrales de la Caldera de Ilopango (Islas Quemadas).

En el informe de IPGARAMSS (2007) se muestran los estudios de amenazas por movimiento de laderas en el Área Metropolitana de San Salvador (AMSS), en la cual recopilan información geomorfológica cualitativa del Volcán San Salvador. Posteriormente Chávez *et al.* (2014) generaron un mapa de amenazas erosivas con información litológica y geomorfológica sobre el AMSS.

Figura 20. Mapa geológico de la Caldera de Ilopango. Modificado de Weber *et al.* (1974) y Sánchez-Esquivel (2016).

2.5. Tectónica local de la región central de El Salvador y la Caldera de Ilopango

Sobre la República de El Salvador la extensión es conocida como La Zona de Falla de El Salvador (ZFES; Martínez-Diaz *et al.*, 2004), la cual se encuentra paralela a la trinchera Mesoamericana de Guatemala a Costa Rica, y la cual ha formado el valle central de El Salvador o también conocido como el graben central de El Salvador, el cual concentra toda la sismicidad de la zona (Corti *et al.*, 2005; Canora *et al.*, 2012). El principal plano de la ZFES tiene una tendencia E-W y buza hacia el sur (Martínez-Díaz *et al.*, 2004). Tiene 150 km de longitud y 20 km de ancho (Canora *et al.*, 2012), distribuido en un fallamiento de rumbo dextral (Alonso-Henar *et al.*, 2015) con deformación transtensiva pequeña a lo largo de la zona de falla (Alonso-Henar *et al.*, 2014). La tasa de movimiento va desde 4.6 mm/año en su parte central a 1mm/año hacia sus extremos (Alonso-Henar *et al.*, 2014).

La ZFES se extiende desde Guatemala (al occidente), donde se lo conoce como la falla Jalpatagua y continua hasta la Depresión de Nicaragua (al oriente; Canora *et al.*, 2012). Estas fallas han afectado los depósitos y rocas volcánicas de edad Pleistoceno a Holoceno, las cuales presentan rasgos morfo-tectónicos que demuestran su reciente actividad, junto con recientes sismos corticales (Martínez-Diaz *et al.*, 2004; Corti *et al.*, 2005).

En base a estudios geológicos y sismológicos realizados sobre la ZFES, esta aparece como una red compleja de trazos de fallas, por lo que han subdividido la zona en varios segmentos principales de ruptura en función a la diferencia de geometría, cinemática y expresión geomorfológica.

En principio la ZFES había sido dividida en tres segmentos: segmento San Vicente, segmento Berlín y segmento San Miguel, nombrados de oeste a este; pero Funk *et al.* (2009) basados en geomorfología y sensores remotos proponen dos segmentos adicionales: segmento Santa Ana y segmento San Salvador, los cuales se encuentran al oeste del segmento San Vicente.

Luego Canora *et al.* (2010) redefine algunos límites de estos, así como sus nombres (Figura 21), por lo que, de oeste a este, los segmentos son: segmento Occidental, segmento San Vicente, segmento Lempa, segmento Berlín y segmento San Miguel. Aunque Alonso *et al.* (2014) renombra el segmento Lempa como inter-segmento Lempa, ya que el área que esta abarca tiene una deformación distribuida con fallas normales y de rumbo que conecta dos zonas de deformación bien definidas (los segmentos San Vicente y Berlín). En general estos son definidos por Canora *et al.* (2010, 2014) y Alonso-Henar *et al.* (2014) como:

- Segmento Occidental: la zona está representada por numerosos lineamientos y fallas las cuales se fusionan al occidente con la falla de Jalpatagua en Guatemala. Esta zona tiene una dimensión de 40 km de ancho y 80 km de largo, la cual muestra estructura de graben, ya que las fallas que lo delimitan al norte tienen escarpes orientados hacia el sur, y las fallas del sureste tienen escarpes orientados hacia el norte. En medio, zonas topográficamente bajas, se encuentra ocupado por calderas y volcanes activos, lo que forma una cuenca alargada NW-SE.
- Segmento San Vicente: Tiene aproximadamente 21 km de longitud, y se extiende desde la Caldera de Ilopango hasta la ciudad de San Vicente. Consta de zonas simples y claras de desplazamiento principal E-W y algunas fallas secundarias con rumbo NW-SE.
- Segmento Lempa: Cubre el área de 15 km de ancho, desde el volcán San Vicente hasta el Río Lempa. Dentro de esta área, la zona contiene: fallas normales con rumbo NW-SE que tienen una componente de deslizamiento horizontal y fallas de rumbo E-W. Estas fallas favorecen un régimen de extensión local que abre una cuenca estrecha (cuenca Lempa), la cual no muestra escarpes debido a la alta tasa de sedimentación que allí se presenta, por lo que se asocia como una estructura de transtensión.
- Segmento Berlín: Se extiende desde el río Lempa hasta el Volcán de Berlín por cerca de 24 km. Tienen zonas simples y claras de desplazamiento principal E-W, además presenta algunas fallas secundarias con rumbo NW-SE.
- Segmento San Miguel: es el más oriental, se extiende por cerca de 60 km desde el Volcán San Miguel hasta el Golfo de Fonseca. Formado por varias fallas pequeñas con rumbo NW en escalón y pequeñas trazas de falla E-W que señalan una zona principal de desplazamiento. La morfología, la estructura y la sismicidad asociadas con este segmento son consistentes con el desarrollo en una etapa temprana de una zona de falla de rumbo.

Figura 21. Subdivisión de la Zona de Falla de El Salvador. Modificado de Alonso-Henar *et al.* (2014).

Alonso-Henar *et al.* (2015) realizaron experimentos físicos combinando la transtensión, fallamiento de rumbo, y tectónica extensional para investigar cómo fue la formación y evolución de la estructura del ZFES. Por lo que llegaron a concluir que la ZFES tuvo dos fases de evolución, la cual inició con una fase de extensión, seguido de la fase de desplazamiento horizontal (Figura 22).

Durante la fase de extensión se formaron varios graben por encima de la corteza que se estaba adelgazando, dando facilidad a la colocación de cámaras magmáticas en medio de estos (Aguirre-Díaz *et al.*, 2016b) y por lo tanto formación de volcanes en la zona. De acuerdo con Alonso-Henar *et al.* (2015) esta fase fue consecuencia del *roll-back* de la placa de Cocos, y se dio entre 7.2-6.1 Ma y 1.9-0.8 Ma (edades propuestas por Bosse *et al.* (1978) y Lexa *et al.* (2011), respectivamente).

Luego se da la fase de deslizamiento horizontal, cuyo fallamiento se instaura sobre las fallas establecidas por los graben reactivándolas. Alonso-Henar *et al.* (2015) propone que esta fase comenzó entre 1.9-0.8 Ma hasta el presente.

Figura 22. Fases de evolución de la ZFES. **A.** Fase de extensión. **B.** Fase de desplazamiento horizontal. Modificado de Alonso-Henar *et al.* (2015).

3. TÉCNICAS DE ANÁLISIS MORFOESTRUCTURAL PARA LA CALDERA DE ILOPANGO

El análisis morfoestructural es derivado del análisis morfométrico, tal es el caso del trabajo realizado por Wormald *et al.* (2012) sobre la estructura volcánica Monowai en el arco de Tofua-Kermadec. En este, a partir de un MDE, se obtienen los parámetros morfométricos tales como pendiente, aspecto, plano de curvatura, perfil de curvatura y rugosidad, para determinar geoformas volcánicas tales como conos parásitos, y estructurales como fisuras y fallas. Los principales aportes de este trabajo versan sobre el papel relativo de la deformación tectónica y sobre la actividad magmática en la evolución y el desarrollo de estos sistemas volcánicos.

En el análisis morfométrico sobre estructuras volcánicas se pueden derivar diferentes cálculos, no solo morfoestructurales, tal es el caso del estudio de conos de escoria en el campo volcánico de las Tierras Altas de Bakony-Balaton Mio-Plioceno (BBHVF) por Kereszturi y Németh (2012), en el cual se calculó los parámetros básicos tales como la altura, el ancho basal y el cráter, para calcular la relación y el ángulo de inclinación promedio. A partir de estos parámetros morfométricos, ellos trataron de fechar a los conos a través de la morfometría, pero esto no fue posible ya que los resultados son inexactos, debido a que los conos se encuentran dispersos. Así mismo, Aguirre-Díaz *et al.* (2006), lograron hacer una correlación entre los parámetros morfológicos de los conos y su edad en el campo volcánico de Valle de Bravo en México (Aguirre-Díaz *et al.*, 2006)

Por otro lado, el análisis morfométrico puede enfocarse en el área de hidrología tal y como se ve reflejado en el trabajo de Noyola-Medrano *et al.* (2016) realizado sobre la Caldera de Ilopango, en el cual a partir de diferentes MDE se extrajo datos como el límite del parteaguas, área, perímetro, elevación, pendiente, longitud de drenaje, órdenes de corriente, entre otros, con los cuales se generó un análisis comparativo entre los diferentes MDE para cada dato extraído, con la finalidad de reconocer que la resolución espacial de estos no está directamente ligada con la exactitud de los resultados y que la relación anterior también depende de los datos o técnicas que dan origen al MDE y del rasgo superficial a determinar. Así mismo, se ha realizado otro análisis morfométrico sobre la Caldera de Ilopango para estimar el volumen de las unidades volcánicas generadas por esta estructura, y a partir de estos datos se registra un análisis geoespacial de riesgo volcánico sobre los municipios que rodean a la caldera (Hernández-Hernández, 2017).

Con lo anterior se logra deducir que el análisis morfométrico en áreas volcánicas ha sido utilizado ampliamente, y se ha generado información valiosa para diversas temáticas relacionadas al riesgo volcánico. Por lo tanto, este trabajo ampliará la información obtenida hasta el momento en el área de la Caldera de Ilopango.

3.1. Métodos de interpolación para la construcción de MDE

Para el análisis morfométrico de la caldera es de vital importancia los MDE, los cuales facilitan el análisis topográfico y la visualización del terreno en zonas de difícil acceso o muy vegetadas como en el caso de El Salvador. Para el caso específico de este trabajo, se contó con dos MDE generados a partir de tecnología LIDAR de 1 m y 5 m de resolución espacial, los cuales fueron gestionados ante el Ministerio de Medio Ambiente y Recursos Naturales (MARN) de El Salvador por el proyecto CONACYT de ciencia básica No. 240447. Aunque es el mejor MDE que se ha podido obtener de la zona de estudio, este no tiene en cuenta la topografía bajo las superficies de agua, y como la caldera se encuentra ocupada por el Lago de Ilopango, el MDE no permite observar la topografía que existe en el fondo de éste.

Debido a la falta de información topográfica en el lago, Sánchez-Esquivel (2016) generó la carta batimétrica del Lago de llopango con curvas de nivel en intervalos de diez metros y el MDE con una resolución espacial de 10 m, a partir de la información obtenida de un sondeo de 279.148 puntos sobre el lago cada 500 m.

Con el MDE-LIDAR y el MDE de la superficie batimétrica del Lago de Ilopango de Sánchez-Esquivel (2016), se realizó la unión de estos *raster* por medio de la herramienta de *Mosaic To New Raster* del conjunto de herramientas de *Raster* en *Data Management Tools* que forman parte de las extensiones de *ArcGIS 10.3*. Y al unirlos se encontró que la superficie batimétrica no se ajustaba con la topografía del MDE-LIDAR. Por un lado, el valor de los pixeles de la superficie batimétrica tenía datos de profundidad y no altitudinal, lo que creo un abismo entre la topografía y el lago como se observa en la Figura 23B. Además, las curvas de nivel de la carta topográfica se sobreponen a la topografía del MDE-LIDAR (Figura 23A), lo que demostró, que cuando se realizó la carta batimétrica, no se tuvo en cuenta la topografía o posiblemente al extraer los datos del sondeo el nivel del agua del lago se encontraba mucho más alto que cuando fue generado el MDE-LIDAR. Así mismo, la superficie batimétrica cubre algunas islas que el MDE-LIDAR indican que se encuentran sobre el Lago de Ilopango.

Por lo anterior, se decidió volver a generar el MDE de toda la zona de estudio teniendo en cuenta la información de cada pixel del MDE-LIDAR de 5m y los datos de la carta batimétrica del Lago de Ilopango de Sánchez-Esquivel (2016), ya que los datos originales del sondeo realizado por este último no están disponibles.

Figura 23. Carta Batimétrica del Lago de llopango elaborada por Sánchez-Esquivel (2016). **A.** Ampliación del área donde las curvas de nivel de la batimetría se sobreponen a la topografía (círculo rojo). **B.** Visualización 3D del MDE de Sánchez-Esquivel (2016).

En primer lugar, con las curvas de nivel batimétricas en intervalos de diez metros, se obtuvo un *raster* batimétrico con la herramienta de *Topo To Raster* del conjunto de herramientas de *Raster Interpolation* en *3D Analyst Tools (ArcGIS 10.3)*, especificando que el tamaño de cada celda fuera de 5 m y que el valor que tomara en cuenta de las curvas de nivel fuera la altitud (altura respecto del nivel del mar), y no el valor batimétrico del lago (tomando como cero la altura a la que se en cuenta el lago, y dando valores negativos a la profundidad). Luego se recortó este MDE con el borde extraído a partir del MDE-LIDAR de 5m y teniendo en cuenta las islas que se encuentran en su interior, dando como resultado un nuevo MDE del lago, pero considerando una continuación de los valores de altitud a partir de la cota límite del lago.

Con los dos modelos digitales de elevación, tanto el nuevo del lago generado en el paso anterior y el de LIDAR de 5 m, se extrae el valor de cada pixel en ambos MDE, permitiendo generar una tabla de 5 millones de puntos producto de la unión de ambos. Con estos se busca obtener el MDE del Lago de llopango teniendo en cuenta la topografía que lo rodea. Por lo tanto, para generarlo se debe interpolar estos datos, lo que quiere decir que se predecirá valores entre la topografía exterior e interior a partir de una cantidad limitada de puntos de datos de muestra (la tabla de datos ya generada).

Existen dos grupos principales de técnicas de interpolación: las determinísticas y las geoestadísticas (ERSI, 2016l). Ambos se basan en la similitud de los puntos de muestra cercanos para crear la superficie (ERSI, 2016h). Las técnicas determinísticas usan funciones matemáticas para la interpolación, en este caso la interpolación puede ser a partir de los puntos medidos basándose en la similitud (*IDW*), o pueden generarse a partir de grado de suavizado (funciones de base radial) (ERSI, 2016c). Mientras que las técnicas de geoestadísticas como *Kriging*, se basan en métodos estadísticos y matemáticos que se pueden usar para crear superficies y valorar la incertidumbre de las predicciones (ERSI, 2016c). Este último tiene la ventaja de que aparte de generar las superficies de predicción también se genera superficies de error o incertidumbre, que dan indicación de que tan exactas son las predicciones, esto se da como resultado del análisis geoestadístico (ERSI, 2016m).

El análisis geoestadístico se utiliza para explorar el conjunto de datos, examinado la distribución de los valores y evaluando si existen valores atípicos que podrían afectar la interpolación de los datos (ERSI, 2016a). Por lo que una buena interpolación puede darse en su mayoría si los datos siguen una distribución normal o Gaussiana (Webster y Oliver, 2007). La exploración visual del conjunto de datos se facilita gracias a la herramienta de análisis de datos espaciales exploratorios (*ESDA*) del *software ArcGIS 10.3.*, en la cual se puede conocer si la variable aleatoria sigue una distribución normal evaluando el conjunto de datos por medio del histograma, las medidas de tendencia central (media, moda y mediana), las medidas de dispersión (rango, varianza, desviación estándar y coeficiente de variación) y medidas de forma (curtosis y coeficiente de sesgo; Anexo 3). Pero si con los anteriores no es posible definir si la variable aleatoria sigue una distribución normal será necesario aplicar pruebas de normalidad tales como ajuste Anderson-Darling, prueba Kolmogorov-Smirnov, valor P, entre otros.

Una vez realizado la evaluación estadística de los datos y normalizándolos (en caso de ser necesario), se procede a determinar la tendencia que siguen los datos, ya sea polinomio de primero, segundo o tercer grado, con la finalidad de que el *software* tenga en cuenta esta información para generar la interpolación. Esta es introducida en la extensión de *Geostatistical Analyst* (*software ArcGIS 10.3.*).

Para este trabajo se escogieron las dos técnicas de interpolación, en el caso de la determinística se usó el IDW y para la geoestadística se usó el *Kriging* simple, ordinario y universal. Por lo que para escoger el modelo de predicción más cercano a la realidad se hace la comparación de validación estadística, escogiendo aquel con el *Error estándar promedio* más cercano a la *Media cuadrática,* así como la *Media Cuadrática estandarizada* más cercana al 1. A partir del modelo escogido este *raster* se usará como el nuevo modelo digital de batimetría.

Con el nuevo *raster* se procede a recortarlo con el borde del lago extraído a partir del MDE-LIDAR de 5m y teniendo en cuenta las islas que se encuentran en su interior, usando la herramienta *Clip* de *Raster Processing* en el conjunto de herramientas de *Raster* ubicado en *Data Management Tools*. Una vez con el modelo de batimetría recortado se procede a unirlo con el MDE-LIDAR de 1 y 5 m, por medio de la herramienta de *Mosaic To New Raster* del conjunto de herramientas de *Raster* en *Data Management Tools*. Lo que da como resultado el **Modelo Digital de Elevación combinado** (MDEc), sobre el cual se procede a realizar el análisis morfométrico y morfoestructural de la Caldera de Ilopango. El proceso anteriormente descrito se encuentra resumido en la Figura 24.

Figura 24. Diagrama de metodología de la generación del MDEc.

3.2. Obtención de parteaguas para delimitar geoformas volcánicas

Las calderas en general se caracterizan por presentar una forma semicircular a elíptica, la cual es visible y fácil de identificar, solo si la estructura no es suficientemente afectada por procesos superficiales y geología reciente del área donde se encuentre. Pero para identificar y delimitar calderas que se han visto afectadas por eventos volcánicos o tectónicos anteriores, es necesario identificar otras geoformas relacionadas a esta. Uno de ellos puede ser por medio de la caracterización del parteaguas de una o varias cuencas que vierten sus aguas al interior de la caldera.

Es así como haciendo uso del MDEc, y por medio del *software ArcGIS 10.3.*, se logra identificar las cuencas que se presentan en la zona, aplicando los algoritmos de las herramientas de la extensión *Hidrology*. Siguiendo la guía de Santana-Arias (2017), en primer lugar, se debe eliminar los espacios vacíos (huecos) o errores del *raster* con la herramienta *fill*. Después se procede a generar el *raster* con información de la dirección de flujo por medio de la herramienta *Flow Direction*, algoritmo que logra identificar el pixel con la pendiente más inclinadas en relación con los pixeles vecinos. El anterior servirá para aplicar la herramienta *Flow accumulation* la cual genera pesos a las celdas y determina la acumulación con respecto a la celda de mayor peso y de pendiente descendente. A partir de la información obtenida anteriormente y por medio de la herramienta *basin*, algoritmo que delimita cada conjunto de celdas pertenecientes a cada cuenca, genera cuencas o microcuencas delineando el parteaguas de cada una (Santana-Arias, 2017).

Una vez escogidas las cuencas cuyas vertientes van en dirección hacia el interior de la caldera (Lago de Ilopango), se crea el polígono de la unión de estas, el cual se considera el límite topográfico de la Caldera de Ilopango. A pesar de la buena precisión del resultado obtenido mediante el análisis hidrográfico a través del MDEc, algunas estructuras volcánicas no relacionadas a la caldera se ven incluidas en este, por lo que hay que delimitarlas, y la intersección entre estos, será el nuevo límite topográfico de la Caldera de Ilopango (Figura 25). A partir de este último es confiable obtener datos morfométricos de la caldera tales como, área, perímetro, cota mínima y cota máxima, e identificación de las principales estructuras y elementos morfológicos definidos por Lipman (2000; ver más atrás 1.2).

Figura 25. Diagrama de metodología para generar el límite topográfico de la Caldera de Ilopango.

3.3. Parámetros morfométricos derivados de un MDE

Los parámetros son generados a partir de un proceso automatizado del *software ArcGIS 10.3.*, el cual extrae las variables cuantitativas a partir de un MDE. Con la información obtenida a través del *raster* es posible caracterizar la estructura volcánica. Los parámetros geomorfológicos son la pendiente, curvatura y el aspecto:

a. <u>La pendiente</u>: es el cálculo de la tasa máxima de cambio del valor de la celda respecto a sus ocho celdas vecinas, donde el *software ArcGIS 10.3.* evalúa la celda en una vecindad agrupada en 3x3 (ERSI, 2016e). El cálculo de la pendiente en grados se resume en la Ecuación 1, donde la tasa de cambio (d) de la elevación (z) respecto a la dirección horizontal (x) (conjunto de celdas relacionadas horizontalmente) se define como dz/dx, y la tasa de cambio (d) de la elevación (z) respecto a la dirección en la vertical (y) (conjunto de celdas relacionadas verticalmente) se define como dz/dy (ERSI, 2016e).

Pendiente =
$$\arctan \sqrt{\left(\frac{dz}{dx}\right)^2 + \left(\frac{dz}{dy}\right)^2} * 57.29578$$
 Ecuación 1

Para un conjunto de celdas identificadas de la *a* a la *i*, donde *e* es la celda (Figura 26) a la que se calculará la pendiente:

Figura 26. Conjunto de celdas agrupadas 3x3. Tomado de ERSI (2016e).

La tasa de cambio en la dirección horizontal (dz/dx) de la celda *e* se calcula usando el siguiente algoritmo:

$$\left(\frac{dz}{dx}\right) = \frac{\left((c+2f+i)-(a+2d+g)\right)}{(8*x \ tamaño \ celda)} \qquad Ecuación \ 2$$

La tasa de cambio en la dirección vertical (dz/dy) de la celda *e* se calcula usando el siguiente algoritmo:

$$\left(\frac{dz}{dy}\right) = \frac{\left((g+2h+i)-(a+2b+c)\right)}{(8*y \ tamaño \ celda)} \qquad Ecuación 3$$

Para las zonas como picos y pozos la pendiente local es cero (Favalli y Fornaciai, 2017).

Una vez obtenido el *raster* de pendiente se clasifica la información en las clases propuestas por Van Zuidam (1986) (Tabla 6).

Tabla 6. Clasificación de pendientes, modificado de Van Zuidam (1986).

Clasificación	Grado de Pendiente
Pendiente Baja	< 8°
Pendiente Moderada	8° - 16°
Pendiente Fuerte	16° - 35°
Pendiente Muy Fuerte	> 35°

b. <u>El aspecto</u>: se define como la dirección azimutal de la pendiente, en el cual se evalúa la tasa de cambio máxima del valor de cada celda hacia sus vecinas. El valor de aspecto que se le otorga a las celdas es azimutal (0 a 360°), identificándolos con colores y direcciones (Figura 27), pero en áreas planas se les asigna un valor de -1 (ERSI, 2016d).

Figura 27. Direcciones de orientación con los respectivos colores que son asignados a las celdas para identificar el aspecto. (ERSI, 2016d).

Así como en la pendiente, la orientación se evalúa sobre una vecindad 3x3 plana (Figura 28), cuya orientación en conjunto será la que se otorgará a la celda central. Esta se ejemplifica en el siguiente conjunto de celdas identificadas de la *a* a la *i*, donde *e* es la celda a la que se calculará el aspecto:

а	b	с
d	е	f
g	h	i

Figura 28. Conjunto de celdas agrupadas 3x3. Tomado de ERSI (2016d).

La tasa de cambio en la dirección horizontal (dz/dx) de la celda *e* se calcula usando el siguiente algoritmo:

$$\left(\frac{dz}{dx}\right) = \frac{\left((c+2f+i)-(a+2d+g)\right)}{8}$$
 Ecuación 4

La tasa de cambio en la dirección vertical (dz/dy) de la celda *e* se calcula usando el siguiente algoritmo:

$$\left(\frac{dz}{dy}\right) = \frac{\left((g+2h+i)-(a+2b+c)\right)}{8}$$
 Ecuación 5

Por lo que tomando la tasa de cambio en la dirección *x* y *y* de la celda *e*, la orientación se calcula con la Ecuación 6:

$$Aspecto = 57.29578 * \arctan^{2}\left(\left[\frac{dz}{dx}\right], \left[-\frac{dz}{dy}\right]\right) \qquad Ecuación 6$$

Luego de obtener el valor, este se debe cambiar a grados de acuerdo con los siguientes criterios:

```
Si el aspecto es < 0 valor celda = 90.0 – aspecto
Si el aspecto es >90 valor celda = 360.0 – aspecto + 90.0
```

c. <u>La curvatura</u>: es la segunda derivada de la superficie o mejor dicho es la pendiente de la pendiente (ERSI, 2016j). La curvatura se calcula para una superficie compuesta por una ventana de 3x3 (Figura 29; ERSI, 2016b).

Figura 29. Diagrama de la superficie compuesta representando la curvatura teniendo en cuenta la elevación de las celdas. Imagen tomada de ERSI (2016b).

Como se ha visto en los anteriores parámetros morfométricos, estos se basan en el análisis de una matriz 3x3 de espaciado uniforme, en el cual el valor de cada celda es altitudinal. Evans (1972) discutió exhaustivamente sobre el análisis del terreno, proponiendo una relación de nueve celdas con el punto central de la matriz (Z), por lo que escoge una ecuación cuadrática para relacionarlos, e indicando que a partir de esta relación se pueden derivar los índices topográficos (parámetros geomorfológicos) tales como: aspecto, pendiente y curvatura (plano y perfil; Zevenbergen y Thorne, 1987). Pero análisis posteriores identificaron que la ecuación inicial no relacionaba las nueve elevaciones originales, así que se realizó la modificación de la ecuación, creando una ecuación polinómica de cuarto orden (Zevenbergen y Thorne, 1987) de la forma:

$$Z = Ax^{2}y^{2} + Bx^{2}y + Cxy^{2} + Dx^{2} + Ey^{2} + Fxy + Gx + Hy + I \qquad Ecuación 7$$

Cuyos parámetros son:

$$\begin{split} A &= \left[\left(Z1 + Z3 + Z7 + Z9 \right) / 4 - \left(Z2 + Z4 + Z6 + Z8 \right) / 2 + Z5 \right] / L^4 \\ B &= \left[\left(Z1 + Z3 + Z7 + Z9 \right) / 4 - \left(Z2 - Z8 \right) / 2 \right] / L^3 \\ C &= \left[\left(-Z1 + Z3 + Z7 + Z9 \right) / 4 - \left(Z4 - Z6 \right) / 2 \right] / L^3 \\ D &= \left[\left(Z4 + Z6 \right) / 2 - Z5 \right] / L^2 \\ E &= \left[\left(Z2 + Z8 \right) / 2 - Z5 \right] / L^2 \\ F &= \left(-Z1 + Z3 + Z7 - Z9 \right) / 4L^2 \\ G &= \left(-Z4 + Z6 \right) / 2L \\ H &= \left(Z2 - Z8 \right) / 2L \\ I &= Z5 \end{split}$$

Por lo tanto, la curvatura de una matriz 3x3 se define como:

$$Curvatura = -2 [D + E] * 100$$
 Ecuación 8

Cuando la curvatura es positiva (+) la superficie es localmente cóncava y es cuando es negativa (-) la superficie es localmente es convexa. Pero el valor es cero cuando la superficie es localmente plana (Favalli y Fornaciai, 2017; Figura 30). Los picos tienen un valor de curvatura negativa y los hoyos un valor de curvatura positiva. Este permite identificar zonas de erosión y acumulación (Favalli y Fornaciai, 2017).

Figura 30. Bloque diagrama de la representación de la curvatura. **A.** Superficie convexa, a la cual se le asigna un valor negativo. **B.** Superficie cóncava, a la cual se le asigna un valor positivo. **C.** Superficie plana, a la cual se le asigna un valor de CRSI (2016k).

Los parámetros morfométricos mencionados anteriormente se extrajeron para la Caldera de Ilopango, por lo que el proceso realizado sobre este se resume en la Figura 31.

Figura 31. Extracción de parámetros morfométricos en la Caldera de Ilopango.

3.4. Rasgos morfométricos derivados de un MDE

Los rasgos morfométricos son generados a partir de un proceso automatizado del *software ENVI 4.7*, el cual examina, sobre el MDE un conjunto de pixeles agrupados generalmente en una matriz 3x3, la relación entre el pixel central con sus vecinos, clasificándolos en categorías basadas en puntos (hoyos, pasos y picos), dos categorías basadas en líneas (canales y crestas) y una categoría basada en áreas (planos; Tabla 7; Figura 32; Wood, 1996).

Los rasgos morfométricos están relacionados con la curvatura transversal (Xcurv) y longitudinal (Ycurv) ya que obtienen su clasificación a partir de la segunda derivada, pero evaluando en este caso no toda la superficie, sino el pixel central respecto a su vecindad. Por lo tanto, en lugares con una pendiente distinta de cero, los rasgos morfométricos serán clasificados de la siguiente manera:

- Xcurv negativa = canales
- Xcurv positiva = crestas
- Xcurv cero = planos (inclinados)
- Xcurv y Ycurv negativa = hoyos
- Xcurv y Ycurv positivos = picos
- Xcurv y Ycurv con signos opuestos = pasos

Rasgo morfométrico	Expresión de la derivada	Descripción
Pico	$\frac{\delta^2 z}{\delta x^2} > 0, \frac{\delta^2 z}{\delta y^2} > 0$	Punto que se encuentra en una convexidad local en todas las direcciones (todos los vecinos más abajo)
Hoyo	$\frac{\delta^2 z}{\delta x^2} < 0, \frac{\delta^2 z}{\delta y^2} < 0$	Punto que se encuentra en una concavidad local en todas las direcciones (todos los vecinos más arriba)
Paso	$\frac{\delta^2 z}{\delta x^2} > 0, \frac{\delta^2 z}{\delta y^2} < 0$	Punto que se encuentra en una convexidad local que es ortogonal a una concavidad local
Canal	$\frac{\delta^2 z}{\delta x^2} < 0, \frac{\delta^2 z}{\delta y^2} = 0$	Punto que se encuentra en una concavidad local que es ortogonal a una línea sin concavidad / convexidad
Cresta	$\frac{\delta^2 z}{\delta x^2} > 0, \frac{\delta^2 z}{\delta y^2} = 0$	Punto que se encuentra en una convexidad local que es ortogonal a una línea sin convexidad / concavidad
Plano	$\frac{\delta^2 z}{\delta x^2} = 0, \frac{\delta^2 z}{\delta y^2} = 0$	Puntos que no se encuentran en ninguna superficie concavidad o convexidad

Tabla 7. Descripción de los rasgos morfométricos con sus segundas derivadas. Modificado de Wood (1996).

Sobre el área de la Caldera de Ilopango, se extrajo los seis rasgos morfométricos anteriormente descritos, y como resultado se obtuvo el rasgo de cada pixel perteneciente al MDEc. Al extraer los rasgos de pico, hoyo, plano y paso, los cuales solo cubren áreas del tamaño de cada pixel (5x5 m), el *software* selecciono muy pocos pixeles, pero estos al ser muy específicos no permiten la descripción morfológica y morfoestructural del área de la caldera. Por el contrario, los rasgos de cresta y canal si logran evidenciar mejor la morfología que allí se presenta, además de indicar con claridad los escarpes, por su disposición en un patrón paralelo e intercalado entre los dos (Figura 35C), por lo que se decide generar solo los rasgos de canal y cresta.

Figura 32. Extracción de rasgos morfométricos en la Caldera de Ilopango.

3.5. Sombreado

Para mejorar la visualización del relieve y observar los rasgos lineales de una forma más remarcada, se obtiene una imagen (*raster*) conocida como sombreado a partir del MDEc con la herramienta de *hillshade* ubicada en *Raster Surface* de *3D Analyst Tools* del *software ArcGIS 10.3.*

Para lograr este efecto, primero se configura la posición de una fuente de luz hipotética (simulando a la luz incidente del sol), con la dirección azimutal (declinación de 0-360°) y la altitud (inclinación de 0-90°; ERSI, 2016f). Estos valores se procesan junto con los cálculos de pendiente y aspecto para determinar el valor de iluminación de cada celda respecto de las celdas vecinas, a los cuales se les asigna tonos de gris en una escala del 0 al 255 (ERSI, 2016f).

La ecuación para obtener el sombreado se expresa:

 $\begin{array}{l} \textit{Sombreado} = 255 \ [\langle \cos(\textit{Cénit}_{rad}) * \cos(\textit{Pendiente}_{rad}) \rangle + \langle sen(\textit{Cénit}_{rad}) * \\ sen(\textit{Pendiente}_{rad}) * \cos(\textit{Azimut}_{rad} - \textit{Aspecto}_{rad} \rangle] & Ecuación 9 \end{array}$

Pero para proceder a obtener el sombreado primero se debe cambiar la altitud a ángulo cénit:

$$C\acute{e}nit_{grad} = 90 - altitud$$
 Ecuación 10

Luego este se convierte a radianes:

$$C\acute{e}nit_{rad} = C\acute{e}nit_{grados} * \frac{Pi}{180.0}$$
 Ecuación 11

Para el azimut, como este se especifica en grados de unidad geográfica (0-360°) se debe cambiar a unidad matemática (ángulo recto):

$$Azimut_{mat} = 360 - Azimut + 90$$
 Ecuación 12

Pero si el azimut matemático es >= 360, entonces:

$$Azimut_{mat} = Azimut_{mat} - 360$$
 Ecuación 13

Luego este se convierte a radianes:

$$Azimut_{rad} = Azimut_{mat} * \frac{Pi}{180.0}$$
 Ecuación 14

Así mismo se debe calcular la pendiente con las Ecuaciones 2 y 3, pero como la pendiente debe estar en radianes, la Ecuación 1 se modifica a la Ecuación 15.

$$Pendiente_{rad} = \arctan\left[factor_{z} * \sqrt{\left(\frac{dz}{dx}\right)^{2} + \left(\frac{dz}{dy}\right)^{2}}\right] \qquad Ecuación 15$$

Para el aspecto en primer lugar se obtiene el resultado de las Ecuaciones 4 y 5.

Si
$$\left[\frac{dz}{dx}\right]$$
 no es cero:
Aspecto_{rad} = $\arctan^2\left(\left[\frac{dz}{dx}\right], \left[-\frac{dz}{dy}\right]\right)$ Ecuación 16
Si Aspecto_{rad} < 0
Aspecto_{rad} = $2 * Pi + Aspecto_{rad}$ Ecuación 17
Si $\left[\frac{dz}{dx}\right]$ es cero y si $\left[\frac{dz}{dy}\right] > 0$, entonces:
Aspecto_{rad} = $Pi/2$ Ecuación 18
Si $\left[\frac{dz}{dy}\right] < 0$, entonces:
Aspecto_{rad} = $2 * Pi - Pi/2$ Ecuación 19

Con los resultados de las anteriores ecuaciones, se reemplaza sobre la Ecuación 9 para obtener el valor de sombreado de la celda central. El anterior procedimiento se resume en la Figura 33.

Figura 33. Procedimiento para obtener el sombreado del MDEc.

3.6. Determinación de lineamientos

Una vez con la información obtenida de los anteriores procesos se procede a realizar la determinación de lineamientos (Figura 36) del área que comprende la Caldera de llopango haciendo uso del *software ArcGIS 10.3.* y *Stereonet 9.9.4*.

El primer *raster* con el que se determinará los lineamientos es el de *sombreado*, obtenido en el apartado 3.5. En este, el ángulo de iluminación claramente afecta la manera en que se visualizan las características del relieve, ya que se pueden mostrar de una manera diferente dependiendo de la dirección de iluminación. Un ejemplo son las características lineales como crestas y valles, las cuales si se encuentran orientadas perpendicularmente a la dirección de iluminación se pueden identificar fácilmente en comparación de si se encuentran paralelas (Favalli y Fornaciai, 2017).

En el caso de la Caldera de Ilopango que su superficie se encuentra modelada por el fallamiento en diferentes direcciones, se debe generar múltiples imágenes de relieve sombreado para facilitar la identificación de estos rasgos estructurales, variando en este caso el valor de declinación (azimut) y dejando constante el valor de la inclinación de la fuente de luz, así como se observa en la Figura 34.

Posteriormente con el *raster* de la *curvatura* y *pendiente* del área de la Caldera de Ilopango, se superponen estos en transparencia sobre el *sombreado*, lo que facilita la visualización de los lineamientos tanto en su extensión como amplitud, ya que se produce una combinación de color entre las zonas cóncavas con las pendientes bajas y las zonas planas con pendientes altas, donde el último facilitará la identificación de escarpes (Figura 35A).

Los escarpes característicos del fallamiento normal asociado a la distensión han de ser diferenciados correctamente de aquellos escarpes producto de procesos superficiales o fenómenos de remoción en masa. Por ello es importante el uso del parámetro morfométrico de aspecto que permite diferenciar los rasgos direccionados (Figura 35B), y del uso de los rasgos morfométricos tales como canales y crestas, los cuales presentan una intercalación muy fina sobre los escarpes de falla (Figura 35C).

Figura 34. Sombreado del MDEc de 5m, con luz del sol ubicada a 45° de altitud. **A.** Sombreado con azimut de 45°, facilita la observación de lineamientos con sentido NE-SW. **B.** Sombreado con azimut de 360°, facilita la observación de lineamientos con sentido NW-SE. **C.** Sombreado con azimut de 315°, facilita la observación de lineamientos con sentido W-E. **D.** Sombreado con azimut de 270°, facilita la observación de lineamientos con sentido NW-SE.

Una vez identificado los lineamientos, se agrupa aquellos que presentan escarpe o desplazamiento de aquellos que no lo muestran. Los últimos se clasifican como lineamientos o fracturas, y se procede a extraer y analizar sus rumbos en un diagrama de rosa graficado por medio del *software Stereonet 9.9.4.* Para definir la orientación principal de éstos, se utiliza el parámetro de longitud al cual se le proporciona un peso para obtener las principales direcciones, ya que la baja cantidad de extensas fallas y la gran cantidad de fallas con poca longitud, podría enmascarar la dirección principal de los lineamientos, debido a que el diagrama de rosas se basa en la frecuencia de sus datos. Por otra parte, para los lineamientos que presentan escarpes y/o desplazamientos se agrupan como fallas, obteniendo de esta información de rumbo. A partir de esta información se genera el diagrama de rosas para cada uno, a través del *software Stereonet 9.9.4.*, con los cuales se podrá confirmar los esfuerzos que afectan el área de la Caldera de Ilopango (Figura 36).

Figura 35. Delimitación de lineamientos y escarpes usando parámetros y rasgos morfométricos. **A.** Acercamiento que permite observar la combinación del *raster* de pendiente y curvatura sobre el *raster* de sombreado. **B.** Acercamiento del *raster* del parámetro de aspecto sobre el sombreado. **C.** Acercamiento mostrando la combinación de los rasgos de canales y crestas encima del *raster* de sombreado.

Figura 36. Metodología de la determinación de lineamientos y fallamiento sobre el área de la Caldera de Ilopango.

4. RELACIÓN ENTRE LA FORMA Y ESTRUCTURA DE LA CALDERA DE ILOPANGO

A partir de la metodología descrita en el tercer capítulo se obtienen los siguientes resultados morfométricos y morfotectónicos de la Caldera de Ilopango.

4.1. Topografía de la Caldera de Ilopango

Con el análisis estadístico exploratorio de los datos previo a la generación de la superficie de predicción (en el caso de los métodos geoestadísticos), se define que el conjunto de datos (topografía) no tiene una distribución normal. Es por ello que sobre estos se le debe realizar una trasformación de tipo logarítmica porque de acuerdo con el histograma estos se encuentran sesgados positivamente (a la derecha, Figura 37A). Así mismo la tendencia de los datos es de segundo orden ya que gráficamente se presenta una línea curva en la gráfica de tendencia cuadrática (Figura 38). Posteriormente los datos se ajustan a un modelo teórico (función o curva) para garantizar una predicción aceptable mediante la técnica de *kriging*. Para este efecto el semivariograma tipo estable es la función más apropiada para generar la curva que mejor ajusta a la mayoría de los datos (Figura 39).

Figura 37. Histograma de frecuencias de los datos topográficos sobre la Caldera de Ilopango. **A.** Histograma sesgado a la derecha **B.** Histograma con transformación logarítmica.

Figura 38. Análisis de tendencia sobre los datos topográficos de la Caldera de Ilopango.

Figura 39. Semivariograma del conjunto de datos topográficos de la Caldera de Ilopango.

Una vez generado los cuatro modelos de predicción tanto geoestadísticos como el determinístico, se hace la comparación entre estos por medio de la evaluación de los métodos de los errores de predicción. Por lo que el método que más se acerca a la realidad batimétrica del fondo del lago es el *kriging* Simple (Figura 40).

Continuando con la metodología (ver apartado 3.1.) una vez obtenido el *raster* del MDE del interior del Lago de Ilopango este se une con MDE-LIDAR de 5 m y da como resultado el **MDEc** (Figura 41). Con este se obtienen las curvas de nivel del Lago de Ilopango y se evalúa la coherencia de la topografía entre el MDE generado por la interpolación y por LIDAR por medio de la evaluación 3D (Figura 42), para comparar y mostrar que se logró generar un solo MDE de la Caldera de Ilopango, con respecto a la Figura 23.

Figura 40. *Raster* del modelo de predicción topografía del interior del Lago de Ilopango a partir de la técnica de *Kriging* simple.

Figura 41. MDEc del área de la Caldera de Ilopango.

Figura 42. Evaluación del MDEc del área de la Caldera de Ilopango **A.** Ampliación del área donde las curvas de nivel de la batimetría son coherentes con la topografía (círculo rojo). **B.** Visualización 3D del MDEc, con una exageración de 1x.

4.2. Nuevo límite topográfico de la Caldera de Ilopango

La Caldera de Ilopango en muchos casos ha sido delimitada por el Lago de Ilopango, pero este no es el borde topográfico, que encierra el área que subsidio. Por lo tanto, conociendo que las calderas son una depresión en donde la escorrentía superficial llega a su interior y de acuerdo con la metodología usada en el anterior capítulo (ver más atrás 3.2), a través de la caracterización hidrográfica e identificando las cuencas cuyas vertientes drenan al interior de la caldera (Lago de Ilopango), el límite de estas (parteaguas) define el borde topográfico de la Caldera de Ilopango.

Como primer paso se obtuvo las cuencas que se encuentran en el área de la caldera, y se escogió aquellas cuyos afluentes llegan al interior de la caldera (Figura 43). Posteriormente se delineó y se unió los parteaguas de las anteriores cuencas, a partir del cual se define el primer límite topográfico de la caldera (Figura 44). Adicionalmente se evaluó si este incluye otras estructuras volcánicas no asociadas a la caldera, pero dado que, si incluyó, estas se delimitaron (Figura 45) y se interceptaron con el primer límite topográfico generado, lo que permitió definir el límite topográfico final de la Caldera de Ilopango (Figura 46).

Figura 43. Cuencas cuyos afluentes llegan al interior de la caldera.

Figura 44. Primer límite topográfico de la Caldera a partir del parteaguas.

Figura 45. Delimitación de estructuras no asociadas a la caldera

Figura 46. Limite topográfico final de la Caldera de Ilopango.

4.3. Parámetros y rasgos morfométricos de la Caldera de Ilopango

Por medio del proceso automatizado del *software ArcGIS 10.3*. se obtuvo los parámetros morfométricos de pendiente, curvatura y aspecto, los cuales se reclasificaron para visualizar mejor sus resultados (ver más atrás 3.3).

En el caso de la pendiente, con su información y clasificación se logra identificar las zonas de pendiente baja (0-8°), moderada (8°-16°), fuerte (16°-35°) y muy fuerte (35°-85.6°; Figura 47). Con la curvatura se define las zonas cóncavas y convexas las cuales están asociadas con los cauces y las crestas (Figura 48). Y por último el aspecto que indica la orientación de la superficie en dirección azimutal (Figura 49).

Con el mapa de pendientes (Figura 47), se puede diferenciar que en las paredes internas de la caldera presenta pendientes fuertes a muy fuertes, en la transición de las laderas hacia el interior del lago las pendientes tienden a ser fuertes a moderadas, y en el interior del lago la pendiente es muy baja junto con las planicies que bordean el lago al norte.

Figura 47. Mapa de pendientes de la Caldera de Ilopango.

Con el mapa de curvatura (Figura 48), se logra diferenciar las zonas cóncavas y convexas asociadas a las vertientes y crestas generalmente. La Figura 48 abarca una amplia área donde la curvatura se observa muy general y no se alcanza a apreciar las zonas cóncavas y convexas debido a la alta resolución espacial del MDE de la zona que cubre LIDAR, así que para diferenciar la curvatura se debe realizar un acercamiento sobre las zonas de interés. Aun así, por la baja resolución del MDE del Lago de Ilopango se logra apreciar mejor la curvatura, donde se puede observar que el fondo del lago en general es cóncavo y sus laderas presentan terrazas, posiblemente debido a depósitos lacustres.

Figura 48. Mapa de curvatura de la Caldera de Ilopango.

Con el mapa de aspecto (Figura 49), se observan un conjunto de superficies de color azul en la parte sur de la caldera, orientadas preferentemente hacia el SW; así mismo en el costado norte de la caldera se encuentra un conjunto de superficies de color roja y amarillo los cuales de acuerdo con la clasificación tienen una orientación preferente hacia el N. Por otra parte, dentro del lago se encuentran dos colores alargados, el primero es el de color rojo y fucsia en la parte SE del lago, la cual indica una dirección preferente hacia el NW, mientras la superficie de color amarilla y verde que se ubica hacia el NW del lago, tienen una dirección preferente hacia el E. Por último, el domo central del lago (Islas quemadas) se diferencia porque sobre este aparecen toda la gama de colores de manera circular, mostrando todas las direcciones posibles. A partir de la información anterior se logra diferenciar los primeros conjuntos de lineamientos.

Con el *software ENVI 4.7*, a partir de un proceso automatizado (ver más atrás 3.4), se obtuvo los rasgos morfométricos de Canales y Crestas. El *software* clasifico como canales a los pixeles que se encuentran en una concavidad local respecto a sus vecinos (Figura 50) y como crestas a los pixeles que presentan una convexidad local respecto a sus vecinos (Figura 51).

De los canales se puede observar que en general el área de la caldera se encuentra muy disectada por la escorrentía superficial la cual continua en menor medida hacia el borde interior del lago, pero finalizan a los pocos metros de su ingreso hacia el interior. Casi en la misma mediada que los canales las crestas son muy abundantes en las laderas de la caldera, por la alta erosión que allí se presenta, y hacia el interior del lago se puede apreciar crestas en los bordes ya que allí aún hay estructuras de elevadas, pero las cuales finalizan a los pocos metros de su ingreso hacia el interior.

Figura 49. Mapa de aspecto de la Caldera de Ilopango.

Figura 50. Mapa de canales de la Caldera de Ilopango.

Figura 51. Mapa de crestas de la Caldera de Ilopango.

4.4. Datos morfométricos de la Caldera de Ilopango

A partir del MDEc y del límite topográfico definido tanto de la caldera como del Lago de Ilopango, se obtuvo datos cuantitativos de superficie y forma (Tabla 8).

Dentro de los datos de superficie se encuentra el área, perímetro, cota máxima y mínima, centroide (coordenadas x, y), altitud y pendiente, y dentro de los datos de forma, se encuentra la excentricidad, diámetro máximo y mínimo, y la dirección de elongación. Este último se obtiene a partir de la aproximación de una forma elíptica asemejada a la caldera, la cual se obtiene con el 1.5 de la desviación estándar de los datos topográficos estrictamente del interior de la caldera, y así mismo para el lago. A partir de la elipse se observa una tendencia direccional hacia el NE en su forma, la cual es corroborada con los datos cuantitativos.

En la Figura 52 y Figura 53 se representa la forma geométrica asociada tanto al lago como de la caldera, respectivamente, a partir del cual se obtuvo el centroide, el cual facilitó la identificación del diámetro máximo y mínimo de cada uno.

Figura 52. Representación de la forma y datos cuantitativos del Lago de Ilopango, tales como el diámetro mayor y diámetro menor, y centroide 1.5 de desviación estándar.

Figura 53. Representación de la forma y datos cuantitativos de la Caldera de Ilopango, tales como el diámetro mayor y diámetro menor, y centroide 1.5 de desviación estándar.

DESCRIPCION	UNIDAD	CALDERA	LAGO	
<u>De la superficie</u>				
Área	km ²	197.7	70.6	
Perímetro	km	81.5	64.3	
<u>Cotas</u>				
Cota mínima	msnm	203.1	203.1	
Cota máxima	msnm	1016.8	440	
Centroide (PSC:WGS 1984 z	<u>zona UTM)</u>			
X centroide	m	279078.78	278830.6	
Y centroide	m	1513313.6	1512278.5	
<u>Altitud</u>				
Altitud más frecuente	msnm	636.3	218.3	
<u>Pendiente</u>				
Pendiente promedio	%	13.1	5.1	
<u>De la forma</u>				
Excentricidad	0 = círculo 1 = elipse	0.83	0.69	
Diámetro máximo	km	23.5	12.4	
Diámetro mínimo	km	13.3	7.1	
Dirección de elongación	grado azimutal	70.1	75.9	

Tabla 8. Datos cuantitativos extraídos del MDEc para la caldera y el Lago de Ilopango

Sobre la Caldera de Ilopango se espera reconocer y diferenciar las estructuras y elementos morfológicos de las calderas definidas por Lipman (2000). Varios de estos elementos morfológicos pueden ser identificados si se conoce la estructura en su interior, pero tal información solo puede ser obtenida especificaménte por métodos sísmicos o de otro tipo. Por lo tanto, los únicos elementos morfológicos que se pueden definir son los más superficiales, tales como el diametro topográfico, el borde topográfico y la pared topográfica interna.

Los elementos morfologicos que se pueden llegar a definir a partir del MDEc ya no tienen las mismas dimenciones de la estructura inicial (primer proceso de colapso), ya que han sido modificados por procesos superficiales tales como erosión, y sedimentación, procesos gravitacionales, y eventos volcánicos posteriores.

A partir de los procesos anteriormente mencionados, se ha ampliado la pared topográfica interior y el diámetro topográfico, mientras que la pared topográfica interior ha cambiado de pendiente y se ha vuelto más cóncava. Los dos primeros son obtenidos a partir del limite de la caldera definido en el apartado 4.2, mientras que la pared topográfica estaría definida desde el borde topográfico hasta donde inicia la base del Lago de Ilopango (relleno de caldera; Figura 54 y Figura 55).

Figura 54. Perfil A-A'. **A.** Ubicación en el mapa **B.** Perfil de los elementos morfológicos de Caldera de Ilopango, con exageración vertical de 4:1, escala vertical 1:10500 y escala horizontal 1:77000.

Figura 55. Perfil B-B'. **A.** Ubicación en el mapa **B.** Perfil de los elementos morfológicos de Caldera de Ilopango, con exageración vertical de 4:1, escala vertical 1:10500 y escala horizontal 1:64500.

4.5. Determinación y delimitación de lineamientos, fallas, colapsos y domos

A partir de la combinación del *raster* de pendiente y curvatura (Figura 35A) y con los diferentes sombreados (Figura 34) se logró delimitar 1276 lineamientos (Anexo 4) tanto al interior como a las zonas aledañas de la caldera (Figura 56). A partir del mapa de lineamientos generado se puede identificar que hay muy pocos lineamientos con más de 1 km de longitud, aproximadamente 7%, y en general los lineamientos con poca extensión se agrupan en el borde topográfico de la caldera. Los lineamientos fueron delimitados tanto sobre las crestas como sobre las vertientes, y su longitud fue mayor a 100 m. Sobre el área del Lago de Ilopango, muy pocos lineamientos fueron identificados, por la baja resolución del MDE de este, ya que la recolección de información de Sánchez-Esquivel (2016) fue de cada 500 m, aún así si se logró identificar algunas tendencias muy marcadas de las estructuras internas.

La información de rumbo de los lineamientos se graficó en un diagrama de rosas el cual se obtiene con el *software Stereonet 9.9.4*. A través de este diagrama de rosas se representa el porcentaje de lineamientos cada 5° azimutales (Figura 56, orientación 1) y se logra identificar claramente cuatro familias de lineamientos N, NW, NE y E-W, nombradas de mayor a menor porcentaje alcanzado. La anterior representación de frecuencia se realiza sin dar importancia a la longitud de cada lineamiento, por lo que la Figura 56 (orientación 2) es la representación de la frecuencia de la orientación dando peso o importancia a la longitud de los lineamientos. Para ello se especificó una longitud fija para cada lineamiento (200m), por lo que aquellas longitudes que alcanzan un kilómetro se dividieron en 5 lineamientos, y con esta metodología se dividieron el resto de los lineamientos, obteniendo así un total de 3047 lineamientos cuya frecuencia de orientación se representa en la Figura 56 (orientación 2). Con esta se logra evidenciar que la familia de lineamientos predomínate es la NW.

A partir de los lineamientos identificados se logra apreciar que algunos de estos encierran la caldera cerca a sus límites topográficos (Figura 57). Por lo que extrapolando estos lineamientos la caldera podría encerrarse en una forma poligonal la cual estaría dividida en dos bloques, bloque norte y sur, los cuales se encontrarían divididos por la posible continuación de la Falla San Vicente identificada de color negro en la Figura 57. Al comparar el límite topográfico con el límite topográfico generado por lineamientos (Figura 58), se logra apreciar que mantienen una forma muy similar entre los dos. Además de acuerdo con la forma (Figura 58) se observa que la Falla San Vicente pudo haber desplazado aproximadamente la caldera 2 km hacia el oriente.

Figura 56. Mapa de lineamientos identificados sobre el área de la Caldera de Ilopango, con sus orientaciones sin tener en cuenta la longitud (Orientación 1) y teniendo en cuenta la longitud (Orientación 2).

Figura 57. Mapa de lineamientos e inferencia de la forma poligonal de la Caldera de Ilopango.

Figura 58. Estructura poligonal que muestra la Falla de San Vicente desplazando la estructura volcánica.

La identificación de los escarpes se llevó a cabo con el *raster* de aspecto (Figura 35B) y con la combinación de los rasgos morfométricos de canales y crestas (Figura 35C), ya que estos presentan un patrón de intercalaciones sobre las zonas escarpadas. También con la ayuda del sombreado (Figura 34) a diferentes grados azimutales, se evaluó si estos en verdad correspondían a escarpes, ya que como el área se encuentra muy disectada por la escorrentía superficial, muchas paredes empinadas que podrían clasificarse como escarpes en su mayoría tienen una pared simétrica, lo que indica que estas paredes están asociadas a la parte alta de la cuenca a la que podrían representar posible fallamiento extensional y cuya pared escarpada no tuviera una gemela al frente. Entonces se logró delimitar 43 escarpes (Anexo 5), los cuales se ubican en su mayoría en el borde topográfico sur y en la parte oriental de la caldera (Figura 59).

La orientación de los escarpes es graficada en el diagrama de rosas de la Figura 59 (orientación 1), en el cual se representa el porcentaje de la frecuencia de orientación de los escarpes cada 5° azimutales, sin tener en cuenta la longitud de estos. A partir de este se identifica dos familias de orientaciones principales, la primera en dirección NW y la segunda en dirección N. Luego cuando se define una longitud fija para cada escarpe (100m), se obtienen un total de 330 orientaciones las cuales al ser graficados en el diagrama de rosas (Figura 59, orientación 2) se observa con mucha claridad que el porcentaje de escarpes orientados hacia el NW es muy significativo respecto a las otras orientaciones.

Comparando la dirección de los escarpes los cuales estarían indicando zonas de extensión (Figura 59, orientación 2), con la dirección preferencial de los lineamientos de la Figura 56 (orientación 2) se logra evidenciar que la dirección principal de los escarpes (NW) coincide con la dirección principal de los lineamientos (NW). Por lo que se podría concluir que los lineamientos con dirección NW podrían estar asociados a fallas de extensión. Entonces al extrapolar algunos lineamientos con dirección NW para ver cómo se distribuyen sobre la caldera (Figura 60) se observó que estos se distribuyen paralelamente además de cruzar casi de manera perpendicular sobre la continuación de la Falla de San Vicente (de rumbo dextral) en la caldera.

Figura 59. Mapa de escarpes sobre el área de la Caldera de Ilopango, con sus orientaciones sin tener en cuenta la longitud (Orientación 1) y teniendo en cuenta la longitud (Orientación 2).

Figura 60. Mapa de extrapolación de los lineamientos NW sobre la Caldera de Ilopango.

Por otro lado, se delimitaron las zonas de colapso junto con el área del depósito del material desplazado en el colapso (Figura 61). En general se reconoce bastantes áreas de colapsos sectoriales o deslizamientos en masa con presencia de sus depósitos en el área interior y norte de la caldera, mientras que en el costado sur solo se aprecian algunas geoformas semicirculares, las cuales pudieran estar asociadas a posibles colapsos gravitacionales de diferentes eventos eruptivos ya que no se observa depósitos asociados.

Las estructuras dómicas se identificaron de acuerdo con su forma semicircular y convexa. Se delimitó a detalle los domos desarrollados al interior de la caldera teniendo en cuenta la información de Hernández (2015); además de identificar otras posibles estructuras dómicas que se encuentran al interior del Lago de Ilopango. De acuerdo con los domos delimitados en la Figura 62, se logra observar que estos se encuentran ubicados en la parte SE y NE de la caldera, similar a la ubicación de los escarpes. También se observa una agrupación de estos en el borde topográfico NW de la caldera. A pesar de que los domos podrían verse alineados de la manera en que nosotros deseemos porque se distribuyen muy aleatoriamente, se logra apreciar que los domos SE con los domos NW si pueden encontrarse relacionados a una orientación NW (Figura 62).

Figura 61. Mapa de colapsos sectoriales (deslizamiento) sobre la Caldera de Ilopango.

Figura 62. Mapa de domos sobre la Caldera de Ilopango. Modificado de Hernández (2015).

5. DISCUSIÓN GENERAL SOBRE LOS RASGOS Y PARÁMETROS MORFOMÉTRICOS CON LA TECTÓNICA DE LA CALDERA DE ILOPANGO

5.1. El método de interpolación para el MDE del Lago de Ilopango

De las dos técnicas de interpolación, determinística Ponderación de distancia inversa (*Inverse Distance Weighting, IDW*) y estadística geográfica (*Kriging* simple, ordinario y universal), se obtuvo cuatro modelos de predicción topografía del interior del lago. Por lo que para evaluar el modelo más cercano a la realidad topográfica del interior del lago se hace una comparación de validación estadística (Figura 63).

Figura 63. Comparación de estadísticas de validación y gráficos de los diferentes tipos de interpolación usados. **A.** *Kriging* ordinario. **B.** *Kriging* simple. **C.** *Kriging* Universal. **D.** *Inverse Distance Weighting.*

Las propiedades estadísticas de validación son (ERSI, 2016i):

- Muestras "Samples": es el número total de datos usados.
- Error medio "Mean Error": es la diferencia promedio entre los valores medidos y los predichos.

$$\frac{\sum_{i=1}^{n} \left[Z_{(s_i)} - Z_{(s_i)} \right]}{n}$$

Ecuación 20

 Media cuadrática "Root-Mean-Squared Error": indica que tan cerca el modelo predice los valores medidos. Entre más pequeño sea el error, mejor.

$$\sqrt{\frac{\sum_{i=1}^{n} \left[z_{(s_i)} - z_{(s_i)} \right]^2}{n}} \qquad Ecuación 21$$

 Media del error estandarizado "Mean Standardized Error": es el promedio de los errores estándar. Este valor debe ser cercano a cero (0).

$$\frac{\sum_{i=1}^{n} \left[Z_{(s_i)} - Z_{(s_i)} \right] / \sigma_{(s_i)}}{n} \qquad Ecuación 22$$

 Media cuadrática estandarizada "Root-Mean-Square-Standard Error": este debe ser cercano a uno (1) si los errores estándar de predicción son válidos. Si este es mayor que uno (RMSS>1) se está subestimando la variabilidad en las predicciones. Pero si este es menor que uno (RMSS<1) se está sobreestimando la variabilidad en sus predicciones.

$$\sqrt{\frac{\sum_{i=1}^{n} \left(\left[z_{(s_i)} - z_{(s_i)} \right] / \sigma_{(s_i)} \right)^2}{n}} \qquad Ecuación 23$$

 Error estándar promedio "Average Standard Error": es el promedio de los errores estándar de predicción.

$$\sqrt{\frac{\sum_{i=1}^{n} \sigma^{2}(s_{i})}{n}} \qquad Ecuación 24$$

Generalmente el modelo más cercano a la realidad es el que tiene la *Media del error estandarizado* más cercana al cero, la *Media cuadrática* más pequeña, la *Media Cuadrática estandarizada* más cercana al 1 y el *Error estándar promedio* más cercano a la *Media cuadrática* (ERSI, 2016g). En el caso en que dos modelos cumplan con alguno de los cuatro ítems mencionados, tendrá más peso aquel que tenga la *Media Cuadrática estandarizada* más cercana al 1 y el *Error estándar promedio* más cercano a la *Media cuadrática*, ya que cuando se está prediciendo solo se tiene del error estándar estimado para evaluar la incertidumbre de esa predicción (ERSI, 2016g). Con la comparación de las propiedades estadística, se evaluó los cuatro modelos de manera sucesiva como se presentas las siguientes tablas:

N°	Técnica de Interpolación	Media del error estandarizado
1	Kriging Universal	0.003617742
2	Kriging Simple	0.004519913
3	Kriging Ordinario	0.004912437
4	IDW	-

Tabla 9. Media del error estandarizado más cercana al cero

Tabla 10.	La	Media	cuadrática	más	pequeña
					p • • • • • • • •

N°	Técnica de Interpolación	Media cuadrática
1	Kriging Universal	0.6223936
2	<i>Kriging</i> Ordinario	0.6380168
3	Kriging Simple	0.638045
4	IDW	0.91705

Tabla 11. La Media Cuadrática estandarizada más cercana al 1

N°	Técnica de Interpolación	Media cuadrática estandarizada
1	Kriging Simple	0.1466121
2	<i>Kriging</i> Ordinario	0.1461127
3	Kriging Universal	0.138976
4	IDW	-

Tabla 12. El Error estándar	promedio más cercano	a la Media cuadrática.
-----------------------------	----------------------	------------------------

N°	Técnica de	Error estándar promedio	
	Interpolación	Media cuadrática	
1	Kriging Simple	(4.170959-0.638045) = 3.532914	
2	Kriging Ordinario	(4.185443-0.6380168) = 3.547426	
3	Kriging Universal	(4.359568-0.6223936) = 3.737174	
4	IDW	-	

A partir de los análisis anteriores el modelo de predicción que se acerca más a la realidad del terreno es el del *Kriging* simple, el cual presenta el *Error estándar promedio* más cercano a la *Media cuadrática,* así como la *Media Cuadrática estandarizada* más cercana al 1. Por lo tanto, con el *raster* de este modelo se genera el MDE del Lago de Ilopango, el cual al unirlo con el MDE-LIDAR de 5 m estos logran encajarse bien, lo cual se puedo observar en la Figura 41. Por otro lado, se conoce por los datos obtenidos por Sánchez-Esquivel (2016), que la profundidad máxima del fondo del lago es de 203 msnm, pero al obtener la topografía interna por el método de interpolación de *kriging* simple se observa que el dato de profundidad máxima es de 186 msnm. Esto indica que la interpolación llega a adicionar datos para generar la superficie de predicción, y modela estos de manera cercana a la realidad. Por ello la interpolación coinciden con los datos más bajos de la carta batimétrica.

5.2. Límite topográfico, forma e información cuantitativa de la Caldera de Ilopango

Muchos autores han delimitado de manera general a la Caldera de Ilopango obteniendo datos cuantitativos de ésta a partir del rasgo más claro que es Lago de Ilopango, por lo que han llegado a definir que las dimensiones de la caldera son 6 x 11 km (Garibaldi *et al.*, 2016), pero de acuerdo con los datos obtenidos, las anteriores corresponden a la dimensión del lago, que en el presente trabajo se define como 7 x 12 km, mientras que las dimensiones de la caldera a partir del borde topográfico son de 13 x 23 km.

Limitar el borde topográfico de la caldera a grandes rasgos se dificulta ya que no existe una única cota de nivel continua en todo su límite, el cual se puede evidenciar conociendo la topografía del área (Figura 1), debido a que el costado sur alcanza la elevación de 1000 msnm mientras que las cotas del costado norte son en promedio de 600 msnm. Es por ello que realizando el análisis hidrográfico de la Caldera de Ilopango se facilitó definir el límite topográfico o borde topográfico de la caldera.

La delimitación del borde topográfico de la caldera haciendo uso del análisis hidrológico fue realizado por Noyola-Medrano *et al.* (2016), quienes lograron obtener datos hidrográficos de la cuenca además de mostrar la utilidad de los MDE sobre el área de estudio y establecer la diferencia de exactitud que se puede lograr dependiendo del método que da origen al MDE y de su resolución espacial. Por lo que, comparando los resultados y las técnicas, se aprecia en primer lugar que el límite topográfico generado por Noyola-Medrano *et al.* (2016), incluye geoformas no asociadas a la Caldera de Ilopango a diferencia del presente trabajo. También en el presente se utilizó un MDE con mayor resolución espacial (1 y 5 m), a diferencia de lo reportado por Noyola-Medrano *et al.* (2016) donde el MDE de mayor resolución espacial era de 10m. Es por ello, que comparando los datos cuantitativos generados por Noyola-Medrano *et al.* (2016) y teniendo en cuenta la diferencia de exactitud por el uso de diferentes MDE se logra a preciar algunas diferencias significativas y otros datos muy similares (Tabla 13).

Comparando los datos de la Tabla 13 el área, el perímetro, la cota máxima, la pendiente y el centroide de la Caldera de llopango generada en este trabajo es muy similar a la obtenida por Noyola-Medrano *et al.* (2016), por tanto, se puede sugerir que para fines prácticos, el MDE de 10m de resolución espacial permite obtener valores muy cercanos a los obtenidos con el MDE-LIDAR que se utilizó en este trabajo, consistente con la premisa establecida por Noyola-Medrano *et al.* (2016). Aun así, la diferencia de los valores de cota mínima y altitud más frecuente es debido a que el límite topográfico que generaron incluye estructuras no asociadas a la caldera, además de que el MDE de 10m que no incluyó información topográfica del interior del lago.

DESCRIPCION	UNIDAD	Noyola-Medrano et al. (2016), MDE (10m)	MDEc (5m)
	De la sup	erficie	
Área	km ²	208.1	197.7
Perímetro	km	82.6	81.5
<u>Cotas</u>			
Cota mínima	msnm	435.2	203.1
Cota máxima	msnm	1173	1016.8
<u>Centroide (PSC:WGS 1984 z</u>	ona UTM)		
X centroide	m	278290.6	279078.8
Y centroide	m	1513381.9	1513313.6
<u>Altitud</u>			
Altitud más frecuente	msnm	465.8	636.3
<u>Pendiente</u>			
Pendiente promedio	%	11.3	13.1

Tabla 13. Comparación de los datos cuantitativos obtenidos por el MDEc con los obtenidos por Noyola-Medrano *et al.* (2016) para el borde topográfico de la Caldera de Ilopango.

A partir de la extrapolación de los lineamientos que bordean la caldera se logra generar una forma poligonal para la Caldera de Ilopango, la cual al compararla con el límite topográfico extraído por las cuencas hidrográficas se observa que ambas mantienen la misma distribución de la forma a pesar de haber sido obtenido por diferentes métodos (Figura 58). Además, conociendo la topografía del interior de lago se logró extrapolar la Falla San Vicente de orientación E-W, cuyo componente principal es de rumbo dextral (Canora *et al.*, 2010). De acuerdo con la forma extraída por los lineamientos y la extensión hacia el poniente de la Falla San Vicente se puede proponer que esta falla generó un desplazamiento relativo de 2km del bloque norte de la caldera hacia el oriente.

La geometría de las calderas en general suele variar de circulares a semicirculares manteniendo su forma en toda su extensión (Caldera de Coatepeque en El Salvador, Figura 15), pero su forma puede verse afectada tanto por la tectónica y/o por varios eventos volcánicos sobre ésta. Por lo tanto, haciendo uso de la elipse direccional de 1.5 de desviación estándar que cubre aproximadamente el 80% de los datos topográficos de la caldera se facilitó asociar la forma de la caldera a una geometría elíptica y obtener datos cualitativos asociados a esta. A partir de esta geometría asociada se identificó la dirección de elongación de la caldera hacia el NE con un dato azimutal de 070°, el cual tienen la misma dirección de elongación NE a ENE de la extensión ubicada al poniente de la Caldera de Ilopango (Garibaldi *et al.* 2016).

Los elementos morfológicos de las calderas definidos por Lipman (2000) se delimitan a través del corte transversal de una caldera cuyo colapso es único y reciente (Figura 8). Por lo que definir estos elementos sobre la caldera de Ilopango ha estado limitado por la falta de información de profundidad junto con la actual morfología la cual ha sido modelada por los diferentes eventos eruptivos (ver apartado 2.4), la tectónica y la alta erosión. Así que se logró identificar pocos elementos morfológicos de la caldera como el borde topográfico, el diámetro y la pared interna, sin embargo, presenta limitaciones para establecer rasgos a profundidad como las fallas del borde estructural de la caldera, los límites del relleno intra-caldérico y la profundidad de subsidencia, por tanto, se sugiere el uso de métodos sísmicos o de otro tipo para caracterizar la estructura interna de la caldera.

5.3. Análisis de parámetros y rasgos morfométricos

Teniendo en cuenta que el MDEc es la unión dos modelos digitales de elevación que difieren en su resolución espacial, ya que la información LIDAR es de 1 y 5 m, y la información topográfica del interior del lago es de 10m, la información de los parámetros y rasgos morfométricos será más suavizada y generalizada para el interior del lago, mientras que para el área que cubre el MDE-LIDAR será muy específica y numerosa.

La alta resolución espacial del MDE-LIDAR afecta la obtención de los rasgos morfométricos ya que los resultados entregados por esta son de cada pixel, y si este no es continuo con el vecino, quedará como una información aislada, por lo que en el caso de canales y crestas en algunas áreas no fueron continuos y se dificultó diferenciar estas zonas haciendo uso de esta técnica. Por lo tanto, para la obtención de rasgos morfológicos de manera generalizada se recomienda usar un MDE con menor resolución espacial, o indicar al *software* que analice el área no sobre una ventana 3x3 si no una ventana que incluya más pixeles.

Realizando la simulación de la ubicación de un foco de luz referente al Sol en el cual se indica tanto el azimut como la altitud de éste, con el fin de observar características del releve que son más evidentes con el sombreado, se determinó cuatro orientaciones opuestas entre ellas, cuyos resultados fueron los más acertados para identificar los lineamientos en el área. En primer lugar, se determinó el uso constante de un valor altitudinal (45°) para las simulaciones, ya que, de acuerdo con lo evaluado, si este es mayor de 45° los rasgos del relieve tienden a tener un tono de gris más claro sobre el área y dificulta la diferenciación entre los rasgos, y lo contrario si la altitud se buscó los valores azimutales que evidenciaran mejor las características del relieve. En esta búsqueda hubo orientaciones azimutales que invierten el relieve, las cuales fueron tenidas en cuenta para no ser usadas en el sombreado, por lo que descartando algunas direcciones se logró definir las más adecuadas para el presente trabajo (Tabla 14).

No.	Altitud	Azimut	Orientación de
			rasgos
1	45°	45°	NNE-SSW
2	45°	270°	NW-SE
3	45°	315°	ESE-WNW
4	45°	360°	NNW-SSE

Tabla 14. Valores de altitud y azimut de la orientación de un foco de luz (el Sol), para facilitar la identificación de rasgos con diferentes orientaciones.

Tomando como base el relieve (sombreado), la superposición de los mapas de pendiente y curvatura favorece la distinción de los lineamientos al resaltar aspectos morfológicos como vertientes, cumbres y escarpes. Para identificar y determinar este último también se usó de los rasgos morfométricos como se mencionó anteriormente y del parámetro morfométrico de aspecto. Con este parámetro se logró definir el área asociada a los escarpes ya que el aspecto logra definir la orientación de la superficie. Pero como se buscó escarpes asociados directamente con fallamiento, fue indispensable el uso del sombreado con diferentes direcciones azimutales (Table 13), ya que la zona se ve afectada por una fuerte escorrentía superficial que genera principalmente procesos erosivos. De acuerdo con lo anterior es común ver un amplio conjunto de cuencas hidrográficas que en la parte superior (elevaciones mayores) presenta pendientes elevadas, las cuales se pueden asociar a escarpes. Por lo que, para diferenciar escarpes aparentes de escarpes reales, se observó que, los escarpes de la parte alta de las cuencas presentan una contraparte semejante enfrente de la dirección de pendiente, así que aquellos escarpes sin contraparte fueron seleccionados como escarpes de falla.

5.4. Colapsos, domos y lineamientos

Se lograron identificar 1276 lineamientos asociados a fracturas o posibles fallas, y para confirmar si algunos de los anteriores son fallas se sugiere la corrobación en campo. Una vez graficado la frecuencias de orientaciones sobre el diagrama de rosas (Figura 56, orientación 1 y 2) se logra definir que los lineamientos de mayor longitud pero con menor frecuencia deben de tener mayor peso al momento de establecer la orientación con respecto a los lineamientos de menor longitud y mayor frecuencia, ya que estos últimos ocultan la orientación de los primeros al ser graficados en un diagrama de frecuencias (diagrama de rosas), esto con el fin de evitar la obtención de una orientación principal errónea. Lo anterior se vio evidenciado en este trabajo ya que al graficar las orientaciones sin tener en cuenta la longitud de los lineamientos asociados se definió que la dirección preferencial es la N (Figura 56, orientación 1), pero al darle peso a los lineamientos de mayor longitud la mayor tendencia de los lineamientos se ubicó en dirección NW (Figura 56, orientación 2).

Por otra parte, se identificaron lineamientos asociados a posibles fallas, identificando los escarpes equivalentes a planos de falla. Por lo que se logró definir 43 lineamientos asociados a estos cuya mayor tendencia de orientación es hacia el NW-SE, y aunque se usó la misma metodología propuesta en el párrafo anterior, (dar peso a la longitud de los lineamientos), el resultado confirmó la tendencia de orientación NW-SE (Figura 59, orientación 2). Los escarpes (equivalente al plano de falla) visibles sobre superficie son asociados en su mayoría a fallas con componente principalmente extensional (fallas normales), ya que el plano de falla asociadas a fallas inversas en su mayoría se encuentra oculto por el bloque colgante que cabalga sobre el bloque de piso. Existe la posibilidad de observar en superficie el plano de falla asociado a fallas compresionales si la alta erosión o la tectónica permite la desaparición del bloque colgante o el desplazamiento de este. Por lo tanto, a pesar de que los escarpes definidos en el área de la Caldera de Ilopango en el siguiente trabajo se asocian a fallas extensionales, se sugiere confirmar esta información en campo.

También redefiniendo el límite de los domos asociados a la Caldera de Ilopango (Hernández, 2015, Figura 62) e incluyendo posibles domos gracias al MDEc del interior del lago generado en este trabajo (Figura 41), se distinguió una posible tendencia hacia el NW-SE de los domos de acuerdo con la ubicación relativa de estos en el área. En general la efusión de domos se da gracias a zonas de debilidad (fracturas y/o fallas).

De la información obtenida, los lineamientos, los escarpes asociados a posibles fallas y los domos, tienen una tendencia general hacia el NW-SE. Extrapolando los lineamientos con tendencia NW-SE sobre la caldera se puede apreciar un arreglo paralelo sobre toda el área, coincidente en su mayoría con algunos domos ubicados en la parte central y con los escarpes ubicados en el borde topográfico sur de la caldera (Figura 62), que, de acuerdo con lo evidenciado con los escarpes, estos están asociados a fallamiento extensional.

Garibaldi *et al.*, (2016) realiza la identificación de fallas sobre los afloramientos ubicados al norte de la Caldera de Ilopango, reconociendo fallas normales con orientación preferente hacia el NW-SE y cuyo buzamiento se orienta al NW y SW, y fallas de rumbo con orientación E-W. Las fallas normales identificadas por Garibaldi *et al.* (2016) cortan la unidad TB5 que se encuentra estratigráficamente debajo de la unidad TB4. Entre estas dos unidades existe una inconformidad asociada a la falta de depósito en un periodo de tiempo el cual han interpretado como el cese de la actividad volcánica de la Caldera de Ilopango. Por lo tanto, Garibaldi *et al.* (2016) asocia este periodo como el tiempo en el que la deformación extensional dominó el área que se encuentra al poniente de la Falla de San Vicente, para posteriormente estar dominado por un proceso principalmente de fallamiento de rumbo. Por lo tanto, durante el último período de volcanismo activo de la caldera fue acomodada por mecanismos distintos al fallamiento normal. De tal forma que los lineamientos identificados con orientación NW-SE en este trabajo, probablemente están asociados a fallas extensionales, y pueden ser anteriores al

fallamiento de rumbo que pudo haber desplazado la caldera (Figura 58). Además, por los rasgos morfotectónicos diferenciados sobre la Caldera de Ilopango esta podría ser una pequeña cuenca *pull-apart* asociada a la cuenca *pull-apart* más grande definida por Garibaldi *et al.* (2016).

Sobre la Caldera de llopango se encuentran geoformas de colapsos que presentan diferencias entre los bordes topográficos norte y sur. En el costado norte hay presencia de colapsos asociados a deslizamiento de tierra o producto de la alta erosión en el área y al material no consolidado, que de acuerdo con el mapa geológico del área (Figura 20) se ubican sobre los productos ignimbríticos más recientes de la caldera (TBJ). La mayoría de estos colapsos presentan frente a ellos el material removido, dando mayor peso a la posibilidad de que sean colapsos producto de remoción en masa. Además, Canora *et al.* (2010) identifica los colapsos del bloque norte como deslizamientos producto del sismo del 13 de febrero del 2001 relacionado a la Falla de San Vicente.

Sin embargo, asociar las geoformas semicirculares ubicadas al costado sur de la caldera se ha dificultado, ya que no hay presencia de material removido frente a estos, ni Canora *et al.* (2010) asocia deslizamiento sobre esta área. Además, la caldera no mantiene una única forma geométrica en su estructura, así como se observa en la Caldera de Coatepeque (Figura 15), a la cual se le puede relacionar un solo evento caldérico. Por lo tanto, diferenciar estas estructuras semicirculares sobre la Caldera de Ilopango para definir si estas están asociadas tanto a colapsos gravitacionales (deslizamiento de tierra) o colapsos verticales asociados a la subsidencia el piso caldérico puede ser controversial.

Lexa *et al.* (2011), menciona la posible evolución de la Caldera de Ilopango de acuerdo con los depósitos encontrados sobre el borde topográfico SW, donde define la existencia de un volcán Ilopango precursor de la actual caldera. Pero de acuerdo con los resultados morfoestructurales del presente trabajo, se logra apreciar que la Caldera de Ilopango ha sido modificada por diferentes eventos caldéricos además de estar fuertemente afectada por la tectónica del área sobre la cual se encuentra, y cuyo origen puede asociarse a una cuenca *pull-apart*. Aún así es importante confirmar lo anterior con la geología más detallada sobre la caldera y sus alrededores.

CONCLUSIONES

Este trabajo versó sobre la aplicación de diversas técnicas geomáticas y principios geomorfológicos para determinar la geometría de la Caldera de Ilopango y su posible relación con el ambiente tectónico de la región. A partir de los resultados obtenidos en este trabajo se logra establecer varias conclusiones:

- 1. Se determinó que el método geoestadístico de menor error de predicción es el *kriging* simple ya que da una mayor aproximación a la realidad de la batimetría de la Caldera de Ilopango.
- 2. La extrapolación de lineamientos y la delimitación de las cuencas hidrográficas permitió determinar la forma de la caldera, y su posible desplazamiento provocado por la Falla de San Vicente de aproximadamente 2 km.
- 3. La forma general de la caldera está asociada a una geometría poligonal desplazada por la Falla San Vicente, cuya dirección de elongación es 070° (NE), semejante con la dirección de elongación tectónica definida en los antecedentes.
- 4. Por medio de los perfiles topográficos se logró identificar ciertos elementos morfológicos de la caldera como el borde topográfico, el diámetro y la pared interna. Sin embargo, presenta limitaciones para establecer rasgos a profundidad como las fallas de borde estructural, los límites del relleno intra-calderico, la profundidad de subsidencia, por tanto, se sugiere el uso de métodos sísmicos o de otro tipo para caracterizar la estructura interna de la caldera.
- 5. A partir del análisis del relieve, con la superposición de los mapas de pendiente y curvatura se logró distinguir diversos lineamientos considerando rasgos morfológicos como vertientes, cumbres y escarpes.
- 6. Los lineamientos de mayor longitud, pero con menor frecuencia deben de tener mayor peso al momento de establecer la orientación con respecto a los lineamientos de menor longitud y mayor frecuencia, ya que estos últimos ocultan la orientación de los primeros al ser graficados en un diagrama rosas, esto con el fin de evitar la obtención de una orientación principal errónea.
- 7. Los colapsos identificados sobre el borde topográfico norte de la caldera se asocian a formas semicirculares producto del deslizamiento en masa.
- 8. Los lineamientos, escarpes y domos presentan una orientación preferente hacia el NW-SE asociadas a fallas extensionales confirmando otros reportes sobre el tema.
- 9. Estableciendo la relación entre la tectónica de la zona y la forma de la caldera es posible indicar que existe una vinculación entre la tectónica y el origen de la Caldera de Ilopango, el cual pudo haber sido la precursora de ésta ya que no existe un rasgo morfológico de volcán.
- 10. Se cumple con la configuración planteada en la hipótesis, ya que se logró obtener los datos cuantitativos y cualitativos de la Caldera de Ilopango, además de estar de acuerdo con que la caldera está íntimamente relacionada con la tectónica regional, la cual refleja el proceso de su formación.
- 11. Los MDE-LIDAR caracterizados por facilitar la visualización exclusivamente de la superficie, es de gran importancia para interpretaciones geológicas, donde la vegetación obstruye su análisis.

REFERENCIAS

- Acocella, V. (2007). Understanding caldera structure and development: An overview of analogue models compared to natural calderas. *Earth-Science Reviews*, *85*(3-4), 125– 160. https://doi.org/10.1016/j.earscirev.2007. 08.004
- Aguirre, A. (1994). Introducción al tratamiento de series temporales: Aplicación a las ciencias de la salud.
- Aguirre-Díaz, G. J., Jaimes-Viera, M. C., and Nieto-Obregón, J., (2006), The Valle de Bravo Volcanic Field. Geology and geomorphometric parameters of a Quaternary monogenetic field at the front of the Mexican Volcanic Belt, in Neogene-Quaternary continental margin volcanism: A perspective from Mexico, Siebe, C., Macías, J.L., Aguirre-Díaz, G.J., eds., Geological Society of America Special Paper No. 402, p. 125-140. doi:10.1130/2006.2402(06); Print ISSN 0072-1077.
- Aguirre-Diaz, G. J. (2008). Caldera types and collapse styles. *AGU Fall Meeting Abstracts*, *11*, V11C-2068. Recuperado a partir de http://adsabs.harvard.edu/abs/2008AGUF M.V11C2068A.
- Aguirre-Díaz G.J., Suñe-Puchol, I., Pedrazzi, D., Dávila-Harris, P., Hernández, W., (2016a), The Ilopango Caldera, El Salvador: Volcanic stratigraphy and geochronology: Reunión Anual Unión Geofísica Mexicana 2016, Geos, vol. 36, No. 1, p. 127, Abstract VUL-12; http://www.ugm.org.mx/raugm2016/docs/ge os/geos36-1.pdf.
- Aguirre-Díaz, G.J., Suñe-Puchol, I., Dávila-Harris, P., Pedrazzi, D., Hernández, W., Gutiérrez, E., (2016b), Volcanic history of the Ilopango caldera, Central American Volcanic Arc: Cities on Volcanoes 9, IAVCEI; Puerto Varas, Chile, November 2016; Abstracts.
- Alonso-Henar, J., Álvarez-Gómez, J. A., & Martínez-Díaz, J. J. (2014). Constraints for the recent tectonics of the El Salvador Fault Zone, Central America Volcanic Arc, from morphotectonic analysis. *Tectonophysics*, 623, 1– 13. http://dx.doi.org/10.1016/j.tecto.2014.03. 012
- Alonso-Henar, J., Schreurs, G., Martinez-Díaz, J. J., Álvarez-Gómez, J. A., & Villamor, P. (2015). Neotectonic development of the El Salvador Fault Zone and implications for deformation in the Central America Volcanic Arc: Insights from 4-D analog modeling experiments. *Tectonics*, *34*(1), 133– 151. https://doi.org/10.1002/2014TC003723
- Alvarado, D., DeMets, C., Tikoff, B., Hernández, D., Wawrzyniec, T. F., Pullinger, C., ... Correa-Mora, F. (2011). Forearc motion and deformation between El Salvador and Nicaragua: GPS, seismic, structural, and

paleomagnetic observations. *Lithosphere*, *3*(1), 3–21. https://doi.org/10.1130/L108.1

- Bishop, M. P., James, L. A., Shroder Jr, J. F., & Walsh, S. J. (2012). Geospatial technologies and digital geomorphological mapping: concepts, issues and research. *Geomorphology*, 137(1), 5– 26. https://doi.org/10.1016/j.geomorph.2011. 06.027
- Blair, R. C., & Taylor, R. A. (2008). Bioestadística. Pearson Educación. Recuperado a partir de https://s3.amazonaws.com/academia.edu.d ocuments/52083716/Bioestadistica.Blair.Tayl or.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y5 3UL3A&Expires=1523303915&Signature=aSu yGoImXdXyCpIuSENx3DX5yJs%3D&responsecontent-

disposition=inline%3B%20filename%3DBioes tadistica_Blair_Taylor.pdf

- Bosse, H. R., Lorenz, W., Merino, A., Mihm, A., Rode, K., Schmidt-Thomé, M., ... Weber, H. S. (1978). Geological map of El Salvador Republic: Hannover Germany. Bundesanstalt für Geowissenschaften und Rohstoffe, D-3 scale, 1(100,000).
- Canora, C., Martinez-Diaz, J. J., Villamor, P., Berryman, K., Alvarez-Gomez, J. A., Pullinger, C., & Capote, R. (2010). Geological and Seismological Analysis of the 13 February 2001 Mw 6.6 El Salvador Earthquake: Evidence for Surface Rupture and Implications for Seismic Hazard. Bulletin of the Seismological Society of America, 100(6), 2873-2890. https://doi.org/10.1785/0120090377
- Canora, C., Martínez-Díaz, J. J., Villamor, P., Staller, A., Berryman, K., Álvarez-Gómez, J. A., ... Díaz, M. (2014). Structural evolution of the El Salvador Fault Zone: an evolving fault system within a volcanic arc. *Journal of Iberian Geology*, 40(3),

471. https://doi.org/10.5209/rev_JIGE.2014.v 40.n3.43559

- Canora, C., Villamor, P., Martínez-Díaz, J. J., Berryman, K. R., Álvarez-Gómez, J. A., Capote, R., & Hernández, W. (2012). Paleoseismic analysis of the San Vicente segment of the El Salvador Fault Zone, El Salvador, Central America. Geologica Acta: an international earth science journal, 10(2). https://doi.org/10.1344/105.0 00001700
- Chávez, José A., Hernández, W., & Kopecky, L. (2012). Problemática y conocimiento actual de las tefras tierra blanca joven en el Área Metropolitana de San Salvador, el Salvador. Revista Geológica de América Central, (47). Recuperado a partir de http://www.redalyc.org/html/454/454373 54006/

- Chávez, José Alexander, Šebesta, J., Kopecky, L., & Landaverde, R. L. (2014). Application of geomorphologic knowledge for erosion hazard mapping. *Natural hazards*, 71(3), 1323– 1354. https://doi.org/10.1007/s11069-013-0948-8
- Cheng, W., Wang, N., Zhao, M., & Zhao, S. (2016). Relative tectonics and debris flow hazards in the Beijing mountain area from DEM-derived geomorphic indices and drainage analysis. *Geomorphology*, 257, 134– 142. https://doi.org/10.1016/j.geomorph.201 6.01.003
- Cole, J. W., Milner, D. M., & Spinks, K. D. (2005). Calderas and caldera structures: a review. *Earth-Science Reviews*, 69(1), 1-26. https://doi.org/10.1016/j.earscirev.2004.0 6.004
- Corti, G., Carminati, E., Mazzarini, F., & Garcia, M. O. (2005). Active strike-slip faulting in El Salvador, central America. *Geology*, 33(12), 989–992. https://doi.org/10.1130/G21992.1
- Csatho, B., Schenk, T., Kyle, P., Wilson, T., & Krabill, W. B. (2008). Airborne laser swath mapping of the summit of Erebus volcano, Antarctica: applications to geological mapping of a volcano. Journal of Volcanology and Geothermal Research, 177(3), 531– 548. https://doi.org/10.1016/j.jvolgeores.200 8.08.016
- Del Soldato, M., Pazzi, V., Segoni, S., De Vita, P., Tofani, V., & Moretti, S. (2018). Spatial modeling of pyroclastic cover deposit thickness (depth to bedrock) in peri-volcanic areas of Campania (southern Italy). Earth Surface Processes and
- Landforms. https://doi.org/10.1002/esp.4350 Demetrio-Escobar, C. (2002). VOLCANES ACTIVOS DE EL SALVADOR. Recuperado 29 de marzo de 2018, a partir de http://www.snet.gob.sv/Geologia/Vulcanol ogia/paginas/volcanesactivos.htm
- Dull, R. A., Southon, J. R., & Sheets, P. (2001). Volcanism, ecology and culture: A reassessment of the Volcán Ilopango TBJ eruption in the southern Maya realm. Latin American Antiquity, 12(1), 25– 44. https://doi.org/10.2307/971755
- **ERSI. (2016a). Análisis estadístico**—Ayuda | ArcGIS for Desktop. Recuperado 3 de mayo de 2018, a partir de http://desktop.arcgis.com/es/arcmap/10.3

/analyze/commonly-used-tools/statisticalanalysis.htm

ERSI. (2016b). Cómo funciona Curvatura—Ayuda | ArcGIS for Desktop. Recuperado 8 de mayo de 2018, a partir de http://desktop.arcgis.com/es/arcmap/10.3 /tools/spatial-analyst-toolbox/how-curvatureworks.htm

- ERSI. (2016c). Cómo funciona Kriging—Ayuda | ArcGIS for Desktop. Recuperado 12 de abril de 2018, a partir de http://desktop.arcgis.com/es/arcmap/10.3 /tools/3d-analyst-toolbox/how-krigingworks.htm
- ERSI. (2016d). Cómo funciona Orientación—Ayuda | ArcGIS for Desktop. Recuperado 7 de mayo de 2018, a partir de http://desktop.arcgis.com/es/arcmap/10.3 /tools/spatial-analyst-toolbox/how-aspectworks.htm
- ERSI. (2016e). Cómo funciona Pendiente—Ayuda | ArcGIS for Desktop. Recuperado 4 de mayo de 2018, a partir de http://desktop.arcgis.com/es/arcmap/10.3 /tools/spatial-analyst-toolbox/how-slopeworks.htm
- ERSI. (2016f). Cómo funciona Sombreado—Ayuda | ArcGIS for Desktop. Recuperado 18 de abril de 2018, a partir de http://desktop.arcgis.com/es/arcmap/10.3 /tools/spatial-analyst-toolbox/how-hillshadeworks.htm
- **ERSI. (2016g). Comparing models**—Help | ArcGIS Desktop. Recuperado 15 de junio de 2018, a partir de https://desktop.arcgis.com/es/arcmap/late st/extensions/geostatistical-

analyst/comparing-models.htm

ERSI. (2016h). Comprender el análisis de estadísticas geográficas—Help | ArcGIS Desktop. Recuperado 2 de mayo de 2018, a partir de https://desktop.arcgis.com/es/arcmap/10.

4/extensions/geostatisticalanalyst/understanding-geostatistical-

analysis.htm

ERSI. (2016i). Cross Validation—Help | ArcGIS for Desktop. Recuperado 15 de junio de 2018, a partir de http://desktop.arcgis.com/es/arcmap/10.3

/tools/geostatistical-analyst-toolbox/crossvalidation.htm

ERSI. (2016j). Curvatura—Ayuda | ArcGIS for Desktop. Recuperado 8 de mayo de 2018, a partir

de http://desktop.arcgis.com/es/arcmap/10.3 /tools/spatial-analyst-toolbox/curvature.htm

- ERSI. (2016k). Función de curvatura—Ayuda | ArcGIS for Desktop. Recuperado 18 de abril de 2018, a partir de http://desktop.arcgis.com/es/arcmap/10.3 /manage-data/raster-and-images/curvaturefunction.htm
- ERSI. (20161). Métodos determinísticos para la interpolación espacial—Help | ArcGIS Desktop. Recuperado 2 de mayo de 2018, a partir da https://desktop.arcgis.com/oc/arcmap/10

de https://desktop.arcgis.com/es/arcmap/10. 4/extensions/geostatistical-
analyst/deterministic-methods-for-spatialinterpolation.htm#

- ERSI. (2016m). Understanding how to create surfaces using geostatistical techniques— Help | ArcGIS Desktop. Recuperado 2 de mayo de 2018, a partir de https://desktop.arcgis.com/es/arcmap/10. 4/extensions/geostatisticalanalyst/understanding-how-to-createsurfaces-using-geostatistical-techniques.htm
- **Favalli, M., & Fornaciai, A. (2017).** Visualization and comparison of DEM-derived parameters. Application to volcanic areas. *Geomorphology, 290,* 69– 84. https://doi.org/10.1016/j.geomorph.2017. 02.029
- Favalli, M., Fornaciai, A., & Pareschi, M. T. (2009). LIDAR strip adjustment: Application to volcanic areas. *Geomorphology*, 111(3-4), 123– 135. https://doi.org/10.1016/j.geomorph.200 9.04.010
- Funk, J., Mann, P., McIntosh, K., & Stephens, J. (2009). Cenozoic tectonics of the Nicaraguan depression, Nicaragua, and Median Trough, El Salvador, based on seismic-reflection profiling and remote-sensing data. *Geological Society of America Bulletin*, 121(11-12), 1491-1521. https://doi.org/10.1130/B26428.1
- Garibaldi, N., Tikoff, B., & Hernández, W. (2016). Neotectonic deformation within an extensional stepover in El Salvador magmatic arc, Central America: Implication for the interaction of arc magmatism and deformation. *Tectonophysics*, 693, 327–339.
- Garrison, J. M., Reagan, M. K., & Sims, K. W. (2012). Dacite formation at Ilopango Caldera, El Salvador: U-series disequilibrium and implications for petrogenetic processes and magma storage time. *Geochemistry, Geophysics, Geosystems, 13*(6). https://doi.org/10.1029/20 12GC004107
- Geotérmica Italiana. (1992). Desarrollo de los Recursos Geotermicos del Area Centro-Occidental de El Salvador. El Salvador.
- Golombek, M. P., & Carr, M. J. (1978). Tidal triggering of seismic and volcanic phenomena during the 1879–1880 eruption of Islas Quemadas volcano in El Salvador, Central America. Journal of Volcanology and Geothermal Research, 3(3-4), 299–307.
- Goodyear, W. A. (1880). Earthquake and volcanic phenomena: December 1879 and January 1880, in the Republic of Salvador, Central America. Printed at the" Star & Herald" office.
- Hart, W. J., & Steen-McIntyre, V. (1983). Tierra Blanca Joven Tephra from the AD 260 eruption of Ilopango caldera. Archeology and Volcanism in Central America—The Zapotitán Valley of El Salvador, 15–34.
- Hernández, W. (2004). Características geotécnicas y vulcanológicas de las tefras de Tierra Blanca

Joven, de llopango, El Salvador. Proyecto final presentado para optar al grado de master en tecnologías geológicas en la Universidad Politécnica de El Salvador, San salvador, El Salvador.

- Hernández, W. (2015, diciembre). Los volcanes monogenéticos y la generación de eventos explosivos, caldera de Ilopango: casos Domos El Güegüecho y La Pilona. Presentado en Seminario Ambiente geológico del El Salvador y aplicaciones, San Salvador, República de El Salvador.
- Hernández-Hernández, I. (2017). Análisis geoespacial para la región volcánica de la Caldera de Ilopango "El Salvador". Universidad Autónoma de San Luis Potosí, Facultad de Ingeniería., San Luis Potosi, México.
- IPGARAMSS. (2007). Estudios de amenazas en el área metropolitana de San Salvador. Recuperado a partir de http://www.xeologosdelmundu.org/wpcontent/uploads/2015/01/Estudio-amenazas-1-el-Salvador-2007.pdf
- Kereszturi, G., & Németh, K. (2012). Structural and morphometric irregularities of eroded Pliocene scoria cones at the Bakony–Balaton Highland Volcanic Field, Hungary. *Geomorphology*, 136(1), 45– 58. https://doi.org/10.1016/j.geomorph.2011. 08.005
- Lardé, J. (1923). El volcán de Izalco... Impr. Nacional.
- Lardé, J. (1952). Geología salvadoreña. San Salvador, El Salvador: Ministerio de Cultura.
- Lexa, J., Sebesta, J., Chávez, J. A., Hernández, W., & Pecskay, Z. (2011). Geology and volcanic evolution in the southern part of the San Salvador Metropolitan Area. *Journal of Geosciences*, 56(1), 106– 140. https://doi.org/10.3190/jgeosci.088
- Lipman, P., Dungan, M., & Bachmann, O. (1997). Comagmatic granophyric granite in the Fish Canyon Tuff, Colorado: Implications for magma-chamber processes during a large ashflow eruption. *Geology*, *25*(10), 915– 918. https://doi.org/10.1130/0091-7613(1997)025<0915:CGGITF>2.3.CO;2
- Lipman, P. W. (2000). Calderas. *Encyclopedia of Volcanoes*, 426, 643–662. Recuperado a partir de http://www.grapenthin.org/teaching/volc_ 2016/download/Lipman2000_Calderas.pdf
- López, D. L., Ransom, L., Pérez, N. M., Hernández, P.
 A., & Monterrosa, J. (2004). Dynamics of diffuse degassing at Ilopango caldera, El Salvador. SPECIAL PAPERS-GEOLOGICAL SOCIETY OF AMERICA, 191– 202. https://doi.org/10.1130/0-8137-2375-2.191
- MacDonald. (1973). G. A. MacDonald 1972. Volcanoes. A discussion of volcanoes, volcanic products, and volcanic phenomena. xii + 510 pp., 120 figs, 144 pls. 15 tables. Prentice-Hall,

International,NewJersey.Price£8.50. GeologicalMagazine, 110(01),87. https://doi.org/10.1017/S0016756800047476

- Mann, C. P. (2003). Intracaldera Geology of the Llopango Caldera, El Salvador, Central America (PhD Thesis). McGill University Libraries.
- Mann, C. P., Stix, J., Vallance, J. W., & Richer, M. (2004). Subaqueous intracaldera volcanism, Ilopango Caldera, El Salvador, Central America. SPECIAL PAPERS-GEOLOGICAL SOCIETY OF AMERICA, 159– 174. https://doi.org/10.1130/0-8137-2375-2.159
- Mann, P. (2007). Overview of the tectonic history of northern Central America. En Special Paper 428: Geologic and Tectonic Development of the Caribbean Plate Boundary in Northern Central America (Vol. 428, pp. 1-19). Geological Society of

America. https://doi.org/10.1130/2007.2428(01)

- MARN. (2011). MARN Monitoreo Hidrológico. Recuperado 27 de junio de 2018, a partir de http://www.snet.gob.sv/ver/hidrologia/monit oreo+hidrologico/
- Martí, J., & Gudmundsson, A. (2000). The Las Cañadas caldera (Tenerife, Canary Islands): an overlapping collapse caldera generated by magma-chamber migration. *Journal of volcanology and geothermal research*, *103*(1-4), 161–173.
- Martínez-Díaz, J. J., Alvarez-Gómez, J. A., Benito, B., & Hernández, D. (2004). Triggering of destructive earthquakes in El Salvador. *Geology*, *32*(1), 65– 68. https://doi.org/10.1130/G20089.1
- Mehringer Jr, P. J., Sarna-Wojcicki, A. M., Wollwage, L. K., & Sheets, P. (2005). Age and extent of the llopango TBJ Tephra inferred from a Holocene chronostratigraphic reference section, Lago De Yojoa, Honduras. *Quaternary Research*, 63(2), 199– 205. https://doi.org/10.1016/j.yqres.2004.09. 011
- Mena-Frau, C. (2005). Geomática para la Ordenación del Territorio. Recuperado a partir de http://bibliotecadigital.ciren.cl/handle/123 456789/23603
- Mena-Frau, C., Latorre Alonso, J., Gajardo Valenzuela, J., Ormazábal Rojas, Y., & Morales Hernández, Y. (2007). Experiencias en la enseñanza de nuevas tecnologías: el Centro de Geomática de la Universidad de Talca. *Revista Cartográfica*, (83), 59. Recuperado a partir de http://comisiones.ipgh.org/CARTOGRAFIA /rca/RCA83_Digital.pdf#page=61
- Merle, O., Barde-Cabusson, S., & de Vries, B. van W. (2010). Hydrothermal calderas. *Bulletin of*

Volcanology, 72(2), 131– 147. https://doi.org/10.1007/s00445-009-0314-6

Morgan, J. P., Ranero, C. R., & Vannucchi, P. (2008). Intra-arc extension in Central America: links between plate motions, tectonics, volcanism, and geochemistry. *Earth and Planetary Science Letters*, 272(1-2), 365– 371. https://doi.org/10.1016/j.epsl.2008.05.0 04

- Mouginis-Mark, P. J., & Rowland, S. K. (2001). The geomorphology of planetary calderas. *Geomorphology*, *37*(3-4), 201–223. Recuperado a partir de https://www.higp.hawaii.edu/~pmm/MM_ Rowland_Geomorphology.pdf
- Noyola-Medrano, C., Aguirre-Díaz, G., Hernández-Hernández, I., & Hernández, W. (2016). Influencia del origen y resolución espacial de los Modelos Digitales de Elevación en el análisis morfométrico de una cuenca. Caso de estudio: Ilopango (El Salvador). En Libro de Actas. Puerto de Iguazú, Misiones, Argentina.
- Oficina de Información Diplomática. (2017, abril). El Salvador. Recuperado a partir de http://www.exteriores.gob.es/Documents/ FichasPais/ELSALVADOR_FICHA%20PAIS.pdf.
- Pedrazzi, D., Sunyé-Puchol, I., Aguirre-Díaz, G.J., Costa, A., Smith, V., Davila-Harris, P., Hernández, W., Gutierrez, E., 2018, The Ilopango Tierra Blanca Joven (TBJ) eruption, El Salvador: volcano-stratigraphy of a major Holocene event of Central America and hazards implications: EGU General Assembly 2018, Vienna, Geophysical Research Abstracts, vol. 20, EGU2018-8455-1; https://www.geophysicalresearch-abstracts.net/about.html.
- Poppe, S. (2012). Caldera collapse on basaltic shield volcanoes: analogue models compared to the Karthala caldera complex, Grande Comore. Universiteit Gent. Recuperado a partir de https://lib.ugent.be/fulltxt/RUG01/001/89 2/505/RUG01-001892505_2012_0001_AC.pdf
- Richer, M., Mann, C. P., & Stix, J. (2004). Mafic magma injection triggers eruption at Ilopango caldera, El Salvador, Central America. SPECIAL PAPERS-GEOLOGICAL SOCIETY OF AMERICA, 175–190. https://doi.org/10.1130/0-8137-2375-2.175
- Ríus, F., Barón, J., Sánchez, E., & Parras, L. (2004). Bioestadística, métodos y aplicaciones. *Malaga: Ed. Universidad de Malaga*. Recuperado a partir de http://www.bioestadistica.uma.es/baron/b ioestadistica.pdf
- Roche, O., Druitt, T. H., & Merle, O. (2000). Experimental study of caldera formation. Journal of Geophysical Research: Solid Earth, 105(B1), 395– 416. https://doi.org/10.1029/1999JB900298
- Sánchez-Esquivel, I. A. (2016). Levantamiento batimétrico y medición de parámetros físico-

químicos en el Lago de Ilopango, El Salvador (Thesis). Universidad de El Salvador. Recuperado a partir de http://ri.ues.edu.sv/10296/

- Santana-Arias, R. (2017). Delimitación de una cuenca Hidrográfica Práctica 17.
- Sapper, K. (1925). Los volcanes de la América Central. M. Niemeyer.
- Saxby, J., Gottsmann, J., Cashman, K., Gutiérrez, E., 2016. Magma storage in a strike-slip caldera. Nat. Commun. 7, 12295. doi:10.1038/ncomms12295
- Smith, R. L., & Bailey, R. A. (1968). Resurgent Cauldrons. En Geological Society of America Memoirs (Vol. 116, pp. 613-662). Geological Society of America. https://doi.org/10.1130/MEM116p613
- **SNET. (2011).** PRINCIPALES VOLCANES ACTIVOS. Recuperado 27 de junio de 2018, a partir de http://www.snet.gob.sv/Geologia/Vulcanologi a/
- Suñe-Puchol, I., Aguirre-Díaz, G., Dávila-Harris, P., Pedrazzi, D., Gutiérrez, E., Hernández, W., ... Costa, A. (2017, agosto). The voluminous 1.5 Ma Olocuilta Ignimbrite: A pre-colapse fissure supereruption oOf Ilopango Caldera, El Salvador. Presentado en IAVCEI 2017 Scientific Assembly, Oregon, USA. Recuperado a partir de http://iavcei2017.org/IAVCEI%202017%2 0Abstracts.pdf
- Toutin, T. (2008). ASTER DEMs for geomatic and geoscientific applications: a review. International Journal of Remote Sensing, 29(7), 1855-1875. https://doi.org/10.1080/01431160701 408477
- Vallance, J., & Houghton, B. (1998). The AD 260 eruption at Lake Ilopango, El Salvador: A complex explosive eruption through a caldera lake. *National Science Foundation*.
- Van Zuidam, R. (1986). Aerial photo-interpretation in terrain analysis and geomorphologic mapping. Smits Publishers.
- Villalba Moreno, E. (1996). La importancia de los deslizamientos en la morfogénesis de los paisajes canarios.
- Walker, G. P. L. (1988). Three Hawaiian calderas: An origin through loading by shallow intrusions? Journal of Geophysical Research: Solid Earth, 93(B12), 14773-

14784. https://doi.org/10.1029/JB093iB12p1 4773

- Weber, H. S., Wiesemann, G., & Wittekindt, H. (1974). Mapa geológico general de la República de El Salvador 1: 500 000/geologische Übersichtskarte der Republik El Salvador 1: 500 000 (after geological maps 1: 100 000-1967-74)-Bundesanstalt für Bodenforschung. Bundesanstalt für Bodenforschung, Hannover.
- Webster, R., & Oliver, M. A. (2007). Geostatistics for environmental scientists. John Wiley & Sons. Recuperado a partir de https://www.researchgate.net/file.PostFile Loader.html?id=584de1253d7f4b0c2a7f9d86 &assetKey=AS%3A438252378300419%4014 81498917705
- Weyl, R. (1957). Las tobas fundidas de la cadena costera. *Com. ITIC. San Salvador*, 6(1), l-20.
- Williams, H. (1941). Calderas and their origin. Bull. Dept. Geol. Sci. Univ. Calif. Publ., 25, 239–346.
- Williams, H., & McBirney, A. R. (1979). Volcanology. Free man, Cooper & Co., San Francisco, 397.
- Williams, H., & Meyer-Abich, H. (1953). El origen del lago de llopango. Comisión del Instituto Tropical de Investigaciones Científicas, 2.
- Williams, H., & Meyer-Abich, H. (1955). Volcanism in the Southern Part of El Salvador: With Particular Reference to the Collapse Basins of Lakes Coatepeque and Ilopango (Vol. 32). University of California Press.
- Wilson, J. P. (2012). Digital terrain modeling. *Geomorphology*, 137(1), 107-121. https://doi.org/10.1016/j.geomorph.201 1.03.012
- Wood, J. (1996). The geomorphological characterisation of digital elevation models.
- Wormald, S. C., Wright, I. C., Bull, J. M., Lamarche, G., & Sanderson, D. J. (2012). Morphometric analysis of the submarine arc volcano Monowai (Tofua-Kermadec Arc) to decipher tectonomagmatic interactions. Journal of Volcanology and Geothermal Research, 239, 69– 82. https://doi.org/10.1016/j.jvolgeores.2012. 06.004
- Zevenbergen, L. W., & Thorne, C. R. (1987). Quantitative analysis of land surface topography. *Earth surface processes and landforms*, 12(1), 47–56.

ANEXOS

Anexo 2. Columna estratigráfica del mapa geológico de la República de El Salvador (Weber *et al.*,1974).

Anexo 3. Evaluación estadística de los datos.

La generación de contornos, en este caso curvas de igual altura, a partir de un conjunto de datos se puede obtener haciendo un análisis geoestadístico en el que se hace uso de diferentes herramientas de interpolación. Un análisis geoestadístico es más eficiente cuando las variables tienen una distribución normal o Gaussiana (Webster & Oliver, 2007).

La distribución normal también conocida como distribución Gaussiana, debe su nombre a que la mayoría de las variables aleatorias continuas en la naturaleza siguen esta distribución (Ríus *et al.*, 2004). Se dice que una variable aleatoria X sigue una distribución normal de parámetros μ y σ 2, lo que representamos del modo X \rightarrow N (μ , σ 2) si su función de densidad es (Ríus *et al.*, 2004):

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}, \qquad \forall x \in \mathbb{R}$$

La forma de la función de densidad es la llamada campana de Gauss, y depende de los parámetros μ y σ 2, los cuales corresponden con la media y la desviación estándar respectivamente en una distribución normal (Ríus *et al.*, 2004; Ilustración 1):

- μ indica la posición de la campana (parámetro de centralización) el cual alcanza un único máximo (moda) en μ, y es simétrica con respecto a la misma (Ríus *et al.*, 2004). Por lo tanto, la media, mediana y la moda coinciden.
- σ2 es el parámetro de dispersión, por lo que cuanto menor sea, mayor cantidad de masa de probabilidad habrá concertada alrededor de la media, y cuanto mayor sea, "más aplastado "será (Ríus *et al.*, 2004). Por lo tanto, cuanto mayor sea la desviación estándar, más se dispersarán los datos en torno a la media y la curva será más plana.

Así mismo, de acuerdo con las medidas de forma, el coeficiente de sesgo y la curtosis en una distribución normal serán igual a cero.

Figura A3.1. Forma de la Distribución Normal que sigue la función de densidad conocida también como Campana de Gauss. Tomado de Ríus *et al.* (2004).

Para conocer si la variable aleatoria sigue una distribución normal es necesario la aplicación de técnicas estadísticas tales como la representación de los datos por medio de un histograma, conocer las medidas de tendencia central (media, moda y mediana), medidas de dispersión (rango, varianza, desviación estándar y coeficiente de variación) y medidas de forma (curtosis y coeficiente de sesgo). Pero si con los anteriores no es posible definir si la variable aleatoria sigue una distribución normal será necesario aplicar pruebas de normalidad tales como ajuste Anderson-Darling, prueba Kolmogorov-Smirnov, valor P, entre otros. Las técnicas estadísticas son:

- a. <u>Histograma</u>: es la representación gráfica de la distribución de frecuencias de un conjunto de mediciones las cuales han sido divididas en clases de igual rango (Webster & Oliver, 2007).
- b. Medidas de tendencia central
 - Media aritmética o comúnmente conocida como "promedio", se calcula sumando todas las observaciones en el conjunto de datos y dividiendo esta suma entre el número de observaciones, la cual está definida por la siguiente ecuación (Blair & Taylor, 2008):

$$\overline{x} = \frac{\sum x}{n}$$

La media es muy sensible a los valores extremos de la variable y no es recomendable usarla como medida central en distribuciones muy asimétricas (Ríus *et al.*, 2004).

La mediana es el valor que divide a un conjunto de datos en dos partes iguales, de manera que el número de valores mayores que o iguales a la mediana es el mismo que el número de valores menores que o iguales a la mediana (Blair & Taylor, 2008). La manera más común de calcular la mediana es ordenar las observaciones en términos de magnitud y luego elegir el valor intermedio (número de observaciones en un conjunto de datos impares) o elegir dos valores intermedios (número de observaciones en un conjunto de datos par) (Blair & Taylor, 2008):

Mediana
$$(n \text{ impar}) = x_{\frac{n+1}{2}}$$
 Mediana $(n \text{ par}) = \frac{x_n + x_n}{\frac{2}{2} + \frac{2}{2}}$

Tiene la ventaja de no estar afectada por las observaciones extremas y es adecuado su uso en distribuciones asimétricas (Ríus *et al.,* 2004).

 La moda de un conjunto de datos es la puntuación o puntuaciones que ocurren con mayor frecuencia. Si todos los puntos en un conjunto ocurren con la misma frecuencia, no hay moda. Por otro lado, si dos o más puntuaciones ocurren con igual frecuencia y esa frecuencia es mayor que la de las otras puntuaciones en el conjunto, entonces habrá más de una moda (Blair & Taylor, 2008).

- c. Medidas de dispersión
 - *El rango* o amplitud está en función de la puntuación más grande y la más pequeña del conjunto de datos. Está definida por la siguiente ecuación (Blair & Taylor, 2008):

Rango (exclusivo) =
$$x_L - x_S$$

El rango no utiliza todas las observaciones, pero se puede ver afectada por observaciones extremas (Ríus *et al.*, 2004).

• *La varianza* se define como la media de las diferencias cuadráticas de *n* puntaciones con respecto a su media aritmética, y está definida como (Ríus *et al.*, 2004):

$$\sigma^2 = \frac{\sum (x-\mu)^2}{N}$$

Esta medida es siempre una cantidad positiva, pero no tiene la misma magnitud que las observaciones, por lo tanto, es más sencillo usar su raíz cuadrada, definida como *desviación estándar*, la cual tendrá la misma dimensionalidad que las observaciones (Ríus *et al.*, 2004):

$$\sigma = \sqrt{\frac{\sum (x - \mu)^2}{N}}$$

El coeficiente de variación elimina la dimensionalidad de las variables y tiene en cuenta la proporción existente entre medias y desviación estándar (Ríus *et al.*, 2004):

$$\mathcal{CV} = \frac{\mathcal{S}_X}{\overline{x}}$$

Esta se debe calcular para variables con todos los valores positivos y es invariante a cambios de escala (Ríus *et al.,* 2004).

- d. <u>Medidas de forma</u>
 - La curtosis se refiere al pico de una distribución con respecto a la longitud y el tamaño de sus colas, su fórmula es (Blair & Taylor, 2008):

$$Curtosis^{12} = \frac{\sum z^4}{n}$$

Se agrupan en leptocúrtica (cuando la distribución de frecuencias es más puntiaguda que la normal), mesocúrtica (cuando la distribución de frecuencias es tan apuntada como la normal), y platicúrtica (cuando la distribución de frecuencias es menos apuntada que la normal) (Ríus *et al.*, 2004; Ilustración 2).

Figura A3.2. Tipos de curtosis. Tomado de Ríus et al. (2004).

El sesgo se define como el grado de asimetría de una distribución de las observaciones, y se define formalmente (Webster & Oliver, 2007):

$$m_3 = \frac{1}{N} \sum_{i=1}^{N} (z_i - \bar{z})^3.$$

donde m3 es el sesgo

• *El coeficiente de sesgo* (CS) es entonces:

$$g_1 = rac{m_3}{m_2\sqrt{m_2}} = rac{m_3}{S^3},$$
donde g1 es CS, y m2 es la varianza

Cuando las distribuciones son simétricas el CV es igual a cero, pero cuando CV es mayor a cero las distribuciones tienen un sesgo positivo y cuando el CV es menor a cero las distribuciones tienen un sesgo negativo (Webster & Oliver, 2007).

La asimetría es la forma más común de desviación de la normalidad, y en particular la asimetría positiva. Por lo tanto, se debe realizar la trasformación de la variable aleatoria para que sigan una distribución normal, así como estabilizar la varianza. Webster & Oliver (2007) proponen los siguientes rangos para determinar el tipo de transformación que se debe usar, cuando se tiene un coeficiente de sesgo positivo:

0 < CV < 0.5, no es necesario hacer transformación 0.5 < CV < 1, considerar la transformación tipo raíz cuadrada CV > 1, considerar la transformación tipo logarítmica Tipos de transformación

- a. <u>Transformación tipo raíz cuadrada</u>: Está definida como Y(s) =(Z(s) λ 1)/ λ para $\lambda \neq 0$. Es usado cuando se tienen conteos pequeños en un área de estudio y la variabilidad en esa región será menor que en otra región donde los recuentos son más grandes. En este caso, la transformación se raíz cuadrada puede ayudar a que las variaciones sean más constantes en toda el área de estudio, y a menudo hace que los datos también sean distribuidos normalmente (Webster & Oliver, 2007).
- b. <u>Transformación logarítmica</u>: Esta transformación en realidad un caso especial de la transformación de raíz cuadrada cuando $\lambda = 0$, y la transformación está definida como Y(s) = ln(Z(s)) para Z(s) > 0. La transformación logarítmica se usa a menudo cuando los datos tienen una distribución sesgada positivamente y hay algunos valores muy grandes (Webster & Oliver, 2007).

Continuando con el análisis geoestadístico, una vez realizado la evaluación estadística de los datos y normalizándolos (en caso de haber sido necesario), se procede a determinar la tendencia que siguen los datos u observaciones.

<u>La tendencia</u> o (polinomios ortogonales), es obtenido por medio de ecuaciones de regresión (Aguirre, 1994). El tipo de tendencia equivale a un grado u orden del polinomio:

- *Polinomio de grado cero:* equivale a una tendencia constante (gráficamente una línea horizontal).
- Polinomio de primer grado: tiene tendencia lineal, el polinomio de segundo grado tienen una tendencia cuadrática (gráficamente hay una curvatura en la gráfica).
- Polinomio de tercer grado: tiene una tendencia cúbica (gráficamente tienen más de una curvatura o concavidad).

Por último, una vez conocida la tendencia de los datos se procede a interpolar el conjunto de datos con algunos métodos de interpolación espacial:

a. <u>IDW (Distancia inversa ponderada)</u>: método de interpolación determinístico, basado directamente en los valores medidos circundantes o en fórmulas matemáticas especificadas que determinan la suavidad de la superficie resultante (ERSI, 2016).

- b. <u>Kriging:</u> ajusta una función matemática a una cantidad especificada de puntos o a todos los puntos dentro de un radio específico para determinar el valor de salida para cada ubicación (ERSI, 2016). Es similar al de IDW en que pondera los valores medidos circundantes para calcular una predicción de una ubicación sin mediciones (ERSI, 2016). Existen varios tipos de *kriging*, entre los más usados se encuentran:
 - *K. Simple*: se utiliza cuando la media de la función es aleatoria es conocida.
 - *K. Ordinario*: es el más general y el más utilizado. Presume que el valor medio constante es desconocido.
 - *K. Universal*: presupone que hay una tendencia de invalidación en los datos. Se debe utilizar si se conoce una tendencia en los datos.

Referencias

Aguirre, A. (1994). Introducción al tratamiento de series temporales: Aplicación a las ciencias de la salud.

Blair, R. C., & Taylor, R. A. (2008). *Bioestadística*. Pearson Educación. Recuperado a partir de https://s3.amazonaws.com/academia.edu.documents/52083716/Bioestadistica.Blair.Taylor.pdf ?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1523303915&Signature=aSuyGoImXdXy CpIuSENx3DX5yJs%3D&response-content-

disposition=inline%3B%20filename%3DBioestadistica_Blair_Taylor.pdf

- ERSI. (2016). Cómo funciona Kriging—Ayuda | ArcGIS for Desktop. Recuperado 12 de abril de 2018, a partir de http://desktop.arcgis.com/es/arcmap/10.3/tools/3d-analyst-toolbox/how-kriging-works.htm
- Ríus, F., Barón, J., Sánchez, E., & Parras, L. (2004). Bioestadística, métodos y aplicaciones. Malaga: Ed.UniversidaddeMalaga.Recuperadoapartirde http://www.bioestadistica.uma.es/baron/bioestadistica.pdf
- Webster, R., & Oliver, M. A. (2007). *Geostatistics for environmental scientists*. John Wiley & Sons. Recuperado a partir de https://www.researchgate.net/file.PostFileLoader.html?id=584de1253d7f4b0c2a7f9d86&asset Key=AS%3A438252378300419%401481498917705

No.	Dirección (azimut)	Distancia (m)	No.	Dirección (azimut)	Distancia (m)	No.	Dirección (azimut)	Distancia (m)
0	160	1475.658	61	150	354.038	122	145	405.258
1	340	1955.236	62	143	594.363	123	180	504.826
2	116	1817.173	63	137	262.913	124	359	276.244
3	162	815.278	64	92	295.549	125	0	495.311
4	236	1812.431	65	140	324.41	126	218	416.035
5	89	1244.718	66	133	523.491	127	247	426.917
6	73	1142.505	67	114	332.695	128	60	344.192
7	334	811.053	68	179	333.436	129	181	314.342
8	88	660.714	69	181	358.832	130	337	722.926
9	197	715.272	70	180	450.862	131	303	425.415
10	210	1028.507	71	130	283.768	132	119	747.524
11	221	536.133	72	109	399.622	133	89	460.444
12	193	532.675	73	142	588.688	134	180	399.53
13	129	312.388	74	116	599.464	135	38	399.6
14	124	255.375	75	134	510.551	136	334	337.28
15	199	587.376	76	182	581.243	137	0	338.667
16	149	885.389	77	91	549.423	138	180	537.112
17	6	708.958	78	151	784.252	139	319	575.706
18	302	664.358	79	147	420.074	140	328	824.556
19	342	12/3.205	80	156	/21.81/	141	89	942.011
20	359	2261.175	81	231	476.05	142	269	129.673
21	328	639.462	82	329	683.364	143	224	529.492
22	20	3363.689	83	322	586.029	144	138	518.807
23	333	1322.013	84	243	535.335 960 714	145	226	329.298
24	131	717 564	85	1	800.714 706.027	140	219	287.019
25	127	/1/.304	00 97	101	190.927	147	102	200.791
20	129	601 764	00	179	229 216	140	182	288.300
27	90	396.876	89	180	250.826	149	145	289 561
29	88	397.017	90	178	301 893	150	129	406 725
30	147	1161.091	91	270	294.485	152	180	500.204
31	135	459.79	92	222	541.625	153	179	301.642
32	144	589.369	93	223	417.969	154	360	549.285
33	114	695.813	94	221	357.819	155	297	283.981
34	121	578.497	95	148	762.96	156	90	257.176
35	107	641.167	96	238	544.888	157	131	646.542
36	129	530.568	97	242	333.753	158	196	427.4
37	179	1620.651	98	206	363.521	159	159	651.564
38	21	1386.722	99	300	554.9	160	198	1055.965
39	243	679.317	100	180	308.405	161	140	792.71
40	236	932.746	101	141	505.524	162	151	768.745
41	240	913.074	102	181	632.026	163	132	974.581
42	130	1596.263	103	123	772.284	164	198	522.155
43	75	1239.564	104	302	674.134	165	193	1105.355
44	219	693.417	105	118	573.754	166	178	365.902
45	228	798.705	106	130	387.429	167	137	481.557
46	229	1051.284	107	304	1518.135	168	292	626.409
47	239	1804.291	108	37	908.701	169	300	530.588
48	239	1215.397	109	178	1060.837	170	270	883.936
49	238	981.113	110	180	866.777	171	118	570.456
50	156	863.975	111	180	606.435	172	276	628.321
51	238	630.024	112	179	1184.345	173	314	305.35
52	39	1600.227	113	179	717.727	174	215	748.28
53	215	273.425	114	179	316.456	175	109	268.28
54	223	220.144	115	179	419.149	176	299	396.477
55	225	220.022	116	133	927.542	177	319	/09.694
56	b1	180.221	11/	284	488.113	170	321	646.6
5/	243	221 617	110	02	JOZ.335	1/9	208	1176 620
50	147	211 722	119	101	401.542	101	218	1069 555
59	150	311./33	120	161	626 522	101	200	012 401
00	192	237.192	171	151	030.523	197	218	912.481

Anexo 4. Lineamientos identificados

No.	Dirección (azimut)	Distancia (m)	No.	Dirección (azimut)	Distancia (m)	No.	Dirección (azimut)	Distancia (m)
183	67	739.227	244	158	300.688	305	317	411.001
184	206	788.45	245	120	889.257	306	179	288.995
185	243	690.676	246	93	782.141	307	132	618.312
186	216	680.892	247	271	654.121	308	180	390.539
187	179	1519.229	248	178	314.582	309	179	285.821
188	0	1224.282	249	129	533.042	310	270	390.526
189	211	731.839	250	322	337.224	311	314	518.655
190	206	647.577	251	311	796.895	312	297	735.811
191	215	474.865	252	310	622.382	313	308	567.794
192	144	1037.579	253	319	825.85	314	269	577.93
193	220	1272.481	254	323	229.239	315	305	494.177
194	329	2096.373	255	312	451.934	316	308	633.237
195	155	873, 399	256	272	543 381	317	312	395,769
196	63	369 206	257	232	436 364	318	88	536 811
197	356	354 818	258	322	396.266	319	310	457 906
198	336	312 236	259	321	961 959	320	182	625 357
199	150	204 782	255	31/	383.966	320	178	767 502
200	31/	204.702	260	305	443 768	321	0	619 782
200	314	350 929	261	170	222 012	222	0	314 961
201	212	350.929	202	240	715 569	323	102	772 517
202	211	340.049	203	170	713.508	324	102	742.62
203	311	349.177	264	1/8	832.585	325	290	742.62
204	242	652.341	265	116	880.456	326	301	288.033
205	213	452.349	266	222	418.029	327	304	/66.625
206	268	354.106	267	155	543.974	328	301	407.732
207	307	398.006	268	124	843.626	329	144	566.962
208	25	832.27	269	324	574.711	330	123	1140.029
209	299	764.491	270	40	1157.811	331	333	836.044
210	116	484.207	2/1	314	1502.436	332	232	633.076
211	226	756.751	272	221	1089.957	333	315	542.42
212	317	483.112	273	89	1479.771	334	301	966.177
213	229	435.235	274	217	1004.572	335	315	743.575
214	359	317.564	275	110	1147.97	336	316	1115.151
215	135	433.304	276	307	1453.518	337	152	384.923
216	43	575.018	277	318	681.089	338	151	471.828
217	181	374.772	278	311	1912.155	339	144	349.914
218	123	516.044	279	145	394.583	340	224	278.425
219	202	508.249	280	90	2187.616	341	216	631.212
220	226	541.103	281	330	559.243	342	1	482.643
221	228	445.09	282	90	755.658	343	334	357.819
222	112	610.832	283	87	489.785	344	44	693.904
223	156	305.524	284	318	625.162	345	1	669.994
224	222	426.694	285	221	560.647	346	304	683.364
225	204	923.277	286	133	328.057	347	328	645.847
226	297	795.147	287	199	513.066	348	151	460.42
227	217	715.272	288	233	1088.393	349	235	442.182
228	181	518.491	289	204	487.433	350	272	317.643
229	167	845.792	290	38	343.635	351	220	391.904
230	179	885.406	291	228	460.682	352	236	413.885
231	358	1000.737	292	198	470.897	353	231	828.579
232	297	633.284	293	297	533.892	354	88	371.693
233	217	312.947	294	316	476.039	355	18	783.14
234	310	396.761	295	227	593.123	356	210	773.451
235	319	546.885	296	56	434.152	357	233	600.57
236	315	532.868	297	130	597.585	358	224	316.057
237	224	480,529	298	49	917.846	359	231	326.94
238	219	476.05	299	223	413.483	360	123	394 519
239	91	743.013	300	114	905.233	361	174	300 215
200	80	454.07	300	225	386 152	362	144	797 635
2/1	203	405 668	302	223	556 75	362	200	346 933
241	205	468 /9/	302	300	1239 168	367	200	499 698
242	200	451 722	303	309	21/ 707	265	223	585 657
243	321	431.722	504	506	214./0/	305	215	100.000

366 279 354.977 427 283 265.545 488 155 107.125 387 208 666.683 429 298 588.349 460 99 454.07 389 22.6 288.955 431 229 344.382 490 99 512.387 370 35.7 286.033 431 229 736.629 493 523.287 371 151.4 403.31 422 270 736.629 493 512.387 373 245.5 730.44 44 307 240.56 495 52.387 376 53 335.666 427 204 502.286 498 133 50.662 377 37 44.664 38 177 280.94 440.72 201 435.00 133 50.662 447 77.87.76 500 184 276.897 380 377 40.074 440 279 476.891 500 178 <t< th=""><th>No.</th><th>Dirección (azimut)</th><th>Distancia (m)</th><th>No.</th><th>Dirección (azimut)</th><th>Distancia (m)</th><th>No.</th><th>Dirección (azimut)</th><th>Distancia (m)</th></t<>	No.	Dirección (azimut)	Distancia (m)	No.	Dirección (azimut)	Distancia (m)	No.	Dirección (azimut)	Distancia (m)
367 268 429.002 428 127 28.322 483 137 31.41 369 216 38.8955 430 294 606.725 491 210 35.325 370 357 28.033 432 270 75.623 491 210 413.3 371 456 55.031 432 270 75.623 493 59 51.337.3 373 245 794.094 434 307 495.56 696 52.47.77 73.7 44.664 433 133 500.87 497 299 456.41 376 153.135.066 432 27.7 50.0 134 276.623 378 164 935.12 440 72.2 497.640 50.0 138 250.621 378 154.0474 440 72.2 497.640 50.0 138 297.682 380 32.0 75.6521 444 179 480.013 50.0 137	366	297	354.977	427	239	263.545	488	155	1071.295
368 208 64.849 480 288 54.349 480 280 45.44 370 357 286.033 431 229 34.382 482 121 413.3 371 151 490.33 432 220 736.502 483 59 323 492 121 413.3 373 245 794.004 434 307 205.656 495 38 636.559 376 53 353.696 437 204 503.276 498 134 406.413 377 37 41.6641 438 177 283.60 437 204 503.276 498 134 406.413 381 177 206.66 441 179 489.044 502 178 384.504 382 57 486.088 441 136 279.176 505 137 384.504 383 220 256.521 444 273 162.055 177	367	298	429.002	428	127	286.232	489	137	321.241
389 216 288.995 430 224 600.755 491 2210 352.895 371 151 400.33 411 223 343 202 121 413.3 372 168 856.081 433 307 326.502 493 59 512.397 373 245 794.094 434 307 240.556 495 53 635.602 376 53 355.902 436 133 500.877 690 134 590.661 378 164 235.12 439 26 275.476 500 134 590.661 381 377 420.074 441 179 489.644 501 170 177.53 382 200 256.521 444 273 162.055 505 130 360.50 383 202 256.921 445 230 475.91 506 130 363.50 384 2220 656.323	368	208	684.683	429	298	548.349	490	89	454.07
370 357 286.033 4431 229 344.382 492 1.21 413.3 371 151 490.33 432 270 736.53 493 59 512.397 372 286 856.081 433 302 392.306 494 239 573.513 374 446 503.396 435 307 505.465 496 52.2 447.77 375 176 35.3696 437 204 592.26 498 134 496.45 377 37 414.664 438 177 289.44 40 122 487.664 501 179 134.066.7 381 177 29.066 442 331 280.04 502 178 344.58 382 27 496.098 443 316 279.11 504 130 202.55 383 122 258.972 445 239 476.91 506 130 399.206	369	216	288.995	430	294	606.725	491	210	352.869
371 151 490.3 442 270 786.629 493 59 512.397 372 688 850.681 433 300 392.656 495 38 633.650 374 484 503.396 435 307.095.465 496 52 445.83 377 37.3 335.906 436 133 500.897 497 226 448.46 377 37.4 414.664 438 177 283.61 499 133 500.697 379 1 400.474 440 222 487.664 501 177 275.682 380 277 420.074 440 231 280.111 503 120 655.41 381 177 205.607 441 133 280.131 503 130 299.308 384 221 256.927 445 130 275.646 507 131 299.308 385 179 501.837 44	370	357	286.033	431	229	344.382	492	121	413.3
372 68 85.081 434 302 302.305 494 239 57.30.31 374 48 503.396 433 307 295.56 495 38 638.65 375 178 355.502 436 133 500.877 499 133 906.61 377 37.7 414.664 438 177 283.61 499 133 996.61 379 1 460.474 440 222 487.664 501 179 177.888.2 380 127 200.66 442 331 280.013 503 120 665.541 383 120 258.972 444 179 480.044 502 130 399.206 384 121 258.972 444 130 259.071 131 200.33 337 384 122 58.70 447 50 428.473 506 130 399.206 384 128 55.07.784 <td>371</td> <td>151</td> <td>490.33</td> <td>432</td> <td>270</td> <td>736.629</td> <td>493</td> <td>59</td> <td>512.397</td>	371	151	490.33	432	270	736.629	493	59	512.397
373 245 794.094 434 307 245.556 495 38 633.659 376 178 355.902 435 307 55.465 496 5.2 447.773 377 37 44.56 437 204 59.226 498 134 406.413 377 37 44.56 438 177 289.361 499 133 590.622 379 1 400.474 440 222 487.064 501 179 179.723 380 227 420.074 441 179 489.044 501 120 665.541 381 177 260.66 442 331 220.013 507 131 290.318 384 220 670.022 447 50 424.473 162.04 507 131 290.318 385 222 320.27 445 230 456.325 507 131 200 462.477 386	372	68	856.081	433	302	392.306	494	239	573.913
374 48 503.395 435 307 505.465 496 52 447.777 375 178 355.696 436 133 508.987 497 269 485.690 376 53 353.696 437 204 503.226 499 133 500.661 377 37 414.664 438 177 289.64 500 194 276.982 381 177 260.66 441 316 279.11 504 180 503 100 655.41 384 221 256.921 444 273 102.205 506 130 390.205 385 128 504.307 446 180 229.046 507 131 290.18 386 220 67.092 447 500 448 221 502 130 303.707 390 306 61.591 453 130 33.707 511 30 53.707 <t< td=""><td>373</td><td>245</td><td>794.094</td><td>434</td><td>307</td><td>249.556</td><td>495</td><td>38</td><td>639.659</td></t<>	373	245	794.094	434	307	249.556	495	38	639.659
375 178 365.502 436 133 500.897 497 269 485.690 377 37 414.664 437 204 503.276 498 134 406.113 378 1164 293.512 433 256 275.476 499 133 590.062 380 327 420.674 440 222 487.664 501 179 177.829 381 177 280.66 442 331 280.013 505 137 384.554 382 57 486.080 443 316 291.11 504 140 263.575 384 220 55.081 444 270 428.473 506 130 392.065 385 128 50.507 446 130 293.065 506 130 392.065 386 220 650 300 661.477 508 448 285.556 389 122 550.5128 121 </td <td>374</td> <td>48</td> <td>503.396</td> <td>435</td> <td>307</td> <td>505.465</td> <td>496</td> <td>52</td> <td>447.777</td>	374	48	503.396	435	307	505.465	496	52	447.777
376 53 333.696 437 204 503.226 498 134 406.413 377 37 44.464 438 177 283.61 500 134 275.682 379 1 450.474 440 222 487.644 501 179 177.5882 380 227 420.074 441 179 489.041 502 178 384.504 381 177 250.65 442 331 280.137 361.51 393 130 265.51 365 137 361.61 385 128 504.50 444 120 447.50 428.73 506 130 393.13 386 222 362.02 447 50 428.73 508 48 285.51 387 179 520.78 448 271 272.444 509 121 502.585 388 223 362.6151 451 180 333.76 511 30	375	178	365.902	436	133	500.897	497	269	485.869
377 37 414.664 438 177 293.61 499 133 590.62 378 164 239.512 439 26 275.476 500 184 276.682 380 327 420.074 440 222 487.644 501 179 834.829 381 177 260.66 441 316 279.11 504 120 665.541 382 20 256.521 444 213 120.250 505 137 361.63 384 212 256.521 444 370.250.066 507 131 293.18 385 128 504.67 442 333 250.066 130 399.205 387 179 520.788 448 144 370.225 507 131 203.537 388 222 362.02 447 50 48.87 450 333.8551 513 300 455.186 392 1169 481.3	376	53	353.696	437	204	503.226	498	134	406.413
378 164 293.212 439 26 275.476 500 184 276.882 380 327 420.074 440 222 487.664 501 1.77 826 381 177 200.06 442 331 290.013 503 120 665.541 382 57 486.098 443 316 279.11 504 180 263.526 383 220 256.921 444 273 162.091 506 130 399.206 385 128 504.307 446 180 259.046 507 131 290.316 386 220 678.092 447 50 428.473 508 48 285.556 387 179 527.633 448 271 276.244 509 121 503.507 510 126 254.674 389 223 363.02 455 255 510 126 514.674 399	377	37	414.664	438	177	289.361	499	133	590.662
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	378	164	293.512	439	26	275.476	500	184	276.882
380 327 420,074 441 179 489,044 502 178 384,554 381 177 260,66 442 331 280,013 503 120 655,541 382 57 466,98 443 316 27911 504 130 292,055 384 221 258,972 444 129 446 180 259,041 506 130 392,056 385 128 504,307 446 180 259,044 507 131 290,318 386 222 362,02 447 509 461 130 392,051 387 179 520,788 448 271 276,244 509 121 502,555 388 122 362,041 451 180 333,76 512 71 113,772 391 169 481,374 455 225 561,28 514 69 783,719 392 213	379	1	460.474	440	222	487.664	501	179	177.829
381 177 260.66 442 331 280.13 503 120 665.541 383 220 256.921 443 316 279.11 504 1800 265.326 384 221 258.921 445 239 476.991 505 137 361.63 385 1220 678.027 446 180 259.046 507 131 290.318 386 223 520.788 449 144 370.225 510 126 254.674 389 223 362.02 450 333.76 512 711 130.0 503.707 390 306 611.911 453 227 375.256 513 309 451.86 392 133 312.073 453 227 375.256 514 69 783.719 393 213 310.474 454 221 427.413 515 134 389.66 393 209 288.27	380	327	420.074	441	179	489.044	502	178	384.504
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	381	177	260.66	442	331	280.013	503	120	665.541
338 220 258.921 444 273 162.005 137 361.63 384 221 258.972 445 239 476.91 506 130 399.206 385 128 504.907 447 50 428.473 509 121 50.585 387 179 520.788 448 271 276.244 500 121 50.585 388 223 526.53 449 144 370.225 510 126 254.674 390 306 611.591 451 180 333.76 512 71 1137.72 391 159 441 233 227 375.256 514 69 783.719 392 213 310.474 455 221 427.413 515 134 383.966 394 289 395.51 458 53 499.13 519 522 393.821 395 44 712.93.96 460	382	57	486.098	443	316	279.11	504	180	263.526
384 221 258,972 445 239 476,991 506 130 399.206 385 128 504.307 446 180 250.467 507 131 290.318 386 220 678.092 447 50 428.473 508 48 285.556 387 179 500.788 449 144 370.225 509 121 502.585 389 222 362.02 450 309 661.477 511 30 503.707 391 169 481.357 452 343 358.551 513 309 451.86 392 135 312.073 455 225 561.285 516 129 203.3 394 289 395.51 455 225 561.285 518 229 209.382 397 120 228.511 457 272 514.596 518 229 203.3 398 180 152.4	383	220	256.921	444	273	162.205	505	137	361.63
385 128 504.07 446 180 259.046 507 131 290.318 386 220 678.092 447 50 428.473 508 48 225.553 388 223 525.653 449 144 370.225 510 126 254.674 389 222 352.653 449 144 370.225 510 126 254.674 390 306 611.591 451 180 333.376 512 71 1137.72 393 213 310.474 454 221 427.413 515 134 383.966 394 289 393.575 445 221 427.413 516 129 203.3 395 44 213.293 455 229 380.537 518 229 206.537 518 229 203.32 517 311 20.490.24.67 518 520 42.67 518 520 42.67 518	384	221	258.972	445	239	476.991	506	130	399.206
386 220 678.092 447 50 428.473 508 48 285.556 387 179 520.788 448 271 276.244 509 121 502.85 389 222 36.02 450 309 661.477 511 30 503.707 391 169 481.357 452 343 358.551 513 309 456.186 392 135 310.474 453 227 361.285 514 69 733.396 394 2289 395.591 455 225 561.285 516 129 203.3 395 44 213.293 456 229 306.577 518 229 208.821 397 180 228 751 458 499.131 519 52 142 422.477 398 180 152.4 459 222 508.166 520 42 422.677 399 89 <t< td=""><td>385</td><td>128</td><td>504.307</td><td>446</td><td>180</td><td>259.046</td><td>507</td><td>131</td><td>290.318</td></t<>	385	128	504.307	446	180	259.046	507	131	290.318
387 179 520.788 448 271 276.244 509 121 502.585 388 223 525.653 449 144 370.224 509 121 502.585 389 222 362.02 450 309 661.477 511 30 503.707 390 306 611.591 452 433 358.51 513 309 455.186 392 135 312.073 453 227 375.256 514 69 783.719 393 289 395.511 455 225 561.285 517 311 204.905 396 209 228.571 458 53 499.135 519 52 395.064 398 180 152.4 459 222 550.816 520 422.67 399 89 127.04 460 225 446.774 521 180 244.475 400 179 216.693 461	386	220	678.092	447	50	428.473	508	48	285.556
388 223 525.653 449 144 370.225 510 126 254.674 389 222 362.02 450 309 661.4731 511 30 503.707 391 169 481.577 453 227 375.55 514 69 783.719 392 135 310.074 454 221 427.413 515 134 69 783.719 393 213 310.074 454 221 427.413 515 516 129 203.3 394 289 395.511 456 229 380.511 277 511 310 244.905 396 209 288.71 457 272 514.596 518 229 209.382 400 179 77.064 460 225 440.747 521 180 244.475 401 178 196.553 462 323 695.964 523 206 626.282	387	179	520.788	448	271	276.244	509	121	502.585
389 222 36.0 309 661.477 511 30 503.707 390 366 611.591 451 180 333.376 512 71 1137.72 391 169 481.557 452 443 355.51 512 71 1137.72 392 135 310.074 454 221 427.276.13 515 514 69 783.719 395 44 213.93 455 225 561.285 517 311 204.905 308 396 209 228.571 458 53 499.113 519 52 359.506 398 180 152.4 459 222 550.816 520 42 422.67 400 179 273.069 461 233 1060.471 522 116 173.234 401 178 196.953 462 233 695.964 523 206 626.282 402 182.776	388	223	525.653	449	144	370.225	510	126	254.674
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	389	222	362.02	450	309	661.477	511	30	503.707
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	390	306	611.591	451	180	333.376	512	71	1137.72
392 135 312.073 453 227 375.263 514 69 783.719 393 213 310.474 454 221 427.413 515 134 383.966 394 229 228.821 455 225 561.285 516 129 203.32 395 44 213.293 457 272 514.596 518 229 203.32 397 180 152.4 459 222 550.816 519 52 359.506 398 180 152.4 460 225 446.774 520 42.422.67 399 89 127.04 460 225 446.774 521 180 244.475 400 178 196.953 462 323 695.964 521 180 244.475 403 179 219.098 464 270 625.484 524 521 134 350.295 405 466 90 485.776 522 134 350.295 527 303 631.433 407 359 362.006 468 269 304.867 528 92 103.284 406 151 226.051 </td <td>391</td> <td>169</td> <td>481.357</td> <td>452</td> <td>343</td> <td>358.551</td> <td>513</td> <td>309</td> <td>456.186</td>	391	169	481.357	452	343	358.551	513	309	456.186
393 213 310.474 454 221 427.413 515 134 383.9866 394 289 395.591 445 225 561.285 516 129 203.3 396 209 228.821 455 225 561.285 517 311 204.905 397 180 285.751 458 53 499.113 519 52 359.506 398 180 152.4 459 222 50.816 520 42 422.67 400 179 73.069 460 225 446.74 521 180 224.475 401 178 196.953 462 323 1606.471 522 116 173.234 402 182 111.171 463 334 327.947 524 228 521.9 535.23 404 225 379.423 466 460 521 526 134 350.259 405 90 282.5761 466 90 485.776 527 303 631.443	392	135	312.073	453	227	375.256	514	69	783.719
394 289 395.591 455 225 561.285 516 129 20.3.3 395 44 213.293 456 229 380.537 517 311 204.905 397 180 285.751 458 53 499.113 518 229 339.506 398 180 152.4 459 222 550.816 520 42 422.67 399 98 177.04 461 233 1060.471 521 180 224.475 400 179 273.069 461 233 1069.971 522 116 173.234 401 178 199.938 465 46 660.116 522 118 522.141 522.141 522.141 522.53.523 400 225 379.423 466 90 527 303 631.43 522.91 532.53 524 522.033 631.443 55.25 529 301 356.111 406	393	213	310.474	454	221	427.413	515	134	383.966
39544213.293456229380.537517311204.905396209228.211457272514.596518229209.382209.382398180152.445853499.11351952339.50639989127.04460225446.774521180244.47540017927.0694612331060.471522116173.324401178196.953462323695.964522216626.282402182111.171463334327.947522116173.324404225379.423465466660.111526134350.25940590282.57646690485.776527303631.44340618137.041467271257.195528921032.58406200485.77647256316.132533122701.18141030796.47547256316.132533122503.78741253456.44147354737.436533129503.787415320524.83747692304.847535137833.943414234273.124477307271.792538322416.59241789222.73478227235.828541105 <td>394</td> <td>289</td> <td>395.591</td> <td>455</td> <td>225</td> <td>561.285</td> <td>516</td> <td>129</td> <td>203.3</td>	394	289	395.591	455	225	561.285	516	129	203.3
396 209 228.21 457 772 514.596 518 229 209.382 397 180 285.751 458 53 499.113 519 52 359.506 399 89 127.04 460 222 550.816 520 42 422.67 400 179 273.069 461 233 106.471 522 116 173.234 402 182 111.171 463 334 327.947 524 218 522.141 403 179 219.098 464 270 625.484 525 219 535.523 405 90 282.576 466 90 485.776 528 92 103.285 406 181 327.041 467 271 256.531 530 12 701.818 409 220 239.034 470 231 152.786 531 125 448.441 411 124 555.622	395	44	213.293	456	229	380.537	517	311	204.905
397180285.75145853499.11351952359.506398180152.4459222550.81652042422.6739989127.04460225446.774521180244.475400179273.0694612331060.471522116173.234401178196.593462233695.964523206626.282402182111.171463334379.974524218521.41403179219.098465466660.111526134350.25940590282.57646690485.776527303631.443406181327.041467271257.195528921032.58407359362.006468269304.86753012701.181408153330.841467271250.51531125448.41410307966.47547256316.127533125435.948411124555.66247256316.127533125435.948413181800.158474220684.414535137833.431414234273.12447552273.901753628473.73415320524.83747692304.99531322416.59	396	209	228.821	457	272	514.596	518	229	209.382
398180152.4459222550.81652042422.6739989127.04460225446.77452118024.475400179273.069461233106.47152118024.475401178196.953462323695.964523206626.282402182111.171463334327.94752421852.141403179219.09846546660.111526134350.25940590282.57646690485.776527303631.443406181327.041467271257.195528921032.58406151226.05153012701.81301356.111408153330.841469151226.051531125448.41141030796.47547150748.4532131369.176411124555.66247256316.132534325435.948413181800.15847692304.949537323313.056416208411.834477307271.792538322416.5924178922.73478227255.423539115379.1141318183359.506477307271.792538322416.592	397	180	285.751	458	53	499.113	519	52	359.506
39989127.04460225446.774521180244.475400179273.069461233106.0471522116173.234402182111.171463334327.947524218522.141403179219.098464270625.484525219535.523404225379.42346546660.111526134350.25940590282.57646690485.776527303631.443406181327.041467271257.195528921032.58407359362.006468269304.867529301356.11140815330.841469151226.05153012701.181409220239.0344702311521.786531125448.441410307966.47547256316.132533129503.787411124555.622474220684.414533137893.943414234273.12447692304.994537323.23313.056416208411.834477307271.792538322416.59241789222.73478227235.828540239492.78141838359.566475477307271.792538 <td< td=""><td>398</td><td>180</td><td>152.4</td><td>459</td><td>222</td><td>550.816</td><td>520</td><td>42</td><td>422.67</td></td<>	398	180	152.4	459	222	550.816	520	42	422.67
400179273.0694612331060.471522116173.234401178196.953462323695.964523206626.282402182111.171463334327.947524218522.141403179219.098464270625.484525219535.533404225379.423465466660.111526134350.25940590282.57646690485.776527303631.443406153330.841467717257.195528921032.58409220239.034470231151.78653012701.18141030796.647547150748.4532131356.111411124555.66247256316.132533129503.78741253456.44147354737.436534325435.94841318180.158474220684.414535137893.943416208411.834477307271.792538322416.592416208411.834477307271.792538322416.59241620841.834477307271.792538322416.59241789222.737480227359.463541105741	399	89	127.04	460	225	446.774	521	180	244.475
401 178 196.953 462 323 695.964 523 206 626.282 402 182 111.171 463 334 327.947 524 218 521.41 403 179 219.098 465 466 660.111 526 134 552.52 405 90 282.576 466 90 485.776 527 303 631.443 406 181 327.041 467 271 257.195 528 92 1032.58 407 359 362.006 468 269 304.867 529 301 356.111 409 220 239.034 470 231 1521.786 531 125 448.441 410 307 966.475 471 50 748.4 532 131 369.176 411 124 555.662 477 56 316.132 534 325 435.948 413 181 800.158 474 220 684.414 535 137 893.943 414 234 273.124 476 92 304.949 537 323 313.056 414 208 411.837 477	400	179	273.069	461	233	1060.471	522	116	173.234
402182111.171463334327.947524218522.141403179219.098466270625.484525219535.523405902255379.42346546660.111526134350.259406181327.041467271257.195528921032.58407359362.066468269304.86753012701.181409220239.0344469151226.05153012701.181410307966.47547150748.4533125448.441411124555.66247256316.132533129503.78741253456.441474220684.414535137893.933414234273.124475522739.017536284737.73415320524.83747692304.949535137893.933416208411.834477307271.792536284737.7341789222.73448227325.425539115379.21141838359.506447227325.425541105741.6420228333.1244481227325.43541105741.6421146427.18482149444.19543248 <td< td=""><td>401</td><td>178</td><td>196.953</td><td>462</td><td>323</td><td>695.964</td><td>523</td><td>206</td><td>626.282</td></td<>	401	178	196.953	462	323	695.964	523	206	626.282
403 179 219.098 464 270 625.484 525 219 535.523 404 225 379.423 465 46 660.111 526 134 350.259 405 90 282.576 466 90 485.776 528 92 303.41 406 181 327.041 467 271 257.195 528 92 303.21 408 153 330.841 469 151 226.051 530 12 701.181 409 220 239.034 470 231 152.786 531 125 448.4141 410 307 966.475 471 50 748.4 533 129 50.878 411 124 555.662 472 55 316.122 533 129 50.878 413 181 800.158 474 220 684.414 535 137 893.943 414 234 273.128 476 92 304.991 537 323 313.056 417 89 222.73 478 227 235.828 539 115 379.211 418 38 359.506 479	402	182	111.171	463	334	327.947	524	218	522.141
404 225 379.423 465 46 660.111 526 134 350.259 405 90 282.576 466 90 485.776 527 303 631.443 406 181 327.041 467 271 257.195 528 92 1032.58 407 359.640 467 271 257.195 530 12 701.181 408 153 330.841 469 151 226.051 530 12 701.181 409 200 239.034 470 231 151.766 531 125 448.441 410 307 966.475 471 50 784.4 532 131 369.176 413 181 800.158 474 220 684.414 535 137 893.943 414 234 273.124 475 52 273.9017 536 284 737.73 415 320 524.837 476 <td>403</td> <td>179</td> <td>219.098</td> <td>464</td> <td>270</td> <td>625.484</td> <td>525</td> <td>219</td> <td>535.523</td>	403	179	219.098	464	270	625.484	525	219	535.523
40590282.57646690485.776527303631.443406181327.041467271257.195528921032.58407359362.006468269304.867529301356.111408153330.841469151226.05153012701.181409220239.034469151226.05153012701.181410307966.47547150748.4532131369.176411124555.66247256316.132533129503.78741253456.44147354737.436534325435.948413181800.158474220684.41453513789.943414234273.124475522739.017536284737.73415320524.83747692304.949537323313.056416208411.834477307271.792538322416.59241789222.73478227235.828539115379.21141838359.506448227325.433541105714.6420228333.128481227359.463541105714.6421146427.118482149444.319543248349.034	404	225	379.423	465	46	660.111	526	134	350.259
406181327.041467271257.195528921032.58407359362.006468269304.867529301356.111408153330.841469151226.05153012701.181409220239.0344702311521.786531125448.441410307966.47547150748.4532131369.176411124555.6624715556316.132533129503.78741253456.44147354737.436534325435.948413181800.158474220684.414535137893.943414234273.1244755222739.017536284737.73415320524.83747692304.949537323313.056416208411.834477307271.792538322416.59241789222.73478227359.463541105741.6420228333.128481227332.543542125609.444421146427.118482149444.319543248349.034422226372.7948335833.141544146287.964424225702.71484146287.964545287 <td>405</td> <td>90</td> <td>282.576</td> <td>466</td> <td>90</td> <td>485.776</td> <td>527</td> <td>303</td> <td>631.443</td>	405	90	282.576	466	90	485.776	527	303	631.443
407359362.006468269304.867529301356.111408153330.841469151226.05153012701.181409220239.0344702311521.786531125448.441410307966.47547150748.4532131369.176411124555.66247256316.132534325435.948413181800.158474220684.414535137893.943414234273.124475522739.017536284737.73415320524.83747692304.949537323313.056416208411.834477307271.792538322416.59241789222.734478227235.824534239492.78141838359.506449227235.824540239492.781419132661.027480227332.543541105741.6420228333.128481227332.543541105741.6421146427.118482149443.19543248349.034422226372.7948335833.141544146287.964423213227.07748544368.2195469074.728 </td <td>406</td> <td>181</td> <td>327.041</td> <td>467</td> <td>271</td> <td>257.195</td> <td>528</td> <td>92</td> <td>1032.58</td>	406	181	327.041	467	271	257.195	528	92	1032.58
408153330.841469151226.05153012701.181409220239.0344702311521.786531125448.441410307966.47547150748.4532131369.176411124555.66247256316.132533129503.78741253456.44147354737.436534325435.948413181800.158474220684.414535137893.943414234273.124475522739.017536284737.73415320524.83747692304.949537323313.056416208411.834477307271.792538322416.59241789222.273478227235.828539115379.21141838359.506479222755.425540239492.781419132661.027480227332.543541105741.6420228333.128481227332.543541105741.6422226372.79748335833.141543248349.034423213227.2074841254.02545287402.675424225702.7148544368.21954690774.728	407	359	362.006	468	269	304.867	529	301	356.111
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	408	153	330.841	469	151	226.051	530	12	701.181
410307966.47547150748.4532131369.176411124555.66247256316.132533129503.78741253456.44147354737.436533325435.948413181800.158474220684.414535137893.943414234273.124475522739.017536284737.73415320524.83747692304.949537323313.056416208411.834477307271.792538322416.59241789222.273478227235.828539115379.21141838359.506479222755.425540239492.781419132661.027480227332.543541105741.6420228333.128481227332.543542125604.44423213227.20748335833.141544146287.964424225702.7148544368.21954690774.728425240297.3344862301083.42254892346.309	409	220	239.034	470	231	1521.786	531	125	448.441
411124555.66247256316.132533129503.78741253456.44147354737.436534325435.948413181800.158474220684.414535137893.943414234273.124475522739.017536284737.73415320524.83747692304.949537323313.056416208411.834477307271.792538322416.59241789222.273478227235.828539115379.21141838359.506479222755.425540239492.781419132661.027480227332.543541105741.6420228333.12848214944.319544116287.964423213227.20748335833.141544146287.964424225702.7148544368.21954690774.728426240274.652487227608.74954892346.309	410	307	966.475	471	50	748.4	532	131	369.176
412 53 456.441 473 54 737.436 534 325 435.948 413 181 800.158 474 220 684.414 535 137 893.943 414 234 273.124 475 52 2739.017 536 284 737.73 415 320 524.837 476 92 304.949 537 323 313.056 416 208 411.834 477 307 271.792 538 322 416.592 417 89 222.273 478 227 235.828 539 115 379.211 418 38 359.506 479 222 755.425 540 239 492.781 419 132 661.027 480 227 332.543 541 105 741.6 420 228 333.128 481 227 332.543 542 125 609.444 421 146 427.118 482 149 44.319 543 248 349.034 422 226 372.79 484 1 254.02 545 287 402.675 424 225 702.71 485 44 368.219 546 90 774.728 425 240 297.334 486 230 1083.422 548 92 346.309 426 240 274.652 487 227 608.749 548 92 346.309 <	411	124	555.662	472	56	316.132	533	129	503.787
413 181 800.158 474 220 684.414 535 137 893.943 414 234 273.124 475 52 2739.017 536 284 737.73 415 320 524.837 476 92 304.949 537 323 313.056 416 208 411.834 477 307 271.792 538 322 416.592 417 89 222.273 478 227 235.828 539 115 379.211 418 38 359.506 479 222 755.425 540 239 492.781 419 132 661.027 480 227 332.543 541 105 741.6 420 228 333.128 481 227 332.543 542 125 609.444 421 146 427.118 482 149 44.319 543 248 349.034 422 226 372.79 483 35 833.141 543 248 349.034 423 213 227.207 485 44 368.219 546 90 774.728 426 240 274.652 487 227 608.749 548 92 346.309	412	53	456.441	473	54	737.436	534	325	435.948
414 234 273.124 475 52 2739.017 536 284 737.73 415 320 524.837 476 92 304.949 537 323 313.056 416 208 411.834 477 307 271.792 538 322 416.592 417 89 222.273 478 227 235.828 539 115 379.211 418 38 359.506 479 222 755.425 540 239 492.781 419 132 661.027 480 227 332.543 541 105 741.6 420 228 333.128 481 227 332.543 542 125 609.444 421 146 427.118 482 149 44.319 543 248 349.034 422 226 372.79 483 35 833.141 543 248 349.034 423 213 227.207 485 44 368.219 546 90 774.728 426 240 274.652 487 227 608.749 548 92 346.309	413	181	800.158	474	220	684.414	535	137	893.943
415 320 524.837 476 92 304.949 537 323 313.056 416 208 411.834 477 307 271.792 538 322 416.592 417 89 222.273 478 227 235.828 539 115 379.211 418 38 359.506 479 222 755.425 540 239 492.781 419 132 661.027 480 227 332.543 541 105 741.6 420 228 333.128 481 227 332.543 542 125 609.444 421 146 427.118 482 149 444.319 543 248 349.034 422 226 372.79 483 35 833.141 544 146 287.964 423 213 227.207 485 44 368.219 545 287 402.675 425 240 297.334 486 230 1083.422 547 126 299.731 42	414	234	273.124	475	52	2739.017	536	284	737.73
416 208 411.834 477 307 271.792 538 322 416.592 417 89 222.273 478 227 235.828 539 115 379.211 418 38 359.506 479 222 755.425 540 239 492.781 419 132 661.027 480 227 359.463 541 105 741.6 420 228 333.128 481 227 332.543 542 125 609.444 421 146 427.118 482 149 444.319 543 248 349.034 422 226 372.79 483 35 833.141 544 146 287.964 423 213 227.207 484 1 254.02 545 287 402.675 424 225 702.71 485 44 368.219 546 90 774.728 425 240 274.652	415	320	524.837	476	92	304.949	537	323	313.056
41789222.273478227235.828539115379.21141838359.506479222755.425540239492.781419132661.027480227359.463541105741.6420228333.128481227332.543542125609.444421146427.118482149444.319543248349.034422226372.7948335833.141544146287.964423213227.2074841254.02545287402.675424225702.7148544368.21954690774.728425240297.3344862301083.422547126299.731426240274.652487227608.74954892346.309	416	208	411.834	477	307	271.792	538	322	416.592
41838359.506479222755.425540239492.781419132661.027480227359.463541105741.6420228333.128481227332.543542125609.444421146427.118482149444.319543248349.034422226372.7948335833.141544146287.964423213227.2074841254.02545287402.675424225702.7148544368.21954690774.728425240297.3344862301083.422547126299.731426240274.652487227608.74954892346.309	417	89	222.273	478	227	235.828	539	115	379.211
419132661.027480227359.463541105741.6420228333.128481227332.543542125609.444421146427.118482149444.319543248349.034422226372.7948335833.141544146287.964423213227.2074841254.02545287402.675424225702.7148544368.21954690774.728425240297.3344862301083.422547126299.731426240274.652487227608.74954892346.309	418	38	359.506	479	222	755.425	540	239	492.781
420228333.128481227332.543542125609.444421146427.118482149444.319543248349.034422226372.7948335833.141544146287.964423213227.2074841254.02545287402.675424225702.7148544368.21954690774.728425240297.3344862301083.422547126299.731426240274.652487227608.74954892346.309	419	132	661.027	480	227	359.463	541	105	741.6
421146427.118482149444.319543248349.034422226372.7948335833.141544146287.964423213227.2074841254.02545287402.675424225702.7148544368.21954690774.728425240297.3344862301083.422547126299.731426240274.652487227608.74954892346.309	420	228	333.128	481	227	332.543	542	125	609.444
422226372.7948335833.141544146287.964423213227.2074841254.02545287402.675424225702.7148544368.21954690774.728425240297.3344862301083.422547126299.731426240274.652487227608.74954892346.309	421	146	427.118	482	149	444.319	543	248	349.034
423 213 227.207 484 1 254.02 545 287 402.675 424 225 702.71 485 44 368.219 546 90 774.728 425 240 297.334 486 230 1083.422 547 126 299.731 426 240 274.652 487 227 608.749 548 92 346.309	422	226	372.79	483	35	833.141	544	146	287.964
424 225 702.71 485 44 368.219 546 90 774.728 425 240 297.334 486 230 1083.422 547 126 299.731 426 240 274.652 487 227 608.749 548 92 346.309	423	213	227.207	484	1	254.02	545	287	402.675
425 240 297.334 486 230 1083.422 547 126 299.731 426 240 274.652 487 227 608.749 548 92 346.309	424	225	702.71	485	44	368.219	546	90	774.728
426 240 274.652 487 227 608.749 548 92 346.309	425	240	297.334	486	230	1083.422	547	126	299.731
	426	240	274.652	487	227	608.749	548	92	346.309

No.	Dirección (azimut)	Distancia (m)	No.	Dirección (azimut)	Distancia (m)	No.	Dirección (azimut)	Distancia (m)
549	142	644.651	610	329	520.013	671	60	796.699
550	315	294.113	611	30	588.748	672	359	450.896
551	62	1009.697	612	151	477.699	673	314	321.115
552	311	465.948	613	327	812.864	674	236	286.191
553	314	195.334	614	32	525.02	675	316	828.579
554	277	675.389	615	39	361.477	676	51	569.239
555	50	741.899	616	39	569.239	677	126	1966.495
556	325	519.693	617	43	386.387	678	179	901.903
557	267	554.042	618	42	422.67	679	91	793.853
558	48	458.786	619	42	1092.913	680	90	1216.032
559	229	461.469	620	53	625.484	681	135	756.591
560	179	295.344	621	52	502.354	682	58	495.067
561	53	906.174	622	52	309.933	683	114	443.593
562	225	594.947	623	57	433.258	684	27	623.353
563	315	258.193	624	57	288.838	685	154	441.611
564	147	542.545	625	244	420.314	686	90	990.602
565	90	4099.479	626	58	370.878	687	15	434.408
566	314	345.77	627	55	481.733	688	13	341.973
567	136	386.256	628	299	622.633	689	92	390.732
568	108	953.877	629	331	97.759	690	145	444.013
569	147	463.075	630	225	965.39	691	136	460.376
570	324	363.23	631	89	317.564	692	136	361.519
571	314	412.064	632	296	697.266	693	144	313.732
572	58	709.115	633	68	786.505	694	135	428.814
573	57	603.226	634	293	644.534	695	150	419.834
574	181	422.324	635	309	369.939	696	89	355.657
575	1	454.778	636	123	231.601	697	1	730.5
576	135	341.25	637	241	359.541	698	77	443.593
577	284	2819.192	638	67	675.799	699	243	345.04
578	270	3743.644	639	120	582.101	700	139	522.421
579	43	300.973	640	221	560.323	701	322	572.25
580	0	279.401	641	160	777.429	702	46	451.309
581	221	356.193	642	152	333.753	703	222	365.658
582	220	450.448	643	296	636.143	704	118	1592.581
583	225	341.25	644	294	770.166	705	29	285.574
584	222	822.921	645	314	1883.721	706	132	351.163
585	224	577.022	646	137	417.8	707	32	346.323
586	336	400.718	647	333	468.569	708	56	523.106
587	54	492.781	648	359	749.47	709	121	1311.723
588	339	412.14	649	47	500.897	710	117	482.82
589	314	242.509	650	138	267.625	711	117	1219.839
590	178	174.741	651	108	693.817	712	147	945.832
591	54	561.402	652	56	472.905	713	127	459.762
592	118	259.982	653	298	616.516	714	123	479.972
593	308	282.647	654	0	476.251	715	293	473.598
594	157	403.975	655	220	470.769	716	314	586.07
595	318	262.088	656	35	366,504	717	130	432.547
596	324	140,993	657	44	691.539	718	209	749.066
597	307	374.018	658	318	341.723	719	304	507.246
598	178	730,693	659	86	677,951	720	304	572.382
599	90	781.041	660	42	561,913	721	306	610,898
600	45	1154	661	48	539.49	722	132	242 841
601	297	570.265	662	302	593.013	722	304	415 671
602	136	707 286	663	51	367 931	724	60	606.094
603	219	668 929	664	58	1067 558	725	65	556 822
604	32	556 668	665	105	528 283	726	64	897 382
605	32 210	/17 822	666	202	109 210	720	54	311 970
605	190	917.000 205.076	667	220	262 210	727	33	920 70E
607	1/5	295.270	660	170	202.310	720	220	030./03 720.00E
609	145	303./4/	660	1/0	559 241	729	2/1	733.865 872 242
600	224	404.420	670	308	536.341 611.007	750	204 65	072.243
009	524	390.245	0/0	231	1801/	/31	60	403.859

No.	Dirección (azimut)	Distancia (m)	No.	Dirección (azimut)	Distancia (m)	No.	Dirección (azimut)	Distancia (m)
732	239	599.505	793	330	389.893	854	211	707.863
733	119	284.336	794	320	216.274	855	228	373.357
734	240	521.803	795	308	424.953	856	226	466.996
735	107	481.105	796	47	676.217	857	231	492.382
736	106	807.726	797	309	435.856	858	43	220.2
737	117	874.719	798	153	529.627	859	223	480.78
738	217	269.876	799	324	286.42	860	234	618.082
739	307	702.33	800	315	527.596	861	311	540.012
740	301	393.137	801	151	547.079	862	310	968.757
741	121	622.374	802	268	244.661	863	233	403.863
742	97	393.816	803	317	489.61	864	26	613.401
743	271	466.769	804	120	483.603	865	207	427.401
744	90	406.413	805	127	381.001	866	214	632.265
745	116	644.714	806	313	907.719	867	225	282.879
746	206	286.867	807	127	998.897	868	227	321.241
747	133	1019.617	808	270	209.55	869	99	934.429
748	309	390.033	809	179	676.463	870	278	749.443
749	300	489.116	810	92	708.482	871	180	654.059
750	106	650.256	811	217	1002.035	872	45	844.146
751	120	558.819	812	226	431.147	873	225	850.908
752	92	1182.062	813	303	1174.945	874	235	248.402
753	135	511.876	814	91	431.906	875	227	435.752
754	112	749.362	815	135	287.369	876	47	521.165
755	297	1029.456	816	315	502.895	877	198	444.784
756	299	457.642	817	212	480.937	878	327	399.849
757	122	650.218	818	46	691.714	879	89	212.749
758	253	423.932	819	229	486.263	880	48	386.569
759	106	846.078	820	318	782.573	881	235	447.394
760	197	515.183	821	313	381.899	882	140	426.962
761	222	447.225	822	348	487.64	883	122	526.036
762	112	582.516	823	307	591.822	884	60	297.334
763	239	377.345	824	217	453.393	885	126	621.174
764	181	317.564	825	177	470.426	886	207	502.665
765	303	433.653	826	218	438.864	887	203	553.672
766	215	317.072	827	298	410.51	888	334	325.171
767	90	460.387	828	90	860.433	889	226	428.955
768	90	679.451	829	227	429.096	890	126	574.711
769	293	662.87	830	269	765.282	891	332	450.292
770	301	864.687	831	113	578.573	892	144	236.234
771	239	644.182	832	179	568.406	893	149	303.292
772	90	2098.682	833	179	219.098	894	209	736.437
773	90	466.726	834	225	339.013	895	307	455.931
774	77	884.83	835	96	303.292	896	150	371.381
775	270	447.687	836	231	327.272	897	180	368.301
776	123	224.552	837	277	1716.672	898	294	1101.251
777	300	604.503	838	231	411.062	899	110	388.715
778	270	473.087	839	303	447,361	900	148	248.382
779	88	505.076	840	307	696,601	901	161	1796 282
780	338	393,252	841	311	733 873	902	284	334 206
781	89	543.075	842	40	554,491	903	303	422,741
782	225	224 507	8/3	179	308 0/1	904	227	231 3/
783	225	559.063	844	182	346 207	905	180	477 788
78/	220	633 253	8/15	300	225 627	906	1//	450 292
785	<u>220</u> ΔΛ	848 876	8/6	220	491 /18	900	116	360 667
786	200	368 210	\$ <u>4</u> 7	88	231 862	908	1	373 013
787	236	/51 067	047 979	120	875 702	900	27/	83/ 272
782	1/12	337 921	040 9/0	101	611 /67	909 010	120	527.061
700	243	557.621	049	101	011.40/ E27.120	910	170	527.001
700	120	500.434	850	138	557.139	911	1/9	504.980
790	133	344.0U/	051	140	5/2 E2	912	125	220 727
791	129	424.455	852	140	243.52	913	210	336.4//
/92	141	578.165	853	210	515.105	914	301	434.524

No.	Dirección (azimut)	Distancia (m)	No.	Dirección (azimut)	Distancia (m)	No.	Dirección (azimut)	Distancia (m)
915	310	284.159	976	303	649.946	1037	219	435.393
916	43	653.627	977	224	366.008	1038	215	909.078
917	123	520.97	978	315	745.376	1039	216	355.062
918	320	669.143	979	305	235.143	1040	218	680.852
919	216	710.123	980	308	282.647	1041	218	699.23
920	144	689.093	981	139	418.451	1042	91	857.463
921	318	420.314	982	209	699.424	1043	269	311.215
922	239	393.137	983	181	279.419	1044	221	292.721
923	128	212.749	984	179	327.087	1045	271	231.797
924	128	459.192	985	179	323.913	1046	89	203.225
925	146	587.376	986	180	492.136	1047	92	177.914
926	127	1133.482	987	39	392.727	1048	219	794.856
927	306	429.154	988	156	295.617	1049	91	708.055
928	111	1061.345	989	241	456.108	1050	89	657.349
929	132	1607.61	990	140	328.885	1051	89	879.568
930	312	1234.767	991	149	247.752	1052	90	568.326
931	322	816.742	992	312	404.511	1053	234	240.673
932	321	611.887	993	316	500.776	1054	237	431.521
933	231	562.299	994	90	206.375	1055	136	603.961
934	234	456.594	995	160	281.306	1056	146	936.987
935	119	548.615	996	307	351.165	1057	207	606.326
936	178	511.422	997	137	492.085	1058	206	597.796
937	126	456.594	998	191	487.599	1059	117	603.502
938	154	445.86	999	145	642.984	1060	142	352.554
939	145	396.406	1000	179	527.089	1061	179	568.468
940	203	193.441	1001	150	411.148	1062	179	295.293
941	208	552.46	1002	118	559.558	1063	217	443.888
942	216	315.606	1003	315	233.487	1064	223	267.399
943	147	581.269	1004	160	590.534	1065	322	538.011
944	178	473.459	1005	357	601.092	1066	312	359.66
945	210	591.924	1006	199	518.139	1067	222	472.233
946	148	394.787	1007	59	200.93	1068	140	239.034
947	148	212.37	1008	149	343.048	1069	213	686.954
948	140	482.141	1009	149	334.884	1070	203	753.755
949	135	469.225	1010	147	321.445	1071	136	417.679
950	91	304.817	1011	231	369,939	1072	119	564.053
951	89	276.244	1012	118	866.608	1073	229	324.068
952	36	978.087	1013	19	950.876	1074	152	713.07
953	222	579.854	1014	181	422.324	1075	143	310.518
954	226	572.603	1015	179	276.244	1076	136	520,933
955	335	473.001	1016	208	467.287	1077	147	323,181
956	315	538.835	1017	201	415.101	1078	208	356.535
957	327	531.887	1018	233	430.538	1079	231	489.456
958	45	520.856	1019	138	467.514	1080	137	801.87
959	142	388.754	1020	138	357.312	1081	179	450.952
960	311	285.839	1021	147	501,148	1082	321	406 599
961	236	327,58	1022	133	447.045	1083	316	491.716
962	187	305.065	1023	181	504 986	1084	40	482 141
963	181	241.321	1024	180	498,476	1085	127	718 822
964	179	352.483	1025	198	389,608	1086	317	406 661
965	1	231.797	1026	134	554,646	1087	358	301 776
966	300	401 321	1020	146	452 636	1088	165	403 526
967	181	247 671	1027	100	222.607	1089	120	472 18
968	207	426 9/1	1020	103	337 / 50	1005	173	550 12
960	110	282 70	1029	130	315 11	1090	136	371 115
970	220	202.75	1030	120	760 /	1091	125	285 245
970 Q71	1//	605 202	1031	211	776 017	1092	125	651 242
072	210	745 002	1032	212	660 407	1093	21/	200 /00
372 072	110	743.092	1033	305	164 211	1094	202	212 67
5/5 07/	210	740.100	1034	200	404.311	1095	303	106 622
075	220	505 1/2	1035	200	226 704	1090	150	50.022
9/5	520	595.14Z	1030	212	320.794	1091	151	302.854

No.	Dirección (azimut)	Distancia (m)		No.	Dirección (azimut)	Distancia (m)	No.	Dirección (azimut)	Distancia (m)
1098	224	630.9		1159	177	283.021	1220	187	246.14
1099	141	313.876		1160	118	322.369	1221	125	303.026
1100	156	409.416		1161	293	702.48	1222	184	206.985
1101	140	554.491		1162	56	709.754	1223	38	332.77
1102	114	352.368		1163	183	423.039	1224	203	372.708
1103	133	822.002		1164	63	732.677	1225	139	587.205
1104	135	359.211		1165	247	786.691	1226	210	325.682
1105	140	223.178	Γ	1166	360	498.486	1227	230	763.488
1106	90	368.301		1167	156	306.91	1228	215	236.958
1107	127	483.238	Γ	1168	180	295.276	1229	178	139.764
1108	140	403.276	Γ	1169	313	256.492	1230	179	444.39
1109	338	383.23		1170	207	295.344	1231	133	487.433
1110	296	372.018	Γ	1171	237	488.825	1232	152	468.784
1111	116	491.306	Γ	1172	128	282.647	1233	226	325.556
1112	121	504.217	Ē	1173	77	1052.553	1234	111	422.168
1113	147	472.916	Ē	1174	178	525.021	1235	225	688.514
1114	238	1603.325	Ē	1175	155	318.214	1236	97	593.348
1115	88	1509.094	Ē	1176	152	279.469	1237	114	793.575
1116	242	1161.866	Ī	1177	315	920.478	1238	122	645.206
1117	89	866.986		1178	160	131.562	1239	163	359.873
1118	90	1422.403		1179	154	306.836	1240	118	575.237
1119	212	931.923		1180	160	351.552	1241	320	378.479
1120	65	992.808		1181	190	287.106	1242	311	450.112
1121	238	1218.313		1182	184	282.038	1243	184	190.923
1122	224	473.757	Ē	1183	39	933.857	1244	150	441.086
1123	237	753.788	Ē	1184	117	461.524	1245	162	480.937
1124	236	1353.465	Ē	1185	177	257.489	1246	226	307.648
1125	301	559.756	Ē	1186	179	349.308	1247	140	367.108
1126	125	458.049	Ē	1187	90	368.314	1248	66	363,964
1127	65	957.321		1188	269	304.867	1249	159	228.181
1128	234	698.682	Ē	1189	178	384.504	1250	215	339,963
1129	222	640.73		1190	147	390.125	1251	180	288.926
1130	91	876 354	-	1191	136	316 626	1252	181	257,195
1131	239	620.744		1192	69	806.03	1253	25	481.451
1132	213	604.97	-	1193	269	555.662	1254	120	167.816
1133	74	825 141	-	1194	113	413.57	1255	180	532,228
1134	244	663 874	-	1195	236	372 506	1256	129	449 149
1135	236	974 588	-	1196	238	355 034	1257	121	341.662
1136	230	587 581	-	1197	250	183 445	1258	121	307 648
1137	213	688 967	-	1198	122	216,739	1259	146	368.095
1138	60	1885 473	-	1199	131	229.7	1260	126	731 575
1139	99	952,538	-	1200	196	235.079	1261	145	325,179
1140	153	806.515	ŀ	1201	184	216.835	1262	175	653 474
1141	123	681,933	ŀ	1201	283	300 336	1262	126	381 662
1142	317	891.307	ŀ	1203	41	382,611	1265	191	400 416
1143	161	531.754	ŀ	1203	145	552 214	1265	115	494 293
1144	153	379 158	ŀ	1204	136	273 286	1265	180	390 539
11/5	217	A15 A05	┢	1205	121	/18 076	1267	110	1266 219
1145	217	302 202	┢	1200	170	2410.070	1269	192	21/ 102
1140	187	1003 119	┢	1207	183	409 301	1260	16/	440.88
1147	107	676 272	┢	1200	100	409.301	1203	170	276 244
11/0	120	7/1 691	┢	1203	1/0	547 525	1270	1/3	376.061
1150	100	1000 072	┝	1210	140	617 010	12/1	102	570.001
1150	259	1090.973	┝	1211	124	017.912	1272	211	162 922
1151	33	323.478	┢	1212	114	343.85/	12/3	211	402.833
1152	129	332.421	┝	1213	114	392.329	12/4	22/	247.071
1153	207	513.458	┝	1214	127	568.964	12/5	201	438.289
1154	134	559.276	┝	1215	245	318.214	1276	198	1/8.216
1155	12	404.85	┝	1216	308	459.192			
1156	220	430.503	┝	1217	131	301.676			
1157	91	241.321	┝	1218	180	158.75			
1158	49	497.626	L	1219	203	266.937			

Anexo 5. Escarpes identificados

No.	Dirección (azimut)	Distancia (m)
0	137	173.145
1	237	220.178
2	155	221.604
3	136	261.681
4	160	266.451
5	117	277.939
6	134	301.68
7	173	308.015
8	150	313.999
9	169	321.05
10	316	350.249
11	310	387.679
12	96	390.078
13	165	398.791
14	175	406.559
15	175	441.846
16	173	443.961
17	97	477.957
18	179	482.497
19	138	501.193
20	181	504.685
21	208	521.946
22	127	576.158
23	89	586.051
24	57	603.303
25	175	613.652
26	87	620.111
27	177	623.499
28	158	683.451
29	127	692.833
30	136	894.667
31	307	920.756
32	318	1027.387
33	218	1062.837
34	157	1194.1
35	121	1197.382
36	166	1236.399
37	187	1606.634
38	298	1654.03
39	121	1688.426
40	163	1727.796
41	77	1734.54
42	184	1839.012
43	125	2210.534

117