

UNIVERSIDAD AUTÓNOMA DE SAN LUIS POTOSÍ FACULTAD DE INGENIERÍA INSTITUTO DE GEOLOGÍA

"ESTUDIO DE LOS MECANISMOS DE ALTERACIÓN DEL EDIFICIO B «ALTAR DE CRÁNEOS» ZONA ARQUEOLÓGICA TEMPLO MAYOR, CIUDAD DE MÉXICO. IMPLICACIONES PETROGRÁFICAS, GEOQUÍMICAS Y MECÁNICAS"

TESIS

QUE PARA OBTENER EL GRADO ACADÉMICO DE MAESTRO EN CIENCIAS EN GEOLOGÍA APLICADA PRESENTA

GABRIELA MORA NAVARRO

ASESOR

DR. RUBÉN ALFONSO LÓPEZ DONCEL

BECARIO 509404 CONSEJO NACIONAL DE CIENCIA Y TECNOLOGÍA CONACYT

SAN LUIS POTOSÍ, S.L.P. SEPTIEMBRE, 2015

Agradecimientos

Al Dr. Rubén López Doncel por su apoyo y dirección de la presente investigación.

A la Lic. María Barajas Rocha por todo el apoyo y asesoría brindados para la realización de este estudio en el Sitio Arqueológico de Templo Mayor.

Al Dr. Carlos Javier González González, Director del Museo del Templo Mayor por facilitar el acceso y los permisos requeridos para los estudios realizados, así como al personal de vigilancia del Sitio por todas sus atenciones.

Al Dr. Alfredo Aguillón Robles, Dra Ma. Elena García Arreola, Dr. Erik Espinosa Serrano y a Miguel Cortina Rangel por su apoyo y asesoría para la realización de los análisis en el Laboratorio de Geoquímica del Instituto de Geología de la Universidad Autónoma de San Luis Potosí.

Al Dr. José Ramón Torres Hernández por su apoyo en todo el proceso.

Al Dr. Manuel Espinosa Pesqueira por su apoyo para la realización de los análisis DRX, MEB-EDS en los Laboratorios del Instituto Nacional de Investigaciones Nucleares.

Al Dr. Jose Luis Ruvalcaba Sil por su apoyo para la observación microscópica de las muestras en el Laboratorio Nacional de Ciencias para la Investigación y la Conservación del Patrimonio Cultural del Instituto de Física de la Universidad Nacional Autónoma de México.

A la Lic. Irlanda Fragoso Calderas y la Coordinación Nacional de Conservación del Patrimonio Cultural por facilitar el equipo para el registro termográfico y junto con la Lic. Marlene Sámano Chong y colaboradores del STROM de la Escuela Nacional de Conservación Restauración y Museografía Manuel del Castillo Negrete, por compartir la información generada en torno al Edificio B, en temporadas de estudio e intervención anteriores, punto de partida de esta investigación.

Al Dr. Wanja Wedekind por sus asesorías durante la investigación y apoyo para la realización de los análisis de identificación de sales la Universidad de Gotinga.

Al Mtro. Mauricio Benjamín Jiménez Ramírez por su apoyo para realización de los análisis de FRX y a la Facultad del Hábitat de la Universidad Autónoma de San Luis Potosí por facilitar el equipo.

A familiares y amigos que me acompañaron en este proceso.

A todos mi más profundo agradecimiento.

A LA LRBM GABRIELA MORA NAVARRO PRESENTE.

En atención a su solicitud de Temario, presentada por el **Dr. Rubén Alfonso López Doncel** Asesor de la Tesis que desarrollará Usted, con el objeto de obtener el Grado de *Maestra en Ciencias en Geología* **Aplicada**. Me es grato comunicarle que en la Sesión de Consejo Técnico Consultivo celebrada el día 15 de enero del presente, fue aprobado el Temario propuesto:

TEMARIO:

"Estudio de los mecanismos de alteración del Edificio B «Altar de cráneos», Zona Arqueológica Templo Mayor, Ciudad de México. Implicaciones petrográficas, geoquímicas y mecánicas"

Introducción.

- 1. Marco contextual de la Zona Arqueológica Templo Mayor, Ciudad de México.
- 2. Metodología para la caracterización de los materiales constructivos y los mecanismos de alteración del Edificio B.
- 3. Resultados de la caracterización de los materiales y los mecanismos de alteración.
- 4. Discusión. Conclusiones. Referencias.

"MODOS ET CUNCTARUM RERUM MENSURAS AUDEBO"

ATENTAMENTE

M. I. JORGE ALBERTO PÉREZ GONZAIPEZOSI
DIRECTOR. FACULTAD DE INGENIERIA
DIRECTOR

FACULTAD DE INGENIERÍA

Av. Manuel Nava 8 Zona Universitaria • CP 78290 San Luis Potosi, S.L.P. tel. (444) 826 2330 al39 fax (444) 826 2336 www.uaslp.mx Copia. Archivo *etn.

Índice

ln	troducción	1
	Marco contextual de la Zona Arqueológica Templo Mayor, Ciudad de éxico	3
	1.1 Antecedentes de la zona arqueológica de Templo Mayor y el Edificio B	3
	1.2 Sistema constructivo y materiales constitutivos del Edificio B	6
	Contexto geológico y secuencias estratigráficas relacionadas con los materiales constructivos del Edificio B	g
	1.4 Sedimentos lacustres, hidrogeología y subsidencia del área de estudio	15
	1.5 Climatología y condiciones ambientales del Centro Histórico de la Ciudad de México .	18
	Metodología para la caracterización de los materiales constructivos y l ecanismos de alteración del Edificio B	os 27
	2.1 Reconocimiento general de la estructura	27
	2.2 Registro termohigrométrico	28
	2.3 Fluoroespectrometría de rayos X (FRX)	29
	2.4 Toma de muestras	31
	2.5 Digestión ácida	32
	2.6 Espectrometría de emisión óptica con plasma de acoplamiento inductivo (ICP-OES)	33
	2.7 Espectrometría de masas (ICP-MS)	33
	2.8 Difractometría de rayos X (DRX)	33
	2.9 Microscopía electrónica de barrido y análisis por energía dispersiva de rayos X (MEB-EDS)	
	2.10 Petrografía de láminas delgadas	34
	2 11 Identificación de ignos	31

3. Resultados de la caracterización de los materiales y los mecanismos de alteración
3.1 Estado general de la estructura
3.2 Resultados del registro termohigrométrico del Edificio B
3.2.1 Datos de temperatura y humedad ambiental obtenidos por registro con termohigrómetros
3.2.2 Resultados generales del registro termográfico4
3.2.3 Análisis del comportamiento termohigroscópico relacionado con alteraciones del sistema constructivo e interacción de los geomateriales4
3.3 Caracterización geoquímica, microestructural y de fases cristalinas de las tallas en roca volcánica que integran el Edificio B
3.3.1 Resultados de la caracterización preliminar con Fluoroespectrometría de Rayos X (FRX)5
3.3.2 Resultados del análisis geoquímico (ICP-MS, ICP-OES)5
3.3.3 Caracterización microestructural y de fases cristalinas6
a. Basaltos vesiculares6
b. Tobas
c. Identificación de sales8
4. Discusión 8
4.1 Mecanismos de alteración8
4.2 Modelo de alteración del Edificio B9
Conclusiones 10°
Referencias 10

Resumen

La investigación de los mecanismos de alteración del Edificio B, de la Zona Arqueológica Templo Mayor, en la Ciudad de México, da seguimiento al proyecto de registro y estudio de la estructura realizado en años anteriores por el Escuela Nacional de Conservación Restauración y Museografía Manuel del Castillo Negrete (ENCRyM). La presente fase contempla la documentación de la alteración de los materiales pétreos que conforman la estructura en la que, debido al elevado índice de contaminantes ambientales, condiciones climáticas que varían de semiáridas a subtropicales, hundimiento heterogéneo y corrimientos del subsuelo, se ha acelerado el deterioro de los diferentes tipos líticos de origen volcánico que lo conforman.

Mediante el registro termográfico del edificio y estudios que incluyeron, FRX, MEB-EDS, ICP-MS, ICP-OES, petrografía y análisis de sales, se logró la caracterización geoquímica y de fases cristalinas de algunas variedades de tobas y basaltos que integran sus fachadas, determinando los principales mecanismos de deterioro que se manifiestan en la degradación más evidente en algunas variedades de tobas, relacionada tanto con su composición como con la interacción de materiales y condiciones de humedad en las fachadas.

El estudio de las propiedades de estos materiales y la comprensión de los factores extrínsecos e intrínsecos que contribuyen a la aceleración de dichos mecanismos, resulta fundamental para la evaluación de propuestas de intervención que contribuyan a la conservación del edificio a largo plazo.

Introducción

La Zona Arqueológica de Templo Mayor, recinto ceremonial de la ciudad mexica de Tenochtitlan (1325-1521), se ubica en el actual Centro Histórico de la Ciudad de México. Las excavaciones sistemáticas en esta zona a partir de la década de 1970, han dejado al descubierto paulatinamente los vestigios de las principales estructuras, destruidas y sepultadas tras la conquista española. El Edificio B, ubicado al norte del basamento principal, como el resto de las estructuras del sitio y los inmuebles emplazados en el Centro Histórico de la Ciudad de México, se encuentra expuesto a condiciones ambientales poco favorables para su conservación.

Desde su excavación a principios de la década de 1980, el Edificio B ha sufrido una serie de deterioros que comprometen la conservación de su rasgo más distintivo, los cráneos tallados en rocas volcánicas dispuestos en sus fachadas. Originalmente estos motivos y el resto de la estructura se encontraban cubiertos con varias capas de enlucidos de cal que los protegían del intemperismo además de constituir la base de una decoración polícroma de la que actualmente sólo se conservan escasos fragmentos. El repentino cambio de condiciones de enterramiento a intemperismo, la pérdida parcial de elementos y recubrimientos y las alteraciones de la estructura, han acelerado diferentes mecanismos de alteración en sus elementos.

Los principales factores de deterioro de los materiales pétreos que conforman las estructuras del sitio son la interacción con el elevado índice de contaminantes ambientales en la zona, el clima que varía de semiárido a subtropical, las condiciones hidrológicas, así como las características del subsuelo y la actividad sísmica (Wedekind et al., 2011). Aunque existen numerosos estudios hidrogeológicos que abordan el problema de la explotación de los acuíferos de la cuenca y su implicación en los hundimientos y corrimientos de suelos, pocos abordan a profundidad el impacto de dicha problemática en la estabilidad de las edificaciones, entre estos destaca el caso de la Catedral Metropolitana (Tamez et al., 1997). En menor medida se han realizado estudios de caracterización petrográfica, geoquímica y mecánica de tipos litológicos presentes en algunos inmuebles del Centro Histórico y el impacto de las condiciones ambientales en su estado de conservación (Martínez y Martínez, 1991; Martínez 1992; Wedekind et al., 2011).

En el caso particular de la Zona Arqueológica de Templo Mayor, se han caracterizado diversos materiales constructivos (López Luján et al., 2003; Wedekind, et al., 2013) pero no se cuenta con un estudio completo de la totalidad de los tipos líticos que conforman el Edificio B y su implicación en la respuesta a los factores extrínsecos mencionados.

Teniendo presente la condición del objeto de estudio como vestigio arqueológico, Patrimonio Cultural de la Humanidad y la responsabilidad de la conservación de su integridad material, se planteó la necesidad de la evaluación de la problemática a partir de un estudio integral de los materiales pétreos que lo conforman. Para enfrentar la limitante que supone en este tipo de bienes culturales la imposibilidad de extracción de muestras en la cantidad y volumen mínimo que usualmente se requieren para el análisis de materiales bajo los estándares internacionales; y considerando el problema y las condicionantes de la extrapolación de las características de materiales similares estudiados en otros sistemas; se diseñó una metodología de estudio integrando herramientas que favorecieran el registro y la caracterización in situ. El estudio de las condiciones de exposición, comportamiento termohigroscópico, microestructura y composición elemental de los diferentes materiales que integran el edificio, partiendo de lo general a lo particular, se llevó a cabo a partir de una primera aproximación con métodos no invasivos (termografía, microfotografía, FRX portátil), la cual guió la selección de puntos de muestreo de elementos representativos de la problemática. El posterior análisis de las muestras en laboratorio (ICP-MS, ICP-OES, DRX, MEB-EDS) permitió caracterizaciones más completas de los diferentes tipos litológicos, comportamientos y estado de conservación.

El presente documento reúne la información obtenida durante el estudio, mismo que fue llevado a cabo en el periodo de mayo del 2013 a febrero del 2015.

Objetivo general

Caracterizar los mecanismos de alteración del Edificio B "Altar de Cráneos", del Sitio Arqueológico de Templo Mayor, a partir de la identificación de las propiedades petrográficas, geoquímicas y mecánicas de las variedades de tobas y basaltos que integran las tallas de sus fachadas.

Objetivos particulares

- Identificar los factores extrínsecos que inciden en la alteración del Edificio B a partir de la documentación de las características geoclimáticas y ambientales del caso de estudio para contextualizar la problemática.
- Determinar mediante métodos no invasivos las características generales del comportamiento y propiedades de los elementos que integran la estructura y determinar regiones de interés para el muestreo.
- Identificar las características geoquímicas y petrográficas de las variedades litológicas que presentan diferentes tipos y niveles de alteración, a partir del análisis de muestras extraídas.
- Correlacionar la información obtenida para generar un modelo de alteración.

1. Marco contextual de la Zona Arqueológica Templo Mayor, Ciudad de México

1.1 Antecedentes de la zona arqueológica de Templo Mayor y el Edificio B

El sitio arqueológico de Templo Mayor se ubica en el Centro Histórico de la Ciudad de México, delimitado por una poligonal con extensión de 23,980.157 m² cuyas coordenadas perimetrales se encuentran enmarcadas por las calles de Donceles - Justo Sierra al norte, Moneda y República de Guatemala al sur, Correo Mayor - El Carmen al este y República de Argentina y Seminario al oeste. El cuadro pertenece a la Delegación Cuauhtémoc del Distrito Federal (Fig. 1).

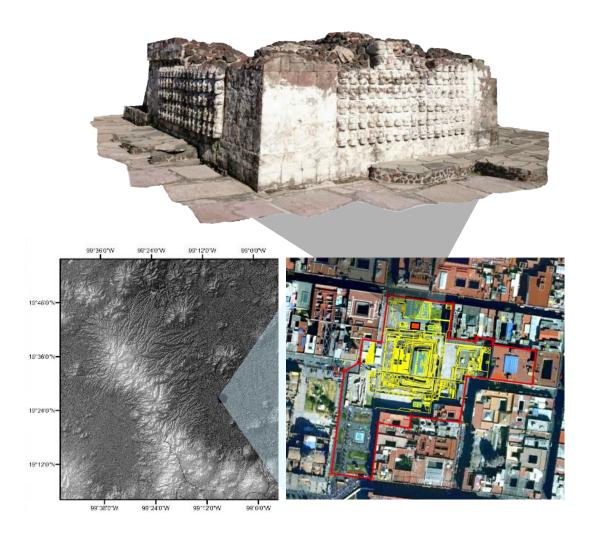


Fig. 1. Ubicación de la zona arqueológica de Templo Mayor en el Centro Histórico de la Ciudad de México y del Edificio B (19°26'07,27"N, 99°07'52,98"W), dentro del polígono que delimita el sitio. Polígono tomado del mapa RPMZAH-0002, Dirección de Registro Público de Monumentos y Zonas Arqueológicos e Históricos, INAH.

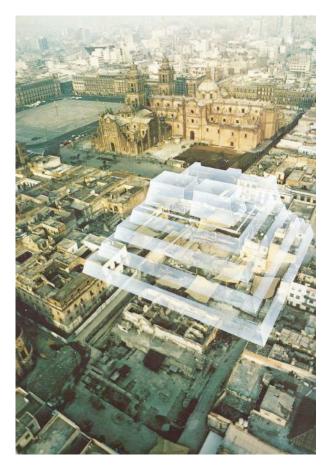


Fig. 2. Vista aérea del Centro Histórico de la Ciudad de México y modelo del Templo Mayor (Matos, 1982).

La zona arqueológica, que antiguamente constituía el centro ceremonial de la ciudad mexica de Tenochtitlan, debe su nombre a la estructura principal del complejo o Templo Mayor, un basamento cuadrangular con orientación W-E, del que se desplantaban cuatro cuerpos con dos templos en la cima dedicados a Tlaloc, dios de la Iluvia y fertilidad y Huitzilopochtli, dios del sol y la guerra, principal deidad mexica. La fundación de México-Tenochtitlan en el año de 1325 marcó el inicio de la construcción de un primer adoratorio que con el paso del tiempo se fue ampliando en siete etapas constructivas sucesivas, en las que se renovaron las cuatro fachadas, así como seis etapas de renovaciones parciales, conformando una estructura de 82 m por lado, la cual se estima, alcanzaba una altura aproximada de 45 m al momento del contacto europeo (Matos Moctezuma, 2014) (Fig. 2).

Al costado norte del Templo Mayor, en el lado NW del complejo, se ubica el Edificio B, una estructura rectangular con orientación W-E cuya esquina NW corresponde a las coordenadas

geográficas 19°26'07,27"N, 99°07'52,98"W; relacionada con la VI etapa constructiva del sitio, asociada al reinado del tlatoani Ahuízotl (1486-1502 d.C) (Fig. 1). Por su ubicación al norte del Templo Mayor y su decoración alusiva a la muerte, se ha planteado la hipótesis de que el Edificio B en concordancia con la cosmovisión mexica, señalaba el rumbo del Mictlampa, la región de los muertos (Matos Moctezuma, 1998, 2003).

Tras la Conquista española, en 1521 d.C., el centro ceremonial de la ciudad de Tenochtitlan fue destruido, sus ruinas sepultadas y sus materiales empleados en las edificaciones que conformarían la Capital de la Nueva España. El Edificio B parcialmente destruido, como el resto de los vestigios del recinto ceremonial mexica, permanecería bajo tierra hasta entrado el siglo XX. Las fuentes históricas señalaban que el Templo Mayor de Tenochtitlan se encontraba en el cruce de las calzadas de Tepeyac, Tacuba e Iztapalapa, lo cual pudo confirmarse con el hallazgo del límite noroeste de la estructura entre 1913 y 1914, por Manuel Gamio, quien aprovechando la demolición del edificio que ocupaba la esquina de las calles Santa Teresa y Seminario realizó excavaciones en dicho predio.

Pero fue hasta 1978, a raíz del hallazgo fortuito del monolito de la diosa Coyolxauhqui por parte de obreros de la Compañía de Luz y Fuerza, que darían inicio las excavaciones sistemáticas en la zona por parte del Instituto Nacional de Antropología e Historia (INAH), mediante el Proyecto Templo Mayor (PTM), bajo la dirección del Arqueólogo Eduardo Matos Moctezuma. Desde entonces han continuado las labores ininterrumpidas de excavación, investigación y conservación, dirigidas actualmente por el Arqueólogo Leonardo López Luján. Durante la primera temporada del PTM, realizada entre los años 1978-1982, se exploraron los restos del basamento principal y sus etapas constructivas, así como catorce edificios aledaños. Fue en el marco de dicha temporada que en 1981 se realizó la excavación del Edificio B (Matos Moctezuma, 2014) (Fig. 3-5).

En 1987 se inauguró el Museo del Templo Mayor, con la finalidad de conservar y exhibir los hallazgos en el sitio. Al año siguiente la zona arqueológica, junto con el Centro Histórico de la ciudad de México fue declarada "Patrimonio de la Humanidad" por la UNESCO. A partir de 1991 surge el Programa de Arqueología Urbana (PAU) con carácter permanente, encargado de los rescates y salvamentos en el primer cuadro de la ciudad. A través del Proyecto Templo Mayor y del PAU, entre 1978 y 2014 la superficie excavada alcanzó los 14,512 m² incluyendo, además de las ampliaciones del Templo Mayor o *huey teocalli*, la Casa de las Águilas, el Cuauhxicalco, 13 adoratorios menores, 169 ofrendas, así como numerosas manifestaciones

Fig. 3-5. Secuencia del proceso de excavación del Edificio B en 1981. Vista de las fachadas E (arriba), N (al centro) y esquina SE liberada (abajo). Archivo Fotográfico INAH.

de pintura mural y escultóricas, entre las que destaca en 2006, el hallazgo del monolito mexica más grande hasta ahora descubierto, la representación de la divinidad Tlaltecuntli (López Luján, 2014).

1.2 Sistema constructivo y materiales constitutivos del Edificio B

El edificio B consiste en una estructura de dimensiones aproximadas de 7.8 m en dirección W-E, 5.4 m en dirección N-S y hasta 2.4 m de altura; con una particular decoración en sus fachadas norte, este y sur, que integran a manera de tablero, hileras de cráneos tallados en distintas rocas volcánicas, principalmente escoria basáltica y tobas. En la fachada poniente se ubica una escalinata que daba acceso a la plataforma del adoratorio (Fig. 6-9).

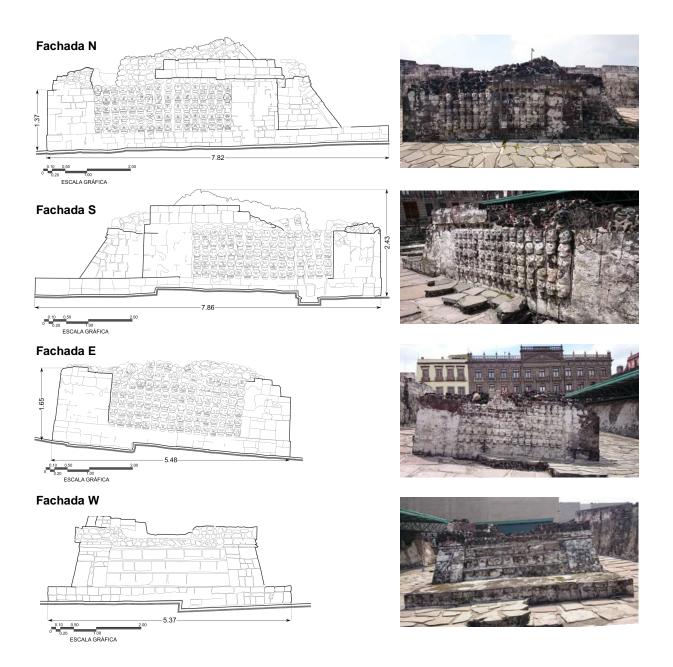


Fig. 6-9. Vista de las fachadas del Edificio B, Zona Arqueológica de Templo Mayor (gráfico adaptado de Sámano et al., 2010).

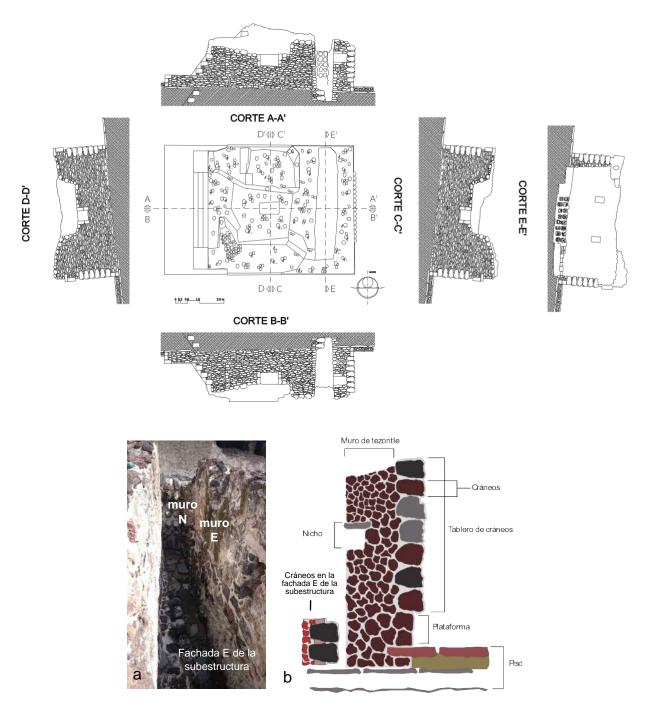


Fig. 10. a. Cortes del Edificio B, Zona Arqueológica de Templo Mayor, a. vista interior muro E y b. esquema de corte E-E' (gráficos adaptados de Sámano et al., 2010).

Los cráneos tallados que integran las fachadas suman en total 252 elementos, sin contar aquellos dispuestos entre los materiales de relleno, así como los que integran una subestructura de características similares, correspondiente a una etapa anterior, cuyo muro oriente puede observarse al interior del edificio (Fig. 10).

Fig. 11. Detalle de tablero de cráneos en el muro E, cubiertos parcialmente con revestimientos de cal originales y añadidos.

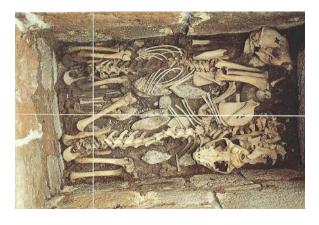


Fig. 12. Ofrenda encontrada al centro del Edificio B, en la parte superior de la estructura, (Corzo, 1981).

El estudio del sistema constructivo reveló que el edificio B fue construido a partir de un núcleo inicial de tierra compactada, recubierta por bloques irregulares de tezontle (escoria basáltica), unidos con mortero de cal, sobre los que se colocaron los aparejos de bloques careados de basalto y tezontle, así como las tallas mencionadas. La estructura fue recubierta con varias capas de mortero de cal (Fig. 11). Esstos morteros de revestimiento, además de dar acabado al edificio, protegían los materiales constructivos de las condiciones de intemperismo, ya que mejoraban las propiedades térmicas del conjunto y actuaban como barrera reductora de la permeabilidad. Estos morteros también constituían el sustrato para la aplicación de policromía, que aún puede apreciarse en algunos elementos que conforman la fachada sur.

En la parte superior, al centro de la estructura, se encontró una caja de ofrenda de mampostería, que contenía los restos óseos de dos jaguares orientados hacia el poniente, así como instrumentos musicales de barro, tales como flautas, teponaxtles y caracoles (López Portillo et al., 1981). Otras dos cajas de menores dimensiones se encontraron en el interior del muro este (Fig.12).

En el estudio de los materiales constructivos de la zona arqueológica se observó que la tierra que se encuentra en los rellenos constructivos tiene alto contenido de materia orgánica y arcillas, así como algas, tules y escamas de pescado, lo que lleva a suponer que se extraía de los lechos lacustres. Este material por su gran plasticidad y adherencia resultaba óptimo para los rellenos. Se determinó también que el tezontle (escoria basáltica), es el material constructivo más abundante en las edificaciones del recinto ceremonial de Tenochtitlan, así como de otros sitios arqueológicos de la región. También fue empleada en el sitio la variedad conocida como basalto recinto, rocas ígneas extrusivas de mayor densidad y tonalidades entre gris y negro que por su solidez fueron empleadas en cimientos, muros de carga, esclinatas, pisos y tallas. En los pisos y sillares de recubrimiento se emplearon también andesitas caracterizadas como de lamprobolita y de piroxenos, cuya pseudoestratificación facilita la obtención de cortes planos.(López Luján et al., 2003).

En el Edificio B, de igual manera el material más abundante es el tezontle, roca ígnea extrusiva de tonalidades rojizas a negras con textura vesicular por degasificación del magma durante la cristalización. Sus propiedades tales como ligereza, baja higroscopicidad y resistencia al intemperismo, lo hacen un material ideal para los sistemas constructivos de la región ya que no aporta mucha carga a la estructura, lo cual es favorable en un subsuelo propenso a la deformación. Su textura además favorece el anclaje del mortero. Esta estructura, a diferencia de otras en el sitio, además de los materiales mencionados integra en sus fachadas tallas en variedades de tobas, caracterizadas durante la presente investigación.

1.3 Contexto geológico y secuencias estratigráficas relacionadas con los materiales constructivos del Edificio B

El Centro Histórico de la Ciudad de México, lugar donde se encuentra la Zona Arqueológica de Templo Mayor, se ubica en la planicie lacustre de la Cuenca de México, a una altitud que oscila entre los 2,240 y 2,390 msnm, en el extremo sur de la Mesa Central. La cuenca cuya extensión aproximada es de 125 km de largo y 75 km de ancho, se encuentra rodeada por elevaciones topográficas de origen volcánico. Limita al norte con las Sierras de Pachuca, Tepotzotlán, Guadalupe, Patlachique y Tepozán, al sur con la Sierra de Chichinautzin, al este con la Sierra Nevada cuyos picos Iztaccíhuatl y Popocatépetl alcanzan una altura media de 5,300 m; y al oeste con las Sierras de Monte Alto y Las Cruces. Dentro del Valle existen aparatos volcánicos aislados que conforman la Sierra de Santa Catarina, el Peñón del Marqués, el Peñón de los Baños y el Cerro de la Estrella.

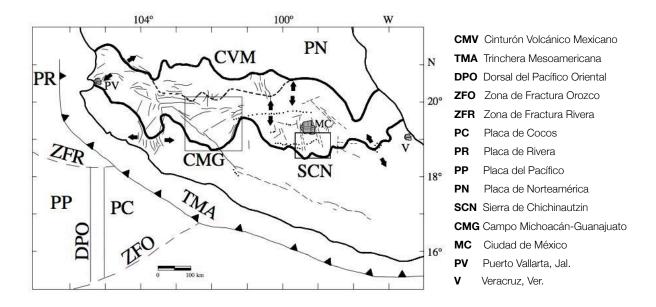


Figura 13. Localización y ambiente tectónico actual del Cinturón Volcánico Mexicano (CVM), provincia volcánica a la que pertenece la zona de estudio. Las líneas suaves representan fracturas y fallas, mientras que las flechas gruesas representan esfuerzos tensionales. (Verma 2001: 3, modificado de Verma, 2000a, Singh y Pardo, 1993).

La Cuenca y las elevaciones mencionadas pertenecen al Eje Neovolcánico o Cinturón Volcánico Mexicano (CVM), provincia volcánica de edad miocénica a reciente, conformada por ~8,000 centros volcánicos, que cubre una zona de 20 a 150 km de ancho y ~1,000 km de largo y orientación aproximada E-W, desde Veracruz hasta Jalisco. (Verma, 1987, Delgado Granados, 1994 y Ferrari et al., 1999 en Velasco y Verma, 2001) (Fig. 13). El origen del CVM se ha asociado tanto con fenómenos de subducción como de extensión. La Sierra de Chichinautzin (SCN) se considera un área clave para entender el origen del vulcanismo en el CVM, por ubicarse en el frente del arco volcánico y presentar una variedad de tipos geoquímicos que permite estudiar los procesos de evolución magmática (Márquez et al., 1999, Velasco et al., 1999 en Verma y Tapia, 2001).

La cuenca permaneció abierta hasta el Pleistoceno cuando intensa actividad volcánica formó la Sierra de Chichinautzin (SCN), obstruyendo el drenaje del Balsas y dando origen a un conjunto de lagos someros, Zumpango, Texcoco, Xochimilco y Tláhuac (Mooser, 1963) (Fig. 14).

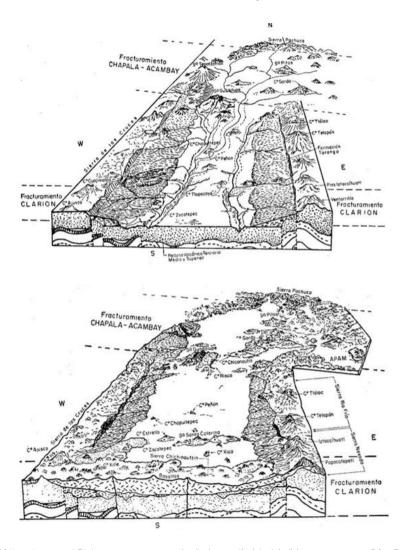


Fig. 14. Cuenca de México durante el Pleistoceno temprano (arriba) y tardío (abajo). (Mooser, 1963 en Díaz Rodríguez, 2006).

De acuerdo con Díaz Rodríguez (2006), la secuencia de los principales eventos geológicos en la cuenca de México que enmarcaron dicho evento comprendió:

- a. Durante el Cretácico, el depósito de aproximadamente 2,000 m de calizas, areniscas y lutitas en ambiente marino.
- b. Durante el Terciario temprano, plegamiento y fallamiento normal de las rocas marinas lo cual originó un sistema tectónico regional de graben centrado en la Cuenca (Fries, 1960, Marín et al.,1986, De Cserna et al.,1988).
- c. Durante el Plioceno-Eoceno, depósito de sedimentos volcánicos, fluviales y lacustres en el graben.
- d. Durante el Oligoceno, Mioceno y Pleistoceno, depósito de flujos de lava y materiales piroclásticos.
- e. Durante el Plioceno superior y el Pleistoceno, depósito de abanicos aluviales y de piamonte en las regiones del este y oeste, (Arellano, 1953, Fries, 1960, Schlaepfer, 1968).
- f. Durante el Pleistoceno, erupciones volcánicas de basalto y pómez en la parte central y sur de la cuenca, así como importantes efusiones del Chichinautzin que causaron el cierre (Fries, 1960, Mooser 1963) y el desarrollo del ambiente lacustre como consecuencia (De Cserna et al.,1988). A lo anterior siguió el desarrollo de un conjunto de fallas NE-SW, a través del piso de la cuenca, bajo los depósitos lacustres (De Cserna et al.,1988, Marín y Aguayo, 1989).

En el último milenio el poblamiento de los islotes de la cuenca, así como el desarrollo en sus inmediaciones de las ciudades prehispánicas y más tarde coloniales, dio lugar a la construcción de obras hidráulicas y el desecamiento artificial de los lagos, cambiando la fisonomía del área. En la ciudad de México-Tenochtitlan, establecida en el islote localizado en el lago de Texcoco, se construyeron chinampas o islas artificiales para el cultivo, formadas por atados de troncos, con relleno tierra y fragmentos de roca; así como cuatro calzadas que comunicaban la isla con la rivera, Tepeyac, Tenayuca, Tlacopan e Iztapalapa, mediante pilotes de madera y cimentación de roca y tierra. También se construyeron acueductos para proveer de agua fresca a la ciudad y diques para protegerla de inundaciones, entre los que destaca el de Nezahualcóyotl, importante obra hidráulica que data de 1449.

Los materiales constructivos documentados en las excavaciones de la zona arqueológica de Templo Mayor se han relacionado con productos correspondientes a formaciones del Terciario y Cuaternario en la cuenca de México, cuyos afloramientos se encontraban en las inmediaciones del lago, lo que facilitaba su transporte en canoas. También se conoce por la *Matrícula de Tributos* y las relaciones del periodo del contacto, la procedencia de algunos materiales desde Señoríos tributarios más lejanos.

A continuación se resume la secuencia estratigráfica de la Cuenca durante el Terciario y Cuaternario (Vázquez y Jaimes, 1987 en CONAGUA, 2002), resaltando las formaciones que tienen correspondencia con las zonas señaladas como posibles fuentes de extracción de materiales pétreos de acuerdo con López Luján et al., (2003), (Tabla 1).

Secuencia estratigráfica de la Cuenca de México

Terciario

Granito Colotepec (Tgc)

Tronco granítico del Eoceno-Medio en el extremo sudoccidental, intrusionado a la formación Xochicalco en el núcleo del anticlinal de Colotepec.

Grupo Balsas (Teob)

Depósitos continentales del Eoceno Tardío al Oligoceno Temprano, que afloran en el sur de la cuenca. Conglomerado calizo compacto con matriz limoarcillosa cementada por calcita y óxido de Fe, estratificación masiva.

Rocas volcánicas (Tomv)

Secuencia de tobas, brechas tobaceas y aglomerados, con capas de clastos aluviales del Oligoceno Tardío al Mioceno Temprano. Aflora erosionada y fracturada en los cerros Picacho y Púlpito del Diablo. Composición de andesítica a riodacítica.

Grupo Pachuca (Tomp)

Derrames lávicos interestratificados con brechas volcánicas del Oligoceno al Plioceno. Lavas basálticas a riolíticas, predominio de andesita y dacita...

Rocas extrusivas (Tmv)

Secuencia de tobas, brechas volcánicas y lavas con afloraciones del Mioceno Medio y Tardío por toda la cuenca, cubiertas por materiales más recientes. En los cerros El Elefante, El Judío, Los Remedios, El Peñón de los Baños, la Base de la Sierra de Guadalupe, Patlachique, N de Texcoco.

D e p ó s i t o s volcánicos (Tpv)

Rocas extrusivas del Plioceno Temprano, tobas cristalinas, vítreas, líticas y pumíticas de composición andesítica a dacítica. Afloran en los flancos de las Sierras de Las Cruces, Zempoala y Río Frío, coronando la Sierra de Guadalupe y Tepozotlán.

Fm. Otomí (Tpo)

Depósitos piroclásticos del Plioceno Tardío que afloran en la Sierra de Monte Alto. Intercalaciones de brechas volcánicas con coladas lávicas de textura fanerítica.

Rocas volcánicas máficas (Tpb)

Derrames lávicos interestratificados del Plioceno Tardío con capas de poco espesor de brechas volcánicas y/o piroclastos.

Fm. Las Cruces (Tpc)

Volcanismo representativo del Plioceno Tardío, conjunto de tres estratovolcanes alineados NNW-SSE en el límite sudoccidental de la cuenca: Desierto de los Leones, La Marquesa, que dividen la Cuenca de México y del Río Lerma. Pómez pliniana, flujos no soldados de cenizas vítreas y pómez con fragmentos y bloques heterogéneos. El espesor máximo de la unidad es de 990 m.

Fm. Zempoala (Tpz)

Secuencia de lavas andesíticas afaníticas-porfiríticas con escasos cristales de anfibol, del Plioceno Tardío que afloran en la porción sudoccidental con un espesor máximo de 1000 m. en el cerro de Zempoala.

Riolita Navajas (Tpn)

Formación del Oligoceno-Mioceno que descansa discordante sobre el grupo Pachuca con un espesor aflorante de 500m.

D e p ó s i t o s piroclásticos y clásticos aluviales (Tppc)

Depósitos no diferenciados relacionados genéticamente con la actividad piroclástica y fluvial del Plioceno, tobas, brechas, conglormerados, gravas, arenas, limos y arcillas, acumulados en fosas tectónicas máx. 750 m (Graben de Chalco). También afloran al poniente de Cuautla con espesor máximo de 400 m.

Secuencia estratigráfica de la Cuenca de México

Cuaternario

Fm. LLano Grande (Qllg)

Secuencia eruptiva de composición variable de andesitas a riodacitas, cubierta discordantemente con la Fm Telapón e Iztaccíhuatl. Capas delgadas de lapilli pumítico y lítico, flujo de cenizas vítreas que afloran en la base noroccidental de la Sierra Nevada.

Fm. El Pino (Qpp)

Conos cineríticos, volcanes de escudo y coladas lávicas que forman los cerros La Estrella, El Pino, Chimalhuacán, Chiconautla y los campos volcánicos de Tezontepec-Otumba. Secuencias de flujos lávicos con intercalaciones delgadas de tefra no consolidada. Los flujos de lava son de grano fino a medio con fenocristales de labradorita, olivino, pigeonita, hiperstena, augita y piroxenos en matriz microcristalina.

Fm. Tláloc (Qt)

Coladas lávicas que forman parte de la Sierra Río Frío, de composición andesítica latítica y dacítica. Sucesiones caracterizadas en su base por pómez. Cubre discordantemente rocas volcánicas del Mioceno Medio-Tardío y del Pleistoceno Temprano.

Fm. Iztaccíhuatl (Qi)

Rocas provenientes de los volcanes LLano Grande Iztaccíhuatl y Nexpayantla (antecesor del Popocatépetl). Afloramientos en el Iztaccíhuatl con espesor máximo de 2,500 m. Secuencia de andesita basáltica dacítica, que inicia con derrames lávicos y domos de andesitas de olivino y/o anfibol y dacitas de anfibol. Descansa con ligera discordancia sobre las Fm. Llano Grande Tláloc y superyace en discordancia a las Fm. Chichinautzin y Popocatépetl. Edad en el intérvalo de 0.6 a 0.08 millones de años.

Fm. Popocatépetl (Qp)

Pleistoceno Tardío-Holoceno (fechamientos isotópicos y polaridad magnética). Se infiere un espesor máximo de 3,500 m. Cubre discordantemente la porción meridional de la Fm. Iztaccíhuatl y probablemente se interdigita hacia el poniente con la Fm. Chichinautzin ya que son contemporáneas.

Fm. Chichinautzin (Qc)

Lavas extensas, vesiculares, masivas o lajadas de composición andesítico-basáltico y andesítica. Grano fino y medio con fenocristales de olivino, piroxenos en matriz vítrea y microcristalina. Se le asignó espesor máximo a la unidad de 1,800 m. y edad de 700,000 años.

Depósitos aluviales (Qal)

Depósitos del Pleistoceno al Holoceno con espesor máx. 500 m, poco material consolidado, fragmentos con gran heterogeneidad en la granulometría. Descansan en discordancia sobre depósitos piroclásticos del Plioceno.

Depositos lacustres (Qla)

Sedimentos clásticos y productos piroclásticos relacionados con la actividad volcánica del Popocatépetl y de la Sierra Chichinautzin, depositados en ambiente lacustre. Se extienden desde Zumpango hasta Chalco y desde Texcoco hasta el Cerro de Chapultepec. Espesor de 30 a 300 m, mayores en las planicies de la Ciudad de México, Texcoco y Chalco, disminuyen hacia la periferia.

Tabla 1. Secuencia estratigráfica de la Cuenca de México en el Terciario y Cuaternario (a partir de Vázquez y Jaimes, 1987 en CONAGUA, 2002). Se resaltan las formaciones de posible correspondencia con las zonas señaladas como fuentes de extracción de materiales pétreos (a partir de López Luján et al., 2003).

Los materiales constructivos de naturaleza basáltica utilizados en las estructuras de Templo Mayor, se han relacionado con los afloramientos en Peñón de los Baños a 2.8 km de Tenochtitlan, Peñón del Marqués a 10.8 km, Cerro de la Estrella a 9.3 km, elevaciones centrales y orientales de la península de Santa Catarina a 14 km; así como tributos de la península de Chimalhuacán a 15 km, del Pedregal de San Ángel a 12 km y de las formaciones situadas al sur de Xochimilco, a 22 km de la zona (López Luján et al., 2003) (Fig. 15).

Las últimas corresponden principalmente a la Fm. Chichinautzin (Pleistoceno superiorreciente), constituida por material volcánico de espesor variable (hasta de 1,800 m) emitido por volcanes monogenéticos, de los que se han identificado 221 ubicados en el Distrito Federal, Morelos y el Estado de México.

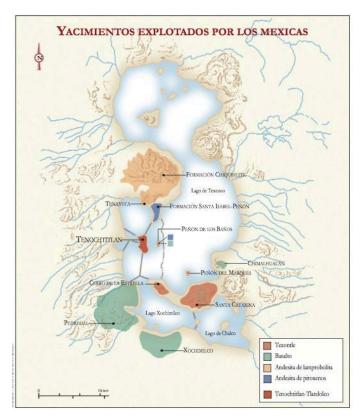


Fig. 15. Ubicación de las fuentes de tezontle, basalto y andesitas en la Cuenca de México explotadas por los Mexicas (López Luján et al., 2003).

Estos materiales producto de la actividad volcánica caracterizada por conos de escoria con flujos de lava asociados, volcanes tipo escudo y domos de lava, ocupan ~2,400 km² entre las coordenadas 98°40 W a 99°40 W y 18°30 N a 19°30 N, (Bloomfield, 1975, Martín del Pozzo, 1982, Martín del Pozzo et al., 1997, Márquez et al., 1999 en Velasco y Verma, 2001). La variedad de magmas de la SCN incluye composiciones máficas clasificadas como basaltos, traquibasaltos y traquiandesita basálticas, con hy o ne normativa; magmatismo evolucionado representado por traquiandesitas basálticas y andesitas basálticas con alto MgO (SiO² = 53-55%, MgO = 8.8- 10.1%), así como magmas con texturas de desequilibrio y amplio intervalo composicional (SiO² = 55.5-67.0%), clasificados como traquiandesitas basálticas, andesitas y dacitas (Velasco y Verma, 2001) (Fig.16).

La procedencia de las andesitas estudiadas en el sitio se relacionó con la Fm. Chiquihuite, al norte del Distrito Federal, en los límites con el Estado de México, cuyas elevaciones en el siglo XV coincidían con las orillas del lago; así como la Fm. Santa Isabel-Peñón a 2.8 km de Tenochtitlan y la Sierra de Guadalupe a 6.5 km (López Luján et al., 2003) (Fig. 15). Estas formaciones se relacionan con la fase de vulcanismo acontecida durante el Mioceno-Plioceno en el Complejo de la Sierra de Guadalupe, la cual se caracteriza por lavas ácidas y la formación de grandes domos dacíticos (Fig. 16).

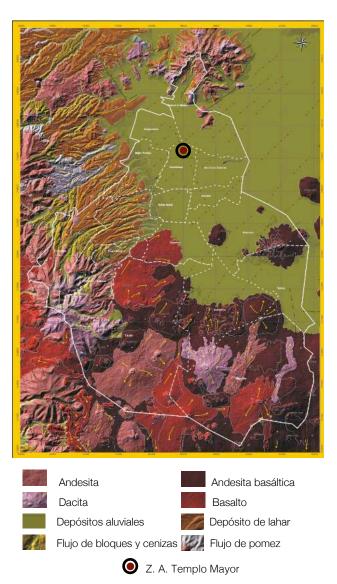


Fig. 16. Sección del Mapa Geológico del Distrito Federal. Fuente SGM, UNAM, Protección Civil D.F.

La cal empleada en los enlucidos, estucos y argamasas del sitio, provenía de calizas obtenidas en la región de Tula, Hidalgo y de los alrededores de Oaxtepec, Morelos. Las calizas también eran tributadas por las provincias del norte del Estado de México y la parte centro-sur de Puebla. En la argamasa se empleaba arena volcánica explotada en Peñón de los Baños y Santa Catarina, así como tributada por los chalcas y mazahuaques (López Luján et al., 2003).

1.4 Sedimentos lacustres, hidrogeología y subsidencia del área de estudio

El subsuelo del valle de México contiene sedimentos lacustres de edad cuaternaria, loess, rellenos aluviales, rocas volcánicas del Terciario y calizas cretácicas (Mooser et al.,1974 en Velasco y Verma 2001), dado que la parte central de la cuenca se llenó paulatinamente con acarreos limo-arenosos, limo-arcillosos, así como emisiones de cenizas y pómez provenientes de los volcanes del sur.

De igual manera, el brusco cambio de pendiente de los ríos dio lugar a grandes depósitos aluviales de composición muy variable y estratificación cruzada o lenticular al

pie de las sierras, resultado de una dinámica erosiva debido a periodos de lluvia intensa (Díaz Rodríguez, 2006) (Fig. 16).

Los sedimentos lacustres de la cuenca se pueden clasificar de acuerdo con su origen en tres grupos, los de componente alóctona, autóctona y diagenética. Los primeros consisten en minerales detríticos tales como la plagioclasa, hornblenda, hiperstena, cristobalita, vidrio volcánico, minerales de arcilla, ceniza volcánica y materia orgánica, resultado de la erosión de la cuenca. Los de componente autóctona incluyen precipitado de calcita bioquímica (valvas de ostrácodos y conchas de gastrópodos), sílice biogénica (frústulas de diatomeas), olitos, y materia orgánica.

Los sedimentos lacustres de componente diagenética incluyen productos de la alteración de vidrio volcánico o de la inestabilidad de otros componentes primarios después de su deposición, tales como sílice, ópalo y minerales ferromagnesianos (Fig. 17).

Los suelos lacustres son altamente compresibles ya que se componen de sedimentos blandos y altamente estructurados, con contenido de agua en el subsuelo mayor a 400%, índice de plasticidad que excede 300% e índice de compresión (Cc) que puede llegar a 10, valor muy elevado considerando que en la mayoría de los suelos es menor a 1. Además las ondas sísmicas se amplifican y aceleran en estos suelos con respecto a la zona firme (Díaz Rodríguez, 2006) (Fig. 18).

La pérdida acelerada de agua subterránea provoca constante compresión y

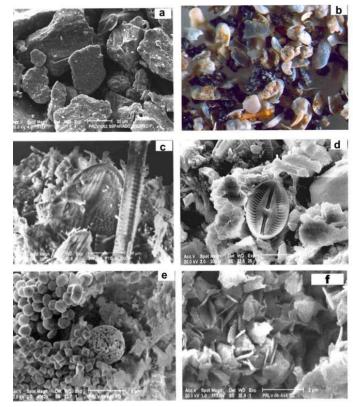


Fig. 17. Microfoografía que ilustra la forma de las partículas del subsuelo de la ciudad de México: (a) Partículas de limo, (b) Valvas de ostrácodos, (c) y (d) Frústulas de diatomea, (e) framboides de pirita, (f) Dominios de partículas con estructura floculada (Díaz Rodríguez, 2006).

hundimiento de estos suelos. El acuífero bajo la Zona Metropolitana de la Cd. de México se encuentra semiconfinado por un paquete sedimentario de material rocoso y arcilloso de tres cuerpos. Estas tres unidades que varían en sus parámetros hidrodinámicos, están comunicadas hidráulicamente. El primer cuerpo consiste en un paquete arcilloso de alta porosidad, baja permeabilidad y constitución heterogénea, que actúa como semiconfinante en el centro de la cuenca. Bajo dicho paquete se encuentra el acuífero en explotación actual, formado por piroclastos y conglomerados de origen volcánico con espesor variable (mayor a 200 m) y propiedades hidráulicas heterogéneas. Subyacente a éste último, se encuentran rocas volcánicas fracturadas, cuya base llega a ubicarse a 2000 m en el centro de la cuenca, disminuyendo hacia los márgenes. La interacción de estas tres unidades se relaciona con el fenómeno de subsidencia heterogéneo que afecta la ciudad. (CONAGUA, 2002).

La sobreexplotación del acuífero ha ocasionado el alarmante descenso de sus niveles. En el análisis del nivel estático del periodo 1987-1997 la parte central de la ciudad, tuvo una evolución negativa de 5 a 12 m, por lo que se estima que el promedio de descenso anual es de 0.5 a 1.2 m. La tasa de hundimiento para el área del Centro Histórico de la Ciudad de México es de -92 a -115 mm (Cabral Cano, 2011).

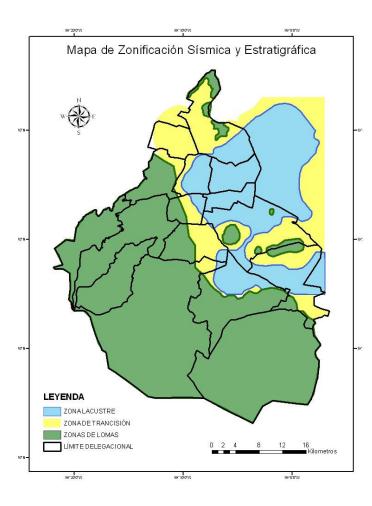


Fig. 18. Zonificación en el Distrito Federal (Díaz Rodríguez, 2006).

Dicho comportamiento, como se mencionó es heterogéneo, la zona cercana al aeropuerto de la ciudad, por ejemplo, no presentó cambios significativos en dicho periodo, mientras que otras zonas presentaron evoluciones positivas. Para el 2002 la extracción de agua subterránea registrada en la Ciudad de México era del orden de 50 m³/s, representando el 70% del abastecimiento de la metrópoli. La profundidad de los niveles existentes en la porción central del acuífero en dicho año era de entre 60 y 65 m, se estimó una recarga total media anual del acuífero de 279,000,000 m³/ año, mientras que el volumen anual concesionado era de 1,248,582,526 m3, lo que resultaba en una disponibilidad de aguas subterráneas de -969,582,526 m³/ año, es decir una sobreexplotación grave de la unidad hidrogeológica (CONAGUA, 2002). No se encontraron datos más recientes, pero se estima que dichas condiciones se siguen agravado.

Al problema de sobreexplotación se añade el de contaminación del acuífero por crecimiento de la mancha urbana y deficiencias en el control de desechos. En la década de 1990 se reportaron concentraciones de cloruros 250% superiores al límite permisible según las normas sanitarias, con fuertes variaciones, en la parte noroeste del acuífero que reportó incrementos de 400 mg/l. En esta zona la evolución de la dureza total de las aguas subterráneas sólo durante dicha década presentó un incremento de 200 mg/l. De igual manera el residuo seco total mostró un incremento de amonio llegando a 900 mg/l. El hecho de que la contaminación de las aguas subterráneas fue más notoria al norte del Distrito Federal, en la zona colindante con la parte sureste del Lago de Texcoco, se atribuyó a la infiltración de aguas residuales provenientes de asentamientos humanos irregulares (CONAGUA, 2002). Los problemas mencionados, además del obvio impacto que tienen en la calidad de vida y salud de la población, comprometen la estabilidad de las estructuras expuestas a la acelerada subsidencia del terreno y la migración de iones que aceleran los mecanismos de degradación de los materiales constructivos.

1.5 Climatología y condiciones ambientales del Centro Histórico de la Ciudad de México

El Distrito Federal presenta cuatro tipos de clima, en la zona donde se ubica el objeto de estudio, el Centro Histórico de la Ciudad de México, el clima predominante es Templado subhúmedo (C(w)), con lluvias en verano. Esta zona se caracteriza por presentar una temperatura media anual que varía de 12 a 18°C, grado de humedad intermedio, una temporada lluviosa en verano y precipitación total anual entre los 600 y 800 mm, llegando a poco más de 950 mm en años lluviosos (SEDEMA, 2005) (Fig. 19).

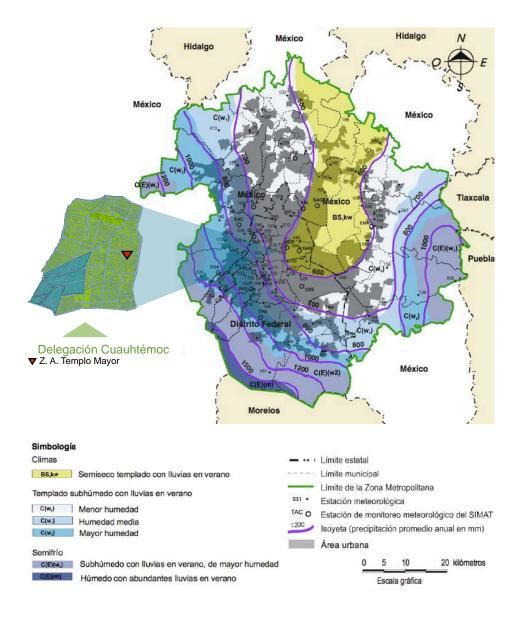


Fig. 19. Mapa de Climas y Estaciones Meteorológicas en la zona metropolitana de la Ciudad de México (ZMCM). Elaborado con base en INEGI. Base de Datos Geográficos de la Carta de Climas escala 1:1000 000. Aguascalientes, Ags., 2003. (INEGI, 2005).

En el año 2013, los registros de precipitación a nivel nacional mostraron una anomalía de este tipo, registrando valores acumulados que alcanzaron los 920 mm. El incremento se hizo particularmente notorio durante el mes de septiembre, en que se registró precipitación de 227 mm, en contraste con el promedio climatológico registrado desde la década de 1940, de 136 mm. Dicho fenómeno ocasionado por la confluencia de dos tormentas tropicales, afectó el área de estudio (Fig. 20-21).

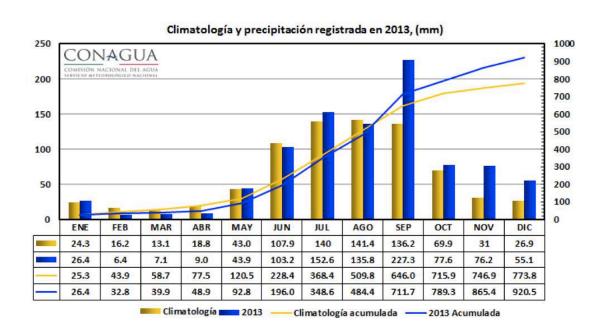


Fig. 20. Gráfico de precipitación promedio mensual y acumulada, a nivel nacional a partir del registro climatológico 1941-2012. Conformado con datos del Sistema de Información Hidroclimatológica (SIH) de la Gerencia de Aguas Superficiales e Ingeniería de Ríos (CONAGUA, 2014).

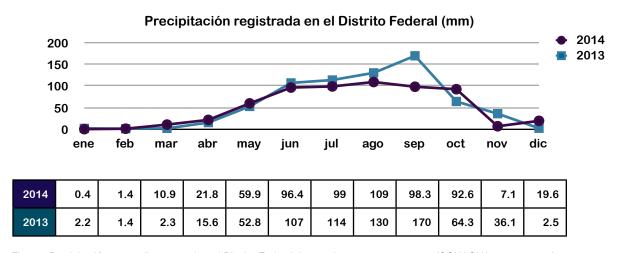


Fig. 21. Precipitación promedio mensual en el Distrito Federal durante los años 2013 y 2014 (CONAGUA , 2014, 2015).

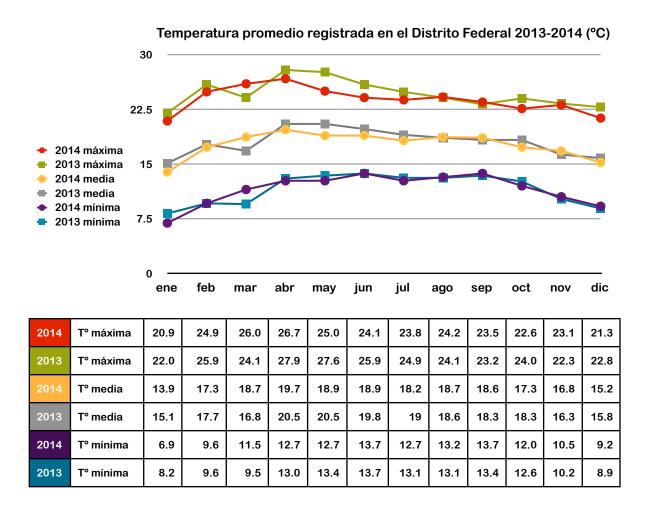


Fig. 22. Temperatura promedio mensual, máxima mínima y media, registradas en el Distrito Federal, durante los años 2013 y 2014 (CONAGUA 2014, 2015).

La temperatura promedio registrada en el periodo 2013-2014, presentó un comportamiento más regular (Fig. 22). Sin embargo, los datos de temperatura media registrados en el periodo 1992-2001 en la ZMVM, permitieron distinguir un núcleo con valores más elevados en la zona centro de la ciudad, fenómeno conocido como "isla de calor", que incluye la estación meteorológica MERCED (MER), cercana a la zona de estudio, la cual registró un promedio de 17.5°C con descenso radial uniformes de 15°C hasta 11°C, en la parte sur del Distrito Federal. En invierno, se registraron temperaturas mínimas promedio de 12.3°C en el centro, que disminuyeron hacia la periferia hasta 5 a 6°C (INEGI, 2005) (Fig. 23).

De igual manera el historial climático de la zona reveló que los promedios humedad relativa máxima y mínima en la región central donde se ubica el objeto de estudio, son más altos, alcanzando 52% y disminuyen en las cercanías del centro de la Ciudad de México, en un rango de 46 a 49%, incrementándose de manera radial hacia los límites de la ZMVM (Fig. 23).

Fig. 23. Mapas de temperatura media (superior) y HR media (inferior) en la ZMVM, serie anual 1992-2001, donde se aprecia el fenómeno de "isla de calor" y la elevación de HR que afectan el área de estudio. Fuente SEDEMA Dirección de Inventarios y Modelación de Emisiones. (INEGI, 2005).

Fig. 24. Campo de viento Promedio Vectorial en la superficie dentro de la ZMVM, 2002. Fuente Gobierno del Distrito Federal. Secretaría del Medio Ambiente. Dirección de Inventarios y Modelación de Emisiones (INEGI, 2005).

Los principales flujos de viento en el área de estudio siguen una dirección N-S, aunque también ocurren flujos con dirección S-N (INEGI, 2005) (Fig. 24). La calidad del aire en la zona metropolitana del Valle de México (ZMVM) está determinada por el balance entre las emisiones contaminantes generadas y la capacidad atmosférica de eliminar o reducir la carga de dichas emisiones. Entre los factores que disminuyen dicha capacidad se encuentran la elevada altitud de la Ciudad de México superior a 2000 msnm, que provoca una menor eficiencia en los procesos de combustión; el relieve orográfico de la zona que impide la dispersión de los contaminantes; la intensa radiación solar por la latitud tropical en la que se ubica, que promueve mayor reactividad para la formación de contaminantes secundarios como el ozono; así como el crecimiento poblacional y consecuente incremento de emisiones (SEDEMA, 2012).

A mediados de los años 70, la Ciudad de México se consideraba una de las más contaminadas del mundo y para finales de los años 80, los contaminantes monitoreados en la ciudad, rebasaban los criterios de las Normas Oficiales Mexicanas de Salud Ambiental para evaluar la calidad del aire. Cabe mencionar que es en este contexto temporal que se enmarca la excavación del Edificio B, por lo que su exposición en los años subsecuentes a emisiones de plomo, monóxido de carbono (CO), dióxido de azufre (SO₂) y dióxido de nitrógeno (NO₂), se dio incluso en concentraciones más altas que las actuales.

Con la implementación de diversos programas de regulación y mejora ambiental, se ha logrado, desde hace algunos años, un mejor control de las emisiones de los contaminantes mencionados para que cumplan con las concentraciones máximas permisibles establecidas en las normas. Sin embargo, otras emisiones cuyas fuentes principales se relacionan con el tráfico vehicular y el consumo energético se han disparado, ya que entre 1992 y 2012 se registró un incremento en la población de la ZMVM de alrededor del 25%, con el consecuente aumento en la flota vehicular de 2 a 5 millones de unidades, el crecimiento del sector industrial y la generación de desechos (SEDEMA, 2012).

El parque vehicular y los congestionamientos son responsables de la mayor parte de las emisiones de óxidos de nitrógeno NOx, compuestos orgánicos volátiles COV y monóxido de carbono CO, por lo que sus fuentes principales se asocian con vialidades de intenso tráfico. De igual manera aunque las emisiones de carbono negro (CN) provenientes principalmente de la combustión de diesel en tractocamiones y vehículos de carga pesada, tienen sus principales fuentes en la periferia, su efecto térmico impacta en la zona centro. La delegación Cuauhtémoc, en la cual se ubica la zona de estudio, es una de las más afectadas por estas emisiones (SEDEMA, 2012) (Fig. 25-26).

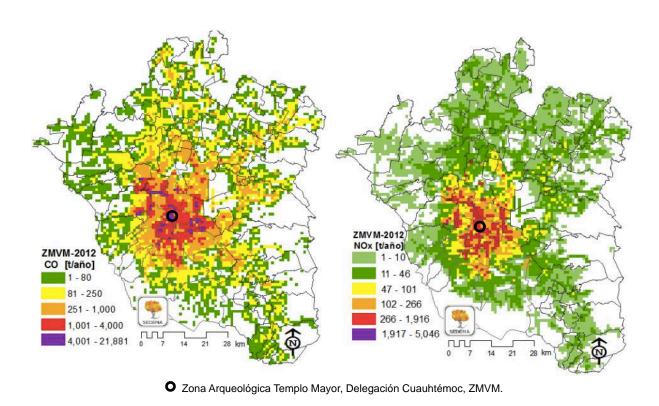


Fig. 25. Áreas de la ZMVM afectadas por las emisiones de CO y NOx (ppm). Puede observarse que la Zona Arqueológica de Templo Mayor se encuentra en un área gravemente afectada por las emisiones de CO (indicadores morados) y muy afectada por emisiones de NOx, (indicadores rojos). Fuente Gobierno del Distrito Federal. Secretaría del Medio Ambiente. Dirección de Inventarios y Modelación de Emisiones (SEDEMA, 2012).

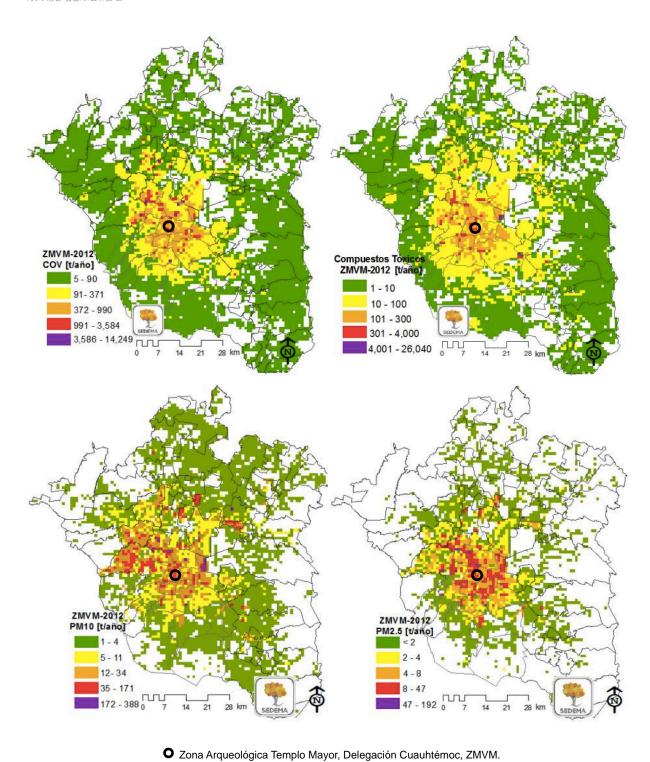


Fig. 26. Áreas de la ZMVM afectadas por las emisiones de COV, COT, PM10 y PM2.5 (ppm). Puede observarse que la Zona Arqueológica de Templo Mayor se encuentra en un área gravemente afectada por las emisiones de PM2.5 (indicadores morados) y muy afectada por emisiones de COV, COT y PM10 (indicadores rojos). Fuente Gobierno del Distrito Federal. Secretaría del Medio Ambiente. Dirección de Inventarios y Modelación de Emisiones (SEDEMA, 2012).

El CN es un contaminante de vida corta, ya que dura pocos días en la atmósfera, sin embargo, tiene un potencial de calentamiento 460 veces mayor que el CO₂ por su propiedad refractaria y su capacidad de absorber la luz convirtiéndola en calor (SEMARNAT-INECC, 2012). Estas emisiones asociadas con partículas suspendidas de contaminantes tóxicos (COT), menores a 10 y 2.5 micrómetros (PM10 y PM2.5), contribuyen al calentamiento global y junto con las emisiones de los gases de efecto invernadero (GEI), metano, óxido nitroso y bióxido de carbono, constituyen los compuestos responsables de dicho efecto. En las edificaciones forman depósitos superficiales que favorecen reacciones secundarias y formaciones de costras e influyen en el comportamiento térmico e higroscópico de los materiales. La producción de ozono está condicionada principalmente por las emisiones de COV, que además del transporte, también tienen como fuente importante el sector industrial, responsable además, del 74% de las emisiones de SO₂ y fuente principal de emisiones de contaminantes tóxicos (COT) y de efecto invernadero. A partir de la década de 1990, parte del sector industrial se reubicó a las afueras de la Ciudad de México, al norte de la ZMVM, sin embargo, la mancha urbana lo ha absorbido, además los vientos dominantes que provienen de la zona norte ocasionan que las emisiones impacten en las áreas centro y sur.

La concentración de contaminantes atmosféricos en bajas alturas aumenta en las primeras horas del día debido a las inversiones térmicas, que favorecen su estancamiento. En el Valle de México estas inversiones son mayormente por radiación, al presentarse fuga de calor de la superficie terrestre durante la noche y enfriamiento más o menos rápido del suelo instantes antes de que salga el sol. En consecuencia las capas inferiores registran temperaturas más bajas, ocasionando una inversión térmica de tipo radiativa, cuya hora de ruptura se mantiene en promedio por debajo de las 9:30 a.m (INEGI, 2005). El historial climático de la zona de estudio muestra un incremento en la frecuencia de este tipo de eventos a principios de la década de 1990 y una disminución gradual subsecuente. Por otra parte, la intensidad de los eventos se elevó drásticamente en 1998 pero disminuyó de manera notoria a partir del año siguiente (INEGI, 2003). La capa de mezclado, es decir la región de la atmósfera en la cual se dispersan los contaminantes, tiene una altura variable dependiendo de las condiciones de calentamiento del aire y la velocidad del viento, presentando una evolución a lo largo del día y del año. Durante las primeras horas de la mañana la altura de esta capa es mínima, por lo que la mayor concentración de contaminantes a nivel de suelo coincide con las horas de mayor condensación. Conforme aumenta la temperatura y el volumen de aire a lo largo del día, los contaminantes se dispersan, aunque no todos siguen este comportamiento. El ozono, por ejemplo, cuya generación depende de procesos fotoquímicos, registra un incremento conforme transcurren las horas de mayor radiación, presentando niveles más altos en las primeras horas de la tarde, sobre todo en días poco nublados (INEGI, 2005).

Las emisiones contaminantes diarias promedio registradas durante 2014 fueron de CO (0.5-2.3 ppm), O₃ (3-50 ppb), NOx (16-94 ppb), SO₂ (0-31 ppb) con notoria disminución durante el temporal de lluvias, PM10 (15-131 ug/m3) y PM2 (7-81ug/m3) (Tabla 2 y Fig. 26).

Contaminante	Principio de operación	Descripción del método
Dióxido de azufre (SO ₂)	Fluorescencia UV	Método equivalente: medición de la fluorescencia emitida por las moléculas de SO ₂ cuando son excitadas por una fuente de radiación ultravioleta.
Monóxido de carbono (CO)	Absorción en el infrarrojo	Método de referencia: medición de la absorción de luz infrarroja por parte del monóxido de carbono en una celda de correlación.
Dióxido de nitrógeno (NO ₂)	Quimioluminiscencia	Método de referencia: medición de la luz emitida durante la reacción entre el NO y el O ₃ . La separación de las especies nitrogenadas se realiza a través de la medición diferencial de NO y NO ₂ (previa reducción catalítica). El valor de NO _x corresponde a la suma de NO+NO ₂ .
Ozono (O ₃)	Fotometría UV	Método equivalente: absorción de luz ultravioleta en una longitud de onda de 254 nm, la disminución en la intensidad es proporcional a la concentración de ozono de acuerdo a la ley de Beer-Lambert.
Partículas suspendidas PM ₁₀ , PM _{2.5}	Gravimetría	Método equivalente: determinación de la masa de partículas presente en un flujo de aire, las partículas son separadas de la corriente y depositadas sobre un filtro colocado en un elemento oscilante, la variación en la frecuencia de oscilación es proporcional a la masa. El tamaño de partícula está determinado por la entrada selectiva y el flujo de muestra.
Partículas suspendidas PM ₁₀ , PM _{2.5}	Atenuación de radiación beta	Método equivalente: atenuación en la intensidad de la radiación beta por las partículas depositadas sobre un filtro continuo.
Carbono negro (CN)	Óptico	Método equivalente: medición de la absorción de luz por partículas suspendidas en un aerosol a 880 nm (IR), cuantitativa de la masa de CN.

Tabla 2. Descripción de métodos de medición de emisiones contaminantes (tomada de Dirección de Monitoreo Atmosférico aire.df.gob.mx y ampliada).

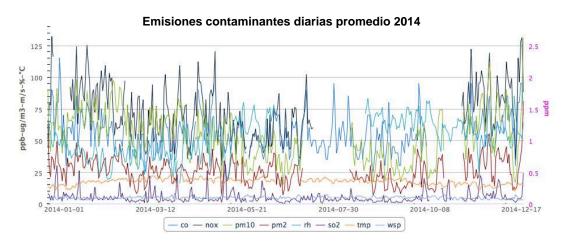


Fig. 26. Emisiones diarias promedio de CO, NOx, SO₂, PM10, PM2; HR, temperatura y vel. de viento registrados en la estación Merced, MER, en el Centro Histórico de la Ciudad de México. (SEDEMA, Dirección de Monitoreo Atmosférico aire.df.gob.mx).

Las condiciones climáticas y los fenómenos descritos, favorecen la interacción de los contaminantes atmosféricos con los materiales pétreos que constituyen el Edificio B, ocasionando su degradación acelerada.

2. Metodología para la caracterización de los materiales constructivos y los mecanismos de alteración del Edificio B

En el diseño de la metodología empleada para la caracterización de los materiales que conforman el Edificio B, su estado de conservación y los mecanismos de alteración que aceleran el deterioro de la estructura, se buscó integrar herramientas para el análisis no invasivo, reduciendo la necesidad de toma de muestras al mínimo y asegurando la representatividad de los resultados obtenidos de su estudio analítico.

El registro sistemático de la estructura y sus alteraciones, la documentación de las condiciones climáticas del área de estudio y el monitoreo del comportamiento térmico e higroscópico de los elementos que integran el edificio ante las condiciones de humedad, temperatura e insolación que afectan las diferentes fachadas, así como la identificación preliminar in situ de los tipos litológicos presentes, orientó la determinación de puntos de muestreo representativos de los materiales y la problemática.

La caracterización geoquímica, microestructural y de fases cristalinas presentes en las muestras analizadas permitió la correlación de su composición elemental y mineralógica con los mecanismos de alteración observados. Los resultados se confrontaron con estudios previos de las propiedades físico-químicas y mecánicas de materiales similares para reconocer patrones de comportamiento. Los datos obtenidos permiten proponer un modelo de alteración que explica el estado actual del edificio, a partir del cual pueden valorarse alternativas para disminuir la velocidad del proceso.

2.1 Reconocimiento general de la estructura

Como primer paso se efectuó un registro gráfico y fotográfico detallado del Edificio B, documentando el estado de conservación de la estructura, así como un mapeo litológico preliminar de los cráneos tallados que integran sus fachadas. Se contaba con registros anteriores realizados entre 2007 y 2010, mismos que permitieron observar el progreso de algunas alteraciones. Cabe mencionar que los registros de estado de conservación realizados con anterioridad se centraban sobre todo en las pérdidas de revestimientos y sólo se contaba con una descripción general de los sustratos pétreos del edificio, misma que se verificó y analizó en relación con los mecanismos de alteración presentes en la estructura.

Para identificar las tallas se les asignó una clave compuesta por una inicial que designa la orientación del muro al que corresponden (N, E, S) seguido de la letra correspondiente a la fila en la que se encuentran, clasificando éstas en orden alfabético de abajo hacia arriba (A-E en los muros norte y sur, A-G en el muro este); así como del número de columna que integran, asignado de izquierda a derecha (1-16), (Fig. 28).

De igual manera se registró la ubicación del edificio, tomando como punto de referencia las coordenadas geográficas de la esquina NE del mismo.

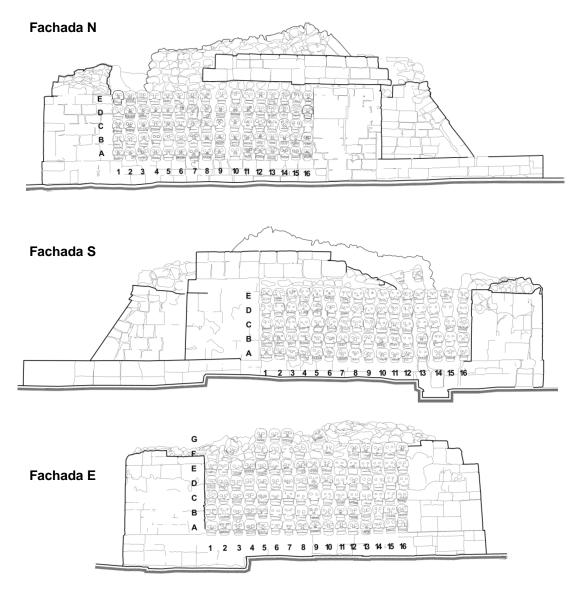


Fig. 28. Claves de identificación asignadas a las tallas de las fachadas N, S y E.

2.2 Registro termohigrométrico

Para documentar las fluctuaciones de humedad relativa y temperatura a las que están expuestas las diferentes fachadas del Edificio B, se colocaron termohigrómetros digitales marca EXTECH modelo RHT10, durante los meses de mayo y septiembre de 2014, mismos que de acuerdo con el historial climático del área de estudio, presentan las fluctuaciones más intensas.¹

1 Durante el mes de mayo se registran las temperaturas medias más elevadas en combinación con el inicio del temporal de lluvia y durante el mes de septiembre, precipitaciones abundantes que alternan con lapsos secos, marcando el fin de la temporada. Véase apartado 1.5, fig. 21-22.

Durante el mes de septiembre, aprovechando la alternancia de lapsos húmedos y secos, se realizó un registro termográfico para documentar las variaciones en el comportamiento térmico e higroscópico de los diferentes materiales que integran el Edificio B, según su ubicación, exposición, propiedades y grado de alteración tanto de los elementos como del sistema constructivo (Jo y Lee, 2014; Grinzato et al., 2002).

En el registro termográfico se empleó una cámara marca Testo modelo 875-1 con detector de 160 x 120 pixeles y sensibilidad térmica de <80 mK, rango de medición de -20°C a +280°C, con una exactitud de ± 2°C y objetivo de 32° x 23°. El registro se realizó a intervalos de 30 minutos durante 2 periodos de 10 horas continuas, separados por un lapso también de 10 horas, para detectar las fluctuaciones de humedad y temperatura en las cuatro fachadas. Se generaron más de 250 imágenes las cuales fueron analizadas con el software IRSoft identificando temperaturas máximas, mínimas y valores medios registrados durante el día, tanto por fachada como por elemento, así como perfiles térmicos e higroscópicos. Para facilitar la interpretación visual de las imágenes se utilizó la tabla de consulta de color (LUT color look up table), en sus gamas Iron (tonalidades violáceas a grises) y de alto contraste (tonalidades rojo-amarillo-verdeazul), integradas en el software (Fig. 29).

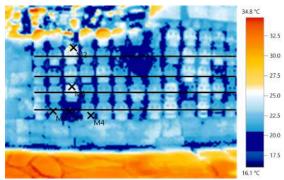


Fig. 29. Proceso de registro termográfico en muro N y análisis de perfiles.

2.3 Fluoroespectrometría de rayos X (FRX)

Con la finalidad de obtener información preliminar sobre la composición elemental de las tallas y bloques que integran las fachadas del Edificio B, que apoyara la identificación de los diferentes tipos litológicos presentes en la estructura, se realizó un análisis in situ con un equipo portátil de fluoroespectrometría de rayos X (FRX) marca Bruker modelo Tracer III SD.

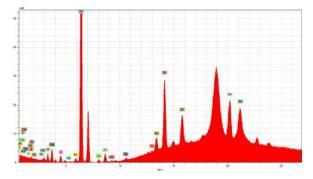


Fig. 30. Registro y análisis de espectro con equipo portátil de FRX. Puntos de muestreo analizados en el elemento NC05.

A partir de series de 5 lecturas sucesivas con diferentes parámetros para identificar elementos mayores (15keV 25µA 30s con vacío; 40keV 11.3µA 30s, 40keV 10.7µA 30s con filtro de Al y Ti) v elementos traza (40keV 30µA 300s, con filtro de Al, Ti y Cu), se generaron más de 400 espectros mismos que fueron analizados con el software Spectra Artax, cuantificando los pulsos correspondientes a cada pico elemental por medio del análisis de convolución de Bayes (Shackley, 2011). Los datos numéricos obtenidos fueron procesados matemáticamente y graficados para visualizar la presencia de patrones de comportamiento en la composición elemental. Los mismos datos se reprocesaron usando métodos estadísticos para identificar patrones de agrupamiento por medio del software RapidMiner Studio a partir de la conformación de clusters con el algoritmo k-mean. La agrupación preliminar obtenida ayudó junto con la valoración de otros aspectos, en la discriminación de elementos de interés para el muestreo (Fig. 30).

Posteriormente, con el interés de explorar las posibilidades de aplicación de esta técnica no invasiva en la obtención de datos cuantitativos para la caracterización elemental, así como la precisión de los resultados, se generaron

calibraciones a partir de la medición sistemática de 12 estándares certificados por el United States Geological Survey (USGS), como valores de referencia. Los estándares empleados fueron Andesita AGV-1, AGV-2, Basalto Columbia River BCR-2, Basalto Islandia BIR-1, Basalto Observatorio Volcánico Hawai BHVO-1, Cuarzo latita QLO-1, Diabasa W-2, Esquisto Cody SCo-1, Esquisto mica SDC-1, Esquisto Green River SGR-1, Granodiorita Silver Plume Colorado GSP-2 y Sienita STM-1. Las series de lecturas sucesivas de las muestra de estándares con diferentes parámetros, permitieron valorar la capacidad de detección de los elementos y la desviación estándar entre los resultados. De igual manera se realizaron lecturas controladas de las muestras extraídas del Edificio B que serían sometidas a otros análisis geoquímicos (Fig. 31), mismas que fueron procesadas con las calibraciones generadas, obteniendo los valores de concentración (wt%) de sílice y otros elementos mayores.

2.4 Toma de muestras

Los elementos seleccionados para el muestreo de la estructura corresponden a las tallas EC02, ED04, EF06, EG05, EG07, NA07, NA16, NC01, NC02, NC05, NC07, NC15, ND02 NE01 y NE11, ubicadas en los muros norte y este del Edificio B. Para su selección se tomó en cuenta la representatividad de los diferentes grupos identificados preliminarmente en el registro de la estructura y mediante FRX, su estado de conservación, ubicación y accesibilidad, así como el comportamiento térmico e higroscópico observado. En el caso de las tobas se buscó el muestreo de ejemplares similares con diferentes niveles de alteración, así como representativos de diferentes tipos de deterioro (Fig. 31).

Las muestras obtenidas corresponden a núcleos y fragmentos de 150 mm³ de dimensión promedio, extraídos con sacabocados de punta de diamante del interior de las tallas y zonas de desprendimientos.

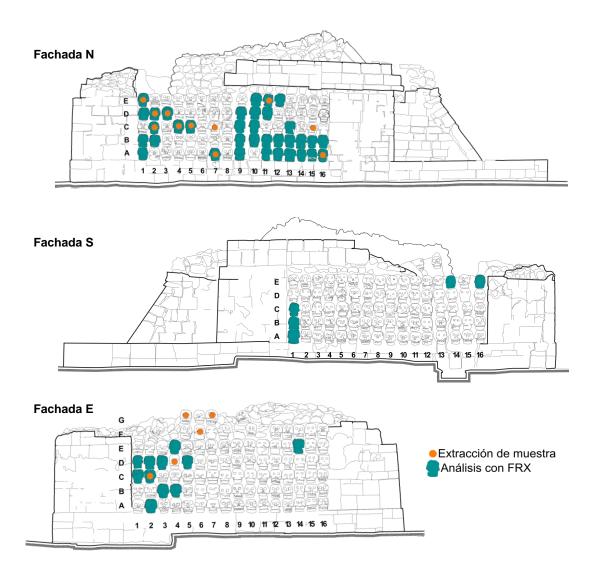


Fig. 31. Esquema de identificación de los puntos de muestreo en las fachadas N, S y E.

2.5 Digestión ácida

Una porción de 0.2 g de las muestras extraídas se sometió a digestión ácida para su posterior análisis geoquímico mediante espectrometría de emisión óptica con plasma de acoplamiento inductivo (ICP-OES) y espectrometría de masas (ICP-MS). En la preparación de las muestras se siguió una metodología de digestión en placa optimizada en el LGIG, a partir de métodos propuestos en trabajos previos en otros laboratorios (Houk, R. S. 1980, Cotten et al., 1995, Morton et al., 1997 en Almaguer, 2010).

El proceso de digestión ácida consistió en la molienda en un mortero de ágata, de las muestras de roca en seco hasta obtener grado talco, seguido del pesado en una balanza analítica marca Ohaus modelo Adventurer (repetibilidad 0.1 mg, linearidad 0.2 mg), de una cantidad aproximada al 0.1 g, la cual se colocó en un vial de teflón de 30 mL marca Savillex. El proceso se duplicó para cada muestra, además se pesó y colocó en un vial similar una cantidad aproximada al 0.1 g de sílica previamente lavada en el sonicador y secada en la estufa a 60°C durante 3 a 6 h, a la cual se le agregaron 2.5 mL de la solución estándar multielemental Cat. # ICP-MS-ICS-2 (As 10, Cu 20, Ag 5, Cd 10, Mn 20, V 20, Cr 20, Ni 20, Zn 10, Co 20, Se 10 mg/L), para ser empleada como controlador de calidad (spike), con el fin de monitorear el porcentaje de eficiencia de extracción. Adicionalmente se añadieron como muestras de control los estándares AGV-2, BCR-2 y QLO-1a (USGS). Se agregó 1 mL de HF y 1 mL de HNO3 concentrados, grado ultrex, a cada uno de los viales, los cuales se taparon y dejaron en reposo por 68 h con el fin de disolver la materia orgánica presente en la muestra.

Posteriormente se liberaron los vapores producidos, se cerraron nuevamente los viales y se reflujaron a 100°C durante 8 h para disolver las muestras, tras lo cual se dejaron enfriar y en reposo durante 12 h. Transcurrido este tiempo se repitió el proceso para después proseguir con la recuperación en 1mL de HCI. Se dejaron reflujar y reposar nuevamente para volver a calentar a 100°C hasta la total evaporación del ácido (8 h) (Fig. 32).

Fig. 32. Proceso de reflujo en placa y recuperación en HCl durante el proceso de digestión ácida de las muestras del Edificio B.

El residuo se recuperó en 1mL de agua desionizada, se dejó reflujar por aproximadamente 6 h y tras enfriar se aforó en tubos falcon de 50 mL con agua desionizada, registrando peso y volumen de aforo.

2.6 Espectrometría de emisión óptica con plasma de acoplamiento inductivo (ICP-OES)

La concentración de elementos mayores (Si, Al, Fe, Mn, Mg, Ca, Na, K, P) en las muestras extraídas se determinó mediante espectrometría de emisión óptica con plasma de acoplamiento inductivo (ICP-OES). El análisis se realizó con un equipo marca Thermo SCIENTIFIC modelo iCap 7000 series, con automuestreador modelo ASX-520 CETAC, en el Laboratorio de Geoquímica del Instituto de Geología de la UASLP (LGIG).

El análisis de concentración de Si en el ICP-OES requirió la preparación de las muestras por digestión en microondas, para evitar la evaporación. Los elementos se midieron simultáneamente en modo axial (para concentraciones menores de 1ppm) y radial (para concentraciones mayores a 1ppm).

El tratamiento de los datos se efectuó en el programa Qtegra versión 2.4 Thermo SCIENTIFIC. Los resultados obtenidos se graficaron con el software *GCDkit* para clasificar las rocas de acuerdo al contenido total del álcalis (Na₂O+K₂O) versus el contenido de sílice (SiO₂) según el diagrama TAS (Le Bass et al., 1986 con límites propuestos por Le Maitre at al.,1989, 2002). También se utilizaron diagramas bivariantes (x vs. y) tipo Harker, para identificar las tendencias y correlaciones entre los elementos mayores.

2.7 Espectrometría de masas (ICP-MS)

La concentración de Ti y elementos traza (Li, Sc, V, Cr, Co, Ni, Zn, Rb, Sr, Y, Zr, Nb, Sn, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, Tl, Pb, Th y U) se determinó mediante espectrometría de masas (ICP-MS) con un equipo marca Thermo SCIENTIFIC modelo X SERIES 2, también en el LGIG, a partir de las muestras previamente digeridas.

De igual manera, mediante el tratamiento de los resultados con el software *GDCkit*, se graficaron los datos en diagramas bivariantes y tipo spider normalizados a condritas, para identificar la coherencia y huella geoquímica de las muestras.

2.8 Difractometría de rayos X (DRX)

El análisis de las fases cristalinas presentes en las muestras se realizó mediante difractometría de rayos X (DRX), tanto de las muestras en polvo como enteras, empleando un difractómetro marca SIEMENS modelo D5000, en los laboratorios del Instituto Nacional de Investigaciones Nucleares (ININ). Los difractogramas obtenidos fueron analizados con el software *PANalytical X'Pert HighScore Plus*, para la identificación de fases y la correlación estadística de resultados. Dado que se trata de un análisis no destructivo, las mismas muestras pudieron ser analizadas con otras técnicas.

2.9 Microscopía electrónica de barrido y análisis por energía dispersiva de rayos X (MEB-EDS)

La caracterización de las muestras mediante microscopía electrónica de barrido de bajo vacío y análisis por energía dispersiva de rayos X (MEB-EDS) también se llevó a cabo en los laboratorios del Instituto Nacional de Investigaciones Nucleares, empleando un MEB de presión variable marca JEOL, modelo JSM-6610 LV. Con ello se obtuvieron imágenes de la microestructura de los diferentes tipos litológicos analizados, así como mapeos elementales. De igual manera se trata de un procedimiento no destructivo, que permitió la recuperación de las muestras para futuros análisis.

2.10 Petrografía de láminas delgadas

A partir de los resultados de los estudios anteriores se determinó obtener secciones delgadas de seis muestras, EG05, EG07, NA07, NC01, ND02 y NE01, para una caracterización más completa de las microestructuras cristalinas y su grado de alteración. Las secciones delgadas fueron analizadas en el microscopio petrográfico marca Zeiss modelo Axio Scope.A1 con cámara AxioCam ERc5s acoplada, del Laboratorio Nacional de Ciencias para la Investigación y la Conservación del Patrimonio Cultural, del Instituto de Física de la Universidad Nacional Autónoma de México (UNAM).

2.11 Identificación de iones

La identificación del tipo de sales con cristalización predominante a diferentes alturas de los muros de la estructura, se realizó a partir del análisis de aniones presentes en las eflorescencias salinas de las tallas NA07, NB10 y NC15, mediante espectrocolorimetría, estudio realizado en el Centro de Geociencias de la Universidad George August de Gotinga, Alemania (Fig. 33).

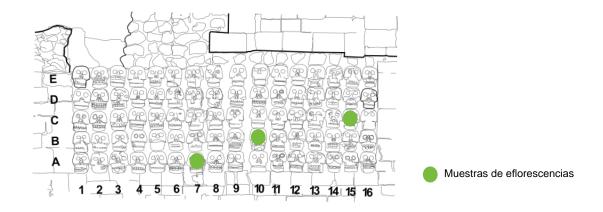


Fig. 33. Muestreo de eflorescencias salinas en NA07, NB10 y NC15.

3. Resultados de la caracterización de los materiales y los mecanismos de alteración

3.1 Estado general de la estructura

Los tableros de cráneos tallados que conforman las fachadas N, S y E del Edificio B, a diferencia del resto de la estructura, integran una mayor variedad de tipos litológicos cuya distribución en las fachadas es irregular, como lo muestra el mapeo. En la fachada N es notorio el predominio de tobas, en el muro sur en cambio, el material constitutivo de la mayoría de los elementos es el tezontle, mientras que en el muro E la distribución entre tobas, tezontle y basalto recinto es más equilibrada (Fig. 34).

Fig. 34. Mapeo litológico de tallas en las fachadas N, S y E del Edificio B, "Altar de cráneos", Templo Mayor.

Las principales alteraciones estructurales que se observan en el edificio se relacionan con el fenómeno de subsidencia y corrimiento del subsuelo, que ha provocado el hundimiento diferencial generando una inclinación con 3º de desplome en dirección NE. Esto aumenta la carga en el muro N, causa fracturas y desplazamiento sobre todo en los muros N y S, favoreciendo además el flujo de las precipitaciones pluviales en esa dirección y reduciendo la distancia del muro respecto al manto freático. Las zonas de fractura coinciden con una falla en el terreno que atraviesa de S a N la estructura (Fig. 35-38).

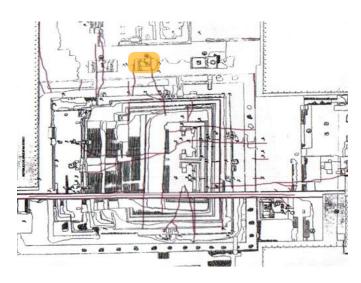


Fig. 35. Plano de Grietas que afectan la Z.A. de Templo Mayor, Ciudad de México. Cortesía del Departamento de Conservación de la Zona Arqueológica del Templo Mayor, 2008. Facilitado por la Rest. María Barajas Rocha, Mtro. Tenoch Medina González.

En el proceso de excavación la estructura fue liberada de los rellenos constructivos de manera irregular, dejando la parte interna del muro E expuesta y el resto de la estructura cubierta con un entortado de cemento, lo cual provoca un comportamiento térmico e higroscópico irregular, además de generar diferencias de cargas.

La particular distribución de las tallas aunada a las alteraciones del sistema constructivo, la interacción con los diferentes materiales presentes en los tableros, las condiciones de cada muro según su orientación, así como las características ya descritas del contexto, ha dado lugar a diversos deterioros que se describen a continuación.

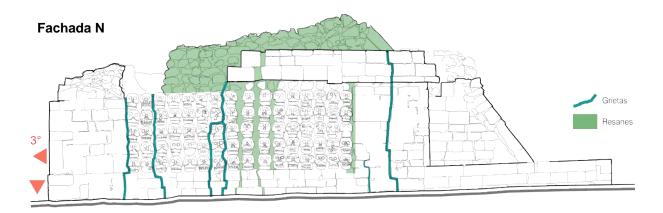


Fig. 36. Esquema de daños estructurales en la Fachada N del Edificio B, Templo Mayor.

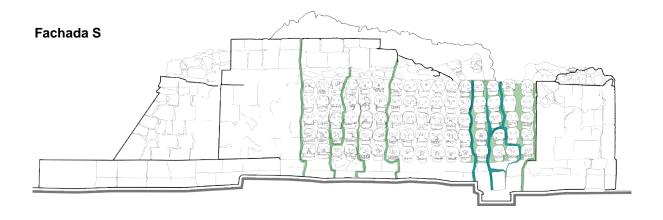


Fig. 37-38. Esquema de daños estructurales en las fachadas S y E del Edificio B, Templo Mayor.

Los enlucidos se han perdido casi por completo en la fachada N, se encuentran degradados en la fachada E y en la fachada S aunque conservan más capas éstas se encuentran muy alteradas y en estado frágil. En la parte superior de la estructura se puede observar el crecimiento de plantas y musgo, mientras que entre las tallas del muro S es más evidente la colonización de microorganismos. Las eflorescencias salinas son más abundantes en el muro N.

De igual manera el deterioro de las tallas es más evidente en este muro, donde las tobas se ven gravemente afectadas por procesos de delaminación y disgregación, principalmente, mientras que algunos basaltos muestran fracturas y fragmentación. En el muro E, en cambio, el tipo de deterioro predominante observado responde más a procesos erosivos. El estado de conservación de las tallas en el muro S es menos evidente debido a que conservan en mayor medida sus recubrimientos. Sin embargo, con excepción de un elemento correspondiente a una toba (SE02), el resto de las tallas están constituidas por basaltos vesiculares que por su resistencia al intemperismo y por conservar sus recubrimientos es probable que se encuentren estables (Fig. 39-41).



Fig. 39-41. Esquemas de alteraciones y deterioros predominantes en las fachadas N, S y E del Edificio B, Templo Mayor.

3.2 Resultados del registro termohigrométrico del Edificio B

El registro termohigrométrico del Edificio B arrojó información sobre la manera en que las condiciones climáticas documentadas impactan el objeto de estudio. A continuación se presentan los resultados del registro realizado en las diferentes fachadas, así como el análisis del comportamiento térmico e higroscópico producto de las alteraciones del sistema constructivo, el grado de exposición y la interacción de los geomateriales que las constituyen.

3.2.1 Datos de temperatura y humedad ambiental obtenidos por registro con termohigrómetros

A partir de los datos obtenidos mediante la colocación de termohigrómetros en las fachadas del edificio se comprobó que las fluctuaciones de humedad y temperatura fueron más frecuentes durante el mes de mayo, a pesar de que la precipitación promedio registrada en septiembre fue considerablemente mayor (59 mm y 98.3 mm respectivamente, CONAGUA, 2014). Esto se debe a que durante mayo las temperaturas máximas promedio son más elevadas. Las fluctuaciones registradas en general fueron más intensas en el muro sur que en los muros norte y este (Fig. 42).

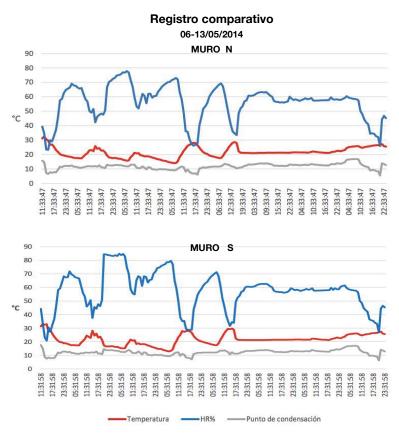


Fig. 42. Registro comparativo de las fluctuaciones de humedad y temperatura en los muros N y S del Edificio B, obtenido mediante la colocación de termohigrómetros digitales en las fachadas. Datos registrados del 06 al 13 de mayo de 2014.

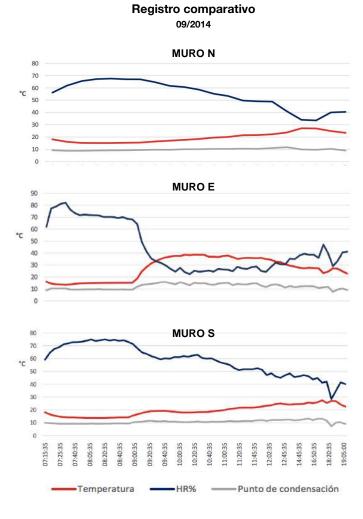
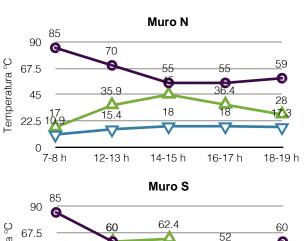
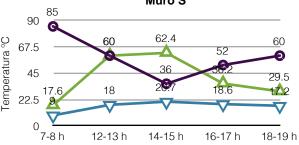


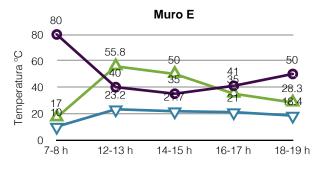
Fig. 43. Condiciones de temperatura, humedad relativa y punto de condensación promedio, registradas en los muros N, E y S, simultáneas al registro termográfico realizado en septiembre de 2014.

En el registro efectuado en septiembre pudo observarse que las fluctuaciones en promedio son más notorias en el muro E durante las primeras horas del día, ya que debido a su orientación recibe mayor insolación lo cual provoca un incremento más acelerado de temperatura (Fig. 43). Aunque como se verá más adelante, el comportamiento de los elementos que integran las fachadas varía en función de otros factores como masa, exposición, tipo litológico, cromaticidad y grado de alteración, respondiendo de manera diferencial a las condiciones promedio de los muros.

También se observó que las temperaturas más bajas promedio ocurren entre las 6 y 7 horas (6:40 h como media), seguidas del incremento paulatino hasta las 15-16 horas y el consiguiente decremento. Dado que dichos cambios se reflejan en el edificio en promedio una hora más tarde, las termografías relativas a las 7-8, 12:30-13, 14:30-15, 16:30-17 y 18:30-19 horas, muestran los cambios más significativos en el comportamiento de los diferentes elementos de la estructura.

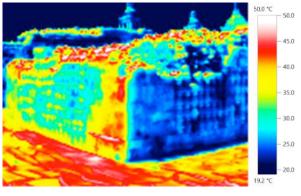

3.2.2 Resultados generales del registro termográfico

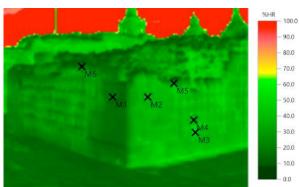

El registro termográfico permitió el análisis de las fluctuaciones de humedad y temperatura en las diferentes fachadas, así como en los elementos y zonas de interés en cada una de ellas. Los resultados muestran cómo la falta de insolación afecta de manera particular el muro N cuyos elementos mantienen temperaturas promedio más bajas y humedad relativa más elevada, mientras que en el muro S las fluctuaciones se intensifican y en el muro E la temperatura en los elementos de las hileras superiores incrementa casi con la misma velocidad que en el muro S pero a diferencia de éste, decrece a partir del medio día (Fig. 44).


En el registro efectuado alrededor de las 7 horas la temperatura de los diferentes elementos que integran el edificio se situó entre los 8.5°C y 17°C con HR de hasta 85%. Las temperaturas más bajas promedio se registraron en la parte superior de la estructura y zonas más expuestas.

A las 13 horas, las imágenes muestran que el comportamiento térmico se invirtió, las temperaturas más altas se registraron en la parte superior del edificio, así como las zonas más expuestas y salientes insolados de los paramentos S y E, alcanzando en el primer caso 60°C y en el segundo 55.8°C. En contraste el paramento norte en general mantuvo bajas temperaturas, entre 15.4 y 35.9°C. La humedad relativa registrada fue más baja en el muro E llegando a 40%, en el muro S en cambio alcanzó el 60%, mientras que en el N llegó a 70%.

El incremento de temperatura en las zonas expuestas continuó en los muros N y S, registrando para las 15 horas en el primer caso hasta 45°C y en el segundo hasta 62.4°C. En cambio en el muro E las temperaturas registradas mostraron un comportamiento decreciente a partir de las 14 h, cuando dejó de recibir luz solar directa, registrando como máxima a las 15 horas, 50°C (Fig. 44).


- %HR máxima
- Temperatura mínima registrada en el muro
- ★ Temperatura máxima registrada en el muro


Fig. 44. Gráficos comparativos de comportamiento termohigroscópico en los muros N, S y E del Edificio B.

	Muro N				Muro S			Muro E			
Hora	Temperatura ^o C %HR		%HR	Temperatura ^o C %HR			Temperatura ℃ %HR				
11014	máx.	mín.	máx.	máx.	mín.	máx.	máx.	mín.	máx.		
7-8	17	10.9	85	17.6	9	85	17	10	80		
12:30-13	35.9	15.4	70	60	18	60	55.8	23.2	40		
14:30-15	45	18	55	62.4	20.7	36	50	21.7	35		
16:30-17	36.4	18	55	36.2	18.6	52	35	21	41		
18:30-19	28	17.3	59	29.5	17.2	60	28.3	18.4	50		

Tabla 3. Datos de temperatura máxima y mínima y %HR registrada en los muros N, S y E del Edificio B, durante el día.

М	Elemento	°C	%HR
M1	Bloque muro E	39.9	17.5
M2	Bloque muro N	24.7	41.1
МЗ	Talla en toba	21.2	50.9
M4	Talla en basalto	26.1	37.9
M5	Talla expuesta muro N	26.8	36.4
M6	Talla expuesta muro E	40.4	17

Fig. 45. Vista NE, Edificio B, registro 02:59:12 p.m. y tabla con datos M1-M6 en condiciones de 27.2°C, 29%HR, PR 7.6°C.

Los registros efectuados alrededor de las 17 y 19 horas, reflejaron el enfriamiento paulatino de la estructura como respuesta al descenso de la temperatura ambiental. Las temperaturas más altas registradas, seguían correspondiendo a las partes más expuestas del edificio pero descendieron notoriamente en comparación con los registros anteriores, llegando a temperaturas similares en las tres fachadas (alrededor de 29°C máx. - 18°C mín.). A las 17 h el descenso registrado en el muro S fue de 25°C, en el muro E de 15°C y en el muro de N 8°C, y para las 19 horas, el descenso registrado en las tres fachadas fue de alrededor de 8°C más. La temperatura mínima en los paramentos N y E no presentó variaciones en el registro de las 17 horas y en el paramento S disminuyó sólo 2°C.

Para las 19 horas las temperaturas mínimas en las tres fachadas descendieron entre 1 y 3°C más. En las horas siguientes las temperaturas máximas y mínimas de la estructura bajaron gradualmente cerca de 10°C, hasta registrar máximas promedio alrededor de 17°C y mínimas promedio alrededor de 9°C, en las primeras horas de la mañana. Lo anterior indica que algunos elementos en la parte superior de la estructura y zonas más expuestas sufren fluctuaciones de hasta 50°C y más de 40% de HR, durante el día (Tabla 3, Fig. 44).

Al analizar el comportamiento térmico general de las fachadas alrededor de las 15 h, momento en que se registraron las temperaturas más elevadas, podemos notar dos fenómenos importantes, la diferencia de temperaturas promedio entre las fachadas según su orientación y la diferencia de temperaturas promedio de los elementos de la

misma fachada según su ubicación, exposición y grado de alteración (Fig. 45).

En el primer caso la diferencia de temperaturas promedio entre las fachadas N y E es la más contrastante. Aunque las temperaturas máximas y mínimas muestran variantes de 5°C, si tomamos en cuenta la media de ambos muros la diferencia resulta mayor a 15°C.

Lo anterior debido a que en el muro E la temperatura promedio de los bloques es de aproximadamente 40°C y de las tallas 35°C, mientras que en el muro N la temperatura promedio de bloques y tallas es de 25°C, ya que solamente algunos elementos en la parte superior del muro alcanzan temperaturas mayores a 35°C, mientras que la base de la estructura y los elementos más alterados llegan a 20°C (Fig. 45).

En el segundo caso, la diferencia más extrema de temperaturas promedio entre los elementos de la misma fachada fue registrada en el muro S, llegando hasta 40°C. El registro efectuado entre las 14:30-15 horas en dicho muro muestra que las temperaturas variaron entre los 20.7 y 62.4°C con HR de hasta 36%. El incremento de

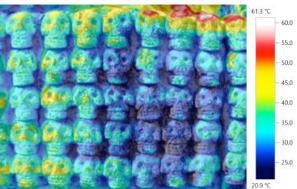


Fig. 46. Registro de temperatura muro S, área central, 02:49:43 p.m. Temperatura ambiente 27°C, 28.5%HR, PR 7.2°C. Puede observarse la afectación de los elementos en la zona de la fachada donde se pierde la continuidad del tablero superior. Las variaciones térmicas entre las tallas centrales y las de la hilera superior es de hasta 40°C.

temperatura más notorio se registró en los elementos de la hilera superior, en el extremo E, correspondiente a la parte descubierta de la estructura, mientras que las temperaturas más bajas se registraron en el área central (Fig. 46).

3.2.3 Análisis del comportamiento termohigroscópico relacionado con alteraciones del sistema constructivo e interacción de los geomateriales

En el análisis termográfico del Edificio B resulta evidente que el comportamiento térmico e higroscópico heterogéneo de los elementos que lo conforman es el efecto de la morfología, discontinuidades, propiedades e interacción de los mismos, así como de las alteraciones que ha sufrido la estructura, volviendo disfuncional el sistema. Lo anterior en combinación con la exposición diferencial de las fachadas, producto de su orientación, contribuye a acelerar el proceso de deterioro de los elementos más vulnerables.

Además de las fluctuaciones intensas antes señaladas que sufren en general las zonas más expuestas y salientes, es notorio el contraste entre el comportamiento térmico de las superficies lisas y las aristas de los bloques respecto al de los volúmenes de las tallas. Los bloques si bien muestran un comportamiento superficial homogéneo, éste cambia abruptamente hacia el interior y las aristas, registrando las temperaturas más extremas particularmente en las caras horizontales donde se incrementa el volumen de exposición.

En las imágenes del registro efectuado entre las 7 y 9 horas, se aprecia claramente este efecto. Tras la exposición de la estructura a las temperaturas más bajas registradas durante el día, el calor se pierde en la cara horizontal y en las aristas de los bloques, mientras que los vértices interiores y caras verticales conservan temperaturas más altas. De igual manera puede observarse el enfriamiento diferencial de las partes más expuestas de las tallas y bloques de relleno, cuya morfología favorece la distribución gradual del calor. En estas imágenes se observa también el mencionado fenómeno de emisión de radiaciones de calor del subsuelo que contrasta con el momento de temperatura superficial más baja de los elementos pétreos del edificio (Fig.47).

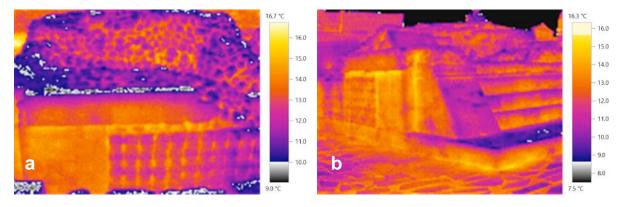


Fig. 47. a. Vista superior y muro S del Edificio B, 7:30 a.m., temperatura ambiente 15.6°C, 63.1%HR, PR 8.6°C; b. Vista NW del edificio, 8:20 a.m., temperatura ambiente 15.1°C, 67.6%HR, PR 9.1°C. Las superficies horizontales llegaron a los 8.5°C mientras que para la parte superior del edificio y el muro sur se registraron temperaturas entre los 9 y 16.7°C con HR de hasta 85%.

La excavación del interior de la estructura parcialmente cubierta con un relleno de bloques de tezontle y cemento, también ocasiona un comportamiento térmico e higroscópico diferencial, en los muros N y S. Las imágenes muestran como las fluctuaciones se intensifican en la parte abierta y liberada del material de relleno, por la reducción de masa y el aumento de superficie en exposición. Además en estas fachadas puede observarse como la pérdida del tablero superior afecta las tallas desprovistas de la protección de este elemento y su extremo forma incluso una pendiente que favorece la canalización de precipitaciones (Fig. 47a, 48). Los bloques careados que conformaban esta saliente constituían una barrera protectora para los elementos inferiores, por su naturaleza (tezontle o escoria basáltica) y su disposición a canto en algunos casos y con cementante delgado en otros, creando una superficie resistente a filtraciones por precipitación.

El movimiento continuo del subsuelo por subsidencia y actividad sísmica, provoca la constante fracturación de la estructura. La pérdida de continuidad del muro y la separación generada, favorecen las filtraciones y aumentan el volumen superficial expuesto de los elementos en las zonas afectadas, ocasionando fluctuaciones térmicas más intensas.

Este fenómeno se observó en el elemento SE16, correspondiente a una talla en tezontle negro cuya temperatura registrada superó los 60°C al medio día, mientras que en las horas más frías registró una mínima de 10.5°C. Dicho elemento se ubica en el extremo E del muro S, donde las aperturas generadas por las zonas de fractura son mayores (Fig. 49-50).

El mortero de cemento colocado en tratamientos posteriores a la excavación del edificio en las fracturas, parte superior de estructura así como algunos espacios entre los bloques careados e hileras de tallas, altera el funcionamiento del sistema impidiendo la evaporación de la humedad, rigidizando la estructura y aumentando la carga lo cual agrava el problema de deformación.

En intervenciones más recientes algunos de estos morteros se han sustituido por morteros de cal cuyas propiedades si bien son más favorables que las del cemento, no han impedido la acumulación de humedad en las tallas, particularmente en las tobas. Se observó que la diferencia de temperatura entre las tallas que sobresalen del tablero y el mortero de cal que actúa como cementante de las mismas, fue variando debido a que el comportamiento de éste último presenta fluctuaciones más lentas, aunque continuas (Fig. 50-52).

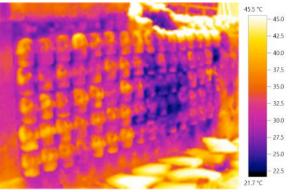


Fig. 48. Registro de temperatura y %HR muro S, 04:45 p.m. Temperatura ambiente 27°C, 33.5 %HR, PR 9.6°C.

Fig. 49. Detalle del muro S, lado E donde se observa la zona de fracturas en las que se colocaron morteros de cal, así como la ubicación del elemento SE16 (recuadro naranja).

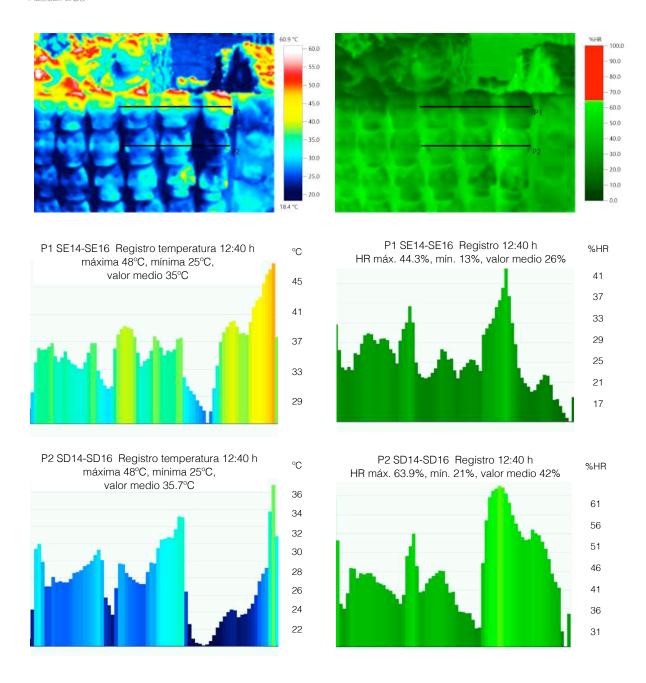


Fig. 50. Registro muro S, lado E, 12:40:36 p.m. Temperatura ambiente 25.5°C, 42%HR, PR 11.7°C. Perfiles térmicos y de humedad relativa de los elementos SE14-16 correspondientes a la hilera superior (P1) y SD14-16 correspondientes a la hilera inmediata inferior (P2). La exposición en combinación con la interacción con el mortero generan diferencias de HR de hasta 20%.

Al estudiar su comportamiento en los espacios más amplios, particularmente en el lado W del muro N, a los costados de la columna 9, es notorio que su temperatura varía con respecto al registro más temprano, pero su inercia térmica es mayor que la de los elementos pétreos que integran la columna mencionada, presentando un comportamiento más lineal (Fig. 49-51).

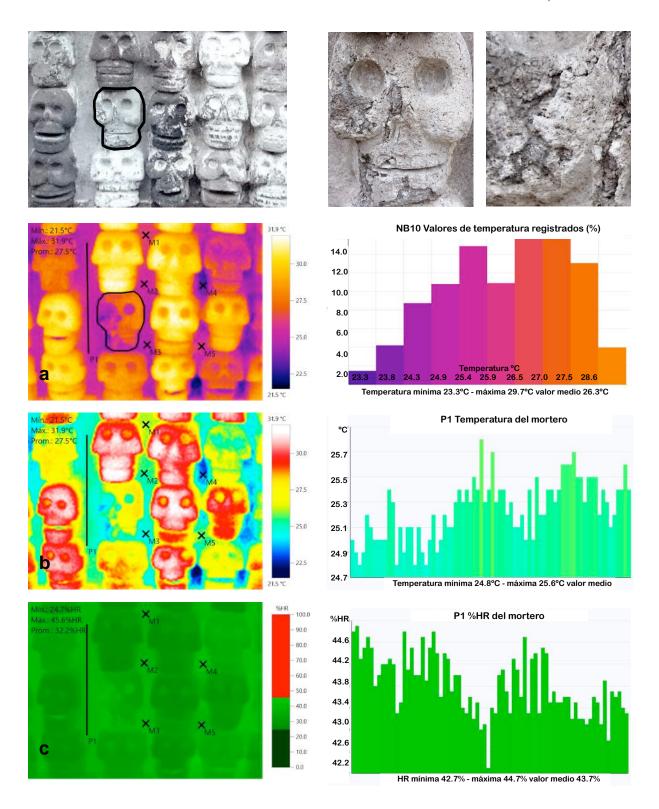
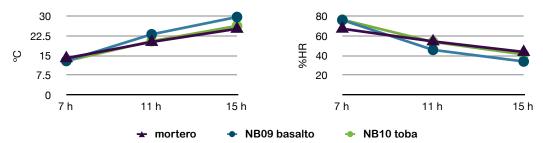



Fig 51. Detalles del muro N y el elemento NB10, registro 03:14 p.m. en condiciones ambientales de 29°C, 35% HR y PR 12°C. a. Análisis de distribución estadística de temperatura en el elemento NB10; b. Perfil de temperatura del mortero entre las columnas 9 y 10 (P1); c. Perfil de humedad relativa del mortero entre las columnas 9 y 10 (P1).

Comparativo de temperatura y humedad relativa media

MORTE	Те	mperatura	°C	Humedad relativa %			
Hora	mínima	máxima	media	mínima	máxima	media	
7:45	14.1	15.5	14.9	64.7	70.8	67.3	
11:09	19.2	20.7	20	47.5	52.7	50	
15:14	24.8	25.6	25.2	42.7	44.7	43.7	

NB09	Те	mperatura	°C	Humedad relativa %			
Hora	mínima	máxima	media	mínima	máxima	media	
7:15	12	14.9	13	67.4	81.2	76.1	
11:09	19.8	24.5	23.1	42.1	55.9	45.8	
15:14	24.5	31.3	29.7	30.7	45.3	34	

NB10	Те	mperatura	°C	Humedad relativa %			
Hora	mínima	máxima	media	mínima	máxima	media	
7:15	11.5	14.4	12.9	69.5	83.7	76.5	
11:09	19.1	22	20.5	48.9	58.5	53.9	
15:14	23.3	29.7	26.3	33.7	49.1	41.2	

Fig. 52. Gráfico comparativo de temperatura y humedad relativa media en condiciones ambientales de 15.2°C de temperatura, 66% HR y PR 8.8°C, a las 7:45 h; 20.7°C de temperatura, 52.9% HR y PR 10.7°C, a las 11:09 h; y 29°C de temperatura, 35% HR y PR 12°C, a las 15:14 h. La tabla muestra los valores mínimos, máximos y medios, obtenidos a partir del análisis termográfico

Los perfiles de temperatura y humedad muestran como el contraste entre las tobas y los basaltos vesiculares aumentó conforme se elevó la temperatura. En general se observó un ritmo más acelerado en el aumento de temperatura durante las primeras horas de la mañana, que disminuyó a partir del medio día (Fig. 51-53).

Los elementos de naturaleza basáltica muestran mayores fluctuaciones que las tobas, debido a que estas últimas presentan mayor higroscopicidad e inercia térmica, comportamiento que aumenta proporcionalmente según el grado de alteración, como puede observarse en los elementos NA03 y NC07 cuya temperatura promedio se mantuvo por debajo de los 20°C con HR superior a 54% (Fig. 53).

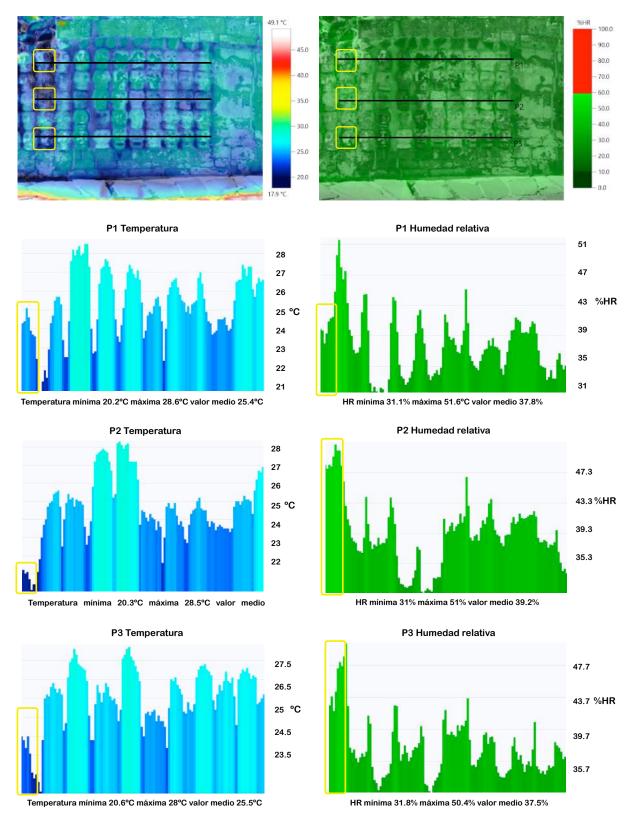


Fig. 53. Perfiles muro N, 02:43 p.m., 27.1°C, 34% HR, PR 9.9°C. muestran la acumulación de humedad en los elementos más alterados de la columna 7 (recuadros amarillos) resaltando en los resultados los perfiles correspondientes (barras amarillas).

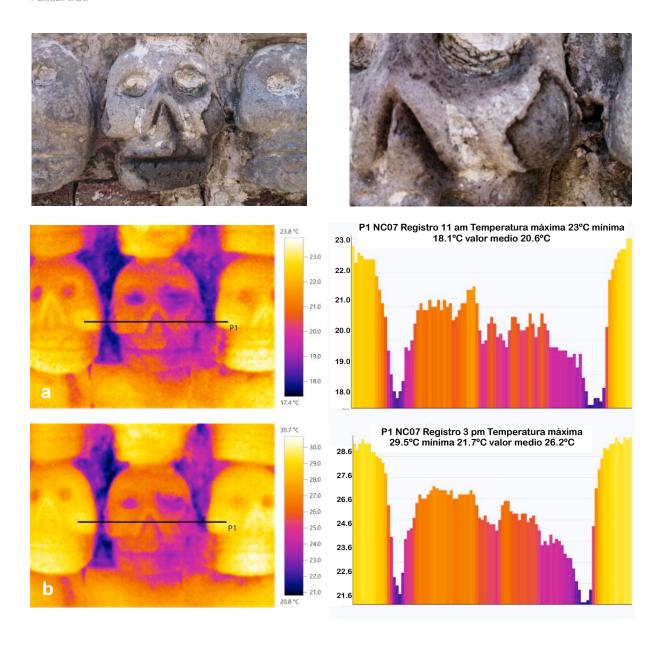


Fig. 54. Perfil térmico del elemento NC07 a las 11 h con 20.7°C, 53%HR y 10°CPR (a) y a las 15 h con 29°C, 35%HR, 12°CPR (b). Puede observarse el efecto de las discontinuidades en el comportamiento térmico, las variaciones de temperatura entre los estratos se acentúan en los momentos de fluctuación (a), ya que las capas superficiales se calientan y enfrían con mayor rapidez.

Se observó que la diferencia térmica entre los estratos de las tallas que han sufrido delaminación es más evidente en los momentos de mayor fluctuación de temperatura, lo cual podría estar generando estrés por movimiento diferencial de dichos estratos, agravando el problema (Fig. 54). La pérdida de enlucidos de cal aumenta la diferencia en el comportamiento térmico e higroscópico entre las tobas y los basaltos, afectando particularmente el comportamiento higroscópico de las primeras y el comportamiento térmico de los segundos.

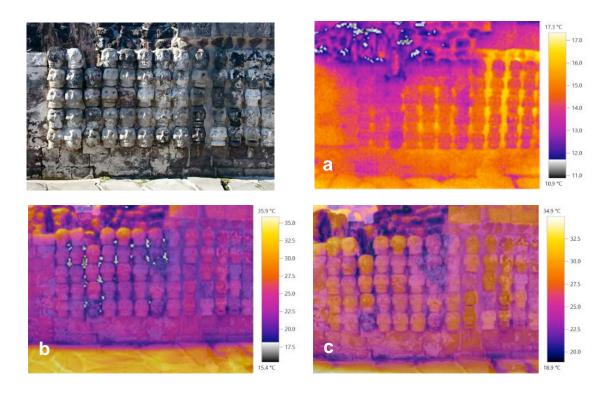


Fig. 55. Muro N, registro en condiciones de a. 7:16 a.m. 18.1°C, 56.2%HR; b. 12:02 p.m. 22.2°C, 48.9 %HR; c.

En las tobas la absorción capilar se incrementa con el grado de alteración y a la vez el transporte de agua y sales acelera su degradación, mientras que en los basaltos, los contrastes térmicos responden a variantes en densidad y coloración (Fig. 55).

El comportamiento térmico observado en el muro E en general es más homogéneo que el de los muros N y S, aún así, presenta discontinuidades que afectan el comportamiento de algunas zonas.

La fluctuación entre las tallas y el cementante es menos abrupta, aunque los contrastes por pérdida de recubrimientos, son más evidentes en las tallas del las hileras superiores (Fig. 56).

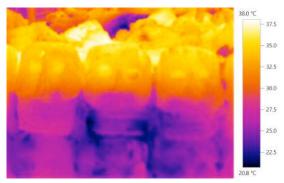
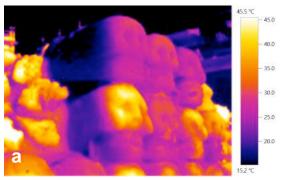



Fig. 56. Muro E, registro 3:50 p.m. condiciones ambientales 26°C, 35%HR y 9.4°C PR.

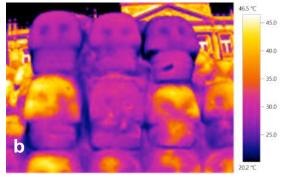


Fig. 57a-b. Vista lateral y frontal del Muro E, zona central superior, registro 9:40 a.m. 20aC, 50%HR, 9.3 PR. Se observa el contraste entre los diferentes geomateriales.

Esto en parte se debe a la insolación que recibe y a que este muro no ha sufrido fracturas tan amplias que impidan del todo la transferencia de calor, además de que la parte interior de la estructura se encuentra liberada por completo lo que hace que el volumen de masa sea más regular.

Las zonas de acumulación de humedad más notoria entre las tallas del muro corresponden a fracturas entre las columnas 4 y 5, así como 14 y 15. Entre las características de la parte interna de la estructura que provocan el comportamiento diferencial destacan un agregado prominente de cemento en el extremo que se une con el muro N, así como la presencia de los nichos en la parte interna del muro, que tras la excavación quedaron liberados y expuestos, mismos que corresponden a las hileras D y E.

Las diferencias de comportamiento relacionadas con los tipos litológicos en el muro E no son tan marcadas como en el muro N, por el efecto mencionado de los recubrimientos. Sin embargo, en las zonas de mayores pérdidas se aprecia el contraste, sobre todo entre las tallas ubicadas en el límite superior del muro, particularmente el elemento EG07 que mantiene temperaturas más bajas durante todo el día en comparación con los elementos que lo rodean. En las imágenes térmicas de esta zona también pueden observarse las diferencias de calor específico de cada material, así como el contraste entre la inercia térmica de los materiales pétreos y los agregados de cemento (Fig. 57).

A continuación se reportan los resultados del análisis del comportamiento térmico de elementos similares ubicados en los diferentes muros, así como de elementos de diferentes litologías en condiciones de exposición similar (Tabla 4 y Fig. 58).

Registro Termográfico

Elemento	Temperatura °C	07-08 h	12:30-13 h	14:30-15 h	16:30-17 h	18:30-19 h
NC01	máxima	14.4	23.2	28.3	27.8	26.0
	mínima	13.3	19.3	24.2	24.3	22.8
	media	13.8	21.9	26.8	26.6	25.0
NC02	máxima	14.2	22.4	27.9	26.9	25.4
	mínima	12.8	18.3	23.0	23.8	22.9
	media	13.6	21.0	26.0	25.8	24.4
NA07	máxima	15.3	22.0	25.0	25.3	25.2
	mínima	13.4	19.3	21.7	22.6	20.9
	media	14.2	21.0	23.5	24.2	23.1
NC07	máxima	15.4	21.4	25.2	24.8	23.4
	mínima	12.7	18.3	20.2	21.1	20.6
	media	13.8	19.8	22.3	22.9	21.8
NC15	máxima	16.0	20.6	24.1	26.0	23.6
	mínima	14.7	17.8	21.0	23.0	21.5
	media	15.4	19.4	23.0	24.6	23.0
NC05	máxima	15.3	24.0	28.2	27.3	25.4
	mínima	13.7	19.9	22.5	24.2	21.9
	media	14.3	22.8	26.8	26.4	24.4
NE01	máxima	13.5	33.3	41.5	31.9	27.7
	mínima	11.6	20.4	21.9	23.8	22.8
	media	12.7	26.2	31.6	29.4	26.1
NE11	máxima	15.9	24.0	28.1	27.9	25.5
	mínima	14.3	20.0	24.6	24.3	23.9
	media	15.1	22.5	26.7	26.5	24.7
ND02	máxima	13.6	23.7	29.5	27.5	25.6
	mínima	11.9	16.7	18.2	21.0	20.7
	media	13.0	22.0	26.0	25.7	24.1
NA16	máxima	16.1	23.4	27.4	28.1	25.4
	mínima	14.5	18.8	21.8	24.3	23.4
	media	15.1	21.8	25.9	26.6	24.6
EC02	máxima	14.6	34.9	29.3	27.0	22.8
	mínima	12.3	25.8	24.8	24.5	21.7
	media	13.4	29.3	27.8	26.1	22.3
ED04	máxima	13.6	37.3	31.7	28.8	23.2
	mínima	12.7	25.8	25.8	23.0	21.9
	media	13.2	31.1	29.7	27.4	22.7
EF06	máxima	14.3	33.9	29.7	27.9	23.1
	mínima	13.2	27.4	27.8	26.3	21.6
	media	13.6	31.1	28.9	27.3	22.6

Tabla 4. Temperaturas máximas, mínimas y medias de elementos con diferentes tipos litológicos y grados de alteración, ubicados en las fachadas N, S y E del Edificio B, documentadas en el registro termográfico.

Elemento	Temperatura °C	07-08 h	12:30-13 h	14:30-15 h	16:30-17 h	18:30-19 h
EG05	máxima	13.2	38.2	38.8	31.6	25.1
	mínima	10.7	26.6	29.8	29.5	23.4
	media	12.3	31.4	34.3	30.4	24.4
EG07	máxima	13.0	34.6	34.3	29.0	23.4
	mínima	10.2	27.2	29.1	27.1	22.0
	media	11.9	30.8	31.8	28.0	22.7
SE01	máxima	14.1	43.6	46.2	27.7	25.5
	mínima	11.7	21.3	25.8	22.7	21.2
	media	12.7	29.9	35.0	25.7	23.8
SE02	máxima	13.7	36.4	39.8	27.0	24.5
	mínima	12.2	21.7	24.4	23.5	22.3
	media	12.8	29.4	33.2	25.8	23.7
SB11	máxima	12.6	27.5	30.9	22.0	19.8
	mínima	10.8	18.8	21.4	18.5	17.2
	media	11.5	22.7	25.5	19.8	18.1
SA13	máxima	12.9	32.6	37.7	26.1	22.8
	mínima	11.2	19.9	22.5	20.3	17.9
	media	12.0	27.1	32.4	23.9	21.1
SE13	máxima	14.2	51.3	55.9	33.4	27.7
	mínima	10.1	19.3	23.5	23.9	22.3
	media	12.0	32.7	40.3	29.0	25.1
SE16	máxima	12.9	59.5	62.4	34.1	23.8
	mínima	10.5	21.3	26.5	20.9	19.7
	media	11.9	36.9	42.4	28.9	22.0

Tabla 4. Temperaturas máximas, mínimas y medias de elementos con diferentes tipos litológicos y grados de alteración, ubicados en las fachadas N, S y E del Edificio B, documentadas en el registro termográfico (continuación).

Fig. 58. Gráfico comparativo de temperaturas máximas y mínimas de los elementos documentados en los muros N, S y E.

3.3 Caracterización geoquímica, microestructural y de fases cristalinas de las tallas en roca volcánica que integran el Edificio B

3.3.1 Resultados de la caracterización preliminar con Fluoroespectrometría de Rayos X (FRX)

Los resultados obtenidos mediante el análisis in situ con un equipo portátil de fluoroespectrometría de Rayos X, de diversas tallas que integran las fachadas del Edificio B, permitieron el mapeo litológico preliminar de la estructura, reconociendo variantes de los tipos litológicos que se habían identificado como escorias basálticas (tezontle) y tobas andesíticas, a partir de diferencias significativas en su contenido de elementos mayores, principalmente.

Para ello los conteos de fotones obtenidos por pico elemental como resultado de las lecturas sucesivas efectuadas con diferentes parámetros en las tallas del Edificio B, fueron analizados estadísticamente con la ayuda del programa *RapidMiner*. Se distinguieron ocho grupos, mismos que tras un segundo análisis con variantes y eliminación de variaciones anómalas, se redujeron a 6 (Fig. 59).

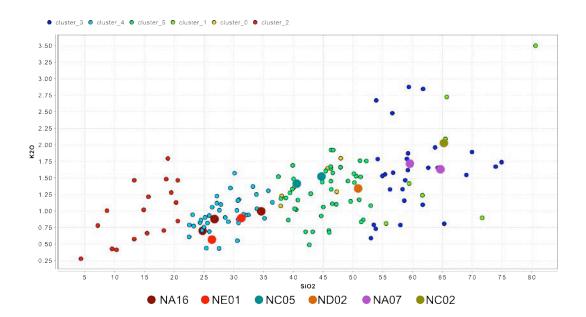


Fig. 59. Gráfica de relación SiO₂ vs K₂O, agrupamiento estadístico generado mediante el programa *RapidMiner* a partir de los resultados de conteos de fotones obtenidos en el análisis con FRX. Se resaltan los resultados de las lecturas correspondientes a algunos de los elementos que fueron seleccionados para el muestreo.

Adicionalmente se calcularon las concentraciones de los elementos mayores a partir de la calibración generada para cada uno de los parámetros utilizados, mediante las series de lecturas sucesivas de los 12 estándares certificados (USGS) empleados como referencia. Se observó que las lecturas con el parámetro de 15keV, 25µA con vacío proporcionó las mediciones con menor desviación estándar.

De igual manera se observó que es conveniente una exposición mínima de 60 segundos para obtener resultados con valores de conteos más adecuados, así como efectuar series de lecturas sucesivas alternadas con mediciones de control para detectar posibles anomalías y reducir el margen de error. En este caso se efectuaron series de 15 lecturas por muestra o talla in situ, con 3 a 5 lecturas intermedias de control. La técnica arrojó resultados aceptables para mediciones de algunos elementos mayores, en este caso se tenía particular interés en determinar relaciones respecto al contenido de Si, lo cual fue posible, así como de otros elementos como Rb y Sr (Fig. 60-61).

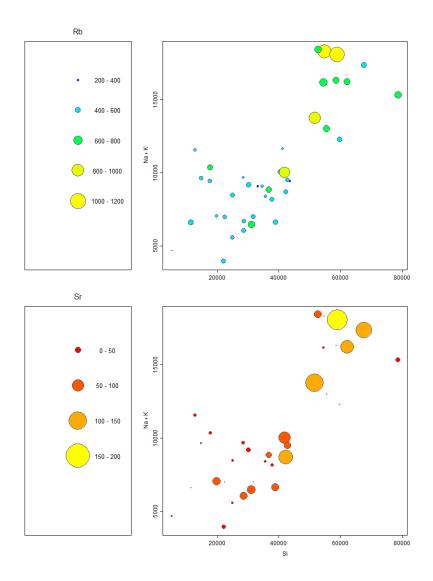


Fig. 60-61. Comparativo de concentraciones de Rb y Sr, en los diferentes grupos de muestras.

El criterio de selección de elementos para el muestreo consideró la representatividad de los diferentes grupos reconocidos, así como variantes en el estado de conservación de los mismos. Entre los basaltos vesiculares, los elementos elegidos (EC02, ED04, NA16, NC05, ND02 y NE01) corresponden a variantes

según su contenido de Fe, Mg, Ti y Si principalmente, así como el comportamiento térmico e higroscópico observado, relacionado con sus propiedades físicas, ya que el estado de conservación de estos tipos litológicos es en general estable. Entre las tobas en cambio, la selección de elementos consideró además de la representatividad de los grupos reconocidos, marcadas variantes en la composición elemental respecto al conjunto (EG07 y NC01), variantes en el nivel de alteración en elementos clasificados en un mismo grupo (EG05, NC02 y NA07) y variantes en el tipo de deterioro y mecanismo de alteración respecto al conjunto (NC07 y NC15).

3.3.2 Resultados del análisis geoquímico (ICP-MS, ICP-OES)

El análisis geoquímico de las muestras extraídas de los cráneos tallados que integran las fachadas del edificio B, permitió la caracterización de los basaltos vesiculares presentes como traquibasalto alcalino (EC02), basaltos traquiandesíticos subalcalinos (NA16, ED04), basaltos andesíticos (NE01 y NC05) y basalto andesítico-dacítico (ND02); así como la naturaleza de las tobas como andesíticas (NC07, NC15), dacíticas (EG05, NC02, NA07), traquidacítica (NC01) y riolítica (EG07) (Fig.62).

TAS (Le Bas et al. 1986)

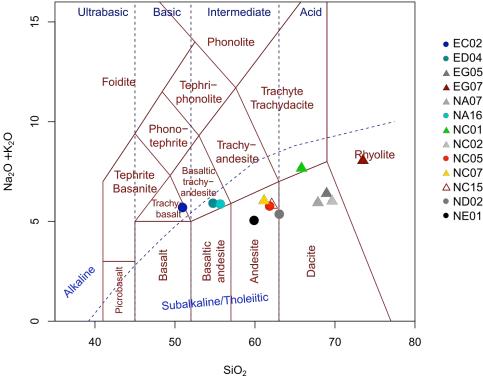


Fig. 62. Clasificación de las rocas de acuardo al diagrama TAS (Le Bass et al., 1986), donde se grafica el contenido total del álcalis (Na₂O+K₂O) vs el contenido de sílice (SiO₂), con limites propuestos por Le Maitre at al. (1989).

La concentración de elementos mayores y trazas determinada por el análisis geoquímico (ICP-MS, ICP-OES) ayuda a entender la presencia de diversas fases cristalinas relacionadas con el ambiente de formación. Esto además de indicar distintas procedencias del material, explica su comportamiento y vulnerabilidad a factores extrínsecos, que se manifiesta en los mecanismos de alteración diferenciados observables. Se observó una correspondencia en la concentración de elementos mayores entre los basaltos andesíticos NE01 y NC05, salvo por un enriquecimiento de Ti en el primero y de P en el segundo. El traquibasalto correspondiente a la muestra EC02 presentó alto contenido de Ti, Fe, Mn y Ba, mientras que los basaltos traquiandesíticos ED04 y NA16 muestran comportamientos muy similares en todos los diagramas de variación (Fig. 63-64).

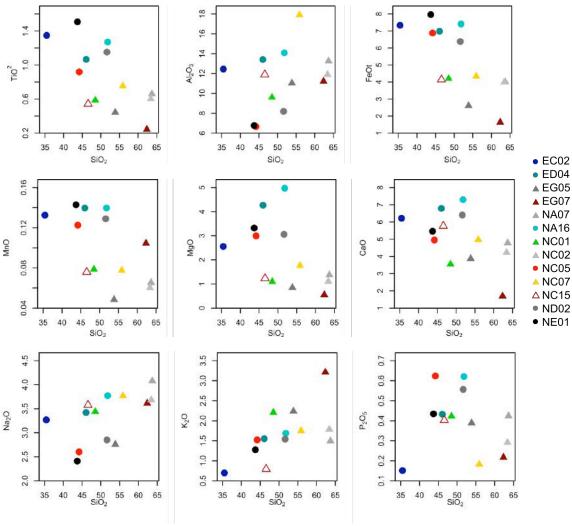


Fig. 63. Diagramas de variación tipo Harker de elementos mayores (Ti, Al, Fe, Mn, Mg, Ca, Na, K, P) vs. SiO₂.

Entre las tobas destaca el comportamiento diferencial de la riolita EG07, rica en K, Ba y Rb, mientras que el resto del grupo muestra mayor correspondencia entre sí, sobre todo los elementos NC01 y NC15 cuya composición es muy cercana con excepción de un enriquecimiento del segundo en Ca y Sr (Fig. 63-65).

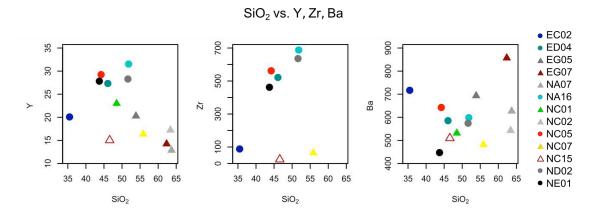


Fig. 64. Diagramas de variación tipo Harker de elementos traza Y, Zr, Ba vs. SiO₂.

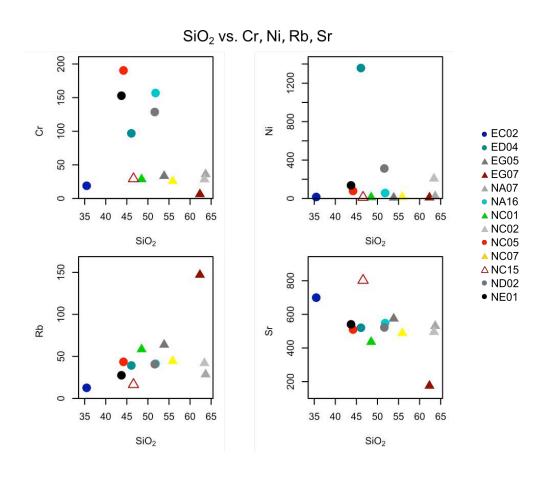
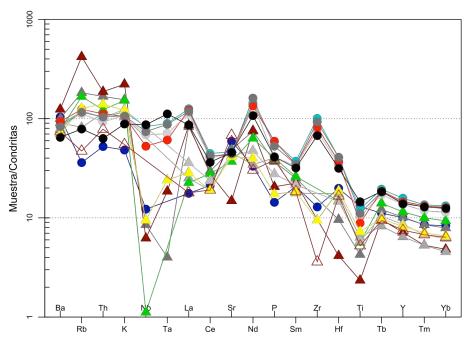



Fig. 65. Diagramas de variación tipo Harker de elementos menores Cr, Ni, Rb, Sr vs. SiO₂.

El enriquecimiento en Zr es notorio en las muestras NA16 y ND02, correspondientes a basaltos subalcalinos, las cuales muestran contenidos de elementos traza y menores sumamente similares (Fig. 64-65).

En el análisis de elementos traza se observa que la huella geoquímica es diferente en todas las tobas, mientras que entre los basaltos vesiculares se observa una coincidencia en los elementos NA16 y ND02. Lo cual podría indicar una asociación del material a la misma fuente (Fig. 66-69).

Spider plot - Condritas (Thompson 1982)

Spider plot - Condritas (Thompson 1982)

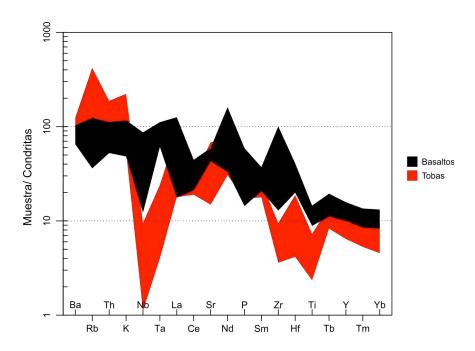
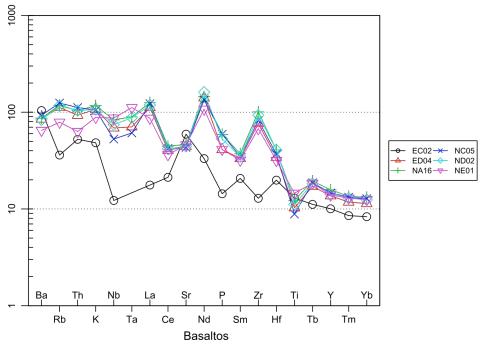



Fig. 66-67. Elementos traza normalizados a condritas en muestras de tobas y basaltos del Edificio B (Thompson, 1982).

Spider plot - Condritas (Thompson 1982)

Spider plot - Condritas (Thompson 1982)

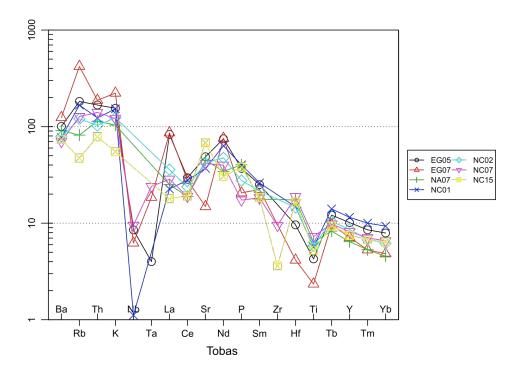


Fig. 68-69. Elementos traza normalizados a condritas en muestras de tobas y basaltos del Edificio B (Thompson, 1982).

Muestra	Li	Sc	Ti	v	Cr	Co	Ni	Zn	Rb	Sr
EC02	20.24	26.12	8049.98	80.55	18.90	30.59	15.35	120.56	12.62	699.60
ED04	26.60	20.30	6368.48	113.26	96.87	32.23	1357.93	113.71	39.19	520.46
EG05	14.11	11.10	2645.48	66.97	33.38	10.59	7.71	76.33	63.81	574.70
EG07	24.19	9.09	1453.40	74.51	6.29	6.55	10.04	63.69	147.04	175.28
NA07	49.50	11.61	3942.46	95.10	36.02	13.96	22.63	76.49	28.55	530.76
NA16	15.77	24.42	7585.53	137.58	156.85	30.48	56.53	106.00	41.29	547.89
NC01	26.31	14.66	3501.91	86.27	28.54	10.16	12.07	72.30	58.42	436.16
NC02	19.90	6.32	3603.86	75.47	28.32	10.28	206.60	69.33	41.96	495.26
NC05	20.85	13.35	5488.12	114.09	190.39	25.62	78.51	130.46	43.50	510.03
NC07	49.43	40.41	4506.81	85.93	25.90	18.67	14.06	60.76	44.52	488.97
NC15	52.99	7.45	3243.09	85.81	29.27	10.43	11.62	91.01	16.50	802.39
ND02	20.31	20.40	6882.78	120.82	128.58	26.80	312.11	103.90	40.68	522.01
NE01	13.71	15.94	9006.74	137.39	152.85	28.40	135.98	103.49	27.53	540.73
Muestra	Y	Zr	Nb	8	Sn	Cs	Ва	La	Pr	Nd
EC02	20.08	88.14	4.28	12	2.26	0.00	716.81	5.81	2.95	20.88
ED04	27.32	521.42	24.04	9.	.22	1.41	585.55	36.75	9.61	88.42
EG05	20.28	<0.005	2.98	6.	.17	2.79	693.34	27.30	6.43	47.10
EG07	14.25	<0.005	2.18	26	3.38	3.68	856.84	28.35	6.48	47.71
NA07	12.86	<0.005	<0.005	27	'.25	1.44	626.73	8.25	2.86	21.65
NA16	31.53	687.89	29.13	23	3.09	1.25	598.43	41.34	10.63	90.79
NC01	22.99	<0.005	0.39	4.	.04	4.17	531.49	7.44	5.67	39.88
NC02	17.23	<0.005	<0.005	11	.86	2.71	542.70	11.78	4.11	29.86
NC05	29.24	561.89	18.46	34	1.24	1.66	642.61	40.27	10.01	84.73
NC07	16.37	64.62	3.32	8.	.04	3.09	481.93	9.39	3.19	25.11
NC15	15.03	24.64	<0.005	13	3.50	0.36	509.58	5.88	2.79	19.11
ND02	28.29	635.95	25.93	20).98	1.31	574.34	38.94	9.98	101.28
NE01	27.82	462.10	30.40	7.	.44	0.74	447.23	28.42	7.88	67.61
Muestra	Се	Sm	1	Eu	Gd		ТЬ	Dy	Но	Er
EC02	18.36	4.20	0	1.31	3.82	0).58	3.46	0.74	1.91
ED04	34.85	6.75	5	1.77	6.16	0	.89	4.99	1.00	2.70
EG05	25.54	5.09	9	1.36	4.34	0	0.63	3.53	0.72	1.85
EG07	24.05	4.5	4	1.00	3.74	0	.50	2.58	0.51	1.22
NA07	16.37	3.60	0	1.21	3.03	0	0.43	2.42	0.50	1.15
NA16	38.45	7.5	5	1.94	7.03	1	.01	5.64	1.14	3.12
NC01	24.09	5.30	0	1.30	4.86	0).73	4.14	0.85	2.21
NC02	20.56	4.36	6	1.20	3.78	0).54	3.08	0.64	1.55
NC05	36.41	7.04	4	1.85	6.63	0	.97	5.47	1.10	2.99
NC07	16.37	3.7	1	1.11	3.33	0).51	2.96	0.61	1.54
NC15	16.55	3.70	6	1.21	3.27	0).49	2.85	0.60	1.49
ND02	36.05	7.00	3	1.83	6.60	0).95	5.40	1.10	2.94

Tablas 5-7. Resultados del análisis ICP-MS, concentración mg/kg (ppm).

6.47

1.92

31.44

NE01

6.36

0.96

5.47

1.11

3.01

Muestra	Tm	Yb	Lu	Hf	Та	TI	Pb	Th	U
EC02	0.29	1.83	0.30	3.97	<0.005	0.01	23.61	2.20	<0.005
ED04	0.40	2.50	0.37	6.83	1.41	1.85	113.89	3.90	1.21
EG05	0.29	1.74	0.27	1.92	0.08	0.65	56.58	7.03	1.70
EG07	0.18	1.06	0.18	0.83	0.37	1.02	137.25	7.87	1.24
NA07	0.18	1.00	0.17	3.48	<0.005	0.19	16.71	4.78	0.20
NA16	0.46	2.90	0.42	8.14	1.79	0.25	55.86	4.36	1.29
NC01	0.34	2.05	0.31	2.96	<0.005	0.73	22.36	5.16	2.11
NC02	0.23	1.36	0.22	2.91	<0.005	0.29	140.26	4.31	0.86
NC05	0.45	2.81	0.41	7.37	1.22	0.11	284.10	4.69	1.22
NC07	0.24	1.44	0.22	3.76	0.48	0.54	23.47	5.88	1.69
NC15	0.23	1.40	0.22	3.33	<0.005	0.02	82.41	3.29	0.48
ND02	0.44	2.73	0.41	8.14	1.75	0.05	233.66	4.36	1.26
NE01	0.44	2.76	0.40	6.32	2.23	0.92	42.37	2.65	0.67

Tabla 8. Resultados del análisis ICP-MS, concentración mg/kg (ppm).

Muestra	SiO ₂	TiO ₂	Al ₂ O ₃	FeOt	MnO	MgO	CaO	Na₂O	K ₂ O	P ₂ O ₅	Total
EC02	50.95	1.94	17.88	10.54	0.19	3.67	8.93	4.69	1.00	0.22	100
ED04	54.76	1.27	15.94	8.30	0.17	5.07	8.07	4.07	1.84	0.51	100
EG05	68.96	0.57	14.13	3.34	0.06	1.09	4.95	3.53	2.87	0.50	100
EG07	73.50	0.29	13.22	1.92	0.12	0.65	2.00	4.26	3.79	0.26	100
NA07	67.88	0.70	14.13	4.26	0.07	1.46	5.10	4.35	1.59	0.45	100
NA16	55.67	1.36	15.14	7.96	0.15	5.34	7.84	4.05	1.81	0.67	100
NC01	65.83	0.80	13.03	5.70	0.11	1.48	4.82	4.67	3.00	0.57	100
NC02	69.64	0.66	13.07	4.38	0.07	1.21	4.64	4.04	1.96	0.32	100
NC05	61.84	1.29	9.32	9.62	0.17	4.19	6.93	3.64	2.13	0.87	100
NC07	61.14	0.82	19.59	4.75	0.08	1.92	5.44	4.12	1.91	0.20	100
NC15	62.09	0.72	15.86	5.52	0.10	1.64	7.69	4.77	1.06	0.54	100
ND02	63.04	1.41	10.00	7.79	0.16	3.74	7.82	3.48	1.88	0.68	100
NE01	59.89	2.07	9.26	10.91	0.20	4.55	7.48	3.30	1.75	0.60	100

Tabla 9. Concentración de elementos mayores wt%, Al_2O_3 , FeOt, Mn, MgO, CaO, Na_2O , K_2O , P_2O_5 , a partir de resultados del análisis ICP-OES, concentración de TiO_2 a partir de resultados de ICP-MS y concentración de SiO_2 a partir de FRX.

3.3.3 Caracterización microestructural y de fases cristalinas

El análisis de las muestras mediante difractometría de rayos X (DRX), microscopía electrónica de barrido y análisis por energía dispersiva de rayos X (MEB-EDS); así como petrografía de láminas delgadas, permitió la identificación de las fases cristalinas presentes en los diferentes tipos litológicos caracterizados.

Mediante el procesamiento estadístico de los difractogramas obtenidos, utilizando la métrica de distancia Manhattan para el agrupamiento jerárquico de los mismos, se estableció una correlación preliminar entre las fases cristalinas presentes en las muestras, lo cual ayudó a comprender la relación entre los mecanismos de alteración intrínsecos o asociados a su naturaleza y los extrínsecos, relacionados con el ambiente y grado de exposición.

El análisis microscópico de las fases cristalinas permitió una caracterización más completa de los minerales formativos y los productos de alteración indicativos de procesos de argilización de feldespatos, formación de costras superficiales, hidrólisis y disolución de matriz y fenocristales; resultado tanto de la exposición de los materiales al intemperismo y contaminantes ambientales, como de su interacción con otros materiales constitutivos del edificio originales o agregados en diferentes momentos desde la excavación, tales como consolidantes e hidrofugantes.

a. Basaltos vesiculares

Los basaltos vesiculares analizados de composición intermedia, andesítica y traquiandesítica, resultan ricos en plagioclasas, feldespatos alcalinos (sanidina, anortoclasa), piroxenos (augita, enstatita, diopside) y hematita.

Adicionalmente se detectaron fases cristalinas producto de alteración por intemperismo y contaminación, tales como Efremovita (NH₄)2Mg₂(SO₄)₃, constituyente de las costras de sulfatos por deposición de residuos de hidrocarburos, cuyo comportamiento higroscópico da lugar también a su forma hidratada. De igual manera se detectó la presencia de Polihalita K₂Ca₂Mg(SO₄)·2H₂O) sulfato hidratado de potasio, calcio y magnesio, presente en litofacies laminadas de yeso.² La presencia de zeolitas (tectosilicatos hidratados de calcio y aluminio, serie mordenita-estilbita), indicativa de la alteración de piroxenos en rocas volcánicas intemperizadas, se observó en las muestras NCO5 y EDO4 correspondientes a basaltos vesiculares ricos en hematita lo cual les confiere una coloración rojiza.

En las muestras correspondientes a los elementos ED04 y NA16 se detectó la presencia de estroncio apatito Sr₅(PO₄)₃OH. En concordancia, los resultados del análisis elemental mediante ICP-MS de estas muestras indican que el contenido de Sr es mayor que en el resto del grupo de basaltos vesiculares estudiados. Dichas muestras también resultaron ricas en S.

² Estas fases se detectaron en todas las muestras pero debido a que los picos característicos corresponden a los de otras fases cristalinas más abundantes no se indican en los espectros.

De igual manera en la mayoría de las muestras en las que el análisis elemental indica alto contenido de plomo y azufre, se detectó la presencia de Plagionita Pb₅Sb₈S₁₇.

El análisis estadístico mostró una correlación entre los difractogramas correspondientes a las muestras de composición intermedia NA16 (basalto recinto) y NE01 (escoria basáltica o tezontle), clasificadas en el análisis geoquímico como basalto traquiandesítico y basalto andesítico respectivamente. Estas muestras se asociaron en segundo grado con la muestra NC05 (escoria basalitica o tezontle) de composición andesítica (TAS Le Bass et al., 1986). De igual manera se correlacionaron las muestras de composición intermedia-ácida ND02 y NE11, asociadas en segundo grado con la muestra ED04, clasificadas como basaltos andesíticos y traquiandesítico respectivamente (Fig. 70).

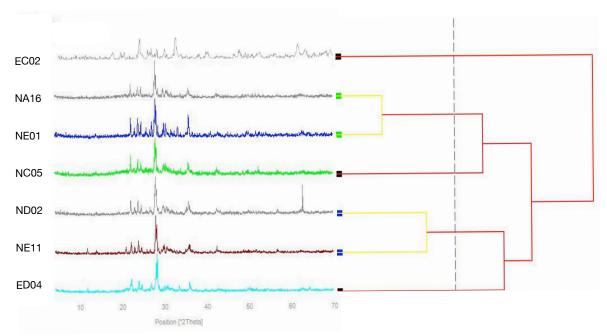


Fig. 70. Difractogramas de las muestras EC02, NA16, NE01, NC05, ND02, NE11, ED04 correspondientes a basaltos vesiculares y correlación resultante del análisis estadístico.

Esta clasificación responde al predominio de plagioclasas cálcicas en el primer grupo (An₉₀₋₈₀) y el predominio de plagioclasas sódico cálcicas (An₇₀₋₄₀) en el segundo grupo. La muestra ECO2 correspondiente a un traquibasalto de composición alcalina, no se relacionó directamente con ninguna de las anteriores. Además de las plagioclasas predominates anortita (Ca,Na[Si,Al]₄O₈), andesina (NaAlSi₂O₈ 0.38CaAlSi₂O₈) y la augita (Ca[Mg,Fe]Si₂O₆) presente en todas las muestras analizadas, se identificó zircón (ZrSiO₄), hematita Fe₂O₃ y silvita KCl en el basalto andesítico NEO1, enstatita (MgSiO₃) en la muestra correspondiente al basalto andesítico dacítico NDO2, mayor presencia de yeso (CaSO₄·2H₂O) en la muestra NE11, así como ortoclasa (K[Al,Fe]Si₂O₈) y estilbita ([Na₂Ca]Al₂Si₆O₁₆·6H₂O) en el basalto traquiandesítico EDO4 (Fig. 71-72).

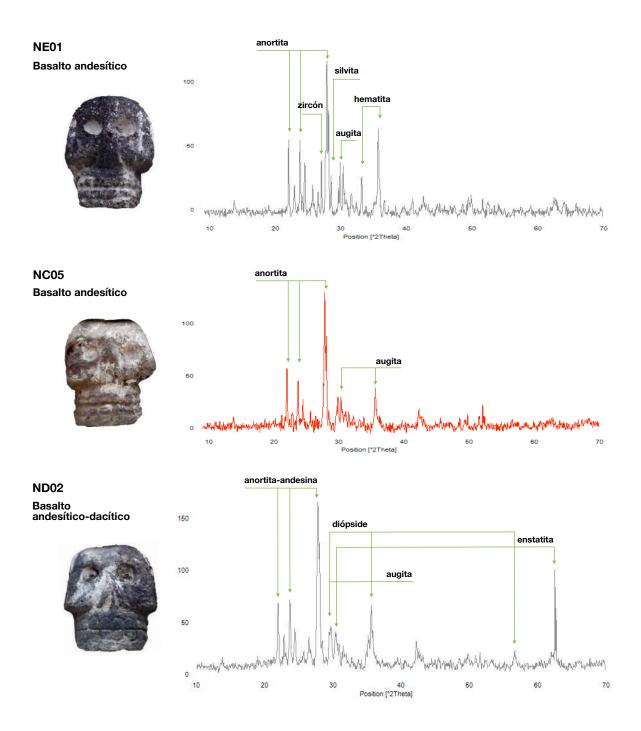


Fig. 71. Difractogramas de las muestras caracterizadas como basaltos andesíticos NE01, NC05 y ND02. Las dos primeras clasificadas en el grupo 1 por el predominio de anortita. La muestra ND02 se clasificó en el grupo 2 mostrando correspondencia con las fases cristalinas predominantes en la muestra NE11.

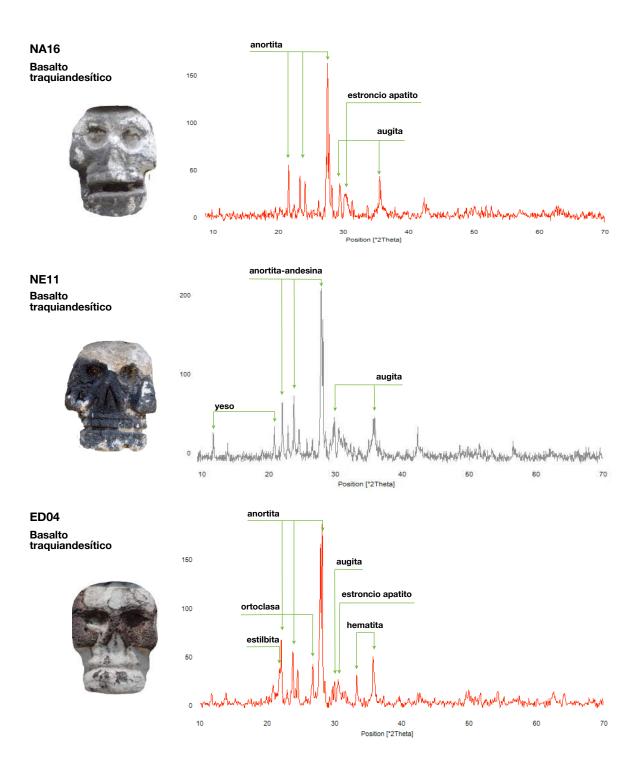
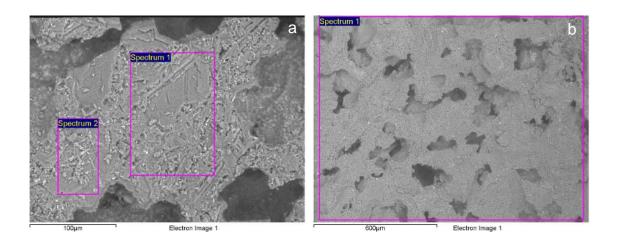



Fig. 72. Difractogramas de las muestras caracterizadas como basaltos traquiandesíticos NA16, NE11 y ED04. Las dos últimas clasificadas en el grupo 2. La muestra NA16 se clasificó en el grupo 1 mostrando correspondencia con las fases cristalinas predominantes en las muestras NC05 y NE01.

Mediante el análisis por microscopía electrónica de barrido, imágenes de electrones retrodispersados y petrografía de secciones delgadas, se identificó la microestructura, distribución y alteraciones de algunas fases cristalinas presentes en los diferentes tipos de basaltos vesiculares analizados. A continuación se presentan las principales características observadas en muestras correspondientes a los diferentes tipos caracterizados, traquibasalto, basalto traquiandesítico y basalto andsítico, respectivamente.

El análisis MEB-EDS del traquibasalto veiscular de composición alcalina, correspondiente a la muestra EC02, confirmó su contenido de plagioclasas (labradorita), fledespatos (sanidina), clinopiroxenos (augita, diopside), ortopiroxenos (ferrosilita), así como hematita e ilmenita. Esta muestra presenta coloración marrón asociada a un mayor grado de oxidación, textura con vesículas irregulares elongadas de aproximadamente 100 micras promedio y zonas de cristalización masiva (Fig. 73).

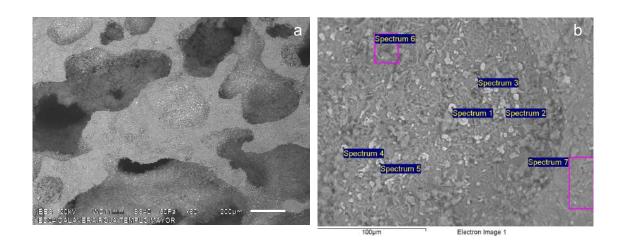
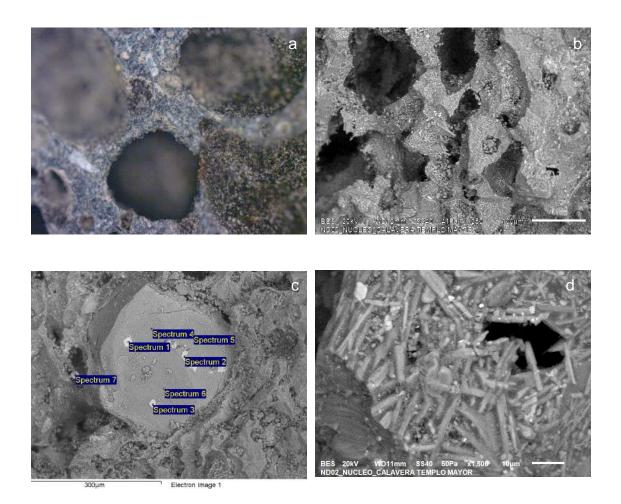

EC02	0	Na	Mg	Al	Si	P	K	Ca	Ti	Fe	Total
Spectrum 1	53.35	3.11	1.02	9.25	23.50		0.42	4.79	0.66	3.90	100
Spectrum 2	53.33	2.83	1.01	8.23	23.77		0.61	4.59	0.94	4.71	100
General	54.90	2.41	0.95	8.99	22.26	0.69	0.39	4.98	0.53	3.91	100

Fig. 73., Muestra EC02, análisis de elementos C, O, Na, Mg, Al, Si, Fe, Cl, K, Ca, Ti, P, wt %, mediante MEB-EDS que indican el predominio de plagioclasas (An 60-40) y muestran su textura vesicular.

Se observaron agregados cristalinos acumulados en las paredes de las vesículas, así como cristalización interlaminar y en las zonas de planos y clivaje (Fig. 73 a). De igual manera se observó que los agregados masivos saturan las amígdalas con formas más regulares y diámetros menores. La cristalización en estos espacios provoca la degradación paulatina de las paredes y el consecuente aumento en tamaño de las vesículas, así como su morfología elongada (fig. 73 a-b).

En la muestra ED04, las amígdalas con cristalización masiva que se observan tienen morfología redondeada y diámetros entre 100 y 300 micras, mientras que las vesículas irregulares observadas tienen morfologías elongadas y diámetros considerablemente superiores, relacionándose muchas de ellas con un proceso de rompimiento de las paredes delgadas que dividen las cavidades formadas por la degasificación del magma (fig. 74 a).

En el análisis de los agregados cristalinos en las vacuolas de dicha muestra, correspondiente a un basalto traqiandesítico de composición subalcalina, se identificaron predominantemente microcristales de plagioclasas cálcicas y minerales férricos (fig. 74 b).



ED04	0	Na	Mg	Al	Si	Р	K	Ca	Ti	Mn	Fe	Total
Spectrum 1	37.07	1.18	2.19	3.33	12.18		1.93	0.85	10.14	0.58	30.55	100
Spectrum 2	57.23	1.63	2.33	6.46	20.46		2.26	0.68	0.93		8.02	100
Spectrum 3	46.53	1.20	2.48	2.63	9.24		0.90	0.70	1.77	0.39	34.16	100
Spectrum 4	22.05	2.21	1.81	4.72	13.83		0.94	1.34	0.97		52.12	100
Spectrum 5	26.45	1.41	1.52	4.34	13.45		1.29	1.12	3.90	0.00	46.52	100
Spectrum 6	45.49	2.04	2.01	6.39	24.58		2.30	3.77	1.18	0.00	12.23	100
Spectrum 7	51.13	2.99	1.14	8.23	24.14	0.63	1.84	4.11	1.01		4.78	100

Fig. 74. Muestra ED04, a. textura vesicular y b. agregados masivos en las amígdalas con elementos detectados con EDS, O, Na, Mg, Al, Si, P, K, Ca, Ti, Mn y Fe wt % identificando predominio de microcristales aciculares de plagioclasas (An 90-80 spectrum 6 y 7), estilbita (spectrum 2), ilmenita (spectrum 1) y minerales férricos (spectrum 3, 4 y 5).

El proceso de degradación mencionado se observó en la mayoría de las muestras analizadas, pero algunas de composición intermedia-ácida presentaron un grado más avanzado de alteración relacionado con la intensificación de dicho proceso. Este fue el caso de la muestra correspondiente al elemento NC02, un basalto vesicular de composición andesítico-dacítica.

En el análisis de los fenocristales y la matriz de esta muestra se identificó el predominio de plagioclasas sódico cálcicas (An₇₀₋₄₀) y fases ricas en Mg, más relacionadas con la cristalización característica de magmas calcoalcalinos (Fig, 75-76). Las secciones delgadas muestran menor abundancia de fenocristales que en las muestra NE01 (Fig. 77).

ND02	С	0	Na	Mg	Al	Si	κ	Ca	Ti	Cr	Mn	Fe	Total
Spectrum 1	5.07	49.89	1.89	4.29	6.20	10.79	0.32	1.54	1.16	5.54		13.30	100
Spectrum 2	0.00	28.18	1.56	7.26	3.01	11.06	0.00	1.10	2.42	13.75		31.66	100
Spectrum 3		36.48	0.78	7.29	4.30	7.58	0.27	0.54	2.31	11.77		28.69	100
Spectrum 4	6.03	47.93	0.56	16.09	1.77	17.41	0.22	0.79			0.27	8.93	100
Spectrum 5		43.78	0.80	17.99	2.00	20.65	0.34	1.11			0.00	13.32	100
Spectrum 6	6.30	49.88		17.23	1.03	16.34	0.27	0.46			0.21	8.28	100
Spectrum 7	0.00	47.68	2.96	4.20	6.03	19.82	0.89	2.68	0.66			15.08	100

Fig. 75. Muestra ND02, a. vesículas con cristalización incipiente; b. degradación de paredes de la estructura y cristalización en los poros. c. elementos detectados con EDS, C, O, Na, Mg, Al, Si, K, Ca, Ti, Cr Mn y Fe, wt % en fenocristal de enstatita (spectrum 4, 5, 6) con inclusiones de diópside (spectrum 1, 2, 3 y 7); d. cristales aciculares de plagioclasas.

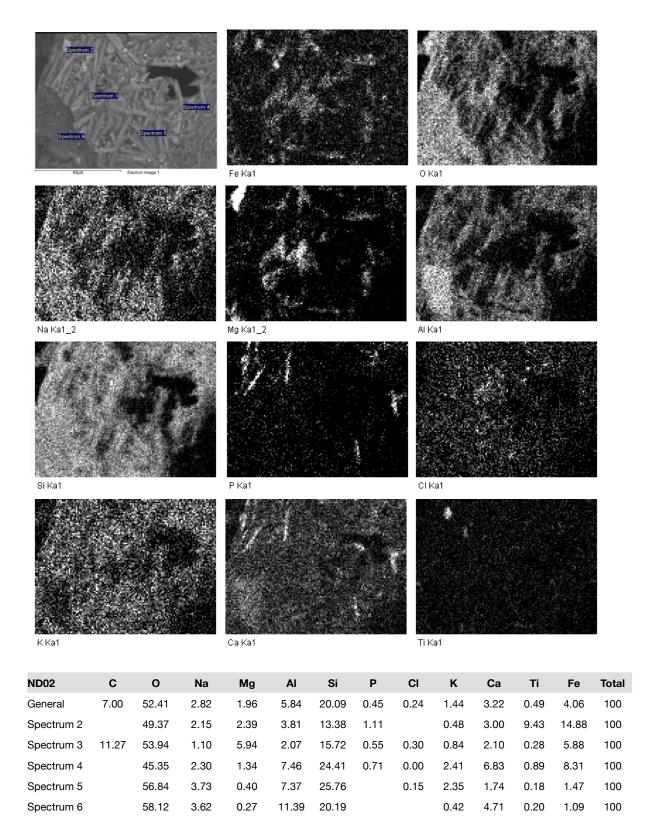


Fig. 76. Distribución de C, O, Na, Mg, Al, Si, P, Cl, K, Ca, Ti, Fe, wt %, detectados con EDS, en el basalto vesicular ND02. Predominan los cristales aciculares de plagioclasas ((An 60-40) (spectrum 5-6), titanomagnetita (spectrum 2).

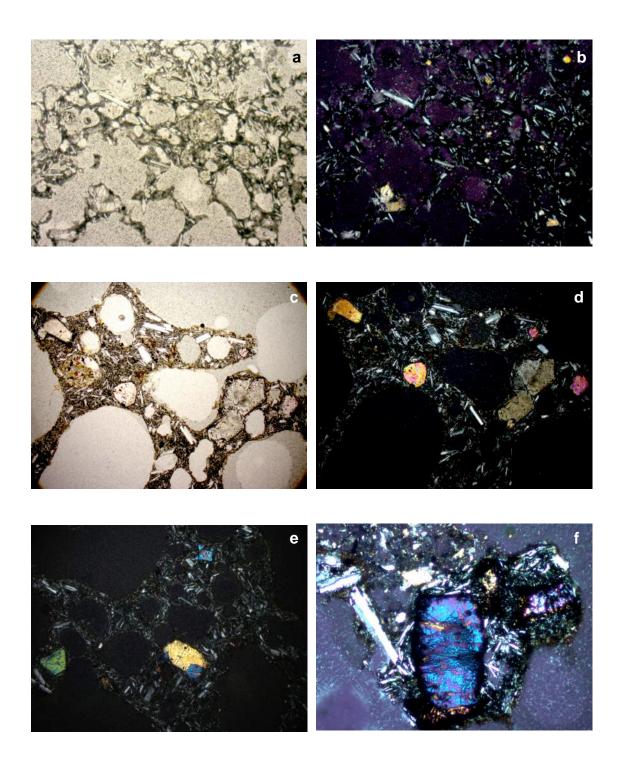


Fig. 77. Secciones delgadas de los basaltos vesiculares a-b. ND02, fenocristales de enstatita y cristales aciculares de plagioclasa, con polarizadores cruzados (b), (5x); c-d. NE01, cristales de augita y zircón, con polarizadores cruzados (d) (5x); e-f. NE01 cristales aciculares de plagioclasa, augita y zircón, polarizadores curzados (10x).

b. Tobas

Las tobas analizadas presentan fases cristalinas acordes con su naturaleza intermedia-ácida, ricas en plagioclasas, hornblenda y micas. El análisis estadístico mostró una correlación entre los difractogramas correspondientes a las muestras de tobas de composición ácida EG05, NA07, NC02 clasificadas en el análisis geoquímico como dacitas. Estas muestras se asociaron en segundo grado con la muestra EF06 de composición andesítica (TAS Le Bass et al., 1986). De igual manera se correlacionaron las muestras de composición intermedia NC07 y NC15, clasificadas como andesitas (Fig. 78).

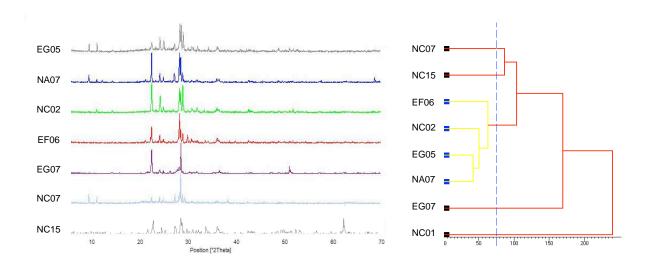


Fig. 78. Difractogramas de las muestras de tobas y correlación resultante del análisis estadístico.

Esta clasificación responde al predominio de plagioclasas cálcicas en el primer grupo y el predominio de plagioclasas sódico cálcicas en el segundo grupo. Las muestra EG07 clasificada como riolita, y la muestra NC01 clasificada como traquidacita, no se relacionaron directamente con ninguna de las anteriores.

Además de las fases predominantes anortita (Ca,Na[Si,Al]4O8), albita (NaAlSi2O8), muscovita ([K,Ba,Na] [Al,Mg,Cr,V]2[Si,Al,V]4O10[OH,O]2, flogopita (KMg3[Si3Al]O10F2), biotita K(Mg,Fe²)₃(Si₃Al)O₁₀(OH,F)₂ magnesio hornblenda (Ca[MgFe2]4Al[Si7Al]O22[OH,F]2), presentes en la mayoría de las muestras analizadas, se identificó cristobalita (SiO2) y sanidina (K,Na[Si3Al]O8) en la muestra EG07, hematita (Fe2O3) en las toba andesíticas EF06 y NC15, así como mayor contenido de yeso (CaSO4·2H2O) en la muestra NA07 (Fig. 79-80). De igual manera se detectó polihalita (K₂CaMg[SO₄]₄·2H₂O) en las muestras NA07, EF06, NC07 y NC15 y paragonita (NaAl₂[Si₃Al]O₁₀[OH]₂) un aluminosilicato de sodio hidratado solvus de muscovita, producto de la reacción de ésta con ácido carbónico presente en la lluvia ácida en las muestras NC02, NC07, NC15.³ (Fig. 79-80).

³ Debido a que los picos característicos de estas fases corresponden a los de otras fases cristalinas más abundantes no se indican en los espectros.

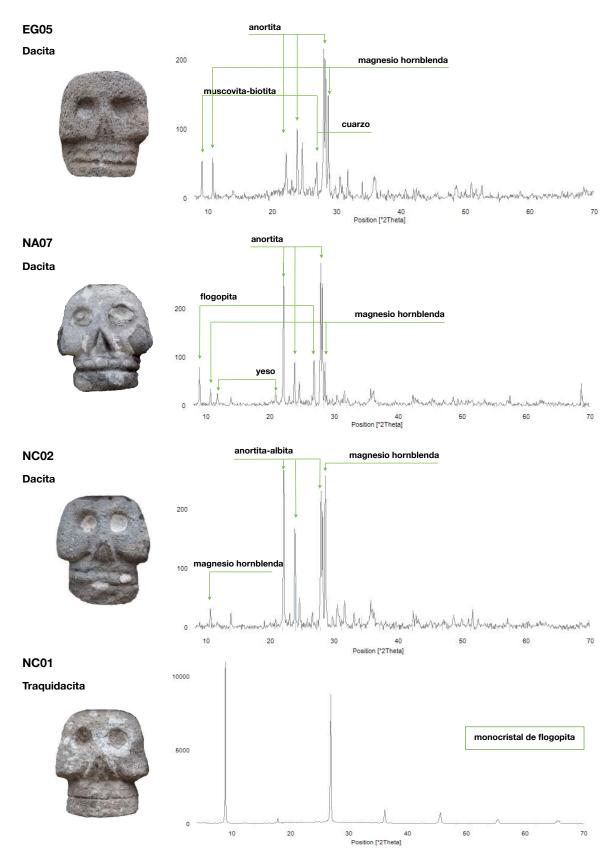


Fig. 79. Difractogramas de las muestras EG05, NA07, NC02 clasificadas como dacitas y la muestra NC01, traquidacita.

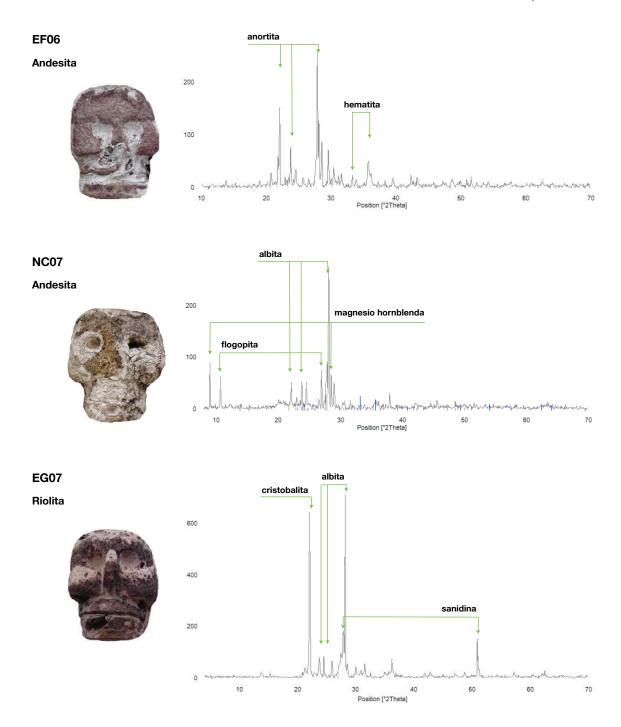


Fig. 80. Difractogramas de las muestras EF06, NC07 clasificadas como andesitas y la muestra EG07 clasificada como riolita.

La microscopía electrónica y petrografía de secciones delgadas, permitió la observación de la microestructura y alteraciones de algunas fases cristalinas en las tobas. A continuación se presentan las principales características de muestras correspondientes a los diferentes tipos caracterizados dacitas, traquidacita, andesitas y riolitas.

En las tobas dacíticas se observó la alteración progresiva de la matriz y los cristales de plagioclasas principalmente. Las imágenes muestran diferentes grados de alteración entre las tobas de este tipo. Se observó mayor afectación en la muestra correspondiente a la talla NA07, en la cual el proceso de cloritización y cristalización interlaminar afecta a casi todos los cristales observados. En las plagioclasas de esta muestra el núcleo de los fenocristales se encuentra totalmente alterado, mientras que en las muestras EG05 y NC02 de composición similar, la alteración de los fenocristales es menor.

Los cristales de feldespatos alcalinos observados en las muestras EG05 y NC02 en cambio, mostraron fracturas, cloritización, coronas de reacción y agregados cristalinos interaminares y en zonas de fractura con menor afectación del núcleo (Fig. 81-82).

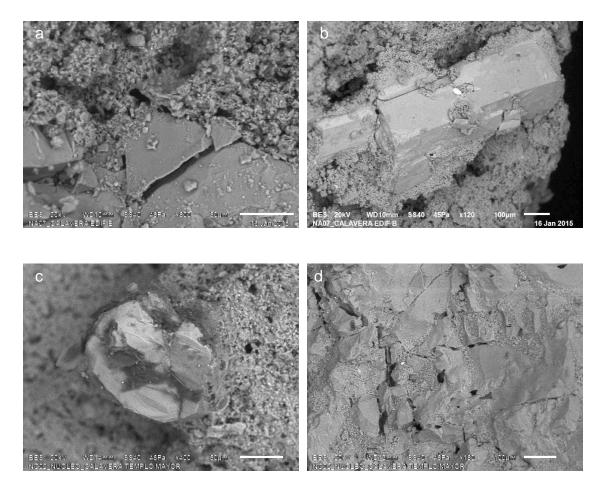


Fig. 81. Matriz y fenocristales en dacitas, a. cloritización de fenocristales de micas en NA07; b. fenocristal de plagioclasa alterado, con degradación del núcleo en NA07; c. fenocristal de hornblenda con corona de reacción en NC02; d. fracturas y agregados cristalinos en NC02.

Las zonas alteradas de las micas en general presentan la característica exfoliación laminar siguiendo los planos de su estructura, así como agregados cristalinos en estas zonas que favorecen los desprendimientos laminares (Fig. 83).

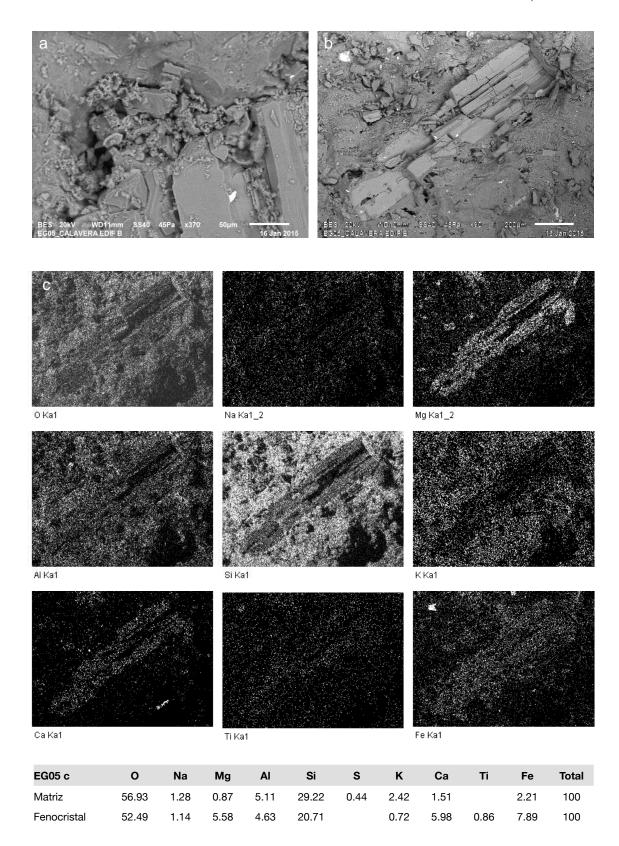
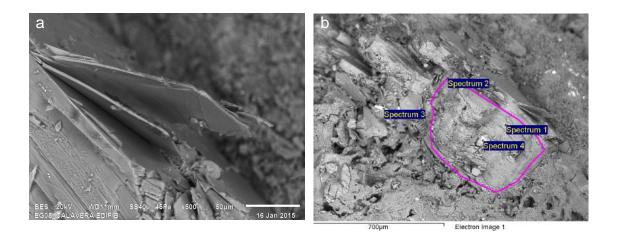



Fig. 82. Toba dacítica EG05, a-b alteración de cristales de magnesio hornblenda, c distribución de O, Na, Mg, Al, Si, S, K, Ca, Ti, Fe, wt %, detectados con EDS, en matriz y fenocristal.

EG05 b	0	Na	Mg	Al	Si	K	Ca	Ti	Fe	Total
spectrum 1	49.85		4.47	5.84	17.39	5.17		2.30	14.97	100
spectrum 2	54.09	0.67	4.69	5.87	19.15	3.93	1.11	1.47	9.02	100
spectrum 3	51.22	1.18	2.89	5.51	19.29	2.25	1.63	0.00	16.02	100
spectrum 4	19.76		1.80	3.14	11.24	1.32	0.96	1.12	60.67	100

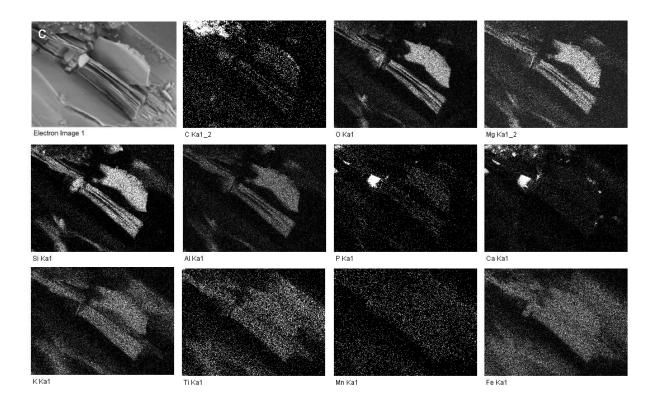


Fig. 83. Toba dacítica EG05, a. exfoliación laminar de cristal de biotita, b. cristalización masiva intralaminar, inclusiones de minerales ferricos, c. distribución de O, Na, Mg, Al, Si, S, K, Ca, Ti, Fe, wt %, detectados con EDS, en cristal de biotita cloritizado y con exfoliación.

En la muestra correspondiente al elemento NC01 clasificado como traquidacita, se observó la exfoliación laminar de los cristales de flogopita (Fig. 84) y la degradación parcial de la matriz, con cristalización de calcita en los espacios de poro (Fig. 85).

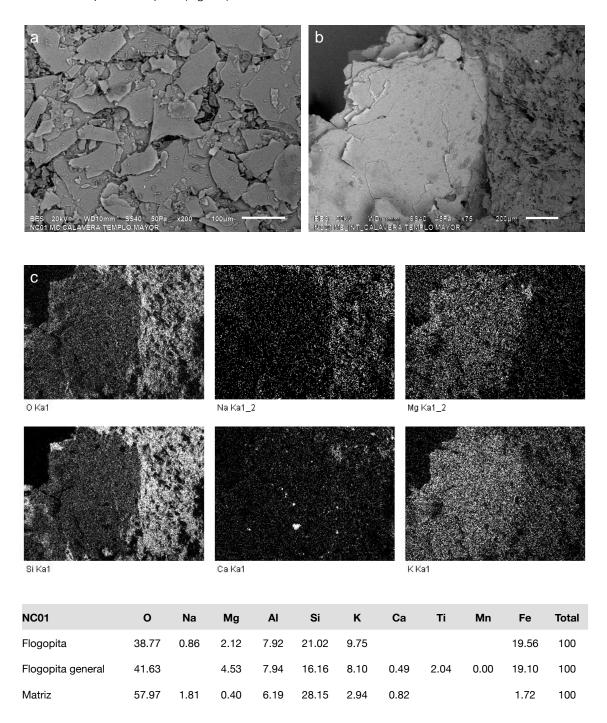


Fig. 84. Muestra NC01 traquidacita, a-b. delaminación y fragmentación de cristal de flogopita; c. distribución de C, O, Na, Mg, Al, Si, K, Ca, Ti, Fe, wt %, detectados con EDS, en cristal de flogopita y matriz.

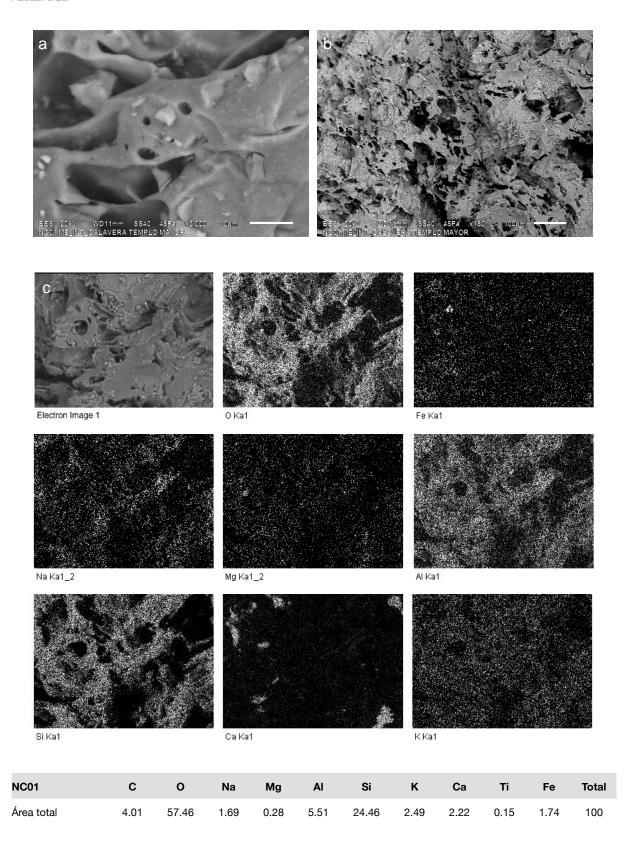


Fig. 85. Muestra NC01 traquidacita, distribución de C, O, Na, Mg, Al, Si, K, Ca, Ti, Fe, wt %, detectados con EDS en matriz.

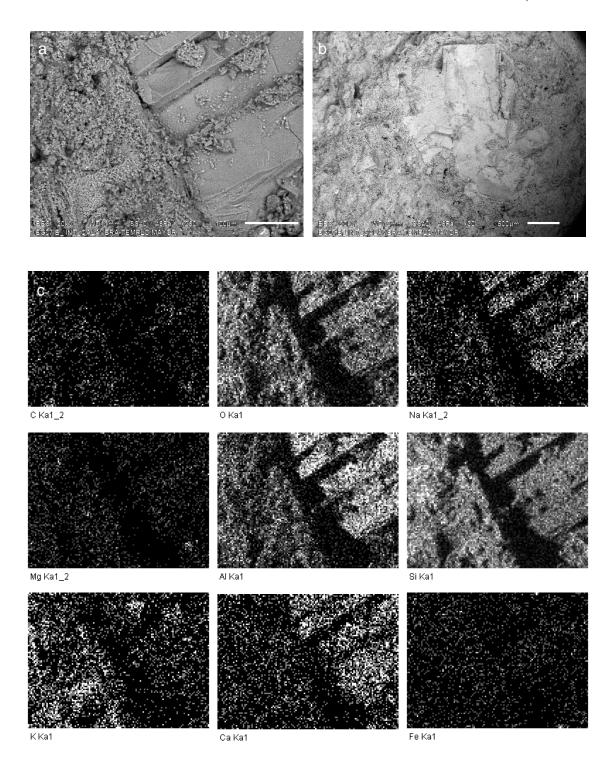


Fig. 86. Muestra EG07 riolita, a-b. fenocristales de feldespato alcalino en matriz predominantemente de plagioclasa, c. elementos detectados con EDS.

En la muestra correspondiente al elemento EG07 clasificado como riolita se detecta menor alteración de los fenocristales de feldespatos alcalinos observados (Fig. 86).

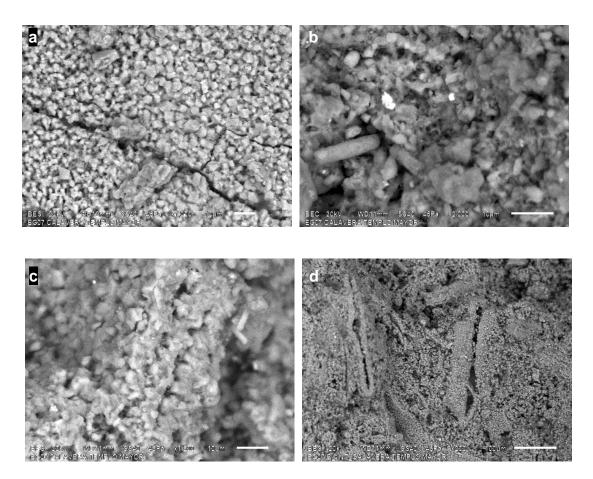


Fig. 87. Muestra EG07, matriz embebida en material hidrofugante a base de silanos, cristalización masiva y endurecimiento superficial.

Sin embargo, en esta muestra la matriz de albita se encuentra parcialmente embebida en material hidrofugante, al parecer a base de silanos (Fig. 87). La cristalización masiva de este tipo de materiales provoca entre otros efectos negativos, rigidez superficial y la consecuente fractura de los estratos endurecidos (Fig. 87, 90 d). Adicionalmente, las secciones delgadas permitieron observar con mayor detalle características de las fases cristalinas presentes tales como texturas, grados de alteración, zonación concéntrica de las plagioclasas por variaciones de contenido Na-Ca en la estratigrafía del cristal, afectación de núcleos con mayor contenido de Ca y coronas de cristalización masiva (Fig. 88-90). De igual manera las imágenes microscópicas muestran con detalle la textura superficial de las tallas, cuya irregularidad aumenta con el nivel de deterioro.

En el estudio de las muestras de composición andesítica NC07 y NC15 se observó que el carácter granular de la matriz, así como la presencia de cristales de plagioclasas y hornblenda de mayores dimensiones que en las dacitas, traquidacita y riolita analizadas, da lugar a mayores irregularidades por pérdida de fenocristales lo que deriva en el aumento de superficie de exposición y reacción. Las condiciones y propiedades de estas tobas también favorecen la cristalización de sales intragranular y en superficie, como puede observarse en las imágenes (Fig. 90 e-f).

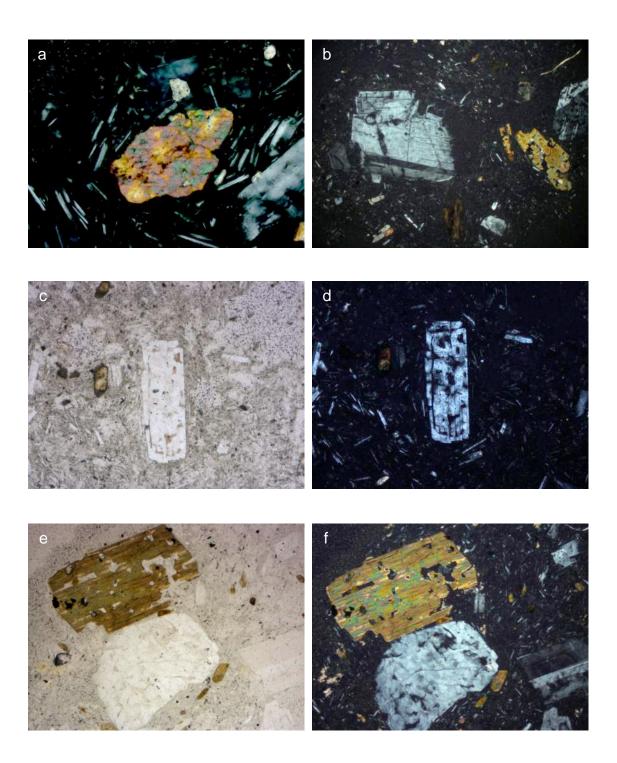


Fig. 88. a. Cristales de calcita en NA07 (polarizadores cruzados, 10x); b. cristales de plagioclasa y flogopita (polarizadores cruzados, 5x); c-d. ortoclasa con textura pertítica (polarizadores cruzados, 5x); e. fenocristales de flogopita y plagioclasa en NC01, matriz vítrea con microcristales de plagioclasa y piroxeno en lámina delgada (5x); f. Imagen con polarizadores curzados, se observa la zonación concéntrica en cristal de plagioclasa (esquina inferior derecha).

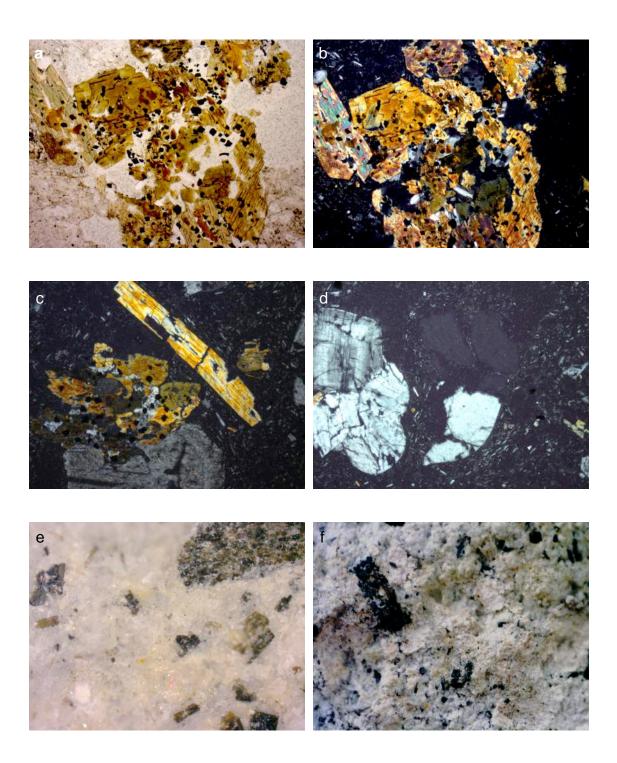


Fig. 89. Elemento EG05 a-c. Fenocristales de moscovita y biotita con opacos, matriz microcristalina en lámina delgada (b-c polarizadores cruzados, 5X); d. fenocristales alterados y matriz de anortita cloritizada, en la lámina delgada se observa la zonación del cristal y la corona de reacción (polarizadores cruzados, 5X); e-f. textura porfídica del elemento EG05, clasificado como dacita (2,5x y fotografía con microscopio USB portátil 10x). Correspondencia en composición y textura con las muestras NA07 y NC02.

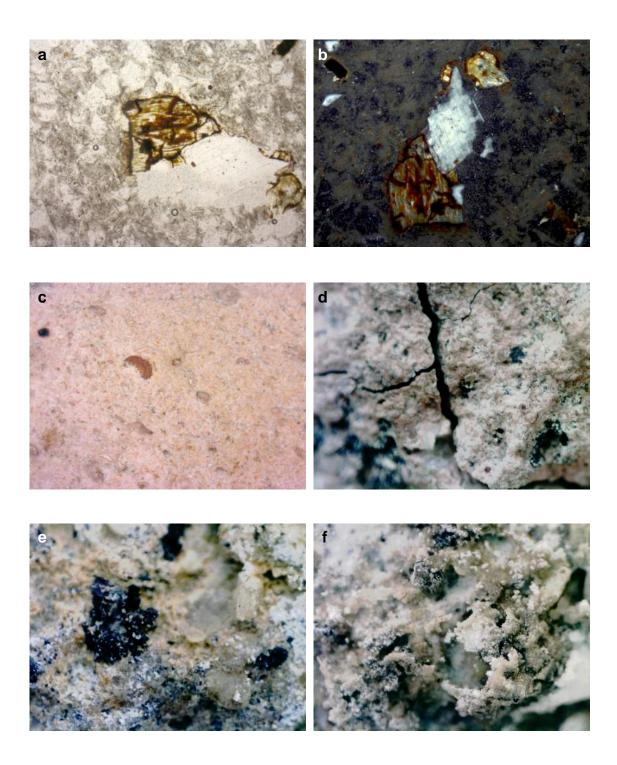


Fig. 90. a-b. Cristales de piroxeno con lustre nacarado, en lámina delgada EG07 (5x); c. textura afanítica en imagen microscópica de la riolita EG07 con cristales de sanidina y minerales ferromagnesianos (2,5x); d. fractura de material endurecido, se observan cristales de magnesio hornblenda (fotografía con microscopio USB portátil 10x); e. fenocristales de plagioclasa y magnesio hornblenda en la muestra NC07 clasificada como andesita, en proceso de disgregación; f. matriz alteada por cristalización de sales, en la muestra NC15 (fotografía con microscopio USB portátil 10x).

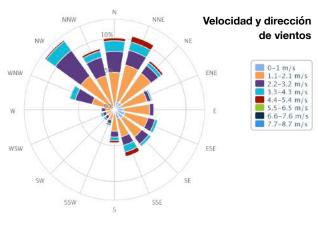
c. Identificación de sales

La identificación del tipo de sales con cristalización predominante a diferentes alturas de los muros de la estructura, a partir del análisis de aniones presentes en las eflorescencias salinas de las tallas NA07, NB10 y NC15, mediante espectrocolorimetría, indicó la presencia predominante de sulfatos y en menor medida de nitratos y cloruros. La concentración de sulfatos y cloruros es mayor en la zona baja de la estructura, mientras que los nitratos se concentran en el área central (Tablas 9-10).

Muestra	Peso [g]	Vol. H2O [ml]	Conc. [g/l]	Factor [mg/l] a [g/kg OS]	Aspecto	Tratamiento
NA07	0.0004	0.5	0.8	1.25	incolora, clara	ninguno
NB10	0.0114	1	11.4	0.0877	sólidos pequeños, muy turbia	filtro 0,2µm
ND15	0.0094	1	9.4	0.106	turbia, 1 fragmento pequeño	filtro 0,2µm

Tabla. 10. Preparación y tratamiento de muestras NA07, NB10 y NC15 para análisis de sales.

lanaa	(Contenido g/kg MS	
Iones	NA07	NB10	ND15
Cloruro	3.09	1.23	0.626
Nitrato	18.9	24.7	10.8
Sulfato	750	99.3	420
Bromuro	<1	<1	<1
Sodio	346	28.0	173
Potasio	6.85	6.60	0.776
Magnesio	0.373	0.293	0.320
Calcio	1.60	22.1	24.3


Tabla. 11. Resultados del análisis de aniones presentes en las eflorescencias salinas de los elementos NA07, NB10 y NC15.

4. Discusión

4.1 Mecanismos de alteración

Con base en los resultados de los análisis y la información del contexto podemos establecer que en los mecanismos de alteración que afectan el Edificio B se combinan tres factores, las condiciones del subsuelo, las condiciones ambientales y la interacción de los geomateriales que lo conforman, con los siguientes resultados.

Las características del subsuelo, con una tasa de subsidencia que varía de -92 a -115 mm/año (Cabral et al., 2011), relacionada con la velocidad de pérdida de nivel del acuífero subyacente, la plasticidad de los suelos lacustres y los movimientos constantes por actividad sísmica, así como la heterogeneidad de los rellenos constructivos que subyacen al objeto de estudio y las estructuras circundantes, provocan la deformación diferencial del terreno. Ésta se manifiesta en la subsidencia con dirección S-N del edificio, a una velocidad diferencial en dirección NE

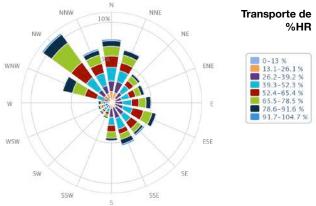
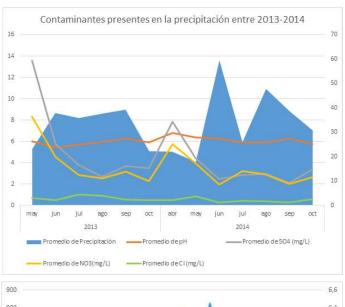



Fig. 91-92. Velocidad y dirección de impacto de vientos dominantes y transporte de %HR en el centro de la Ciudad de México, durante 2014 (SEDEMA, Dirección de Monitoreo Atmosférico aire.df.gob.mx)

respecto a NW, generando tanto esfuerzos de compresión en el muro N, como esfuerzos de tensión E-W en la estructura. En estos últimos influye además, la distribución irregular de cargas producto de la morfología del edificio y la liberación heterogénea de materiales tanto al interior como en la parte superior de la estructura. El aumento paulatino de las condiciones de desequilibrio de la estructura, genera tensiones permanentes, por ello los esfuerzos para subsanar las fracturas en los muros del edificio, no evitan su constante apertura.

La excavación expuso repentinamente la estructura a una atmósfera altamente contaminada. La interacción de los contaminantes con los materiales pétreos se intensifica en el muro N por la dirección de los vientos dominantes (Fig. 91). La deposición de partículas de óxidos de metales de transición, genera un medio que promueve reacciones de oxidación y favorece el anclaje de contaminantes que una

vez que se fijan a la superficie reaccionan en contacto con la humedad y lluvia ácida, liberando iones de Mn, Fe, Zn, Cu y Pb, con alto potencial de catalizar nuevas reacciones. La presencia de sulfatos y nitratos en regiones de alta humedad incrementan la solubilidad de los metales, aumentando el potencial de reacción (Mc.Alister et al., 2008).

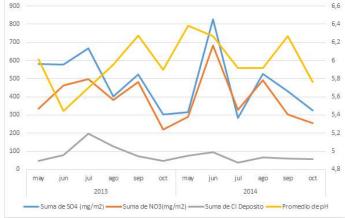


Fig. 93-94. Contaminantes y pH registrados durante 2013-2014 en depósitos húmedos en la estación de la REDDA, MCM ubicada a 677 m del Edificio B (gráfico elaborado con datos de SEDEMA-REDDA, 2015).

La proximidad y dimensiones de la estructura que se encuentra al norte del Edificio B, crea un túnel de viento con efecto erosivo en los elementos más expuestos del muro N. Al mismo tiempo, la inclinación de dicho muro contribuye a la acumulación de partículas en la zona inferior y disminuye su insolación, lo cual favorece la lenta evaporación en ésta área.

Los vientos también favorecen el transporte de humedad relativa y lluvia ácida hacia esta fachada (Fig. 92). Los depósitos húmedos registrados en el área de estudio, son predominantemente ácidos (pH 4-7), por lo que actúan como catalizador de reacciones de oxidación de los contaminantes (Fig. 93-94). La concentración de contaminantes en combinación con la humedad prolongada incrementa la acidez del medio ya que las zonas que permanecen húmedas por periodos prolongados favorecen la adhesión de partículas, mismas que generan zonas de nucleación con crecimiento de cristales, principalmente de sulfatos (Charola y Ware 2002, Sabbioni

2003, en Graue et al., 2013). La sulfatación puede darse por depósitos tanto secos como húmedos, en el primer caso por deposición de partículas de SO₂ mientras que en el segundo, el medio de deposición de SO₄²⁻ es la lluvia ácida. En estudios de áreas urbanas altamente contaminadas se ha comprobado que la formación de costras de yeso está más relacionada con las deposiciones secas (Gauri, 1990; Furlan y Girardet, 1983, Torfs y Van Grieken 1997 en Graue et al., 2013). Sin embargo en el caso de la Ciudad de México, la acumulación de sulfatos por agua de lluvia es muy elevada,

Los registros del periodo 2013-2014 muestran que la deposición total de sulfatos por agua de lluvia fue de 5.93 g/m₂, lo que corresponde a 250.01 g en la superficie del Edificio B, constituyendo el anión más abundante, seguido de los nitratos con una concentración de 4.85 g/m₂, equivalente a 204.65 g de depósitos superficiales en el edificio y cloruros con una concentración de 0.97 g/m₂, lo cual corresponde a y 41.20 g (Fig. 93-94) (SEDEMA, 2015).

La cristalización de sulfatos es particularmente agresiva en los sustratos pétreos ya que su volumen aumenta dramáticamente en periodos breves, produciendo presión y fractura de las paredes que los contienen. En las superficies deterioradas el incremento en la irregularidad de la textura, provoca el aumento de la superficie de reacción y favorece la acumulación de partículas, volviendo el mecanismo exponencial (B. Graue et al., 2013). La cristalización de sales es un problema grave en el Edificio B, sobre todo en el muro norte. Su análisis mostró una alta concentración en la parte baja de la estructura, lo que indica que la humedad capilar es una fuente importante, si no la principal. También resultó evidente el predominio de sulfatos, que como se mencionó, son más agresivos dada su baja solubilidad que genera soluciones saturadas con alto volumen de cristalización, además de aportar acidez al medio contribuyendo a otras reacciones.

El grado de afectación de los diferentes muros por cristalización de sales y otros mecanismos asociados se relaciona tanto con las condiciones de exposición mencionadas, como con la distribución y propiedades de los tipos litológicos que los integran. El tezontle o basalto vesicular, cuya textura característica es producto de la degasificación en la cristalización del magma, tiene una estructura celular heterogénea, caracterizada por su alta porosidad. Las muestras de este tipo de roca volcánica extrusiva analizadas, mostraron una composición basáltico andesítica y basáltico traquiandesítica. Macroscópicamente las vesículas observadas varían entre 0.1 mm y 10 mm de diámetro, combinando morfologías redondas y elongadas. Microscópicamente las paredes celulares se componen de cristales aciculares de plagioclasas, piroxenos, anfíboles, hematita y otros minerales ferromagnesianos (Fig. 95).

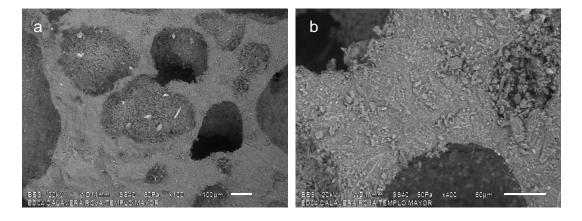
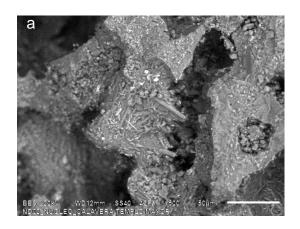



Fig. 95. ED04 cristalización en vacuolas redondeadas predominio de plagioclasas (An 80-90), ortoclasa y contenido de hematita.

Fig. 96. Elemento NE11, talla en escoria basáltica alterada por fragmentación.

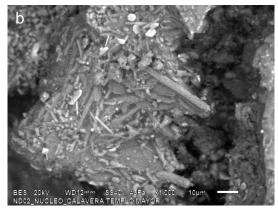
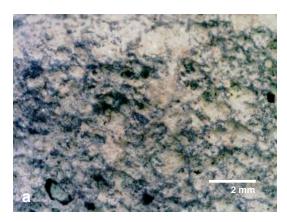


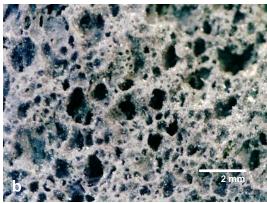
Fig. 97-. ND02 degradación de las paredes y cristalización en las vacuolas, plagioclasas (An 80-90), presencia de minerales ferromagnesianos.

Geoquímicamente el tezontle se ha caracterizado con un contendio aproximado de 60% SiO₂, 12% Al2O₃, 8% MgO, 5% Fe2O₃, 4%CaO y 3% Na₂O (Acevedo Dávila et al. 2007, Wedekind et al., 2011). En las muestras analizadas las variaciones en dichos contenidos fueron de 50.95 a 63.04% SiO₂, 9.26 a 17.88% Al2O₃, 3.67 a 5.34% MgO, 7.79 a 10.91% Fe2O₃, 6.93 a 8.93% CaO y 3.30 a 4.69% Na₂O.

La propiedades físicas reportadas para el tezontle son muy baja densidad general ~1.4 g/cm³, por su alta porosidad, aunque con alta densidad de partícula o matriz ~2.71 g/cm³ asociada a su contenido de minerales máficos. En material no intemperizado la porosidad reportada oscila entre 35 y 66% debido a la heterogeneidad de su estructura celular, con una distribución de radio de poro de hasta 76.2% de poros capilarmente activos, debido a un desequilibrio de poros capilares mayores (>10 µm=43.7%) y macro poros. El coeficiente de absorción de agua promedio es de 0.40 kg m⁻² h⁻¹/², el coeficiente de dilatación térmica es relativamente alto 7.0 10⁻⁶ K⁻¹ y su resistencia a la compresión uniaxial es baja, ~23.8 N/mm² (Wedekind et al., 2011).

Estas características hacen este material resistente al intemperismo pero con resistencia limitada a los esfuerzos mecánicos, lo cual se refleja en el tipo de deterioro más común entre los elementos de tezontle que integran las fachadas, las fracturas y fragmentación (Fig. 96).


La observación microscópica mostró alteración de los minerales formativos de la paredes celulares, asociada a un proceso de cristalización en las vacuolas, que aumenta el comportamiento higroscópico de estas zonas (Fig. 97a). Se ha comprobado que la morfología lenticular o elongada que determina la profundiad del poro, no influye tanto en la velocidad de difusión de


fluidos como el ángulo del diedro que determina su forma redondeda (Petrishcheva y Renner 2010). Esto provoca mayor cristalización en los poros redondeados que a la vez favorece la retención de agua y la recristalización de soluciones saturadas de yeso, provocando la degradación de las paredes (Fig. 97b).

La textura juega un importante papel en este proceso, ya que la absorción y retención de humedad aumenta en los elementos con vesículas pequeñas, en comparación con los elementos con vesículas de mayor tamaño. En los primeros es notoria una mayor inercia térmica, así como la cristalización de sales en superficie (Fig.98).

Los basaltos no vesiculares, llamados comúnmente basalto recinto, por su textura son menos vulnerables a dicho fenómeno (Fig. 98 a). Poseen mayor resistencia al esfuerzo mecánico y considerable aumento en densidad lo que aumenta también su peso. En general debido a sus propiedades es común que este material se use en los desplantes de muro ya que aísla la estructura de la humedad y ofrece una buena capacidad de carga.

En el Edificio B se encuentran entre los bloques de la plataforma, muros y escalinatas, y en menor cantidad entre los cráneos tallados de las fachadas N y E. Aunque no se identifica un patrón en la distribución de los tipos litológicos en los tableros de cráneos que integran el edificio, puede observarse que las tallas en basalto recinto se encuentran en su mayoría colocadas en las filas inferiores, en los muros mencionados, aunque no exclusivamente.

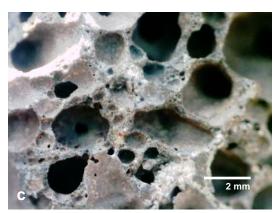
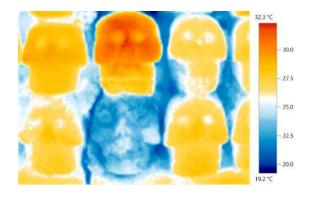



Fig. 98. a. Elemento NA16, basalto recinto de composición traquiandesítica; b. basalto vesicular de con vacuolas pequeñas elongadas, cristalización de sales en superficie; c. basalto vesicular de composición andesítica con vacuolas de mayor tamaño.

Los procesos de alteración de estas tallas son mínimos y corresponden sobre todo a fracturas ante esfuerzos mecánicos, en las partes más vulnerables por su diseño. Las tobas en cambio, son más vulnerables a las condiciones ambientales por lo que muestran procesos y niveles de alteración diferentes relacionados con su composición y ubicación.

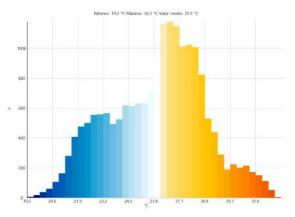


Fig. 99. Registro termográfico de la fachada N del Edificio B y perfiles de humedad y temperatura de los elementos NB3 (escoria basáltica) y NA3 (toba andesítica deteriorada).

Se ha demostrado que el comportamiento higroscópico determina en gran medida la resistencia de los materiales pétreos a las condiciones de intemperismo, ya que favorece o impide el transporte de sales solubles y lluvia ácida, que conlleva a diversos mecanismos de degradación del material. Estudios recientes han revelado que dicho comportamiento, comúnmente relacionado con el contenido de minerales arcillosos, se vincula estrechamente con el tamaño y distribución de poros capilarmente activos (microporos de 0.1 a >100 μm) (Ruedrich et al., 2010; López-Doncel et al., 2013; Wedekind et al. 2013).

Estudios de porosidad practicados en muestras de tobas andesíticas de la zona (Wedekind et al., 2011; Wedekind et al. 2013) muestran que la porosidad varía en relación con el grado de alteración del material, aumentando notoriamente la concentración de poros capilares en las zonas intemperizadas y con ello la penetración y retención de humedad, a la par que disminuye drásticamente la dureza (Fig. 99).

Esto explica la alta inercia térmica observada en los elementos más deteriorados del Edificio B, que se manifiesta en delaminación y disgregación de los materiales afectados. Estos mecanismos se relacionan con dos variantes particulares de tobas de composición intermedia-ácida caracterizados como andesitas (NC07 y NC15) y dacitas (NA07, NC02, EG05).

Las andesitas caracterizadas en el muro norte del Edificio B, son tobas de tonalidades amarillas y rojizas, poco soldadas, con contenido de minerales máficos, magnesio hornblenda, cristobalita, arcillas y plagioclasas. Los cristales en las inclusiones están inalterados mientras que los de la matriz presentan alteración y abundante cristalización de sales.

Geoquímicamente se caracterizan por un contendio de entre 61-62% SiO₂, 15.86-19.59% Al2O₃, 1.64-1.92% MgO, 4.75-5.52% FeOt, 5.44-7.69%CaO y 4.12-4.77% Na₂O. El deterioro en estas tobas se manifiesta como desintegración granular de la matriz o disgregación que ocasiona pérdida continua de material (Fig. 100). La disolución de las plagioclasas, aunada a la cristalización de sales en la matriz favorece la liberación de los fenocristales y el consecuente colapso del material circundante, en un proceso continuo.

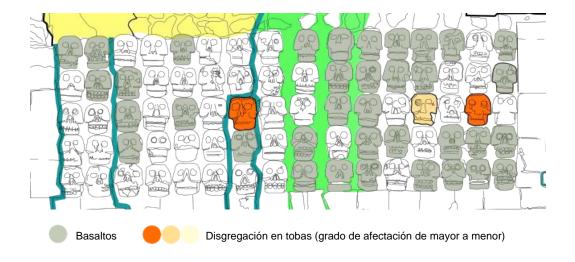


Fig. 100. Deterioro de tobas por dIsgregación en correspondencia con su ubicación respecto a los basaltos y alteraciones estructurales en la fachada N.

El alto grado de alteración, disminuye su resistencia mecánica e incrementa su comportamiento higroscópico, lo que favorece la cristalización de sales y acelera el proceso de deterioro (Fig. 101).

Las dacitas y traquidacita que integran las tallas del edificio muestran una coloración gris clara a media y textura fenoporfirítica en matriz de ceniza con plagioclasas, muscovita, flogopita, biotita y hornblenda principalmente. Presentan rasgos distitutivos de las variedades similares caracterizadas en edificios de la zona centro como Chiluca, toba para la que se ha reportado alto coeficiente de dilatación térmica de ~4 mm/m a 60°C a ~8 mm/m a 90°C, así como de absorción hígrica y variantes en la distribución de radio de poro, lo que les confiere mayor o menor resistencia al intemperismo (Fig. 102 y 103).

Geoquímicamente las dacitas analizadas (EG05, NC02 y NA07) se caracterizan por un contenido de entre 67.88 - 69.84% SiO₂, 13.07 - 14.13% Al₂O₃, 1.09 - 1.46% MgO, 3.34 - 4.38% FeOt, 4.64 - 5.10%CaO y 3.53 - 4.35% Na₂O.

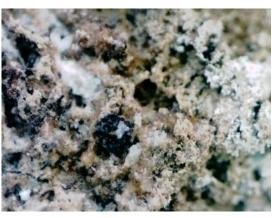


Fig. 101. Disgregación de la andesita NC07 y cristalización de sales.

Fig. 102. a. Traquidacita NC01, muestra mayor resistencia al intemperismo; b. EG05 dacita ubicada en el muro E, muestra deterioro por procesos erosivos; c. NA07 dacita ubicada en el muro N muestra deterioro por delaminación.

La traquiandesita (NC01) se caracterizó por un menor contenido de SiO₂, 65.83%, y un mayor contenido de K_2O , 13%, MgO 1.48%, FeOt 5.7% y Na₂O 4.67%, así como valores similares para Al_2O_3 , 13.03% y CaO 4.82%. Mientras que la riolita (EG07) presentó valores mucho más altos de SiO₂, 73.50% y concentraciones menores de Al_2O_3 , 13.22%, MgO, 0.65%, FeOt, 1.92%, CaO 2.00% y Na₂O, 4.26%.

Al comparar el estado de conservación de elementos de composición similar ubicados en el muro N (NA07, NC02) y en el muro E (EG05), es evidente que los primeros se encuentran más afectados por criptocristalización debido a las condiciones ya descritas de la fachada. En cambio en el muro E, a diferencia de las condiciones mencionadas, los ciclos de lluvia e insolación evitan la acumulación de partículas contaminantes, así como la humedad prolongada, favoreciendo procesos de alteración más bien de tipo erosivo. La riolita EG07 también presenta procesos de este tipo.

Se observó también que elementos que se encuentran en condiciones similares en el mismo muro N, pero cuya composición es ligeramente más alcalina, muestran mayor resistencia al deterioro, como es el caso de la talla NCO1 de composición traquidacítica (Fig. 102-103).

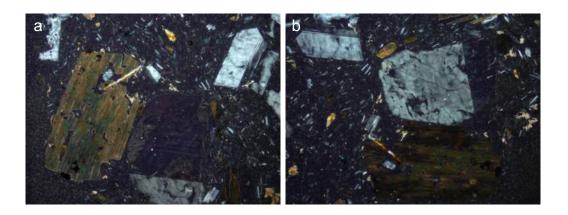


Fig. 103. Traquidacita NC01, cristales de flogopita y plagioclasas, se observa alteración del núcleo y zonación.

En las dacitas el deterioro se manifiesta en microfisuras, cristalización de sales, exfoliación y delaminación, que llevan a la perdida gradual de las capas superficiales. Las discontinuidades ocasionan diferencias en el comportamiento térmico e higroscópico de las capas interna y externa y favorecen la cristalización interlaminar. El crecimiento de los cristales genera presión entre los poros del material, fracturando su estructura e incrementando el comportamiento higroscópico, lo que deriva en la aceleración del mecanismo de degradación interna y la disolución de componentes de la matriz como puede verse en NAO7 (Fig.104).

La interacción de estas tobas con los cráneos tallados en escorias basálticas y los morteros del

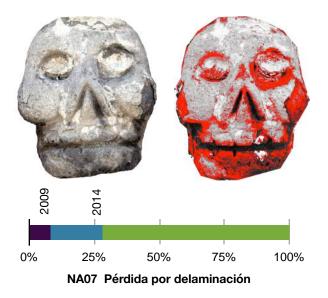


Fig. 104. Incremento acelerado del orcentaje de pérdida por delaminación registrado en el elemento NA07 en el periodo 2007-2014.

edificio, agrava su condición. Se observó que las tobas más alteradas en el muro N coinciden con dos condiciones, se ubican en colindancia con una zona de importante discontinuidad ya sea por fractura o agregado de mortero con propiedades termohigroscópicas contrastantes; y están en contacto directo con un elemento de nauturaleza basáltica (Fig. 105).

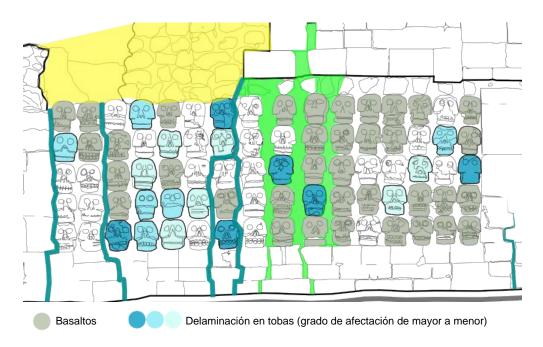
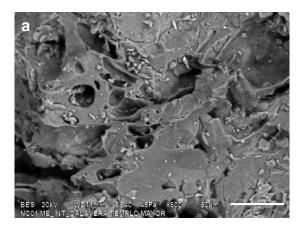
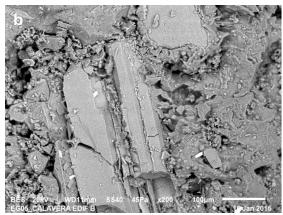




Fig. 105. Deterioro de tobas por delaminación en correspondencia con su ubicación respecto a los basaltos y alteraciones estructurales en la fachada N.

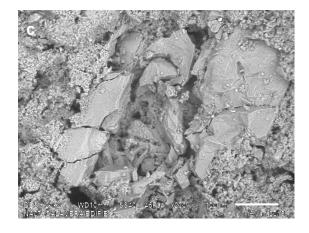


Fig. 106. a. NC01 matriz con cristalización de yeso en los poros; b. EG05 fenocristales de hornblenda y alteración de matriz; c. alteración de plagioclasas y matriz en NC07.

Ambas condiciones favorecen la migración de iones y la acumulación de humedad. Esto se debe tanto al contraste entre el coeficiente de absorción de agua de las tobas que es mayor que el de los basaltos, como a su contacto con una fuente constante de humedad capilar transportada por el mortero o a través de las zonas alteradas del sistema constructivo (Hammecker, 1995). Esta condición de humedad constante además de incrementar la captación de contaminantes ya mencionada, favorece la captación de iones solubles de sodio, potasio, calcio y magnesio, liberados por los morteros de cemento (B. Graue et al., 2013). Como consecuencia el medio ácido generado en las tobas provoca la disolución de las plagioclasas. En estas condiciones la velocidad de disolución se intensifica conforme aumenta el componente de anortita (Gudbrandsson et al., 2014) (Fig. 106).

La disolución de las plagioclasas también puede ocurrir en medios alcalinos, (Huang y Kiang, 1972). Los morteros de cal del edificio pueden contribuir al proceso de sulfatación, favoreciendo el incremento de la velocidad de deposición de SO₂, así como su oxidación a SO₄²- que se incrementa con el alto pH y las partículas de calcita (Charola y Ware 2002 en Graue et al., 2013).

Esto se debe a que en la velocidad de deposición de anhídrido sulfuroso (SO₂) sobre rocas silicatadas, un factor incluso más relevante que la humedad relativa es la capacidad de amortiguamiento de pH disponible para la reacción de disolución (Wiese et al. 2012 en B. Graue et al., 2013).

Los medios alcalinos afectan particularmente a las rocas volcánicas ácidas silicatadas con abundancia de feldespatos, ya que en estos medios la solución de cuarzo y feldespatos se incrementa (B. Graue et al., 2013). En estas condiciones la velocidad de disolución de las plagioclasas no depende tanto de su composición (Gudbrandsson et al., 2014).

Este proceso puede acelerar el deterioro particularmente de las dacitas analizadas (NA07, NC02, EG05) que corresponden a la composición ácida mencionada con contenido de SiO₂ >67 %. Es común la ateración de las plagioclasas a sericita y epidota, así como la alteración de biotita y hornblenda a epidota, clorita y minerales óxidos. (Ceryan, 2012, Ceryan et al., 2008). Los feldespatos alcalinos en cambio, muestran mayor resistencia a la alteración que las plagioclasas (Banfield y Eggleton, 1990).

Algunos de los materiales empleados en las intervenciones del edificio desde su excavación, han agravado la problemática de conservación de los elementos pétreos. Con el fin de estabilizar la estructura se extrajo la tierra de los rellenos y al parecer, de buena parte de las juntas para sustituirla por un mortero de cemento-cal-arena (1:1:6). En las grietas se colocaron mezclas de cal-cemento-arena (2:1:12). Posteriormente se hicieron diferentes intervenciones en las fachadas, sin embargo, no todas fueron documentadas. En un registro que data de marzo de 1984 se informa la aplicación de Curasol® AR, una dispersión de alcohol polivinílico en agua, a 40 calaveras de la fachada norte. Más adelante en agosto de 1985 se consolidaron elementos con morteros de cal adicionada con Mowilith® DM4 (emulsión de acetato de polivinilo), los materiales se impregnaron con Primal® AC33 (emulsión de resina acrílica) y se reportaba ya la presencia de una deposición de consistencia grasa que se atribuía a la contaminación atmosférica, la cual se limpió con agua amoniacal. La preocupación por este depósito provocó que se aplicara un recubrimiento de protección (Sámano et al., 2010).

Matos Moctezuma (1993) reporta la aplicación extensiva de una silicona disuelta en bencina, identificada como Wacker® 190L a los sillares y otros elementos pétreos de la zona arqueológica. Un problema que se enfrenta es que si bien se conocen de forma general los productos empleados, no se ha podido precisar la composición exacta de todos, ya que fueron descontinuados o cambiaron su denominación sin dejar registros claros por parte de los fabricantes que permitan su consulta.

En la actualidad se ha comprobado que los compuestos mencionados en general no poseen una penetración efectiva debido a su alto peso molecular. En teoría, se aplican a baja concentración para permitir que la mezcla de polímero y disolvente penetre en los poros de la roca y cubra las paredes internas con una delgada capa que reduzca la absorción de agua y al mismo tiempo aglutine las partículas desprendidas reforzando el conjunto. El problema es que en la práctica la penetración de estos materiales es muy baja, provocando solamente un endurecimiento superficial.

En el caso de las resinas acrílicas la penetración estimada en materiales con poros grandes o gravemente alterados, es de 5 mm, por lo que si la zona de alteración es más profunda se corre gran riesgo de que el endurecimiento superficial provoque la delaminación, exponiendo más superficie al intemperismo. En muchos casos el material consolidante tiene una penetración efectiva en los poros más pequeños y los ocluye, pero no lo hace con los poros de dimensiones mayores.

Esta situación disminuye la difusión del vapor de agua en la roca, haciendo que el transporte de agua en la parte interna del muro sea más prolongado, aumente su contenido de sales así como su capacidad de reacción y tenga una lenta evaporación favoreciendo la cristalización al interior de la zona consolidada.

En el caso de la resina de silicón mencionada, es probable que se trate de un alquil trietoxi silano, material que desde la década de 1970 se usa en la protección de materiales pétreos ya que les confiere propiedades hidrofugantes. Como menciona Siegesmund et al., (2011), estos materiales se han aplicado con la intención de reducir la capilaridad y daños causados por la presencia de agua en las estructuras, sin alterar significativamente el transporte de vapor de agua. Sin embargo, como se ha comprobado en otros casos, esta medida de protección puede resultar poco conveniente si el muro contiene sales solubles ya que éstas recristalizan bajo la superficie tratada provocando daños dentro de la estructura de la roca. También se tiene la idea errónea de que estos tratamientos reducen la deposición de partículas, sin embargo, se ha observado que éstas se siguen depositando en las superficies horizontales y después son transportadas por el agua de lluvia formando a su paso depósitos oscuros.

En 1995 se registró otra intervención en el edificio, en la que se aplicó Primal® a los restos de estuco, pero no existen registros detallados de la manera en que se distribuyó este material en las fachadas. En 2010 se realizó una nueva intervención, en la que como en el caso anterior, su preocupación fueron los enlucidos que aún se mantenían sobre los sillares tallados, por lo que no hay evidencia de procesos pensados para la conservación de los sillares ya expuestos. En esta ocasión se adhirieron fragmentos de enlucido con caseinato de calcio mezclado con cal, y se usaron resanes de cal con polvo de pómez y de tezontle en diferentes proporciones. Además se aplicaron disoluciones de hidróxido de calcio en agua (agua de cal) por aspersión en algunas zonas calificadas como pulverulentas.

En temporadas subsecuentes, hasta el 2012, se siguieron procesos similares. La temporada de intervención de 2012 tuvo la peculiaridad de que se realizaron diversas pruebas de recubrimientos de protección. En este caso se usaron mezclas de cal con diversos materiales ricos en sílice (polvo de pómez, tierra de diatomeas) y en carbonato de calcio (carbonato de calcio precipitado o blanco de España, polvo de mármol), que se aplicaron sobre los restos de enlucido colocando una malla como interfase con el fin de denotar claramente que dicho material era una adición contemporánea. Estos sistemas mostraron muy poca adherencia y para 2013 buena parte de ellos se encontraban ya desprendidos.

Como ya se ha comprobado el contenido de humedad en las estructuras es determinante en su conservación, el daño provocado por absorción de aguas no controladas ya sea por lluvia, condensación o capilaridad puede ser físico, químico y biológico, a partir de mecanismos de hidrólisis, disolución oxidación, transporte de sales, criptocristalización, higroscopicidad y ciclos de humedad y secado. Entre estos uno de los fenómenos más dañinos es la cristalización de sales, determinada en gran medida entre el equilibrio de la tasa de evaporación de agua y la tasa de transferencia de soluciones.

Se ha observado que en muchos casos los recubrimientos que se aplican con la intención de reducir la absorción de agua y con ello la cristalización, tienen el efecto contrario, ya que permiten la evaporación pero impiden la transferencia de soluciones lo cual favorece la criptocristalización (Karoglou et al., 2013, Barajas et al., 2009).

El resultado general de la aplicación de sustancias hidrofugantes, principalmente silanos, en el Edificio B, es el endurecimiento superficial y la reducción de la capacidad de evaporación de las tobas pero sobre todo del transporte de sales, favoreciendo la criptocristalización y el desprendimiento del estrato endurecido (Fig. 107). Una vez que se pierde el estrato superficial, el material que queda expuesto presenta menor resistencia al intemperismo ya que se encuentra más frágil y deleznable por la interacción prolongada con los contaminantes y sales transportados por filtración y capilaridad.

Por otra parte la aplicación de materiales Fig. consolidantes acrílicos en los revestimientos de las b. er tallas podría estar favoreciendo la colonización de microorganismos más notoria en el muro sur (Aldrete, 2009).

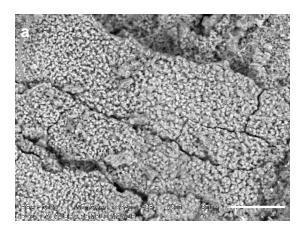


Fig. 69. EG07 a. Detalle de superficie tratada con silanos, b. endurecimiento superficial, delaminación y fractura.

4.2 Modelo de alteración del Edificio B

Los mecanismos descritos conducen al siguiente modelo de alteración del edificio B y los cráneos tallados que integran sus fachadas.

La afectación de la estructura por el fenómeno de subsidencia provoca la constante deformación del terreno y la gradual inclinación del edificio aumentando el estrés en el muro N, así como su cercanía con el nivel freático. Los esfuerzos tanto de compresión como de tensión provocan fracturas y discontinuidades que afectan la estabilidad de la estructura, así como su comportamiento térmico e higroscópico. Las discontinuidades en los rellenos y remates de la estructura que carecen de un sistema adecuado para la canalización de precipitaciones, en combinación con la pendiente del terreno, favorecen las filtraciones y el flujo de aguas dispersas hacia el edificio, así como su acumulación en el muro N.

Las alteraciones de los materiales pétreos que conforman las fachadas del edificio se agravan en dicho muro, además por dos factores, la orientación e inclinación de la estructura y la distribución de los tipos litológicos que constituyen las tallas. La inclinación y orientación del edificio además de incrementar los esfuerzos en el muro N, favorece la acumulación de humedad por la escasa insolación, así como el impacto y la acumulación de contaminantes sólidos y húmedos por la dirección de los vientos dominantes. Los tipos litológicos que constituyen las tallas del tablero N, integran mayor número de tobas cuya capacidad de absorción de agua y con ello de sustancias iónicas que cristalizan en los poros, es mayor que las de los basaltos.

La interacción de tobas y basaltos en combinación con las condiciones generadas producto de las alteraciones de la estructura y los morteros agregados, favorece el aumento de la higroscopicidad de las primeras, acelerando su deterioro por procesos mecánicos y químicos.

La expansión provocada por soluciones saturadas de sulfatos es hasta cuatro veces mayor que una provocada por agua (Snethalge et al.,1996 en Graue et al., 2013), lo que ocasiona mayor desplazamiento de grano y la corrosión de los minerales formativos, a partir de la introducción de dichas soluciones de bajo pH en foliaciones de las estructuras cristalinas y planos de clivaje generando un medio ácido. La cristalización intersticial y en los poros incrementa la capilaridad, favoreciendo la absorción de sustancias iónicas, además de generar presión y rompimiento de las estructuras, que a la vez da lugar a nuevos canales de transporte de dichas soluciones, volviendo el proceso cíclico y exponencial.

Por otra parte la disolución de los componentes alcalinos de los morteros y el arrastre de partículas de calcita genera también la concentración de soluciones con alto pH en los poros. Estos medios alcalinos resultan particularmente agresivos para las tobas de naturaleza ácida provocando la dislolución del sílice y las plagioclasas.

La disolución de las plagioclasas en medios generados por la contaminación ambiental y el intercambio iónico entre los materiales constitutivos del edificio, que pueden ser tanto ácidos como alcalinos, provocan el desplazamiento de granos, en procesos paralelos a la superficie e isotrópicos a partir del desprendimiento de fenocristales y el colapso de agregados de matriz, lo que da lugar a heterogeneidades que aumentan la superficie de reacción expuesta.

Esto se manifiesta macroscópicamente en el deteriroro característico de las tobas andesíticas por disgregación y en las tobas dacíticas por delaminación. En los procesos de delaminación además de la criptocristalización de sales y la disolución, el endurencimiento superficial producto de la aplicación de materiales consolidantes e hidrofugantes, es un factor determinante en la degradación interna y el desprendimiento laminar.

Conclusiones

El sistema constructivo del Edificio B se encuentra gravemente alterado tanto por la pérdida de elementos producto de su destrucción parcial y entierro, las condiciones del contexto, particularmente el hundimiento del suelo, la contaminación y la actividad sísmica; así como por los elementos añadidos tras su excavación y su exposición a un ambiente muy diverso al que permaneció por siglos.

Resulta evidente como las pérdidas y discontinuidades de la estructura agudizan el comportamiento heterogéneo del sistema, volviéndolo disfuncional y acelerando el deterioro de los elementos más vulnerables. De igual manera la interacción de geomateriales con propiedades disímiles presentes en la estructura, provoca que los procesos de alteración se den de forma irregular, agudizándose en los materiales más higroscópicos.

La contextualización de la problemática mediante la documentación de las características geoclimáticas y ambientales en que se enmarca el caso de estudio fue fundamental para identificar los factores extrínsecos que inciden en los mecanismos de alteración del edificio, tales como la concentración de humedad y contaminantes en el ambiente, su transporte por la dirección de vientos dominantes, así como el fenómeno de subsidencia y nivel freático que afecta el sitio. Estos estudios permiten enmarcar los fenómenos observados en el edificio como producto de la evolución del ecosistema y considerar no sólo la continuidad sino también la agudización de dichos fenómenos a futuro. Dentro de estas consideraciones hay que destacar que el problema de la contaminación atmosférica en la Ciudad de México, que si bien logró la disminución de ciertas emisiones con la implementación de programas de control ambiental, se ha visto superada por el crecimiento de las fuentes emisoras vinculadas con el crecimiento demográfico. De igual manera resulta evidente el efecto del cambio climático en el aumento y distribución de las precipitaciones, como se observó en 2013, lo cual tiene un impacto directo en el deterioro del edificio que no cuenta con las condiciones adecuadas para amortiguar dicho impacto.

La documentación de estas condiciones fue fundamental como marco de los estudios subsecuentes que permitieron comprender el impacto de dichos factores en los materiales del edificio. Los registros gráficos constituyen una herramienta para comprender la distribución y correlaciones entre los mecanismos de alteración a diferentes niveles, tanto macroscópicos como microscópicos. En este caso ayudan a comprender la relación entre la distribución de los tipos litológicos, los mecanismos y niveles de deterioro, así como su vinculación con el impacto de factores extrínsecos.

Los registros termográficos han probado ser una herramienta útil en el diagnóstico del estado de conservación de materiales pétreos, en este caso particularmente para comprender tanto el efecto de las características de la estructura en la distribución de humedad y temperatura, como la respuesta de los elementos que la integran a las condiciones ambientales, la cual es indicativa de sus propiedades y

alteraciones. El empleo de estos métodos permite optimizar recursos centrando la atención en las problemáticas principales del inmueble y los factores que se relacionan directamente con los mecanismos de alteración que agravan su condición. En este caso la documentación de las condiciones del contexto y el registro termográfico resultaron complementarios al estudio de las propiedades de los materiales para definir dichos mecanismos.

En la caracterización de los materiales presentes en el edificio, el estudio con FRX in situ, resultó una herramienta importante ya que al constituir un método no invasivo permitó el análisis de mayor número de elementos, orientando la toma de muestras para el análisis más preciso de composición y cristalización en diferentes tipos litológicos detectados. La principal ventaja que ofrece este método para la caracterización de material arqueológico es su naturaleza no destructiva en este tipo de materiales en que la toma de muestras compromete la integridad del elemento.

El estudio con FRX permite una caracterización general a partir de la identificación de los elementos por conteos de fotones. La precisión observada en un aparato portátil como el empleado en este caso, depende de los patrones de calibración que se empleen, la determinación de parámetros adecuados de análisis y el seguimiento de una metodología que reduzca al mínimo el margen de error, características que deben contemplarse antes de iniciar el estudio. El equipo utilizado está diseñado para la detección de elementos con z superior a 11, que corresponde al Na. Sin embargo, para obtener una correcta cuantificación de Na es recomendable el uso de atmósferas de He, lo cual complica la realización de dichos estudios en campo. Debido a que las condiciones in situ no siempre pueden ser controladas idealmente, es importante cruzar los datos obtenidos con los resultados de otras técnicas analíticas. En este caso las lecturas de elementos mayores obtenidas con éste método, al ser comparadas con los resultados de los estudios con ICP-MS e ICP-OES, resultaron útiles, aunque se contemplaron los valores de los últimos como resultados finales por tener mayor precisión. Por lo que podemos concluir que en casos como este, en que la extracción de un número muy reducido de muestras no sería representativa de las variedades litológicas presentes y por otra parte, el muestreo abundante no es viable, la caracterización preliminar con el empleo de métodos no invasivos como FRX portátil, resulta sumamente útil para la determinación de puntos de muestreo representativos.

Por otra parte el reconocimiento de las propiedades intrínsecas del material es fundamental para comprender los procesos de alteración en su totalidad. En este caso la caracterización geoquímica fue determinante en la identificación de procesos de alteración que afectan a muestras con composiciones específicas, Entre los materiales estudiados, las tobas de composición ácida con abundancia en plagioclasas cálcicas están siendo particularmente afectadas no sólo por los contaminantes ambientales y la exposición a condiciones de alta humedad, también por la interacción con otros materiales que como se ha visto, es determinante en la aceleración de los procesos de degradación.

Tanto la generación de medios ácidos por sulfatación, como la generación de medios alcalinos por disolución de morteros calcáreos y arrastre de partículas, provocan la disolución de las plagioclasas.

El proceso de alteración de las plagioclasas a partir de la disolución de su núcleo cálcico y el deterioro por cristalización de sales al interior de las estructuras cristalinas en las zonas de clivaje, foliación y fractura, se confirmó mediante las observaciones realizadas a partir del análisis de las imágenes generadas en el MEB-EDS, así como en la observación de secciones delgadas. Los diferentes grados y procesos de alteración observados en un mismo tipo de roca con variables en su ubicación y exposición, permitieron distinguir los efectos de la interacción de materiales en situaciones de humedad prolongada.

Aunado a lo anterior se pudo observar el efecto de productos hidrofugantes y consolidadntes que se depositan de manera superficial y afectan la capacidad de evaporación. Estas sustancias causan alteraciones tales como endurecimiento del estrato laminar o liberación de productos de degradación que lejos de solucionar el problema contribuyen al deterioro del elemento a largo plazo.

Por otra parte las huellas geoquímicas observadas sugieren que los materiales que conforman las tallas provienen de distintas fuentes, solamente se encontró correspondencia entre dos muestras de basaltos vesiculares. Por lo que queda abierta una línea de investigación en ese sentido para determinar la posible correspondencia de los elementos estudiados con diferentes puntos de extracción.

El carácter exponencial de los mecanismos de alteración observados en el Edificio B, sugieren el incremento de la velocidad de degradación de los materiales afectados en los próximos años, que de no controlarse provocará la continua pérdida de los rasgos morfológicos de las tallas. Su conservación requiere tomar medidas para minimizar el impacto de las condiciones ambientales en el deterioro de la estructura, considerando que debe buscarse la optimización del sistema y no de los elementos independientes, ya que los mecanismos relacionados con las condiciones extrínsecas actúan sobre el conjunto favoreciendo o agravando la condición de los diferentes elementos que lo integran.

En este sentido es prioritario frenar el transporte de agua hacia la estructura lo cual requiere el diseño de todo un sistema de conducción de agua considerando que la sola colocación de una cubierta o un recubrimiento sin aislar las fuentes de humedad, que en este caso además de por precipitaciones, son en gran medida por capilaridad, no resolverá el problema. Incluso podría tener el efecto contrario, favoreciendo la acumulación de humedad en el primer caso o la continua degradación del material bajo la superficie del recubrimiento, sobre todo en los elementos con procesos de alteración avanzados cuyas propiedades higroscópicas se han incrementado.

CONCLUSIONES

Por lo anterior es conveniente explorar la posibilidad de un sistema que favorezca la creación de un frente de evaporación en la parte central de la estructura, frenando el flujo de humedad que actualmente se concentra en el muro norte, con el empleo de materiales higroscópicos y quelantes que retengan las sales actuando como material de sacrificio. En esta línea sería interesante explorar las posibilidades que ofrecen las zeolitas de funcionar en un sistema de este tipo.

La complejidad de los problemas de conservación del patrimonio cultural requiere aproximaciones interdisciplinarias. Este estudio constituyó un esfuerzo por integrar la perspectiva de las geociencias a la comprensión de los problemas de conservación que afectan una estructura arqueológica en un contexto urbano con características geográficas y demográficas que aceleran su deterioro, como es el Edificio B de Templo Mayor. La experiencia refuerza la importancia de colaboraciones de este tipo y deja abiertas líneas de investigación conjuntas para el estudio de geomateriales en la conservación del patrimonio.

Referencias

Acevedo Dávila, J., Torres Treviño, L. M. y Gómez, L. Y. Z., 2007, Tezontle aggregate substitute optimization in building blocks mixture: Electronics, Robotics and Automotive Mechanics Conference (CERMA), Cuernavaca, IEEE, 307–311.

Aldrete Hernández, G., 2009, Consolidación y control de crecimiento microbiano en tobas volcánicas del Panteón de Belén: Guadalajara, Escuela de Conservación y Restauración de Occidente, Tesis de Licenciatura, 265.

Almaguer Rodríguez, J., 2010, Estudio Geoquímico de Elementos Traza en Unidades Volcánicas del CVSLP: Método ICP-MS (Validación del Método): San Luis Potosí, Universidad Autónoma de San Luis Potosí, Tesis de Licenciatura, 91.

Attewell, P. B. y Taylor, D., 1990, Time-dependent atmospheric degradation of building stone in a polluting environment: Environmental Geology and Water Sciences, 16 (1), 43-55.

Banfield, F. J. y Eggleton, R. 1990, Analytical Transmission Electron Microscope Studies of Plagioclase, Muscovite, and K-Feldespar Weathering: Clay and Clay Minerals, 38 (1), 77-89.

Barajas, M., Lima, E., Lara, V. H., Negrete, J. V., Barragán, C., Malváez, C., y Bosch, P., 2009, Effect of organic and inorganic consolidation agents on Tlaltecuhtli monolith: Journal of Archaeological Science, 36 (10), 2244-2252.

Cabral Cano, E., Díaz Molina, O. y Delgado Granados, H., 2011, Subsidencia y sus mapas de peligro: Un ejemplo en el área nororiental de la Zona Metropolitana de la Ciudad de México: Boletín de la Sociedad Geológica Mexicana, 63 (1), 53-60.

Ceryan, S., 2012, Weathering Indices for Assessment of Weathering Effect and Classification of Weathered Rocks: A Case Study from NE Turkey en Dar, I.A., (ed), Earth Sciences: Rijeka, Shangai, In Tech, 19-44.

Ceryan, S., Tudes, S., y Ceryan, N., 2008, A new quantitative weathering classification for igneous rocks: Environmental Geology, 55 (6), 1319-1336.

Charola A. E. y Ware, R., 2002, Acid deposition and the deterioration of stone: a brief review of a broad topic en Siegesmund, S., y Vollbrecht, A., (eds), Natural stone, weathering phenomena, conservation strategies and case studies: Londres, Geological Society, Publicación Especial 205, 393–406.

Charola, A. E, Pühringer, J. y Steiger, M., 2007, Gypsum: a review of its role in the deterioration of building materials: Environmental Geology, 52, 339–352.

Comisión Nacional del Agua (CONAGUA), 2002, Determinación de la disponibilidad de agua en el acuífero Zona Metropolitana de la Ciudad de México, México: CONAGUA, 28.

Comisión Nacional del Agua (CONAGUA), Servicio Meteorológico Nacional, 2014, Reporte del Clima en México 2013: México, CONAGUA, 23.

Comisión Nacional del Agua (CONAGUA), Servicio Meteorológico Nacional, 2015, Reporte del Clima en México 2014: México, CONAGUA, 24.

Comisión Nacional del Agua (CONAGUA), Servicio Meteorológico Nacional, 2014, Reporte del Clima en México, Septiembre 2014: México, CONAGUA, 26.

Díaz Rodríguez, J. A., 2006, Los suelos lacustres de la Ciudad de México: Rev. Int. de Desastres Naturales, Accidentes e Infraestructura Civil, 6 (2), 111-129.

Fragoso Calderas, I. S., Lameda Díaz-Osnaya, M., y Sámano Chong, M., 2011, Proyecto para la conservación del Edificio B, «Altar de Cráneos», de la Zona Arqueológica de Templo Mayor en Memorias del 4to Foro Académico 2011: México, Escuela Nacional de Conservación, Restauración y Museografía Manuel del Castillo Negrete, Instituto Nacional de Antropología e Historia, 177-186.

Franco Brizuela M. L., 1990, Conservación del Templo Mayor de Tenochtitlán: México, Instituto Nacional de Antropología e Historia, 170.

Furlan V. y Girardet, E., 1983, Considerations on the rate of accumulation and distribution of sulphurous pollutants in exposed stones, en Wittmann, E. H., (ed), Materials science and restoration: Filderstadt, Lack und Chemie, 285–290.

Gauri, K. L., 1990, Decay and preservation of stone in modern environments: Environmental Geology and Water Sciences, 15 (1), 45-54.

Graue, B., Siegesmund, S., Oyhantcabal, P., Naumann, R., Licha, T. y Simon, K., 2013, The effect of air pollution on stone decay: the decay of the Drachenfels trachyte in industrial, urban, and rural environments—a case study of the Cologne, Altenberg and Xanten cathedrals: Environmental Earth Sciences, 69, 1095-1124.

Grinzato, E., Bison, P. G., y Marinetti, S., 2002, Monitoring of ancient buildings by the thermal method: Journal of Cultural Heritage, 3 (1), 21–29.

Gudbrandsson, S. Wolff-Boenisch, D., Gislason, S. R. y Oelkers, E. H., 2014, Experimental determination of plagioclase dissolution rates as a function of its composition and pH at 22°C: Geochimica et Cosmochimica Acta, 139, 154-172.

Hammecker, C., 1995, The importance of the petrophysical properties and external factors in the stone decay on monuments: Pure and Applied Geophysics, 145 (2), 337-361.

Huang W. H y Kiang, W.C., 1972, Laboratory dissolution of plagioclase feldespars in water and organic acids at room temperature: American Mineralogist, 57, 1849-1859.

International Council of Monuments and Sites (ICOMOS) e International Scientific Committee for Stone (ISCS), 2008, Illustrated glossary on stone deterioration patterns= Glossaire illustré sur les formes d'alteration de la pierre: Paris, ICOMOS-ISCS, 78.

Instituto Nacional de Estadística, Geografía e Informática (INEGI), 2005, Recursos Naturales y Servicios Ambientales en Estadísticas del Medio Ambiene del Distrito Federal y Zona Metropolitana 2002: México, INEGI, 25-199.

Jo, Y. H., y Lee, C. H., 2014, Quantitative modeling and mapping of blistering zone of the Magoksa Temple stone pagoda (13th century, Republic of Korea) by graduated heating thermography: Infrared Physics & Technology, 65, 43-50.

Jo, Y. H., y Lee, C. H., 2014, Quantitative modeling of blistering zones by active thermography for deterioration evaluation of stone monuments: Journal of Cultural Heritage, 15, 621-627.

Karoglou, M., Bakolas, A., Moropoulou, A., y Papapostolou, A. 2013, Effect of coatings on moisture and salt transfer phenomena of plasters: Construction and Building Materials, 48, 35-44.

Le Maitre, R. W. (ed), 2002, Igneous Rocks a Classification and Glossary: Nueva York, Cambridge University Press, 254.

López-Doncel, R., Wedekind, W., Dohrmann, R. y Siegesmund, S. (2013), Moisture expasion associated to secondary porosity: an example of the Loseros Tuff of Guanajuato, México: Environmental and Earth Sciences, 69 (4), 1189-1201.

López Luján, L., 2014, El Proyecto Templo Mayor (2007-2014): Arqueología Mexicana, 56, 76-78.

López Luján, L., Torres, J., y Montúfar, A., 2003, Los materiales constructivos del Templo Mayor de Tenochtitlán: Estudios de Cultura Nahuatl, 34, 137-167.

López Portillo, J., León Portilla, M., Matos Moctezuma, E., Verut, D. y Trueblood, B., 1981, El Templo Mayor: México, Bancomer, 320.

Martínez González, G. M., 1992, Aspectos fisicoquímicos del deterioro y conservación de monumentos históricos de piedra: México, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Tesis doctoral, 215.

Martínez, G. y Martínez, N., 1991, Characterization of stone from the Metropolitan Cathedral and from the facade of the National Museum at Tepotzotlan, México: Studies in Conservation, 36 (2), 99-110.

Matos Moctezuma, E., 1993, Arqueología y Conservación en el Templo Mayor de Tenochtitlan en Hodges, H., (ed), Conservación Arqueológica in situ: Memoria de las Reuniones 6-13 de abril de 1986, México: México, Santa Mónica, Getty Publications, Instituto Nacional de Antropología e Historia, 162-184.

Matos Moctezuma, E., 1998, Proyecto Templo Mayor, Memoria Gráfica: México, Instituto Nacional de Antropología e Historia, 147.

Matos Moctezuma, E., 2003, Vida y Muerte en el Templo Mayor: México, Fondo de Cultura Económica, 160.

Matos Moctezuma, E., 2014, A un siglo del descubrimiento del Templo Mayor: Arqueología Mexicana, 56, 8-32.

McAlister, J. J., Smith, B. J., y Török, A., 2008, Transition metals and water-soluble ions in deposits on a building and their potential catalysis of stone decay: Atmospheric: Environment, 42 (33), 7657-7668.

Miranda, J., Gallardo, M. L., Grimaldi, D. M., Román-Berrelleza, J. A., Ruvalcaba-Sil, J. L., Ontalba Salamanca, M. A., y Morales, J. G.,1999, Pollution effects on stone benches of the Eagle Warriors Precinct at the Major Temple, Mexico City: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 150, 611-615.

Mooser, F., 1963, La cuenca lacustre del Valle de México: Mesas Redondas sobre Problemas del Valle de México, Instituto Mexicano de Recursos Naturales Renovables, A. C. México, 12-16.

Petrishcheva, E. y Renner, J., 2010, Characteristics of pore migration controlled by diffusion through the pore-filling fluid: Physics and Chemestry of Minerals, 37, 601-611.

Ruedrich J., Bartelsen, T. Dohrmann, R. y Siegesmund, S., 2011, Moisture expansion as a deterioration factor for sandstone used in buildings: Environmental and Earth Sciences, 63, 1545-1564.

Sámano Chong, M., Fragoso Calderas, I., Flores Hernández, M., Lameda Díaz-Osnaya, M., 2010, Proyecto de Investigación para la Conservación del Edificio B (Altar de Cráneos) del Recinto Sagrado de Tenochtitlan. Informe de los trabajos realizados en la temporada de trabajo 2010: México, Escuela Nacional de Conservación, Restauración y Museografía Manuel del Castillo Negrete, Informe, 167.

Sabbioni, C., 2003, Mechanism of air pollution damage to stone, en Brimblecombe, P., (ed.), The effects of air pollution on the built environment, Air Pollution Reviews 2, 63–88.

Secretaría del Medio Ambiente (SEDEMA), 2015, Base de datos-Red de Depósitos Atmosféricos: México, SEDEMA, actualizado diciembre de 2014, disponible en <www.aire.df.gob.mx/default.php? ops="aKBk">, consultado mayo de 2015.

Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT), Instituto Nacional de Ecología y Cambio Climático (INECC), 2012, Inventario de Emisiones Contaminantes y de Efecto Invernadero 2012: México, SEMARNAT.

Siegesmund, S., Snethlage, R. y Sterflinger, K., 2011, Stone Conservation en Siegesmund, S. y Snethlage, R., Stone in Architecture: Verlag, Berlín, Heidelberg, Springer, 411-544.

Shackley, M.S., 2011, X-Ray Fluorescence Spectrometry (XFR) in Geoarcheology: Nueva York, Springer, 244.

Tamez, E., Santoyo E., y Ovando, E., 1997, Aspectos geotécnicos de la corrección geométrica de las cimentaciones de Catedral y Sagrario en Fernández, M. (ed), La catedral de México, problemática, restauración y conservación en el futuro. 2 Coloquio del Seminario de Patrimonio Artístico: México, Universidad Nacional Autónoma de México, 119-149.

Torfs K. M. y Van Grieken, R. E., 1997, Chemical relations between atmospheric aerosols, deposition and stone decay layers on historic buildings at the Mediterranean coast: Atmospheric Environment, 31, 2179-2192.

Velasco Tapia, F. y Verma, S. P., 2001, Estado actual de la investigación geoquímica en el campo monogenético de la Sierra de Chichinautzin: análisis de información y perspectivas: Revista Mexicana de Ciencias Geológicas, 18 (1), 1-36.

Wedekind, W., Ruedrich, J. y Siegesmund, S., 2011, Natural building stones of Mexico-Tenochtitlán: their use, weathering and rock properties at the Templo Mayor, Palace Heras Soto and the Metropolitan Cathedral: Environmental and Earth Sciences, 63, 1787-1798.

Wedekind, W., López-Doncel, R, Dohrmann R, Kocher, M., y Siegesmund, S., 2013, Weathering of volcanic tuff rocks caused by moisture expansion: Environmental and Earth Sciences, 69 (4), 1203-1224.

Wiese, U., Behlen, A. y Steiger, M., 2013, The influence of relative humidity on the SO₂ deposition velocity to building stones: a chamber study at very low SO₂ concentration: Environmental and Earth Sciences, 69 (4), 1125-1134.

ANEXOS

Edificio B, Templo Mayor

Edificio B, Templo Mayor

Fluores			•		keV.	25 m	nA. 30) s									Z U		
Atmosf			-		-		-		i filt	ros						-/	\sim		1
Elemento	Al K12	Ral1	Ca K12 (Ce I 1	Co K12	Cr K12	Cu K12	Dv I 1	Dy M1 F	=u I 1	Fe K12	Gd I 1	K K12	Mg K12	Mn K12	Na K12	Nb K12	Nd L1	Nd M1
EA2a	3667	634	55282	382	1853	410	473	1	0	577	250010	1093	6927	163	4656	1	3	0	0
EB3a	6369	64	52565	346	564	403	678	14	46	584	107986	698	13083	3	1304	13	9	281	0
EB3b	4455	77	29110	649	1345	385	479	131	33	678	169587	971	19290	39	1914	1	15	2	0
EB3c	5607	4	36896	602	1134	377	460	1	2	569	189910	872	21120	204	2419	1	7	3	0
EB3d	4973	714	35886	194	1158	651	353	1	50	599	171471	988	20802	43	2207	49	5	29	0
EB3e	7670	651	39953	310	1245	86	436	1	50	124	157954	771	27144	93	3067	1	4	147	0
EB4a	2503	1	27135	529	2151	257	407	1	0	371	178257	991	6602	9	2549	86	2	0	0
EB4b	7061	800	31710	286	883	3	250	1	10	465	155393	860	16267	78	2564	134	3	113	0
EB4c	5341	423	31833	442	1196	475	500	1	2	215	157090	726	12348	67	3419	88	6	0	0
EB4d	5132	4	29572	486	1452	303	484	174	27	10	140468	696	15088	37	4073	5	6	59	0
EB4e	1531	156	18936	303	836	189	173	181	0	556	82748	521	6552	16	1398	106	1	0	0
ED1a	5012	726	55618	295	2346	500	602	1	0	343	311903	1424	6209	122	4781	1	9	0	0
ED1b	1582	225	44236	368	1756	349	290	1	0	629	213004	1035	4332	1	2783	1	6	0	0
ED1c	1724	292	32104	556	1463	335	586	240	1	254	182468	971	3435	1	2573	1	4	116	0
ED1d	1775	1	26652	434	1519	206	279	3	-1	344	179350	876	3482	1	2719	4	5	0	0
ED1e	3838	763	51127	253	1797	297	374	1	0	320	265132	1266	4575	33	3820	1	6	48	0
ED3a	3992	821	57328	319	2343	476	570	1	0	847	303707	1334	6639	1	4008	1	9	0	0
ED3b	3466	55	41491	452	2084	326	561	1	-1	618	245131	1216	5681	1	2979	1	4	0	0
ED3c	3224	1	39133	491	1577	331	560	1	1	891	203614	1091	3849	1	2417	1	3	0	0
ED3d	4514	16	50658	698	1860	423	367	5	8	934	305456	1333	6203	9	4097	1	10	3	0
ED3e	3272	1152	49886	72	2215	531	301	1	0	621	268551	1271	6083	1	3684	1	0	0	0
ED5a	3398	71	70592	553	2191	392	486	1	0	618	285749	1316	6082	1	3960	1	12	0	0
ED5b	3859	0	59761	656	2067	352	310	1	0	640	303092	1359	5437	17	4050	1	4	0	0
ED5c	3072	476	64566	383	1943	336	412	1	0	419	272979	1387	5234	2	3698	1	4	0	0
ED5d	2706	440	59042	216	1901	413	275	1	0	681	259505	1082	5316	1	3313	1	3	0	0
ED5e	3560	809	71531	60	2372	305	409	1	0	392	330581	1490	5256	3	4795	1	14	0	0
NA1	2381	268	31026	379	1130	87	164	53	0	1	116513	608	13084	1	2478	1	4	48	0
NA1a	2381	268	31026	379	1130	87	164	53	0	1	116513	608	13084	1	2478	1	4	48	0
NA1b	3058	645	42492	186	1375	240	518	433	0	530	134855	792	12898	3	2413	37	3	41	0
NA1c	2428	26	31004	608	1244	265	501	250	0	576	151156	663	8991	31	3101	95	8	4	0
NA1d	3831	39	37585	452	1015	126	299	37	2	257	130685	886	13584	47	2417	1	5	44	0
NA1e	3115	411	33623	366	1220	223	569	1	26	190	145802	686	11973	27	2822	32	8	63	0
NC5a	2904	134	50265	850	2146	370	388	1	0	367	265513	1176	10922	1	4015	1	10	0	0
NC5b	3009	159	46663	570	2169	443	506	1	0	910	275907	1395	11732	1	3588	1	2	0	0
NC5c	1814	959	32750	287	1699	347	357	1	0	208	220958	1029	8601	1	2871	1	7	0	0
NC5d	2004	722	34074	117	1826	258	465	1	10	531	221646	977	8265	4	3181	1	3	72	0

Edificio B, Templo Mayor

Fluores Conteo Atmosf	s de	fotor	nes par	a 15			-		ni filt	ros						BF	V	ζĘ,	R
Elemento	Al		Ca K12 (Co	Cr K12	Cu		Dy		Fe K12	Gd I 1	K K12	Mg K12	Mn K12	Na K12	Nb K12	Nd L1	Nd M1
EA2a	3667	634	55282	382	1853	410	473		0	577	250010	1093	6927	163	4656	1	3	0	0
NC5e	2396	1	31965	395	1753	325	721		-2	186	247826	1270	7036	1	4344	1	6	99	0
NC10a	2024	1035	50878	410	2040	702	366	1	0	284	253035	1234	8037	1	4281	1	6	1	0
NC10b	2445	536	58702	297	2305	217	410	1	0	523	276231	1341	11150	1	4132	1	12	0	0
NC10c	2495	770	59637	81	1709	377	440	1	0	482	245421	1219	8517	1	3875	1	12	0	0
NC10d	1479	45	47991	616	1877	63	283	1	0	600	205584	821	7078	1	3222	1	8	0	0
NC10e	1017	480	58014	243	1670	312	401	145	0	243	188417	865	4542	1	3563	1	4	0	0
ND3a	2052	490	39452	100	1463	297	303	1	5	317	189399	1045	7339	1	3257	1	4	1	0
ND3b	3502	453	72293	451	2518	320	285	1	0	28	299035	1497	7763	54	5063	1	3	0	0
ND3c	2554	184	37476	703	1778	248	388	1	4	562	258797	1117	7307	1	3709	3	10	0	0
ND3d	2446	663	47252	362	1855	327	388	1	0	329	234538	1209	9011	1	3517	1	5	0	0
ND3e	2245	327	77934	283	1702	155	334	1	8	169	214661	1194	8807	1	3621	1	3	0	0
NE11a	1767	252	51009	224	1669	143	228	1	6	361	228384	1162	7964	1	3349	1	3	0	0
NE11b	2257	398	57398	269	1552	156	252	1	2	478	243687	1012	13920	1	3388	1	9	0	0
NE11c	1047	1	34482	421	1455	147	189	1	0	79	170933	889	7969	1	2744	1	3	0	0
NE11d	2797	1	63327	621	1838	126	207	1	0	366	260233	1127	12133	1	4523	1	10	0	0
NE11e	1256	1	93325	488	1503	230	94	1	0	508	188399	949	9471	1	2970	1	3	0	0
NA14a	3497	1	74087	437	1556	157	217	1	0	260	232486	1277	9548	21	3629	1	4	0	0
NA14b	2622	331	51498	236	1456	234	404	1	0	425	203434	1016	9117	53	3196	1	4	0	0
NA14c	2028	224	69376	268	1671	132	412	1	-2	401	184844	889	7396	1	2770	1	2	0	0
NA14d	2693	1	56357	512	1783	333	511	6	-3	529	225818	1059	8783	24	3789	1	8	0	0
NA15a	3005	1015	90554	207	2186	645	269	138	0	471	266090	1136	8289	13	4334	1	4	2	0
NA15b	3047	786	66163	149	1930	479	594	1	0	462	233762	1033	8453	9	3910	1	3	128	0
NA15c	3783	537	76484	455	1956	461	216	1	-1	573	272788	1320	10457	50	4391	1	1	1	0
NA15d	2810	818	54157	98	2476	264	559	1	0	525	258001	1230	8567	0	3957	1	13	0	0
NA15e	2024	1	64266	596	1779	622	423	1	0	134	235456	1123	6424	1	6434	1	5	0	0
NA16a	1488	10	77421	499	1605	331	686	1	0	330	197699	1123	6848	1	3442	1	8	0	0
NA16b	1912	469	62838	212	1970	247	813	279	0	40	204693	898	7762	1	3295	1	3	106	0
NA16c	1216	19	51588	596	1822	276	502	1	0	107	188982	1054	5497	1	2986	1	3	0	0
NA16d	2556	516	54070	79	1370	300	307	1	1	393	211525		7951	1	3320	1	10	0	0
NA16e	2223		50807	522	1801	352	656		0	513	215299		6725	1	3295	1	3	0	0
SA1a	3217		61344	611	2046	254	536		0	596	266561		9505	85	3983	1	13	0	0
SA1b	2961		82538	698	1904	331	433		2	298	230964	1044	6453	13	5226	1	4	0	0
SA1c	4549		68993	579	2142	341	381		0	576	294287		9459	92	5970	1	8	0	0
SA1d	3203		93248	591	1769	187	369		0	91	228857		8318	179	5684	1	3	0	0
SA1e	2451	175	61109	485	1946	191	388	1	0	378	255381	1024	10103	1	4084	1	9	0	0

Sement Mart Mart Sement Mart Sement Mart Sement Mart Sement Mart Mart Sement Mart Mart Sement Mart Mart Mart Sement Mart	Fluores	s de	foto	nes par	a 15					.; 4:1=	· r c c						BŖ	Ž	KE) R
See 1498 1498 1	Elemento	Al		<u> </u>		Со	Cr	Cu		Dy		Fe K12	Gd L1	K K12						Nd M1
See 1498	EA2a	3667	634	55282	382	1853	410	473	1	0	577	250010	1093	6927	163	4656	1	3	0	
SBIG 1073 2 66415 364 1534 274 288 322 0 486 146981 726 6701 1 2849 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SB1a	2758	736	54998	1	1571	222	261	1	5	521	242520	1016	7293	1	5974	1	8	0	
SBIGL 1578 344 30301 72 1433 183 319 1 0 148 184011 847 5441 17 4466 1 7 36 SBIG 1927 702 53733 261 1753 64 336 1 0 197 208626 1026 7446 1 3384 1 4 0 SCI 1230 1 216925 318 1455 114 197 38 0 61 134803 793 5479 1 3167 1 1 0 SCI 493 31 38884 427 1106 92 416 1 0 648 108534 6661 124 1 7 0 AAT 3386 419 45102 317 1710 475 41 431 12922 789 16561 425 1 28 10 48 1005 1105 4	SB1b	1498	1	44891	429	1246	327	174	177	1	362	175488	906	5969	1	3128	1	3	0	
Selie 1927 702 53733 261 1753 64 336 1 0 1 91 92 08626 1026 7446 1 3384 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SB1c	1073	2	66415	364	1534	274	288	322	0	486	146981	726	6701	1	2849	1	5	0	
SCIA 1230 1 216925 318 1455 114 197 38 0 61 134803 793 5479 1 3167 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SB1d	1578	344	30301	72	1433	183	319	1	0	148	184011	847	5441	17	4486	1	7	36	
SCILO 2822 1 312405 227 1459 177 169 89 0 32 154133 840 6661 1 3975 1 2 20 SCIC 493 31 38884 427 1106 92 416 10 0 348 132462 725 3321 1 2533 1 3 0 NA1A 2527 128 40312 304 937 102 475 1 0 648 108534 666 12247 1 1722 1 7 0 NA1A 3896 419 45102 313 1109 296 432 264 1 431 12923 769 12651 9 2551 1 3 54 NA1C 3477 541 34468 266 1269 319 814 1 0 5 599 161348 1005 11064 141 3382 95 3 10 NA1A 3701 564 30950 317 1371 270 474 62 6 406 138067 736 12010 42 2371 1 10 0 0 NA1A 1 1524 420 19302 264 1143 239 479 253 0 480 105084 541 6292 6 1742 107 4 38 NA7A 1524 420 19302 264 1143 239 479 253 0 480 105084 541 6292 6 1742 107 4 38 NA7A 3932 738 37165 201 1268 192 389 1 28 90 163861 780 12712 26 3079 1 4 112 NA7C 3982 731 27620 26 1301 210 411 42 1 455 163643 875 14060 79 2982 1 2 155 NA7A 3788 273 41310 278 1391 225 665 184 2 776 134748 935 13403 24 1860 122 3 41 NB1A 3948 510 39860 153 1134 252 665 184 2 776 134748 935 13403 24 1860 122 3 41 NB1A 3948 510 39860 153 1134 252 665 184 2 776 134748 935 13403 24 1860 122 3 41 NB1A 3948 510 39860 153 1134 252 665 184 2 776 134748 935 13403 24 1860 122 3 41 NB1A 3163 148 39399 384 1109 344 467 60 1 669 148066 762 12666 7 2253 1 1 70 0 NB26 2342 4248 493 40770 259 1119 312 539 1 0 0 449 143200 955 15039 40 2108 1 1 30 0 NB26 2362 387 27465 470 1313 619 433 1 1 0 0 449 143200 955 15039 40 2108 1 1 0 0 0 NB26 2362 387 27465 470 1313 619 433 1 1 0 0 49 143200 955 15039 40 2108 1 1 0 0 0 0 NB26 2362 387 27465 470 1313 619 433 1 1 0 0 449 143200 955 15039 40 2108 1 1 0 0 0 0 NB26 2362 387 27465 470 1313 619 433 1 1 0 0 469 132014 992 11664 1 1 4365 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SB1e	1927	702	53733	261	1753	64	336	1	0	197	208626	1026	7446	1	3384	1	4	0	
SCIC 493 31 38884 427 1106 92 416 10 0 348 132462 725 3321 1 2533 1 3 0 AA1 AA1a 2527 128 40312 304 937 102 475 1 0 648 108534 666 12247 1 1722 1 7 0 AA1b 3896 419 45102 313 1109 296 432 264 1 431 129223 789 12651 9 2551 1 3 5 5 AA1c 3477 541 34468 266 1269 319 814 1 0 5 99 161348 1005 11064 141 3382 95 3 10 AA1d 3701 564 30950 317 1371 270 474 62 6 406 138067 736 12010 42 2371 1 10 0 0 AA1e 2145 397 8640 191 1050 205 339 203 0 697 119615 675 9030 1 3679 1 3679 1 3 1 AA7a 1524 420 19302 264 1143 239 479 253 0 480 105084 541 6292 6 6 1742 107 4 38 AA7b 3932 738 37165 201 1268 192 389 1 28 90 163861 780 12712 26 3079 1 4 112 AA7c 3982 731 27620 26 1301 210 411 42 2 1 455 163643 875 14060 79 2982 1 2 155 AA7d 3788 273 41310 278 1391 225 665 184 2 7 76 134748 935 13403 24 1860 122 3 41 AB1a 3948 510 39860 153 1134 252 665 4271 0 408 113696 710 15394 13 1870 1 1 1 73 AB1b 3048 63 41856 521 825 380 385 35 6 508 120276 606 14805 1 1701 1 4 96 AB16 3140 312 57137 449 1034 272 588 314 1 667 126681 597 10406 1 1982 1 1 3 2 2 7 AB16 3140 3163 148 39399 384 1109 344 467 60 1 669 148066 762 12066 7 2253 1 1 2 2 2 7 AB16 2994 609 54991 9 842 294 405 76 0 285 108475 548 12964 1 1839 1 3 1518 1 0 0 AB2 348 4240 92 29302 559 1218 278 445 271 6 340 143200 955 15039 40 2108 1 1 4 0 0 AB2 348 540 92 29302 559 1218 278 465 181 0 541 426014 992 11664 1 1839 1 1 3 0 0 AB2 348 540 92 29302 559 1218 278 465 181 0 541 426014 992 11664 1 14365 1 1 7 0 0 AB2 348 540 94 5409 640 1509 658 2051 240 454 1 0 0 449 143200 955 15039 40 2108 1 1 0 0 0 0 AB2 348 540 949 4509 640 1505 559 788 1 1 0 69 253119 1456 9011 1 1 4046 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SC1a	1230	1	216925	318	1455	114	197	38	0	61	134803	793	5479	1	3167	1	1	0	
NATIA	SC1b	2822	1	312405	227	1459	177	169	89	0	32	154133	840	6661	1	3975	1	2	20	
NATION 3896 419 45102 313 1109 296 432 264 1 431 129223 789 12651 9 2551 1 3 5 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SC1c	493	31	38884	427	1106	92	416	10	0	348	132462	725	3321	1	2533	1	3	0	
NATIC 3477 541 3468 266 1269 319 814 1 0 599 161348 1005 11064 141 3382 95 3 10 10 10 10 10 10 10 10 10 10 10 10 10	NA1a	2527	128	40312	304	937	102	475	1	0	648	108534	666	12247	1	1722	1	7	0	
NATION 3701 564 30950 317 1371 270 474 62 6 406 138067 736 12010 42 2371 1 10 0 0 0 0 0 0 0	NA1b	3896	419	45102	313	1109	296	432	264	1	431	129223	789	12651	9	2551	1	3	54	
NATE 2145 397 86440 191 1050 205 339 203 0 697 119615 675 9030 1 3679 1 3 1 NATA 1524 420 19302 264 1143 239 479 253 0 480 105084 541 6292 6 1742 107 4 38 NATA 3932 738 37165 201 1268 192 389 1 28 90 163861 780 12712 26 3079 1 4 112 NATA 3982 731 27620 26 1301 210 411 42 1 455 163643 875 14060 79 2982 1 2 155 NATA 3788 273 41310 278 1391 225 665 184 2 776 134748 935 13403 24 1860 122 3 41 NB1a 3948 510 39860 153 1134 252 654 271 0 408 113696 710 15394 13 1870 1 1 73 NB1b 3048 63 41856 521 825 380 385 35 6 508 120276 606 14805 1 1701 1 4 96 NB1c 3140 312 57137 449 1034 272 588 314 1 667 126681 597 10406 1 1982 1 3 23 NB1d 3163 148 3939 384 1109 344 467 60 1 669 148066 762 12066 7 2253 1 2 27 NB1e 2994 609 54991 9 842 294 405 76 0 285 108475 548 12964 1 1839 1 3 192 NB2a 4248 493 40770 259 1119 312 539 1 0 449 143200 955 15039 40 2108 1 4 0 NB2b 4240 92 29302 559 1218 278 445 271 6 340 163605 723 12877 85 2157 1 7 7 NB2c 3418 982 37205 283 1200 213 493 114 0 347 12561 670 126619 31 1518 1 3 0 NB2b 4240 3797 808 44881 132 889 327 465 181 0 591 119181 951 12269 12 1178 1 7 76 NB2c 3489 2980 446 51096 585 2051 240 454 1 0 149 260014 992 11664 1 4365 1 9 0 NB2d 2386 249 45209 640 1950 559 788 1 0 69 253119 1456 9011 1 4046 1 4 0 NB2d 2386 249 45209 640 1950 559 788 1 0 69 253119 1456 9011 1 4046 1 4 0 NB2d 2386 249 45209 640 1950 559 788 1 0 69 253119 1456 9011 1 4046 1 4 0 NB2d 3404 536 33195 2 886 268 268 127 23 11 28 10961 716 11997 1 1425 1 1 1 1 1	NA1c	3477	541	34468	266	1269	319	814	1	0	599	161348	1005	11064	141	3382	95	3	10	
NA7a	NA1d	3701	564	30950	317	1371	270	474	62	6	406	138067	736	12010	42	2371	1	10	0	
NATO 3932 738 37165 201 1268 192 389 1 28 90 163861 780 12712 26 3079 1 4 112 12 155 NATO 3982 731 27620 26 1301 210 411 42 1 455 163643 875 14060 79 2982 1 2 155 NATO 3788 273 41310 278 1391 225 665 184 2 776 134748 935 13403 24 1860 122 3 41 NB1a 3948 510 39860 153 1134 252 654 271 0 408 113696 710 15394 13 1870 1 1 73 NB1b 3048 63 41856 521 825 380 385 35 6 508 120276 606 14805 1 1701 1 4 96 NB1c 3140 312 57137 449 1034 272 588 314 1 667 126681 597 10406 1 1982 1 3 23 NB1d 3163 148 39399 384 1109 344 467 60 1 669 148066 762 12066 7 2253 1 2 2 77 NB1a 2994 609 54991 9 842 294 405 76 0 285 108475 548 12964 1 1839 1 3 192 NB2a 4248 493 40770 259 1119 312 539 1 0 449 143200 955 15039 40 2108 1 4 0 0 NB2b 4240 92 29302 559 1218 278 445 271 6 340 163605 723 12877 85 2157 1 7 0 NB2c 3418 982 37205 283 1200 213 493 114 0 347 125631 670 12619 31 1518 1 3 0 NB2b 4260 3797 808 44881 132 889 327 465 181 0 591 119181 951 12269 12 1178 1 7 76 NB2c 348 298 448 5109 889 4488 1 132 889 327 465 181 0 591 119181 951 12269 12 1178 1 7 76 NB2c 348 298 448 5109 889 4580 585 2051 240 454 1 0 142 260014 992 11664 1 4365 1 9 0 NB2b 4290 446 51096 585 2051 240 454 1 0 142 260014 992 11664 1 4365 1 9 0 NB2b 4290 446 51096 585 2051 240 454 1 0 142 260014 992 11664 1 4365 1 9 0 NB2b 4290 899 40588 1 1402 320 461 67 0 353 181614 946 6090 1 2718 1 9 5 NB2b 420 452 5263 246 1801 297 306 1 0 263 23809 119 1456 9011 1 4046 1 4 0 0 NB2b 420 330 1 0 360 462 52663 246 1801 297 306 1 0 263 23809 1095 7876 1 3431 1 4 0 0 0 NB2b 1630 462 52663 246 1801 297 306 1 0 263 23809 1095 7876 1 3431 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NA1e	2145	397	86440	191	1050	205	339	203	0	697	119615	675	9030	1	3679	1	3	1	
NATC 3982 731 27620 26 1301 210 411 42 1 455 163643 875 14060 79 2982 1 2 155 NATC 3788 273 41310 278 1391 225 665 184 2 776 134748 935 13403 24 1860 122 3 41 NB1a 3948 510 39860 153 1134 252 664 271 0 408 113696 710 15394 13 1870 1 1 73 NB1b 3048 63 41856 521 825 380 385 35 6 508 120276 606 14805 1 1701 1 4 96 NB1c 3140 312 57137 449 1034 272 588 314 1 667 126681 597 10406 1 1982 1 3 23 NB1d 3163 148 39399 384 1109 344 467 60 1 669 148066 762 12066 7 2253 1 2 2 7 NB1e 2994 609 54991 9 842 294 405 76 0 285 108475 548 12964 1 1839 1 3 192 NB2a 4240 92 29302 559 1218 278 445 271 6 340 163605 723 12877 85 2157 1 7 0 NB2b 4240 92 29302 559 1218 278 445 271 6 340 163605 723 12877 85 2157 1 7 0 NB2b 4240 92 29302 559 1218 278 445 271 6 340 163605 723 12877 85 2157 1 7 0 NB2b 4240 3797 808 44881 132 889 327 465 181 0 591 119181 951 12269 12 1178 1 7 76 NB2b 2362 387 27465 470 1313 619 433 1 17 487 164018 922 10114 61 2470 1 6 0 0 NB2b 2362 387 27465 470 1313 619 433 1 17 487 164018 922 10114 61 2470 1 6 0 0 NB2b 2362 387 27465 470 1313 619 433 1 17 487 164018 922 10114 61 2470 1 6 0 0 NB2b 2362 387 27465 470 1313 619 433 1 17 487 164018 922 10114 61 2470 1 6 0 0 NB2b 2362 387 27465 470 1313 619 433 1 17 487 164018 922 10114 61 2470 1 6 0 0 NB2b 2362 387 27465 470 1313 619 433 1 17 487 164018 922 10114 61 2470 1 6 0 0 NB2b 2362 387 27465 470 1313 619 433 1 17 0 14 260014 992 11664 1 4365 1 9 0 0 NB2b 2173 100 48050 653 2360 356 721 1 0 0 69 253119 1456 9011 1 4046 1 4 0 0 NB2b 2386 249 45209 640 1950 559 788 1 0 0 69 253119 1456 9011 1 4046 1 4 0 0 NB2b 2386 249 45209 640 1950 559 788 1 0 0 69 253119 1456 9011 1 4046 1 4 0 0 NB2b 2386 249 45209 640 1950 559 788 1 0 0 69 253119 1456 9011 1 4046 1 4 0 0 NB2b 2386 249 45209 640 1850 559 788 1 0 0 69 253119 1456 9011 1 4046 1 4 0 0 NB2b 2386 249 45209 640 1850 559 788 1 0 0 69 253119 1456 9011 1 4046 1 4 0 0 0 NB2b 2386 249 45209 640 1850 559 788 1 0 0 69 253119 1456 9011 1 4046 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NA7a	1524	420	19302	264	1143	239	479	253	0	480	105084	541	6292	6	1742	107	4	38	
NATCL 3788 273 41310 278 1391 225 665 184 2 776 134748 935 13403 24 1860 122 3 41 NB18 3948 510 39860 153 1134 252 654 271 0 408 113696 710 15394 13 1870 1 1 73 NB18 3048 63 41856 521 825 380 385 35 6 508 120276 606 14805 1 1701 1 4 96 NB16 3140 312 57137 449 1034 272 588 314 1 667 126681 597 10406 1 1982 1 3 23 NB18 3163 148 39399 384 1109 344 467 60 1 669 148066 762 12066 7 2253 1 2 2 77 NB18 2994 609 54991 9 842 294 405 76 0 285 108475 548 12964 1 1839 1 3 192 NB28 4240 92 29302 559 1218 278 445 271 6 340 163605 723 12877 85 2157 1 7 0 NB26 3418 982 37205 283 1200 213 493 114 0 347 125631 670 12619 31 1518 1 3 0 NB28 2362 387 27465 470 1313 619 433 1 17 487 164018 922 10114 61 2470 1 6 0 NB29 2980 446 51096 585 2051 240 454 1 0 14 260014 992 11664 1 4365 1 9 0 NB99 120 809 40588 1 1402 320 461 67 0 363 289139 1117 9205 1 3929 1 10 0 NB96 1209 809 40588 1 1402 320 461 67 0 363 289139 1117 9205 1 3929 1 10 0 NB99 1630 462 52663 246 1801 297 306 1 0 69 253119 1456 9011 1 4046 1 4 0 NB99 1630 462 52663 246 1801 297 306 1 0 69 253119 1456 9011 1 4046 1 4 0 NB99 1630 462 52663 246 1801 297 306 1 0 69 253119 1456 9011 1 4046 1 4 0 NB99 1630 462 52663 246 1801 297 306 1 0 69 253119 1456 9011 1 4046 1 4 0 NB99 1630 462 52663 246 1801 297 306 1 0 69 253119 1456 9011 1 4046 1 4 0 NB99 1630 462 52663 246 1801 297 306 1 0 69 253119 1456 9011 1 4046 1 4 0 NB99 1630 462 52663 246 1801 297 306 1 0 69 253119 1456 9011 1 4046 1 4 0 NB99 1630 462 52663 246 1801 297 306 1 0 69 253119 1456 9011 1 4046 1 4 0 NB99 1630 462 52663 246 1801 297 306 1 0 69 253119 1456 9011 1 4046 1 4 0 NB99 1630 462 52663 246 1801 297 306 1 0 69 253119 1456 9011 1 4046 1 4 0 0 NB99 1630 452 4508 4508 4508 4508 4508 4508 4508 4508	NA7b	3932	738	37165	201	1268	192	389	1	28	90	163861	780	12712	26	3079	1	4	112	
NB1a 3948 510 39860 153 1134 252 654 271 0 408 113696 710 15394 13 1870 1 1 73 NB1b 3048 63 41856 521 825 380 385 35 6 508 120276 606 14805 1 1701 1 4 96 NB1c 3140 312 57137 449 1034 272 588 314 1 667 126681 597 10406 1 1982 1 3 23 NB1d 3163 148 39399 384 1109 344 467 60 1 669 148066 762 12066 7 2253 1 2 27 NB1e 2994 609 54991 9 842 294 405 76 0 285 108475 548 12964 1 1839 1 3 192 NB2a 4248 493 40770 259 1119 312 539 1 0 499 143200 955 15039 40 2108 1 4 0 NB2b 4240 92 29302 559 1218 278 445 271 6 340 163605 723 12877 85 2157 1 7 0 NB2c 3418 982 37205 283 1200 213 493 114 0 347 125631 670 12619 31 1518 1 3 0 NB2d 3797 808 44881 132 889 327 465 181 0 591 119181 951 12269 12 1178 1 7 76 NB2e 2362 387 27465 470 1313 619 433 1 17 487 164018 922 10114 61 2470 1 6 0 NB9b 2173 100 48050 653 2360 356 721 1 0 263 239139 1117 9205 1 3929 1 10 0 NB9b 2173 100 48050 653 2360 356 721 1 0 69 253119 1456 9011 1 4046 1 4 0 NB9b 2180 462 52663 246 1801 297 306 1 0 69 253119 1456 9011 1 4046 1 4 0 NB9b 2386 249 45209 640 1950 559 788 1 0 69 253119 1456 9011 1 4046 1 4 0 NB9b 2386 249 45209 640 1950 559 788 1 0 69 253119 1456 9011 1 4046 1 4 0 NB9b 2386 249 45209 640 1950 559 788 1 0 69 253119 1456 9011 1 4046 1 4 0 NB9b 2386 249 45209 640 1950 559 788 1 0 69 253119 1456 9011 1 4046 1 4 0 NB9b 2386 249 45209 640 1950 559 788 1 0 69 253119 1456 9011 1 4046 1 4 0 NB9b 1630 462 52663 246 1801 297 306 1 0 69 253119 1456 9011 1 4046 1 4 0 NB9b 1630 462 52663 246 1801 297 306 1 0 69 253119 1456 9011 1 4046 1 4 0 NB9b 1630 462 52663 246 1801 297 306 1 0 69 253119 1456 9011 1 4046 1 4 0 NB9b 1630 462 52663 246 1801 297 306 1 0 69 253119 1456 9011 1 4046 1 4 0 NB9b 1630 462 52663 246 1801 297 306 1 0 69 253119 1456 9011 1 4046 1 4 0 NB9b 1630 462 52663 246 1801 297 306 1 0 69 253119 1456 9011 1 4046 1 4 0 NB9b 1630 462 52663 246 1801 297 306 1 0 69 253119 1456 9011 1 4046 1 4 0 NB9b 1630 462 52663 246 1801 297 306 1 0 69 253119 1456 9011 1 4046 1 4 0 NB9b 1630 462 52663 346 1801 297 306 1 1 0 263 228020 1095 7876 1 13431 1 1 1 1 1 1 1 1 1	NA7c	3982	731	27620	26	1301	210	411	42	1	455	163643	875	14060	79	2982	1	2	155	
NB1b 3048 63 41856 521 825 380 385 35 6 508 120276 606 14805 1 1701 1 4 96 NB1c 3140 312 57137 449 1034 272 588 314 1 667 126681 597 10406 1 1982 1 3 23 NB1d 3163 148 39399 384 1109 344 467 60 1 669 148066 762 12066 7 2253 1 2 27 NB1e 2994 609 54991 9 842 294 405 76 0 285 108475 548 12964 1 1839 1 3 192 NB2a 4248 493 40770 259 1119 312 539 1 0 449 143200 955 15039 40 2108 1 4 0 NB2b 4240 92 29302 559 1218 278 445 271 6 340 163605 723 12877 85 2157 1 7 0 NB2c 3418 982 37205 283 1200 213 493 114 0 347 125631 670 12619 31 1518 1 3 0 NB2d 3797 808 44881 132 889 327 465 181 0 591 119181 951 12269 12 1178 1 7 76 NB2e 2362 387 27465 470 1313 619 433 1 17 487 164018 922 10114 61 2470 1 6 0 NB9b 2173 100 48050 653 2360 356 721 1 0 469 47 1400 48050 653 2360 356 721 1 0 263 239139 1117 9205 1 3929 1 10 0 NB9b 2173 100 48050 653 2360 356 721 1 0 263 239139 1117 9205 1 3929 1 10 0 NB9b 2180 4520 4520 4520 461 67 0 353 181614 946 6090 1 2718 1 9 5 NB9b 2386 249 45209 640 1950 559 788 1 0 69 253119 1456 9011 1 4046 1 4 0 NB9b 2386 249 45209 640 1950 559 788 1 0 69 253119 1456 9011 1 4046 1 4 0 NB9b 1630 462 52663 246 1801 297 306 1 0 69 253119 1456 9011 1 4046 1 4 0 NB9b 1630 462 52663 246 1801 297 306 1 0 69 253119 1456 9011 1 4046 1 4 0 NB9b 1630 462 52663 246 1801 297 306 1 0 69 253119 1456 9011 1 4046 1 4 0 NB9b 1630 462 52663 246 1801 297 306 1 0 69 253119 1456 9011 1 4046 1 4 0 NB9b 1630 462 52663 246 1801 297 306 1 0 69 253119 1456 9011 1 4046 1 4 0 NB9b 1630 462 52663 246 1801 297 306 1 0 69 253119 1456 9011 1 4046 1 4 0 NB9b 1630 462 52663 246 1801 297 306 1 0 69 253119 1456 9011 1 4046 1 4 0 NB9b 1630 462 52663 246 1801 297 306 1 0 69 253119 1456 9011 1 4046 1 4 0 NB9b 1630 462 52663 246 1801 297 306 1 0 69 253119 1456 9011 1 4046 1 1 4 0 NB9b 1630 462 52663 246 1801 297 306 1 0 69 253119 1456 9011 1 4046 1 1 4 0 NB9b 1630 462 52663 246 1801 297 306 1 0 69 253119 1456 9011 1 4046 1 1 4 0 NB9b 1630 462 52663 246 1801 297 306 1 0 69 253119 1456 9011 1 1425 1 1 1518	NA7d	3788	273	41310	278	1391	225	665	184	2	776	134748	935	13403	24	1860	122	3	41	
NB1c 3140 312 57137 449 1034 272 588 314 1 667 126681 597 10406 1 1982 1 3 23 NB1d 3163 148 39399 384 1109 344 467 60 1 669 148066 762 12066 7 2253 1 2 27 NB1e 2994 609 54991 9 842 294 405 76 0 285 108475 548 12964 1 1839 1 3 192 NB2a 4248 493 40770 259 1119 312 539 1 0 449 143200 955 15039 40 2108 1 4 0 NB2b 4240 92 29302 559 1218 278 445 271 6 340 163605 723 12877 85 2157 1 7 0 NB2c 3418 982 37205 283 1200 213 493 114 0 347 125631 670 12619 31 1518 1 3 0 NB2d 3797 808 44881 132 889 327 465 181 0 591 119181 951 12269 12 1178 1 7 76 NB2c 2362 387 27465 470 1313 619 433 1 17 487 164018 922 10114 61 2470 1 6 0 NB9a 2980 446 51096 585 2051 240 454 1 0 14 260014 992 11664 1 4365 1 9 0 NB9b 2173 100 48050 653 2360 356 721 1 0 263 239139 1117 9205 1 3929 1 10 0 NB9c 1209 809 40588 1 1402 320 461 67 0 353 181614 946 6090 1 2718 1 9 5 NB9d 2386 249 45209 640 1950 559 788 1 0 69 253119 1456 9011 1 4046 1 4 0 NB9d 1630 462 52663 246 1801 297 306 1 0 69 253119 1456 9011 1 4046 1 4 0 NB9d 1630 462 52663 246 1801 297 306 1 0 69 253119 1456 9011 1 4046 1 4 0 NB9d 1630 462 52663 246 1801 297 306 1 0 263 228020 1095 7876 1 3431 1 4 0 NB9d 1630 462 52663 246 1801 297 306 1 0 263 228020 1095 7876 1 3431 1 4 0 NB9d 1630 462 52663 246 1801 297 306 1 0 263 228020 1095 7876 1 3431 1 4 0 NB9d 1630 462 52663 246 1801 297 306 1 0 263 228020 1095 7876 1 3431 1 4 0 NB9d 1630 462 52663 246 1801 297 306 1 0 263 228020 1095 7876 1 3431 1 4 0 NB9d 1630 462 52663 246 1801 297 306 1 0 263 228020 1095 7876 1 3431 1 4 0 NB9d 1630 462 52663 246 1801 297 306 1 0 263 228020 1095 7876 1 3431 1 4 0 NB9d 1630 462 52663 246 1801 297 306 1 0 263 228020 1095 7876 1 3431 1 4 0 NB9d 1630 462 52663 246 1801 297 306 1 0 263 228020 1095 7876 1 3431 1 4 0 NB9d 1630 462 52663 246 1801 297 306 1 0 263 228020 1095 7876 1 3431 1 4 0 NB9d 1700 48050 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NB1a	3948	510	39860	153	1134	252	654	271	0	408	113696	710	15394	13	1870	1	1	73	
NB1d 3163 148 39399 384 1109 344 467 60 1 669 148066 762 12066 7 2253 1 2 27 NB1e 2994 609 54991 9 842 294 405 76 0 285 108475 548 12964 1 1839 1 3 192 NB2a 4248 493 40770 259 1119 312 539 1 0 449 143200 955 15039 40 2108 1 4 0 NB2b 4240 92 29302 559 1218 278 445 271 6 340 163605 723 12877 85 2157 1 7 0 NB2c 3418 982 37205 283 1200 213 493 114 0 347 125631 670 12619 31 1518 1 3 0 NB2d 3797 808 44881 132 889 327 465 181 0 591 119181 951 12269 12 1178 1 7 76 NB2e 2362 387 27465 470 1313 619 433 1 17 487 164018 922 10114 61 2470 1 6 0 NB9a 2980 446 51096 585 2051 240 454 1 0 14 260014 992 11664 1 4365 1 9 0 NB9b 2173 100 48050 653 2360 356 721 1 0 263 239139 1117 9205 1 3929 1 10 0 NB9c 1209 809 40588 1 1402 320 461 67 0 353 181614 946 6090 1 2718 1 9 5 NB9d 2386 249 45209 640 1950 559 788 1 0 69 253119 1456 9011 1 4046 1 4 0 NC2a 3404 536 39195 2 886 268 127 23 11 238 109613 716 11997 1 1425 1 1 151	NB1b	3048	63	41856	521	825	380	385	35	6	508	120276	606	14805	1	1701	1	4	96	
NB1e 2994 609 54991 9 842 294 405 76 0 285 108475 548 12964 1 1839 1 3 192 NB2a 4248 493 40770 259 1119 312 539 1 0 449 143200 955 15039 40 2108 1 4 0 NB2b 4240 92 29302 559 1218 278 445 271 6 340 163605 723 12877 85 2157 1 7 0 NB2c 3418 982 37205 283 1200 213 493 114 0 347 125631 670 12619 31 1518 1 3 0 NB2d 3797 808 44881 132 889 327 465 181 0 591 119181 951 12269 12 1178 1 7 76 NB2e 2362 387 27465 470 1313 619 433 1 17 487 164018 922 10114 61 2470 1 6 0 NB9a 2980 446 51096 585 2051 240 454 1 0 14 260014 992 11664 1 4365 1 9 0 NB9b 2173 100 48050 653 2360 356 721 1 0 263 239139 1117 9205 1 3929 1 10 0 NB9c 1209 809 40588 1 1402 320 461 67 0 353 181614 946 6090 1 2718 1 9 5 NB9d 2386 249 45209 640 1950 559 788 1 0 69 253119 1456 9011 1 4046 1 4 0 NB9e 1630 462 52663 246 1801 297 306 1 0 263 228020 1095 7876 1 3431 1 4 0 NC2a 3404 536 39195 2 886 268 127 23 11 238 109613 716 11997 1 1425 1 1 151	NB1c	3140	312	57137	449	1034	272	588	314	1	667	126681	597	10406	1	1982	1	3	23	
NB2a 4248 493 40770 259 1119 312 539 1 0 449 143200 955 15039 40 2108 1 4 0 NB2b 4240 92 29302 559 1218 278 445 271 6 340 163605 723 12877 85 2157 1 7 0 NB2c 3418 982 37205 283 1200 213 493 114 0 347 125631 670 12619 31 1518 1 3 0 NB2d 3797 808 44881 132 889 327 465 181 0 591 119181 951 12269 12 1178 1 7 76 NB2e 2362 387 27465 470 1313 619 433 1 17 487 164018 922 10114 61 2470 1 6 0 NB9a 2980 446 51096 585 2051 240 454 1 0 14 260014 992 11664 1 4365 1 9 0 NB9b 2173 100 48050 653 2360 356 721 1 0 263 239139 1117 9205 1 3929 1 10 0 NB9c 1209 809 40588 1 1402 320 461 67 0 353 181614 946 6090 1 2718 1 9 5 NB9d 2386 249 45209 640 1950 559 788 1 0 69 253119 1456 9011 1 4046 1 4 0 NB9e 1630 462 52663 246 1801 297 306 1 0 263 228020 1095 7876 1 3431 1 4 0 NB9e 1630 462 52663 246 1801 297 306 1 0 263 228020 1095 7876 1 3431 1 4 0 NB9e 1630 462 52663 246 1801 297 306 1 0 263 228020 1095 7876 1 3431 1 4 0	NB1d	3163	148	39399	384	1109	344	467	60	1	669	148066	762	12066	7	2253	1	2	27	
NB2b 4240 92 29302 559 1218 278 445 271 6 340 163605 723 12877 85 2157 1 7 0 NB2c 3418 982 37205 283 1200 213 493 114 0 347 125631 670 12619 31 1518 1 3 0 NB2d 3797 808 44881 132 889 327 465 181 0 591 119181 951 12269 12 1178 1 7 76 NB2c 2362 387 27465 470 1313 619 433 1 17 487 164018 922 10114 61 2470 1 6 0 NB9a 2980 446 51096 585 2051 240 454 1 0 14 260014 992 11664 1 4365 1 9 0 NB9b 2173 100 48050 653 2360 356 721 1 0 263 239139 1117 9205 1 3929 1 10 0 NB9c 1209 809 40588 1 1402 320 461 67 0 353 181614 946 6090 1 2718 1 9 5 NB9d 2386 249 45209 640 1950 559 788 1 0 69 253119 1456 9011 1 4046 1 4 0 NB9e 1630 462 52663 246 1801 297 306 1 0 263 228020 1095 7876 1 3431 1 4 0 NB9c 1630 462 52663 246 1801 297 306 1 0 263 228020 1095 7876 1 3431 1 4 0	NB1e	2994	609	54991	9	842	294	405	76	0	285	108475	548	12964	1	1839	1	3	192	
NB2c 3418 982 37205 283 1200 213 493 114 0 347 125631 670 12619 31 1518 1 3 0 NB2d 3797 808 44881 132 889 327 465 181 0 591 119181 951 12269 12 1178 1 7 76 NB2e 2362 387 27465 470 1313 619 433 1 17 487 164018 922 10114 61 2470 1 6 0 NB9a 2980 446 51096 585 2051 240 454 1 0 14 260014 992 11664 1 4365 1 9 0 NB9b 2173 100 48050 653 2360 356 721 1 0 263 239139 1117 9205 1 3929 1 10 0 NB9c 1209 809 40588 1 1402 320 461 67 0 353 181614 946 6090 1 2718 1 9 5 NB9d 2386 249 45209 640 1950 559 788 1 0 69 253119 1456 9011 1 4046 1 4 0 NB9e 1630 462 52663 246 1801 297 306 1 0 263 228020 1095 7876 1 3431 1 4 0	NB2a	4248	493	40770	259	1119	312	539	1	0	449	143200	955	15039	40	2108	1	4	0	
NB2d 3797 808 44881 132 889 327 465 181 0 591 119181 951 12269 12 1178 1 7 76 NB2e 2362 387 27465 470 1313 619 433 1 17 487 164018 922 10114 61 2470 1 6 0 NB9a 2980 446 51096 585 2051 240 454 1 0 14 260014 992 11664 1 4365 1 9 0 NB9b 2173 100 48050 653 2360 356 721 1 0 263 239139 1117 9205 1 3929 1 10 0 NB9c 1209 809 40588 1 1402 320 461 67 0 353 181614 946 6090 1 2718 1 9 5 NB9d 2386 249 45209 640 1950 559 788 1 0 69 253119 1456 9011 1 4046 1 4 0 NB9e 1630 462 52663 246 1801 297 306 1 0 263 228020 1095 7876 1 3431 1 4 0 NC2a 3404 536 39195 2 886 268 127 23 11 238 109613 716 11997 1 1425 1 1 151	NB2b	4240	92	29302	559	1218	278	445	271	6	340	163605	723	12877	85	2157	1	7	0	
NB2e 2362 387 27465 470 1313 619 433 1 17 487 164018 922 10114 61 2470 1 6 0 NB9a 2980 446 51096 585 2051 240 454 1 0 14 260014 992 11664 1 4365 1 9 0 NB9b 2173 100 48050 653 2360 356 721 1 0 263 239139 1117 9205 1 3929 1 10 0 NB9c 1209 809 40588 1 1402 320 461 67 0 353 181614 946 6090 1 2718 1 9 5 NB9d 2386 249 45209 640 1950 559 788 1 0 69 253119 1456 9011 1 4046 1 4 0 NB9e 1630 462 52663 246 1801 297 306 1 0 263 228020 1095 7876 1 3431 1 4 0 NB9c 3404 536 39195 2 886 268 127 23 11 238 109613 716 11997 1 1425 1 1 151	NB2c	3418	982	37205	283	1200	213	493	114	0	347	125631	670	12619	31	1518	1	3	0	
NB9a 2980 446 51096 585 2051 240 454 1 0 14 260014 992 11664 1 4365 1 9 0 NB9b 2173 100 48050 653 2360 356 721 1 0 263 239139 1117 9205 1 3929 1 10 0 NB9c 1209 809 40588 1 1402 320 461 67 0 353 181614 946 6090 1 2718 1 9 5 NB9d 2386 249 45209 640 1950 559 788 1 0 69 253119 1456 9011 1 4046 1 4 0 NB9e 1630 462 52663 246 1801 297 306 1 0 263 228020 1095 7876 1 3431 1 4 0 NB9c NC2a 3404 536 39195 2 886 268 127 23 11 238 109613 716 11997 1 1425 1 1 151	NB2d	3797	808	44881	132	889	327	465	181	0	591	119181	951	12269	12	1178	1	7	76	
NB9b 2173 100 48050 653 2360 356 721 1 0 263 239139 1117 9205 1 3929 1 10 0 NB9c 1209 809 40588 1 1402 320 461 67 0 353 181614 946 6090 1 2718 1 9 5 NB9d 2386 249 45209 640 1950 559 788 1 0 69 253119 1456 9011 1 4046 1 4 0 NB9e 1630 462 52663 246 1801 297 306 1 0 263 228020 1095 7876 1 3431 1 4 0 NC2a 3404 536 39195 2 886 268 127 23 11 238 109613 716 11997 1 1425 1 1 151	NB2e	2362	387	27465	470	1313	619	433	1	17	487	164018	922	10114	61	2470	1	6	0	
NB9c 1209 809 40588 1 1402 320 461 67 0 353 181614 946 6090 1 2718 1 9 5 NB9d 2386 249 45209 640 1950 559 788 1 0 69 253119 1456 9011 1 4046 1 4 0 NB9e 1630 462 52663 246 1801 297 306 1 0 263 228020 1095 7876 1 3431 1 4 0 NC2a 3404 536 39195 2 886 268 127 23 11 238 109613 716 11997 1 1425 1 1 151	NB9a	2980	446	51096	585	2051	240	454	1	0	14	260014	992	11664	1	4365	1	9	0	
NB9d 2386 249 45209 640 1950 559 788 1 0 69 253119 1456 9011 1 4046 1 4 0 NB9e 1630 462 52663 246 1801 297 306 1 0 263 228020 1095 7876 1 3431 1 4 0 NC2a 3404 536 39195 2 886 268 127 23 11 238 109613 716 11997 1 1425 1 1 151	NB9b	2173	100	48050	653	2360	356	721	1	0	263	239139	1117	9205	1	3929	1	10	0	
NB9e 1630 462 52663 246 1801 297 306 1 0 263 228020 1095 7876 1 3431 1 4 0 NC2a 3404 536 39195 2 886 268 127 23 11 238 109613 716 11997 1 1425 1 1 151	NB9c	1209	809	40588	1	1402	320	461	67	0	353	181614	946	6090	1	2718	1	9	5	
NC2a 3404 536 39195 2 886 268 127 23 11 238 109613 716 11997 1 1425 1 1 151	NB9d	2386	249	45209	640	1950	559	788	1	0	69	253119	1456	9011	1	4046	1	4	0	
	NB9e	1630	462	52663	246	1801	297	306	1	0	263	228020	1095	7876	1	3431	1	4	0	
NC2b 3666 570 39198 166 1374 146 614 182 0 236 125956 756 13287 11 1859 86 4 74	NC2a	3404	536	39195	2	886	268	127	23	11	238	109613	716	11997	1	1425	1	1	151	
	NC2b	3666	570	39198	166	1374	146	614	182	0	236	125956	756	13287	11	1859	86	4	74	

Fluores Conteo Atmosf	s de	fotor	nes par	a 15			-		i filt	ros						BR	V	KE	R
Elemento	Al		Ca K12 (Со	Cr K12	Cu		Dy		Fe K12	Gd I 1	K K12	Mg K12	Mn K12	Na K12	Nb K12	Nd L1	Nd M1
EA2a	3667	634	55282	382	1853	410	473	_	0	577	250010	1093	6927	163	4656	1	3	0	0
NC2c	6203	276	37364	431	1240	208	378		0	423	160830	755	15804	76	3470	71	10	0	0
NC2d	3813	421	35041	318	1007	257	252	222	2	238	109374	727	11715	33	1357	84	4	79	0
NC2e	4881	21	38352	325	1027	139	488	6	0	112	129749	883	10037	1	1837	1	5	35	0
NC4a	4409	559	40620	287	1284	248	472	1	-3	214	145665	853	13096	1	2908	1	8	227	0
NC4b	5532	250	47370	601	1094	317	273	103	13	437	150954	783	14590	22	2508	39	6	51	0
NC4c	1718	1347	34527	294	1424	337	436	1	0	676	248575	1184	9697	1	2724	1	7	0	0
NC4d	3448	1332	43009	451	1458	321	436	1	0	544	304930	1440	13666	1	3464	1	8	0	0
NC4e	3867	22	41866	560	1457	216	578	1	6	576	191059	830	12577	1	2833	1	10	0	0
NC5a	2589	764	59517	333	2204	168	482	1	0	571	252496	1290	11094	1	3861	1	16	0	0
NC5b	2381	9	40092	508	1837	306	317	1	0	328	249323	1108	10616	1	3673	1	9	0	0
NC5c	3059	1075	40580	426	2202	437	602	1	0	382	316241	1434	7968	1	3797	1	5	0	0
NC5d	1661	548	40731	755	1951	322	632	1	0	2	319265	1446	9020	1	4374	1	3	0	0
NC5e	2912	245	47583	562	2147	252	618	1	0	284	246350	1151	10315	1	4119	1	6	0	0
NC10a	2663	27	59100	744	1870	526	646	1	0	1	249409	1194	11182	1	5065	1	5	0	0
NC10b	2562	1	64775	623	1718	164	393	1	0	362	247685	1124	9274	1	4287	1	7	0	0
NC10c	467	566	24058	1	753	268	158	95	0	535	124533	725	3440	1	1818	26	5	0	0
NC10d	2357	285	68012	310	1914	280	412	1	0	476	260254	1173	8184	1	4340	1	5	30	0
NC10e	1276	67	53720	354	1678	42	344	233	1	1	177017	838	4815	1	3553	1	6	0	0
ND1a	3615	441	72297	257	876	162	715	27	0	325	123980	809	11189	1	2467	1	1	33	0
ND1b	4841	94	162592	333	982	11	504	1	0	668	135704	722	13582	1	3026	1	3	126	0
ND1c	5258	228	52326	352	781	210	211	346	1	972	119222	924	12389	1	2134	44	3	1	0
ND1d	2930	3	29612	510	793	151	402	234	0	523	107454	834	10449	15	1724	60	3	18	0
ND1e	1720	1	21247	660	1060	172	270	167	0	580	119864	537	5617	6	1197	98	4	0	0
ND2a	3262	225	64595	607	2038	427	417	1	0	519	267863	1196	12669	1	3725	1	11	0	0
ND2b	4016	896	50716	497	1875	338	419	1	0	498	263161	1090	10242	16	3732	1	6	0	0
ND2c	4742	2	58161	706	2297	494	552	1	13	151	263787	1214	10330	1	4169	1	9	0	0
ND2d	3731	814	56232	242	2382	357	579	131	0	443	265457	1115	11269	1	3698	1	5	1	0
ND2e	2622	525	40498	150	1583	237	359	1	0	306	201473	900	6442	17	2907	1	4	5	0
ND3a	2996	502	53275	29	1737	138	355	1	16	565	225889	1130	8734	46	3320	1	2	0	0
ND3b	3184	614	44729	277	1908	234	454	1	-1	23	235621	1107	9797	9	3540	1	6	0	0
ND3c	3202	515	47472	436	1815	294	368	1	0	252	230968	936	10599	1	3618	1	2	1	0
ND3d	398	8	12382	225	790	60	270	189	1	246	90092	592	2275	1	1531	125	2	1	0
ND3e	2011	643	54520	135	1424	133	596	16	0	911	224379	975	6920	1	3012	1	2	14	0
NE1a	2849	1175	38050	20	1518	129	583	2	14	685	208963	1060	6784	1	2775	1	7	1	0
NE1b	2044	90	36966	336	1504	1	311	168	0	204	170156	681	5276	15	2861	66	7	0	0

Edificio B, Templo Mayor

Fluores	s de	foto	nes par	a 15	•		•									ВБ	, Į	ĶE	R
Atmost Elemento	Al		Cio, sin		Co	Secu Cr K12	Cu		Dy		Fe K12	Gd L1	K K12	Mg K12	Mn K12	Na K12	Nb K12	Nd L1	Nd M1
EA2a	3667	634	55282	382	1853	410	473	1	0	577	250010	1093	6927	163	4656	1	3	0	0
NE1c	2614	94	104313	541	1753	113	343	6	-1	497	210866	1005	4475	1	3954	1	5	0	0
NE1d	2614	24	45051	534	2001	175	594	. 1	1	391	232446	1011	7197	13	3429	1	2	1	0
NE1e	1641	609	57079	349	1745	131	626	14	0	586	215544	1237	6922	1	3241	1	5	1	0
NE11a	2274	562	53378	14	2094	113	269	1	1	42	236668	1126	9979	1	3773	1	6	0	0
NE11b	1516	384	50570	116	1541	207	280	1	0	278	222792	1130	11444	1	3349	1	5	0	0
NE11c	2464	1	58870	622	1840	280	269	1	0	356	242867	1037	11388	1	3588	1	4	0	0
NE11d	2314	819	52857	1	2814	681	273	1	0	170	279043	1315	11464	16	4371	36	9	0	0
NE11e	1	38	243399	1	911	136	273	303	0	262	68910	645	6039	1	1104	1	6	-1	0
NE11e	1	38	243399	1	911	136	273	303	0	262	68910	645	6039	1	1104	1	6	-1	0

Elemento	Ni K12	P K12	Pb L1	Pd K12	Pd L1	Pr L1	Rb K12	S K12	Sc K12	Si K12	Sr K12	Ti K12	Th L1	Th M1	U L1	V K12	Yb L1	Yb M1	Zn K12 Zı	r K12
EA2a	742	535	251	2	749	21	85	8322	303	66971	1	13922	146	0	46	631	1389	0	3349	3
EB3a	817	465	663	8	1095	438	121	5868	1	70345	112	5381	186	0	153	21	1544	0	1045	2
EB3b	1134	293	442	4	942	64	96	3407	1	53527	1	9694	106	1	68	163	1281	0	1228	5
EB3c	679	413	467	5	968	112	22	3749	1	61918	8	10674	189	0	102	271	1436	2	1605	5
EB3d	853	394	443	4	1	0	101	1542	1	50993	1	9145	331	1	240	354	1399	2	1136	4
EB3e	706	337	596	5	722	134	214	2292	1	76070	12	8487	209	0	126	336	1643	33	1156	3
EB4a	1030	289	254	4	1680	89	86	2307	50	27673	1	8876	284	1	143	225	1226	8	1228	4
EB4b	1038	336	389	3	897	290	1	1901	1	62003	1	7589	192	0	210	216	1322	0	1174	1
EB4c	995	414	882	2	587	198	209	2723	38	53823	1	9134	135	0	126	11	1359	0	1408	3
EB4d	1120	340	411	5	1119	114	160	1686	1	44105	83	7217	157	0	110	1	1256	0	1657	1
EB4e	783	231	450	2	1466	154	73	3098	1	24697	14	4053	186	0	119	188	972	22	744	1
ED1a	902	557	620	1	761	79	163	4529	2	51549	6	17407	333	0	89	644	1045	0	2375	2
ED1b	1010	484	484	4	494	43	128	10649	129	28951	30	12018	75	0	132	346	886	1	946	3
ED1c	488	421	471	4	839	0	115	7045	209	26242	42	9530	153	0	178	519	1135	1	1315	1
ED1d	867	315	200	1	1012	147	1	3465	60	24243	1	9458	140	0	73	185	812	0	1650	8
ED1e	483	503	302	4	240	0	1	8799	1	49712	1	17496	169	1	95	506	932	0	1000	4
ED3a	1016	652	429	3	967	6	57	6906	334	48045	1	18949	267	0	98	716	898	1	1267	8
ED3b	979	353	362	3	662	87	94	8015	1	50614	8	14315	243	1	113	633	794	3	997	4
ED3c	685	336	437	2	497	0	96	7101	78	40457	1	11711	172	0	111	313	923	0	940	4

Edificio B, Templo Mayor

Aumosie	ra e	n vac	10, 8	in b	ianco	os se	cunc	arios	ni ii	itros									X)
Elemento	Ni K12	P K12	Pb L1	Pd K12	Pd L1	Pr L1	Rb K12	S K12	Sc K12	Si K12	Sr K12	Ti K12	Th L1	Th M1	U L1	V K12	Yb L1	Yb M1	Zn K122	r K12
ED3d	899	436	399	5	454	0	166	7696	194	60688	1	18221	253	0	135	699	825	0	1294	3
ED3e	947	347	331	6	387	29	91	11661	266	54147	1	15267	275	1	158	639	938	1	940	4
ED5a	582	575	458	3	205	224	81	13967	76	49735	1	17526	219	0	124	435	1259	1	866	6
ED5b	948	664	438	4	1342	0	100	8467	60	42781	24	18562	274	0	16	516	969	0	742	3
ED5c	809	511	261	5	6	0	95	9572	30	42989	1	15510	165	0	128	441	982	2	901	1
ED5d	964	472	268	2	240	11	203	12927	1	40456	39	15145	220	1	132	468	981	-1	743	11
ED5e	823	445	362	1	76	0	1	9990	1	38918	4	21252	211	3	173	857	1040	1	704	1
NA1	798	392	594	4	704	134	109	9823	1	45809	1	5718	194	1	204	4	1283	0	662	4
NA1a	798	392	594	4	704	134	109	9823	1	45809	1	5718	194	1	204	4	1283	0	662	4
NA1b	810	707	474	2	565	112	252	8115	1	44080	1	5686	176	0	126	52	1272	0	975	3
NA1c	1006	462	314	7	589	91	84	8208	1	47153	40	6417	186	0	145	4	1009	0	2449	1
NA1d	790	276	581	4	145	71	33	13634	1	71111	1	6733	121	1	138	315	1481	0	858	0
NA1e	764	371	375	5	694	164	135	7565	86	48044	1	6218	223	4	105	1	1540	0	1628	6
NC5a	671	541	427	4	219	0	182	8958	146	37875	1	17072	246	0	89	643	1012	1	878	4
NC5b	702	553	322	2	437	72	142	7206	36	41820	5	18106	263	0	144	619	1222	1	898	5
NC5c	700	744	373	2	886	1	92	6406	1	26365	1	10573	228	1	170	565	947	0	1322	7
NC5d	800	402	437	4	1039	47	67	3456	94	24948	43	13176	206	0	168	492	944	0	1880	4
NC5e	695	771	429	2	974	0	70	2495	1	26913	1	11895	243	1	167	656	1053	0	2606	10
NC10a	961	867	200	3	710	0	66	7659	220	31834	1	13940	267	0	139	387	862	13	1300	5
NC10b	717	848	435	3	1	27	200	13473	3	45797	2	15481	271	1	155	532	1107	-3	1045	3
NC10c	607	685	445	3	3	4	54	11471	1	44268	61	13091	221	1	98	389	1091	1	1354	4
NC10d	710	939	336	1	361	20	69	7398	292	23851	14	11856	167	0	150	230	954	1	789	3
NC10e	771	1067	203	0	882	0	148	6450	339	12631	1	10841	136	0	159	178	905	4	551	9
ND3a	743	371	249	7	851	6	67	4126	1	24649	30	10814	174	33	90	367	920	0	1041	1
ND3b	783	1239	284	2	1215	0	166	1597	1	28406	1	17591	295	1	94	345	1045	0	974	2
ND3c	712	1165	384	5	763	0	101	5991	1	30537	1	11827	199	1	122	461	894	0	2185	10
ND3d	740	653	205	0	747	0	83	5995	300	28943	1	13592	268	0	161	284	935	0	1052	2
ND3e	767	849	374	2	825	12	27	1411	1	19194	1	13924	168	0	170	379	850	0	413	0
NE11a	436	636	492	3	219	8	176	1802	1	14068	20	15054	147	2	128	528	823	0	471	4
NE11b	622	827	374	4	237	0	43	2427	16	17806	1	16649	92	0	112	519	898	0	486	10
NE11c	413	558	304	3	819	0	136	2182	1	8318	6	11454	200	0	95	352	1086	0	299	6
NE11d	559	1358	363	0	31	0	309	9124	229	28158	26	17977	350	0	176	605	1175	-2	764	2
NE11e	601	864	229	5	263	0	198	21802	1	14761	1	12942	164	0	182	284	1072	0	402	3
NA14a	740	788	398	2	747	1	72	1918	1	25574	14	16078	176	1	176	645	803	0	428	2
NA14b	761	492	455	5	355	64	108	12671	1	48185	1	10633	236	1	168	450	1111	0	1107	8

Edificio B, Templo Mayor

Atmoste	ra e	n vac	10, S	in b	ianco	os se	cunc	arios	ni ti	itros									X	
Elemento	Ni K12	P K12	Pb L1	Pd K12	Pd L1	Pr L1	Rb K12	S K12	Sc K12	Si K12	Sr K12	Ti K12	Th L1	Th M1	U L1	V K12	Yb L1	Yb M1	Zn K12Z	'r K12
NA14c	642	634	199	1	62	118	126	7663	1	21912	1	10451	184	0	104	413	992	1	611	4
NA14d	694	525	301	6	607	36	119	7083	242	34346	1	13938	195	0	53	679	878	0	956	1
NA15a	861	1169	577	5	310	0	43	12196	4	49224	19	13800	271	2	159	512	1308	1	1263	5
NA15b	945	646	379	6	1	14	60	16706	50	57734	1	12523	246	0	201	522	1020	0	815	2
NA15c	738	1138	489	1	1	14	134	5632	45	37410	43	16878	135	0	159	686	974	0	584	5
NA15d	904	644	390	4	561	53	92	10654	1	43522	71	14646	203	1	75	474	1256	1	1074	3
NA15e	749	905	344	4	561	2	194	5881	1	22914	6	13670	194	0	115	615	1043	1	994	3
NA16a	953	841	530	4	246	69	93	9462	1	25262	35	11050	265	0	108	326	1042	-1	1196	3
NA16b	980	831	309	3	674	1	41	9848	54	32653	1	11398	248	0	192	372	974	2	1125	3
NA16c	619	629	255	2	854	0	175	7937	1	23545	7	10722	93	0	78	522	1126	-1	837	1
NA16d	770	643	420	3	20	1	87	10463	1	38189	1	11600	328	0	83	584	1037	-1	930	3
NA16e	817	439	345	3	136	84	176	8772	164	36972	1	11811	227	0	132	419	1028	-8	1001	7
SA1a	730	624	411	4	639	0	174	14767	1	57453	49	13800	187	1	85	371	1067	0	1542	2
SA1b	687	533	683	0	895	205	110	8384	158	48092	1	12741	191	0	105	257	1145	1	2731	9
SA1c	837	904	507	4	962	75	74	2731	1	35453	3	18794	271	0	140	522	787	0	942	9
SA1d	638	898	516	1	664	0	44	3885	1	35448	1	13260	218	0	101	452	852	0	1551	8
SA1e	658	660	435	3	647	0	75	7149	1	33544	8	13737	221	0	114	644	1022	24	1183	3
SB1a	484	905	374	1	1288	38	114	3138	1	30133	25	13640	177	0	46	623	888	0	1024	4
SB1b	830	528	282	3	1383	8	44	4927	31	23800	39	9851	194	1	132	479	925	0	1433	2
SB1c	998	622	195	2	829	18	47	10402	1	19649	48	7341	138	0	49	322	610	0	787	1
SB1d	379	419	284	6	1218	0	58	3905	1	24660	27	10060	250	1	119	407	1262	0	1235	2
SB1e	627	516	453	3	1182	8	91	8424	31	29907	1	9994	189	0	78	385	1199	1	1344	2
SC1a	763	1635	305	3	1206	0	95	4819	393	17119	10	8274	126	0	117	150	1062	0	878	4
SC1b	588	2552	440	3	1162	0	150	4766	1	28340	1	10009	258	0	36	281	1643	0	820	8
SC1c	444	346	336	4	3629	0	64	2062	93	9886	18	7360	204	1	85	160	1144	0	906	1
NA1a	649	566	395	2	77	164	42	13051	1	52967	1	6423	150	1	46	104	1226	0	881	3
NA1b	1006	1230	761	3	1	33	112	12129	1	56217	18	6600	90	1	59	279	1341	0	1289	2
NA1c	689	396	620	5	143	41	91	7948	1	56369	15	5773	248	1	109	17	1340	37	2472	1
NA1d	844	457	329	4	576	167	196	7053	163	52294	1	5947	189	0	135	134	1306	0	1270	3
NA1e	947	709	535	4	13	111	172	19304	85	55480	1	5009	274	1	88	9	1467	0	797	4
NA7a	1028	191	338	3	1458	0	126	2035	1	21723	1	5479	220	1	126	64	901	0	1014	1
NA7b	1042	312	442	6	846	54	161	7489	1	61199	1	7904	293	3	42	261	1189	0	1025	0
NA7c	834	315	424	5	1153	85	159	1395	83	45538	12	7826	174	1	169	191	1359	75	1964	10
NA7d	1330	343	706	3	988	68	70	4625	28	56652	38	6895	137	2	79	294	1328	133	1287	3
NB1a	809	820	519	1	135	84	82	10694	80	60817	32	5942	171	1	148	405	1446	0	866	4

Edificio B, Templo Mayor

Atmosie	era e	n vac	10, 8	in b	lance	os se	cunc	arios	ni ii	itros									X	
Elemento	Ni K12	P K12	Pb L1	Pd K12	Pd L1	Pr L1	Rb K12	S K12	Sc K12	Si K12	Sr K12	Ti K12	Th L1	Th M1	U L1	V K12	Yb L1	Yb M1	Zn K122	Zr K12
NB1b	903	1005	715	4	21	0	19	14248	27	66510	1	6334	197	0	137	292	1307	0	889	2
NB1c	962	533	510	3	242	3	75	14392	1	55361	1	6657	228	0	205	89	1384	1	789	3
NB1d	836	423	287	2	113	33	134	14527	1	65425	12	6943	166	0	122	180	1336	0	1310	1
NB1e	937	405	381	8	44	133	79	16450	8	61121	1	4927	130	1	139	286	1261	0	1027	8
NB2a	742	738	431	2	924	119	69	4996	103	44348	36	7760	229	9	164	80	1168	0	1057	4
NB2b	911	301	263	5	1084	69	190	2487	1	43479	1	9028	320	0	91	354	1447	65	888	4
NB2c	927	481	478	2	731	46	1	7220	89	43341	1	6113	131	1	183	160	1311	0	988	3
NB2d	341	542	493	10	559	122	198	10069	1	47755	1	6148	209	1	177	130	1730	0	740	1
NB2e	649	389	366	5	885	87	139	4867	1	44913	1	6932	291	0	157	280	1392	0	1638	3
NB9a	832	720	468	1	266	24	84	11520	38	47872	14	16381	229	0	151	767	1019	5	1241	7
NB9b	878	570	198	4	914	191	37	9798	165	35626	13	13679	121	0	31	641	794	-1	1381	2
NB9c	644	650	373	1	863	51	102	7274	1	22159	1	9735	112	0	53	422	1030	1	789	4
NB9d	851	817	397	5	485	212	124	9062	57	38227	1	15191	275	0	133	231	1085	1	983	4
NB9e	612	768	258	2	395	3	89	12280	1	25964	1	14187	175	1	101	446	1042	0	841	6
NC2a	829	595	463	6	1018	0	181	3660	1	35858	1	5870	304	-6	149	258	1496	0	794	3
NC2b	1013	578	384	4	873	120	114	4146	1	38064	30	6272	182	1	72	140	1407	22	865	4
NC2c	875	634	387	1	762	70	126	3609	1	61790	57	8192	147	0	178	174	1361	0	780	3
NC2d	796	350	444	8	885	0	284	4170	1	38323	78	5575	242	0	174	148	1095	0	592	2
NC2e	776	448	442	4	1159	103	115	6619	68	37607	22	6836	288	0	299	1	1460	0	943	3
NC4a	724	420	497	4	785	86	120	3692	1	43952	1	7120	225	0	125	223	1603	0	1121	3
NC4b	1070	499	514	5	329	0	202	7598	1	56048	58	8024	170	1	144	1	1589	0	833	1
NC4c	664	4257	421	4	857	137	108	4239	63	31751	14	5324	216	0	148	524	1145	-1	1665	7
NC4d	502	6870	731	4	470	138	100	7091	76	54789	35	6975	354	0	123	473	1260	0	1803	1
NC4e	862	289	488	6	676	114	83	9007	235	60915	2	10801	211	0	184	118	1514	0	1272	1
NC5a	782	646	267	4	452	0	93	10772	1	41971	1	15061	216	1	93	538	1160	1	971	8
NC5b	688	530	490	7	1012	45	52	5497	4	31225	11	16241	194	0	102	432	918	1	991	2
NC5c	399	1673	645	5	446	0	110	6516	143	37512	19	11333	337	0	141	603	1264	2	1936	3
NC5d	695	2383	244	4	1154	0	64	5689	1	28765	1	10225	343	0	75	679	894	1	2989	3
NC5e	756	453	403	3	577	0	76	5923	1	37371	1	15556	175	1	80	692	1112	194	1535	10
NC10a	628	1250	545	3	25	18	135	13135	65	43291	1	13481	184	0	171	421	1183	-1	1365	4
NC10b	557	1300	550	6	239	0	163	9279	119	36303	69	14533	281	0	105	390	1137	1	1467	2
NC10c	585	382	349	3	1643	0	52	3324	249	9219	17	6700	169	1	18	322	797	0	606	1
NC10d	696	843	398	2	507	0	107	12803	1	42088	53	14356	322	1	133	414	1044	-2	1130	3
NC10e	771	706	324	0	722	57	73	9010	1	21415	11	9864	228	0	52	326	710	1	818	1
ND1a	1050	906	434	7	594	103	136	9873	1	47685	1	6988	150	1	264	49	1361	0	1131	5

Edificio B, Templo Mayor

Alliosic	na c	ii vac	10, 3	,,,,	ianoc	<i>,</i> 5 50	cuiic	<i>a</i> ai 103		100										
Elemento	Ni K12	P K12	Pb L1	Pd K12	Pd L1	Pr L1	Rb K12	S K12	Sc K12	Si K12	Sr K12	Ti K12	Th L1	Th M1	U L1	V K12	Yb L1	Yb M1	Zn K122	'r K12
ND1b	750	1286	390	2	496	152	88	6253	1	47922	1	6580	172	0	133	293	1589	1	799	1
ND1c	983	318	369	3	453	131	152	2968	1	44415	1	6594	187	0	125	1	1298	30	451	2
ND1d	915	370	637	4	498	80	97	8786	4	53704	26	5561	149	0	83	1	1461	0	852	3
ND1e	796	297	334	3	1006	0	127	3828	90	23708	38	5344	201	1	89	28	1011	0	812	2
ND2a	612	774	275	4	563	0	118	14353	5	58256	1	14663	215	1	62	681	1153	-1	1676	10
ND2b	822	930	532	3	780	0	77	7576	407	43359	7	15452	185	0	152	404	1045	0	1477	5
ND2c	836	752	537	3	182	13	32	6746	128	47538	31	17230	402	0	116	504	1134	0	1327	4
ND2d	884	563	350	4	1	136	141	13262	1	54824	99	14877	265	2	181	512	938	1	1304	6
ND2e	709	407	497	4	370	0	79	6160	1	29225	1	11017	233	3	115	403	996	17	1174	4
ND3a	631	652	637	1	866	0	130	2205	1	25667	4	14370	193	1	173	399	883	12	559	2
ND3b	775	382	586	4	386	1	101	11597	19	40402	12	13080	323	0	166	468	937	0	905	6
ND3c	804	439	253	1	553	0	154	8902	206	47704	41	12023	198	0	70	337	1005	0	1787	2
ND3d	413	220	313	1	2107	57	56	1104	131	4184	1	4992	93	0	37	92	876	0	592	0
ND3e	852	543	552	3	784	49	119	10968	75	33090	52	10533	270	0	190	394	921	-4	1656	1
NE1a	573	636	250	3	625	1	140	2146	158	23260	11	12600	180	0	99	496	921	0	712	3
NE1b	608	611	224	1	975	57	81	2413	1	14779	43	10746	126	1	117	216	958	0	526	3
NE1c	601	1089	394	2	1077	38	158	2770	177	24732	37	14113	208	0	137	441	971	1	1142	5
NE1d	615	562	442	4	184	87	71	8458	1	42056	47	12398	230	1	185	204	1117	0	1376	1
NE1e	882	696	307	2	301	48	79	10656	1	29490	1	11493	189	1	121	256	1004	-1	872	3
NE11a	798	687	438	1	521	1	132	4177	1	18409	1	16365	233	1	53	525	713	1	400	8
NE11b	568	742	385	1	239	0	130	2480	1	12550	1	15165	206	0	34	584	1008	1	355	6
NE11c	535	1181	399	1	452	0	148	2602	1	19376	1	17228	290	0	149	494	849	1	403	2
NE11d	737	763	477	2	153	1	99	3219	4	17472	1	15575	222	1	161	618	896	0	571	5
NE11e	688	2063	379	4	1	52	38	93923	1	6668	20	2632	125	0	71	20	1490	-1	408	2

Laboratorio de Geoquímica Equipo ICP-MS

Informe de resultados

Fecha (aa/mm/dd): 15/02/12

No. Solicitud: ____57____

Institución: Universidad Autónoma de San Luis Potosí									
Programa de fina	Programa de financiamiento:								
Responsable: Dr.	Responsable: Dr. Rubén Alfonso López Doncel								
Tipo de usuario Interno: X UASLP: Externo:									
	Título del proyecto: Estudio de los mecanismos de alteración del Edificio B "Altar de cráneos" Zona Arqueológica Templo Mayor, Ciudad de México.								
Teléfono: 8171039 Fax:									
Correo electrónic	co: rlopez@uas	lp.mx							

mg/kg (ppm)	Li	Sc	Ti	V	Cr	Со	Ni	Cu	Zn	Rb	Sr	Y	Zr	Nb
EC02	20.24	26.12	8050	80.55	18.90	30.59	15.35	9.76	120.56	12.62	699.60	20.08	88.14	4.28
ED04	26.60	20.30	6368.5	113.26	96.87	32.23	1357.9	317.17	113.71	39.19	520.46	27.32	521.42	24.04
EG05	14.11	11.10	2645.5	66.97	33.38	10.59	7.71	< 0.005	76.33	63.81	574.70	20.28	< 0.005	2.98
EG07	24.19	9.09	1453.4	74.51	6.29	6.55	10.04	2.04	63.69	147.04	175.28	14.25	< 0.005	2.18
NA07	49.50	11.61	3942.5	95.10	36.02	13.96	22.63	< 0.005	76.49	28.55	530.76	12.86	< 0.005	< 0.005
NA16	15.77	24.42	7585.5	137.58	156.85	30.48	56.53	19.68	106.00	41.29	547.89	31.53	687.89	29.13
NC01	26.31	14.66	3501.9	86.27	28.54	10.16	12.07	< 0.005	72.30	58.42	436.16	22.99	< 0.005	0.39
NC02	19.90	6.32	3603.9	75.47	28.32	10.28	206.60	1119.32	69.33	41.96	495.26	17.23	< 0.005	< 0.005
NC05	20.85	13.35	5488.1	114.09	190.39	25.62	78.51	34.39	130.46	43.50	510.03	29.24	561.89	18.46
NC07	49.43	40.41	4506.8	85.93	25.90	18.67	14.06	1.00	60.76	44.52	488.97	16.37	64.62	3.32
NC15	52.99	7.45	3243.1	85.81	29.27	10.43	11.62	1.46	91.01	16.50	802.39	15.03	24.64	< 0.005
ND02	20.31	20.40	6882.8	120.82	128.58	26.80	312.11	1516.66	103.90	40.68	522.01	28.29	635.95	25.93
NE01	13.71	15.94	9006.7	137.39	152.85	28.40	135.98	49.70	103.49	27.53	540.73	27.82	462.10	30.40

mg/kg (ppm)	Sn	Cs	Ва	La	Pr	Nd	Се	Sm	Eu	Gd	Tb	Dy	Но	Er
EC02	12.3	0.00	716.8	5.81	2.95	20.88	18.36	4.20	1.31	3.82	0.58	3.46	0.74	1.91
ED04	9.22	1.41	585.6	36.75	9.61	88.42	34.85	6.75	1.77	6.16	0.89	4.99	1.00	2.70
EG05	6.17	2.79	693.3	27.30	6.43	47.10	25.54	5.09	1.36	4.34	0.63	3.53	0.72	1.85
EG07	26.4	3.68	856.8	28.35	6.48	47.71	24.05	4.54	1.00	3.74	0.50	2.58	0.51	1.22
NA07	27.3	1.44	626.7	8.25	2.86	21.65	16.37	3.60	1.21	3.03	0.43	2.42	0.50	1.15
NA16	23.1	1.25	598.4	41.34	10.63	90.79	38.45	7.55	1.94	7.03	1.01	5.64	1.14	3.12
NC01	4.04	4.17	531.5	7.44	5.67	39.88	24.09	5.30	1.30	4.86	0.73	4.14	0.85	2.21
NC02	11.9	2.71	542.7	11.78	4.11	29.86	20.56	4.36	1.20	3.78	0.54	3.08	0.64	1.55
NC05	34.2	1.66	642.6	40.27	10.01	84.73	36.41	7.04	1.85	6.63	0.97	5.47	1.10	2.99
NC07	8.04	3.09	481.9	9.39	3.19	25.11	16.37	3.71	1.11	3.33	0.51	2.96	0.61	1.54
NC15	13.5	0.36	509.6	5.88	2.79	19.11	16.55	3.76	1.21	3.27	0.49	2.85	0.60	1.49
ND02	21	1.31	574.3	38.94	9.98	101.3	36.05	7.03	1.83	6.60	0.95	5.40	1.10	2.94
NE01	7.44	0.74	447.2	28.42	7.88	67.61	31.44	6.47	1.92	6.36	0.96	5.47	1.11	3.01

mg/kg (ppm)	Tm	Yb	Lu	Hf	Та	Re	Os	TI	Pb	Bi	Th	U
EC02	0.29	1.83	0.30	3.97	< 0.005	< 0.005	0.03	0.01	23.61	0.33	2.20	< 0.005
ED04	0.40	2.50	0.37	6.83	1.41	0.005	0.03	1.85	113.89	0.38	3.90	1.21
EG05	0.29	1.74	0.27	1.92	0.08	< 0.005	0.02	0.65	56.58	0.21	7.03	1.70
EG07	0.18	1.06	0.18	0.83	0.37	< 0.005	0.02	1.02	137.25	0.21	7.87	1.24
NA07	0.18	1.00	0.17	3.48	< 0.005	< 0.005	0.02	0.19	16.71	0.20	4.78	0.20
NA16	0.46	2.90	0.42	8.14	1.79	< 0.005	0.03	0.25	55.86	0.24	4.36	1.29
NC01	0.34	2.05	0.31	2.96	< 0.005	< 0.005	0.02	0.73	22.36	0.18	5.16	2.11
NC02	0.23	1.36	0.22	2.91	< 0.005	< 0.005	0.03	0.29	140.26	0.28	4.31	0.86
NC05	0.45	2.81	0.41	7.37	1.22	0.005	0.02	0.11	284.10	0.34	4.69	1.22
NC07	0.24	1.44	0.22	3.76	0.48	< 0.005	0.05	0.54	23.47	0.33	5.88	1.69
NC15	0.23	1.40	0.22	3.33	< 0.005	0.005	0.02	0.02	82.41	0.18	3.29	0.48
ND02	0.44	2.73	0.41	8.14	1.75	0.005	0.04	0.05	233.66	0.30	4.36	1.26
NE01	0.44	2.76	0.40	6.32	2.23	0.005	0.02	0.92	42.37	0.19	2.65	0.67

La medición de los elementos se realizó con un ICP-MS, Thermo Fisher Scientific, XSeriesII. La Desviación Estándar de los resultados es de máximo 3 % para todos los elementos.

fill and

Firma del Técnico responsable del LGQ -ICP-MS::

Dra. María Elena García Arreola

F-IR-ICP-MS

Laboratorio de Geoquímica Equipo ICP-OES

Informe de resultados

Fecha (aa/mm/dd): 1	5/02/12
---------------------	---------

No. Solicitud: ____58____

Institución: Univ	Institución: Universidad Autónoma de San Luis Potosí								
Programa de fina	Programa de financiamiento:								
Responsable: Dr	Responsable: Dr. Rubén Alfonso López Doncel								
Tipo de usuario Interno: X UASLP: Externo:									
1 1	Título del proyecto: Estudio de los mecanismos de alteración del Edificio B "Altar de cráneos" Zona Arqueológica Templo Mayor, Ciudad de México.								
Teléfono: 8171039 Fax:									
Correo electrónio	Correo electrónico: rlopez@uaslp.mx								

Muestra	SiO ₂	TiO ₂	Al ₂ O ₃	FeO t	MnO	MgO	CaO	Na2O	K ₂ O	P2O5
EC02	50.95	1.94	17.88	10.54	0.19	3.67	8.93	4.69	1.00	0.22
ED04	54.76	1.27	15.94	8.30	0.17	5.07	8.07	4.07	1.84	0.51
EG05	68.96	0.57	14.13	3.34	0.06	1.09	4.95	3.53	2.87	0.50
EG07	73.50	0.29	13.22	1.92	0.12	0.65	2.00	4.26	3.79	0.26
NA07	67.88	0.70	14.13	4.26	0.07	1.46	5.10	4.35	1.59	0.45
NA16	55.67	1.36	15.14	7.96	0.15	5.34	7.84	4.05	1.81	0.67
NC01	65.83	0.80	13.03	5.70	0.11	1.48	4.82	4.67	3.00	0.57
NC02	69.64	0.66	13.07	4.38	0.07	1.21	4.64	4.04	1.96	0.32
NC05	61.84	1.29	9.32	9.62	0.17	4.19	6.93	3.64	2.13	0.87
NC07	61.14	0.82	19.59	4.75	0.08	1.92	5.44	4.12	1.91	0.20
NC15	62.09	0.72	15.86	5.52	0.10	1.64	7.69	4.77	1.06	0.54
ND02	63.04	1.41	10.00	7.79	0.16	3.74	7.82	3.48	1.88	0.68
NE01	59.89	2.07	9.26	10.91	0.20	4.55	7.48	3.30	1.75	0.60

La medición de los elementos se realizó con un ICP-OES, Thermo Fisher Scientific, iCAP 7000. La Desviación Estándar de los resultados es de máximo 3 % para todos los elementos.

ANEXOS DRX

Edificio B, Templo Mayor

ED04

Anchor Scan Parameters:

Anchor Scan Parameters:

Raw Data Origin BRUKER-binary V2 (.RAW)

Scan Axis Gonio Start Position [°2Th.] 4.0000 End Position [°2Th.] 70.0100 Step Size [°2Th.] 0.0350 Scan Step Time [s] 0.4000 Scan Type Continuous Offset [°2Th.] 0.0000 Divergence Slit Type Fixed Divergence Slit Size [°] 1.0000 Specimen Length [mm] 10.00 Receiving Slit Size [mm] 0.1000 Measurement Temperature [°C] 25.00 Anode Material Cu K-Alpha1 [Å] 1.54060 K-Alpha2 [Å] 1.54443 K-Beta [Å] 1.39225 K-A2 / K-A1 Ratio 0.50000 **Generator Settings** 40 mA, 40 kV Diffractometer Type Theta/2Theta D5000

Diffractometer Number 0
Goniometer Radius [mm] 217.50
Dist. Focus-Diverg. Slit [mm] 91.00
Incident Beam Monochromator No
Spinning No

_						
	Pos. [°2Th.]	Height [cts]	FWHM [°2Th.]	d-spacing [Å]	Rel. Int. [%]	Tip width [°2Th.]
	11.7382	12.36	0.2066	7.53930	6.58	0.2480
	13.8584	8.17	0.2214	6.38498	4.35	0.2657
	13.8930	4.09	0.2214	6.38498	2.18	0.2657
	21.2310	9.45	3.3760	4.18147	5.03	4.0512
	21.2844	4.73	3.3760	4.18147	2.52	4.0512
	22.0249	58.00	0.3334	4.03250	30.90	0.4001
	22.0803	29.00	0.3334	4.03250	15.45	0.4001
	23.7696	54.26	0.1854	3.74032	28.90	0.2224
	23.8295	27.13	0.1854	3.74032	14.45	0.2224
	24.4996	35.11	0.1877	3.63050	18.70	0.2252
	24.5614	17.56	0.1877	3.63050	9.35	0.2252
	26.3711	4.82	1.3445	3.37694	2.57	1.6134
	26.4378	2.41	1.3445	3.37694	1.28	1.6134
	26.7207	36.91	0.2781	3.33355	19.66	0.3337
	26.7883	18.46	0.2781	3.33355	9.83	0.3337
	27.8700	143.81	0.3036	3.19864	76.61	0.3643
	27.9406	71.91	0.3036	3.19864	38.30	0.3643
	28.1345	187.73	0.0743	3.16916	100.00	0.0892
	28.2059	93.87	0.0743	3.16916	50.00	0.0892
	28.8571	6.60	4.0000	3.09143	3.52	4.8000
	28.9304	3.30	4.0000	3.09143	1.76	4.8000
	30.5726	12.23	3.0363	2.92175	6.52	3.6436
	30.6505	6.12	3.0363	2.92175	3.26	3.6436
	33.2646	30.34	0.1401	2.69121	16.16	0.1682
	33.3496	15.17	0.1401	2.69121	8.08	0.1682
	35.7199	41.32	0.4067	2.51164	22.01	0.4880
	35.8116	20.66	0.4067	2.51164	11.01	0.4880
	42.6462	5.89	1.3316	2.11838	3.14	1.5980
	42.7573	2.95	1.3316	2.11838	1.57	1.5980
	49.7465	8.85	0.8021	1.83138	4.72	0.9626
	49.8785	4.43	0.8021	1.83138	2.36	0.9626

ANEXOS

Edificio B, Temp	lo Mayor				
51.4285	4.39	1.4090	1.77536	2.34	1.6908
51.5656	2.19	1.4090	1.77536	1.17	1.6908
54.1153	8.12	0.7119	1.69339	4.33	0.8543
54.2608	4.06	0.7119	1.69339	2.16	0.8543
56.9356	5.04	1.2480	1.61602	2.68	1.4976
57.0900	2.52	1.2480	1.61602	1.34	1.4976
62.3873	10.82	0.4694	1.48726	5.76	0.5633
62.5598	5.41	0.4694	1.48726	2.88	0.5633
64.1776	3.62	3.5372	1.45002	1.93	4.2446
64.3562	1.81	3.5372	1.45002	0.96	4.2446

NA16

Anchor Scan Parameters:

BRUKER-binary V2 (.RAW) Raw Data Origin Scan Axis Gonio Start Position [°2Th.] 4.0000 End Position [°2Th.] 70.0100 Step Size [°2Th.] 0.0350 Scan Step Time [s] 0.4000 Scan Type Continuous Offset [°2Th.] 0.0000 Divergence Slit Type Fixed Divergence Slit Size [°] 1.0000 Specimen Length [mm] 10.00 Receiving Slit Size [mm] 0.1000 Measurement Temperature [°C] 25.00 Anode Material Cu 1.54060 K-Alpha1 [Å] K-Alpha2 [Å] 1.54443 K-Beta [Å] 1.39225 K-A2 / K-A1 Ratio 0.50000 40 mA, 40 kV **Generator Settings** Diffractometer Type Theta/2Theta D5000 Diffractometer Number 217.50

Goniometer Radius [mm] 217.50
Dist. Focus-Diverg. Slit [mm] 91.00
Incident Beam Monochromator No
Spinning No

Pos. [°2Th.]	Height [cts]	FWHM [°2Th.]	d-spacing [Å]	Rel. Int. [%]	Tip width [°2Th.]
13.922	1 3.82	4.0000	6.35588	3.11	4.8000
13.956	9 1.91	4.0000	6.35588	1.56	4.8000
22.001	9 51.11	0.1280	4.03668	41.63	0.1536
22.057	2 25.55	0.1280	4.03668	20.82	0.1536
23.699	3 43.19	0.1294	3.75126	35.19	0.1553
23.759	0 21.60	0.1294	3.75126	17.59	0.1553
24.460	7 38.73	0.0145	3.63619	31.55	0.0174
24.522	4 19.36	0.0145	3.63619	15.77	0.0174
27.810	8 122.76	0.3516	3.20532	100.00	0.4219
27.881	3 61.38	0.3516	3.20532	50.00	0.4219
28.446	7 31.31	0.0582	3.13509	25.51	0.0698
28.518	8 15.66	0.0582	3.13509	12.75	0.0698
29.649	1 44.54	0.1101	3.01063	36.29	0.1321
29.724	5 22.27	0.1101	3.01063	18.14	0.1321
30.608	6 15.12	1.4657	2.91840	12.32	1.7588
30.686	5 7.56	1.4657	2.91840	6.16	1.7588
33.745	8 14.99	0.0783	2.65392	12.21	0.0940
33.832	2 7.49	0.0783	2.65392	6.11	0.0940
35.627	9 31.85	0.4272	2.51792	25.94	0.5126
35.719	4 15.92	0.4272	2.51792	12.97	0.5126
37.603		4.0000	2.39004	2.68	4.8000
37.700	6 1.65	4.0000	2.39004	1.34	4.8000
42.402	3 8.38	1.8661	2.13000	6.83	2.2393

ANEXOS DRX

E	Edificio B, Templo Mayor								
	42.5128	4.19	1.8661	2.13000	3.41	2.2393			
	56.6853	2.72	2.3275	1.62256	2.21	2.7930			
	56.8390	1.36	2.3275	1.62256	1.11	2.7930			
	62.2136	6.53	3.0448	1.49099	5.32	3.6538			
	62.3855	3.27	3.0448	1.49099	2.66	3.6538			

NC05

Anchor Scan Parameters:

Raw Data Origin BRUKER-binary V2 (.RAW)

Scan Axis Gonio Start Position [°2Th.] 4.0000 End Position [°2Th.] 70.0100 Step Size [°2Th.] 0.0350 Scan Step Time [s] 0.4000 Scan Type Continuous Offset [°2Th.] 0.0000 Divergence Slit Type Fixed Divergence Slit Size [°] 1.0000 Specimen Length [mm] 10.00 Receiving Slit Size [mm] 0.1000 Measurement Temperature [°C] 25.00 Anode Material Cu K-Alpha1 [Å] 1.54060 K-Alpha2 [Å] 1.54443 K-Beta [Å] 1.39225 K-A2 / K-A1 Ratio 0.50000 40 mA, 40 kV Generator Settings Theta/2Theta D5000 Diffractometer Type

Diffractometer Number 0
Goniometer Radius [mm] 217.50
Dist. Focus-Diverg. Slit [mm] 91.00
Incident Beam Monochromator No
Spinning No

Peak List

Pos. [°2Th.]	Height [cts]	FWHM [°2Th.]	d-spacing [Å]	Rel. Int. [%]	Tip width [°2Th.]
12.5187	8.45	1.1715	7.06508	9.05	1.4058
12.5499	4.23	1.1715	7.06508	4.53	1.4058
13.1742	5.12	4.0000	6.71499	5.48	4.8000
13.2071	2.56	4.0000	6.71499	2.74	4.8000
21.9842	51.18	0.1052	4.03988	54.82	0.1262
22.0395	25.59	0.1052	4.03988	27.41	0.1262
23.6756	36.97	0.1175	3.75496	39.60	0.1411
23.7352	18.49	0.1175	3.75496	19.80	0.1411
27.8055	93.36	0.3971	3.20591	100.00	0.4765
27.8760	46.68	0.3971	3.20591	50.00	0.4765
35.6153	12.43	1.1531	2.51878	13.31	1.3837
35.7068	6.21	1.1531	2.51878	6.65	1.3837
42.3681	10.72	0.6388	2.13164	11.48	0.7665
42.4785	5.36	0.6388	2.13164	5.74	0.7665
51.8768	0.15	0.0125	1.76107	0.16	0.0150
52.0154	0.08	0.0125	1.76107	0.08	0.0150
61.8484	5.91	4.0000	1.49892	6.33	4.8000
62.0191	2.96	4.0000	1.49892	3.17	4.8000
63.2868	5.54	4.0000	1.46827	5.93	4.8000
63.4624	2.77	4.0000	1.46827	2.97	4.8000
68.6738	3.30	4.0000	1.36564	3.54	4.8000
68.8685	1.65	4.0000	1.36564	1.77	4.8000

ND02

Anchor Scan Parameters:

Raw Data Origin BRUKER-binary V2 (.RAW)

Scan Axis Gonio Start Position [°2Th.] 4.0000

ANEXOS

Edificio B, Templo Mayor

End Position [°2Th.] 70.0100 Step Size [°2Th.] 0.0350 Scan Step Time [s] 0.4000 Scan Type Continuous Offset [°2Th.] 0.0000 Divergence Slit Type Fixed Divergence Slit Size [°] 1.0000 Specimen Length [mm] 10.00 Receiving Slit Size [mm] 0.1000 Measurement Temperature [°C] 25.00 Anode Material Cu K-Alpha1 [Å] 1.54060 K-Alpha2 [Å] 1.54443 K-Beta [Å] 1.39225 K-A2 / K-A1 Ratio 0.50000 **Generator Settings** 40 mA, 40 kV Diffractometer Type Theta/2Theta D5000

Diffractometer Number 0
Goniometer Radius [mm] 217.50
Dist. Focus-Diverg. Slit [mm] 91.00
Incident Beam Monochromator No
Spinning No

Peak List

Pos. [°2Th.]	Height [cts]	FWHM [°2Th.]	d-spacing [Å]	Rel. Int. [%]	Tip width [°2Th.]
21.9464	60.00	0.1747	4.04675	40.82	0.2097
22.0016	60.00	0.1747	4.04675	40.82	0.2097
22.8671	26.00	1.1187	3.88587	17.69	1.3425
22.9246	8.00	1.1187	3.88587	5.44	1.3425
23.6805	59.00	0.1564	3.75420	40.14	0.1877
23.7402	56.00	0.1564	3.75420	38.10	0.1877
24.4136	35.00	0.2059	3.64310	23.81	0.2470
24.4752	28.00	0.2059	3.64310	19.05	0.2470
26.4769	26.00	0.3062	3.36369	17.69	0.3674
26.5439	17.00	0.3062	3.36369	11.56	0.3674
27.7723	147.00	0.2764	3.20967	100.00	0.3317
27.8427	145.00	0.2764	3.20967	98.64	0.3317
28.0275	115.00	0.1156	3.18103	78.23	0.1387
28.0985	74.00	0.1156	3.18103	50.34	0.1387
28.4077	22.00	0.1465	3.13931	14.97	0.1758
28.4798	22.00	0.1465	3.13931	14.97	0.1758
29.6041	34.00	0.3391	3.01510	23.13	0.4069
29.6794	35.00	0.3391	3.01510	23.81	0.4069
30.4300	27.00	0.5085	2.93513	18.37	0.6102
30.5074	29.00	0.5085	2.93513	19.73	0.6102
31.5564	17.00	0.6189	2.83287	11.56	0.7427
31.6369	9.00	0.6189	2.83287	6.12	0.7427
35.5700	56.00	0.7874	2.52189	38.10	0.9449
35.6613	53.00	0.7874	2.52188	36.05	0.9449
40.3202	1.00	4.0000	2.23505	0.68	4.8000
40.4248	6.00	4.0000	2.23505	4.08	4.8000
42.3317	15.00	0.8266	2.13339	10.20	0.9920
42.4419	8.00	0.8266	2.13339	5.44	0.9920
46.3178	3.00	1.6150	1.95864	2.04	1.9380
46.4397	0.00	1.6150	1.95864	0.00	1.9380
50.4787	2.00	4.0000	1.80652	1.36	4.8000
50.6129	5.00	4.0000	1.80652	3.40	4.8000
56.5744	14.00	0.3574	1.62548	9.52	0.4289
56.7277	13.00	0.3574	1.62548	8.84	0.4289
61.3085	3.00	4.0000	1.51082	2.04	4.8000
61.4773	3.00	4.0000	1.51082	2.04	4.8000
62.4822	93.00	0.0532	1.48523	63.27	0.0639
 62.6550	56.00	0.0532	1.48523	38.10	0.0639

NE01

Anchor Scan Parameters:

Raw Data Origin BRUKER-binary V2 (.RAW)

Scan Axis Gonio

ANEXOS DRX

Edificio B, Templo Mayor

Start Position [°2Th.] 4.0000 End Position [°2Th.] 70.0100 Step Size [°2Th.] 0.0350 Scan Step Time [s] 0.3500 Scan Type Continuous Offset [°2Th.] 0.0000 Divergence Slit Type Fixed Divergence Slit Size [°] 1.0000 Specimen Length [mm] 10.00 Receiving Slit Size [mm] 0.1000 Measurement Temperature [°C] 25.00 Anode Material Cu K-Alpha1 [Å] 1.54060 K-Alpha2 [Å] 1.54443 K-Beta [Å] 1.39225 K-A2 / K-A1 Ratio 0.50000 Generator Settings 40 mA, 40 kV Diffractometer Type Theta/2Theta D5000

Diffractometer Number 0
Goniometer Radius [mm] 217.50
Dist. Focus-Diverg. Slit [mm] 91.00
Incident Beam Monochromator No
Spinning No

D FOOT 1	11 1 1 1 1 1 1 1	FIANLINA FOOTIL 3		D 1 1 1 10/1	T' 'UI FOOT' '
Pos. [°2Th.]	Height [cts]	FWHM [°2Th.]	d-spacing [Å]	Rel. Int. [%]	Tip width [°2Th.]
4.0000	0.00	4.0000	22.07192	0.00	4.8000
4.0099	0.00	4.0000	22.07192	0.00	4.8000
13.7403	11.00	4.0000	6.43955	10.00	4.8000
13.7747	10.00	4.0000	6.43955	9.09	4.8000
22.0037	41.00	0.1023	4.03634	37.27	0.1227
22.0591	46.00	0.1023	4.03634	41.82	0.1227
22.8598	19.00	0.1863	3.88709	17.27	0.2235
22.9174	20.00	0.1863	3.88709	18.18	0.2235
23.7118	51.00	0.1316	3.74931	46.36	0.1579
23.7715	45.00	0.1316	3.74931	40.91	0.1579
24.4407	35.00	0.1474	3.63912	31.82	0.1769
24.5024	33.00	0.1474	3.63911	30.00	0.1769
25.4751	8.00	0.6948	3.49365	7.27	0.8337
25.5395	7.00	0.6948	3.49365	6.36	0.8337
26.4756	15.00	0.1011	3.36385	13.64	0.1213
26.5426	12.00	0.1011	3.36385	10.91	0.1213
26.9937	34.00	0.0943	3.30045	30.91	0.1132
27.0620	29.00	0.0943	3.30045	26.36	0.1132
27.7751	78.00	0.1322	3.20935	70.91	0.1586
27.8455	110.00	0.1322	3.20935	100.00	0.1586
28.0166	53.00	0.1494	3.18223	48.18	0.1792
28.0876	71.00	0.1494	3.18223	64.55	0.1792
28.3471	9.00	0.1453	3.14588	8.18	0.1744
28.4190	21.00	0.1453	3.14588	19.09	0.1744
29.8026	25.00	0.1735	2.99547	22.73	0.2081
29.8784	36.00	0.1735	2.99547	32.73	0.2081
30.3111	33.00	0.2042	2.94637	30.00	0.2451
30.3882	25.00	0.2042	2.94637	22.73	0.2451
31.5937	16.00	0.1753	2.82962	14.55	0.2103
31.6743	8.00	0.1753	2.82962	7.27	0.2103
33.1058	28.00	0.1739	2.70375	25.45	0.2087
33.1904	25.00	0.1739	2.70375	22.73	0.2087
35.6344	57.00	0.1039	2.51747	51.82	0.1247
35.7259	54.00	0.1039	2.51747	49.09	0.1247
36.5302	7.00	0.3482	2.45777	6.36	0.4179
36.6242	11.00	0.3482	2.45777	10.00	0.4179
40.8018	9.00	0.2890	2.20978	8.18	0.3468
40.9077	12.00	0.2890	2.20978	10.91	0.3468
42.6663	7.00	1.7968	2.11742	6.36	2.1561
42.7776	7.00	1.7968	2.11742	6.36	2.1561
44.3241	3.00	0.0100	2.04200	2.73	0.0120
44.4401	3.00	0.0100	2.04200	2.73	0.0120
44.6924	7.00	0.9441	2.02602	6.36	1.1330

ANEXOS

Edificio B, Temp	olo Mayor				
44.8095	5.00	0.9441	2.02602	4.55	1.1330
48.3874	4.00	0.7174	1.87959	3.64	0.8608
48.5153	9.00	0.7174	1.87959	8.18	0.8608
49.6158	9.00	0.6483	1.83589	8.18	0.7780
49.7474	11.00	0.6483	1.83589	10.00	0.7780
52.3403	9.00	0.4227	1.74656	8.18	0.5072
52.4803	8.00	0.4227	1.74656	7.27	0.5072
58.6192	3.00	1.1974	1.57355	2.73	1.4368
58.7791	6.00	1.1974	1.57355	5.45	1.4368
62.4673	11.00	0.0100	1.48555	10.00	0.0120
62.4838	10.00	0.8750	1.48519	9.09	1.0500
62.6400	12.00	0.0100	1.48555	10.91	0.0120
62.6566	11.00	0.8750	1.48519	10.00	1.0500
63.9309	9.00	0.8720	1.45502	8.18	1.0465
64.1087	8.00	0.8720	1.45502	7.27	1.0465
66.5468	2.00	0.0100	1.40403	1.82	0.0120
66.7337	-1.00	0.0100	1.40403	-0.91	0.0120

NE11

Anchor Scan Parameters:

Raw Data Origin: BRUKER-binary V2 (.RAW)

Scan Axis: Gonio Start Position [°2Th.]: 4.0000 End Position [°2Th.]: 70.0100 Step Size [°2Th.]: 0.0350 Scan Step Time [s]: 0.4000 Scan Type: Continuous Offset [°2Th.]: 0.0000 Divergence Slit Type: Fixed Divergence Slit Size [°]: 1.0000 Specimen Length [mm]: 10.00 Receiving Slit Size [mm]: 0.1000 Measurement Temperature [°C]: 25.00 Anode Material: Cu K-Alpha1 [Å]: 1.54060 K-Alpha2 [Å]: 1.54443 K-Beta [Å]: 1.39225 K-A2 / K-A1 Ratio: 0.50000 Generator Settings: 40 mA, 40 kV Diffractometer Type: Theta/2Theta D5000

Diffractometer Number: 0
Goniometer Radius [mm]: 217.50
Dist. Focus-Diverg. Slit [mm]: 91.00
Incident Beam Monochromator: No
Spinning: No

Pos. [°2Th.]	Height [cts]	FWHM [°2Th.]	d-spacing [Å]	Rel. Int. [%]
11.6766	7.84	0.7036	7.57261	4.12
11.7058	3.92	0.7036	7.57261	2.06
13.7230	21.95	0.0443	6.44766	11.54
13.7573	10.98	0.0443	6.44766	5.77
20.7818	30.38	0.1301	4.27084	15.97
20.8340	15.19	0.1301	4.27084	7.98
22.0029	64.49	0.1398	4.03648	33.90
22.0583	32.24	0.1398	4.03648	16.95
22.8353	30.53	0.1323	3.89119	16.05
22.8928	15.26	0.1323	3.89119	8.02
23.7138	63.34	0.1867	3.74900	33.29
23.7735	31.67	0.1867	3.74900	16.65
24.4627	27.65	0.2422	3.63589	14.53
24.5245	13.82	0.2422	3.63589	7.27
27.2567	10.47	2.0701	3.26921	5.50
27.3257	5.23	2.0701	3.26921	2.75
27.8063	166.41	0.2617	3.20582	87.47

ANEXOS DRX

Edificio B,	Templo Mayor			
27.8768	83.20	0.2617	3.20582	43.74
28.0703	190.24	0.0472	3.17627	100.00
28.1415	95.12	0.0472	3.17627	50.00
29.4075	12.85	4.0000	3.03481	6.76
29.4822	6.43	4.0000	3.03481	3.38
29.5671	39.88	0.0194	3.01879	20.96
29.6422	19.94	0.0194	3.01879	10.48
30.3269	19.17	2.2416	2.94487	10.08
30.4041	9.59	2.2416	2.94487	5.04
35.6530	37.70	0.7068	2.51620	19.82
35.7446	18.85	0.7068	2.51620	9.91
39.3187	6.04	0.0728	2.28965	3.17
39.4204	3.02	0.0728	2.28965	1.59
42.2282	16.98	0.5005	2.13837	8.93
42.3382	8.49	0.5005	2.13837	4.46
49.5969	7.90	3.6368	1.83655	4.15
49.7285	3.95	3.6368	1.83655	2.08
56.5543	11.26	0.4644	1.62600	5.92
56.7076	5.63	0.4644	1.62600	2.96
62.1750	6.23	1.8853	1.49183	3.28
62.3468	3.12	1.8853	1.49183	1.64
64.3020	0.75	0.0125	1.44752	0.39
64.4811	0.37	0.0125	1.44752	0.20
65.8976	3.48	0.1515	1.41628	1.83
66.0822	1.74	0.1515	1.41628	0.91

EC02

Anchor Scan Parameters:

Raw Data Origin BRUKER-binary V2 (.RAW) Scan Axis Gonio Start Position [°2Th.] 4.0000 End Position [°2Th.] 70.0100 Step Size [°2Th.] 0.0350 Scan Step Time [s] 1.5000 Scan Type Continuous Offset [°2Th.] 0.0000 Divergence Slit Type Fixed Divergence Slit Size [°] 1.0000 Specimen Length [mm] 10.00 Receiving Slit Size [mm] 0.1000 Measurement Temperature [°C] 25.00 Anode Material Cu K-Alpha1 [Å] 1.54060 K-Alpha2 [Å] 1.54443 K-Beta [Å] 1.39225 K-A2 / K-A1 Ratio 0.50000 40 mA, 40 kV **Generator Settings** Diffractometer Type Theta/2Theta D5000

Diffractometer Number 0
Goniometer Radius [mm] 217.50
Dist. Focus-Diverg. Slit [mm] 91.00
Incident Beam Monochromator No

Spinning No

•	eak List					
Ξ	Pos. [°2Th.]	Height [cts]	FWHM [°2Th.]	d-spacing [Å]	Rel. Int. [%]	Tip width [°2Th.]
	4.0801	1.33	4.0000	21.69246	2.51	4.8000
	16.3900	1.73	0.0900	5.40399	3.26	0.1080
	16.4310	0.87	0.0900	5.40399	1.63	0.1080
	21.4812	5.18	4.0000	4.13332	9.73	4.8000
	21.5352	2.59	4.0000	4.13332	4.87	4.8000
	23.6860	11.70	0.1818	3.75333	22.01	0.2182
	23.7457	5.85	0.1818	3.75333	11.00	0.2182
	24.0550	8.88	0.0900	3.69659	16.71	0.1080
	24.1157	4.44	0.0900	3.69659	8.35	0.1080
	24.3145	2.14	0.0125	3.65772	4.03	0.0150

ANEXOS

Edificio B, Temp	olo Mayor				
24.3758	1.07	0.0125	3.65772	2.01	0.0150
27.6700	24.36	0.5255	3.22130	45.82	0.6306
27.7401	12.18	0.5255	3.22130	22.91	0.6306
30.2663	0.29	4.0000	2.95062	0.54	4.8000
30.3433	0.14	4.0000	2.95062	0.27	4.8000
31.4364	20.97	0.0951	2.84342	39.43	0.1141
31.5165	10.48	0.0951	2.84341	19.72	0.1141
33.0865	53.17	0.0125	2.70528	100.00	0.0150
33.1711	26.58	0.0125	2.70528	50.00	0.0150
33.4367	5.05	1.2338	2.67774	9.50	1.4806
33.5223	2.52	1.2338	2.67774	4.75	1.4806
35.5829	41.23	0.5232	2.52100	77.55	0.6278
35.6743	20.62	0.5232	2.52100	38.77	0.6278
39.5760	6.22	1.1863	2.27535	11.70	1.4236
39.6785	3.11	1.1863	2.27535	5.85	1.4236
42.4476	9.23	1.2237	2.12783	17.36	1.4684
42.5582	4.61	1.2237	2.12783	8.68	1.4684
46.0350	7.52	0.0900	1.97001	14.14	0.1080
46.1560	3.76	0.0900	1.97001	7.07	0.1080
50.3164	19.73	0.3614	1.81196	37.11	0.4337
50.6526	9.87	0.3614	1.80519	18.55	0.4337
52.5905	0.58	0.0125	1.73884	1.10	0.0150
52.7312	0.29	0.0125	1.73884	0.55	0.0150
53.8399	5.92	0.5192	1.70140	11.14	0.6231
53.9845	2.96	0.5192	1.70140	5.57	0.6231
57.2808	5.47	4.0000	1.60710	10.29	4.8000
57.4364	2.73	4.0000	1.60710	5.14	4.8000
59.6100	8.76	0.1471	1.54974	16.47	0.1765
59.7732	4.38	0.1471	1.54974	8.23	0.1765
62.1998	21.05	0.5653	1.49129	39.59	0.6783
62.3716	10.52	0.5653	1.49129	19.79	0.6783
63.7913	9.05	0.8680	1.45787	17.01	1.0416
63.9686	4.52	0.8680	1.45787	8.51	1.0416
65.9103	1.19	0.0125	1.41604	2.24	0.0150
66.0950	0.60	0.0125	1.41604	1.12	0.0150
68.2149	5.92	2.4049	1.37370	11.13	2.8858
68.4078	2.96	2.4049	1.37370	5.57	2.8858

TOBAS

EF06

Anchor Scan Parameters:

Raw Data Origin BRUKER-binary V2 (.RAW) Scan Axis Gonio Start Position [°2Th.] 4.0000 End Position [°2Th.] 70.0100 Step Size [°2Th.] 0.0350 Scan Step Time [s] 0.3500 Scan Type Continuous Offset [°2Th.] 0.0000 Divergence Slit Type Fixed Divergence Slit Size [°] 1.0000 Specimen Length [mm] 10.00 Receiving Slit Size [mm] 0.1000 Measurement Temperature [°C] 25.00 Anode Material Cu K-Alpha1 [Å] 1.54060 K-Alpha2 [Å] 1.54443 K-Beta [Å] 1.39225 K-A2 / K-A1 Ratio 0.50000 Generator Settings 40 mA, 40 kV Diffractometer Type Theta/2Theta D5000 Diffractometer Number 217.50

Goniometer Radius [mm] 217.50
Dist. Focus-Diverg. Slit [mm] 91.00
Incident Beam Monochromator No
Spinning No

Edificio B, Templo Mayor

Peak List

Peak List Pos. [°2Th.]	Height [cts]	FWHM [°2Th.]	d-spacing [Å]	Rel. Int. [%]	Tip width [°2Th.]
11.8449	1.55	1.7850	7.46544	0.60	2.1421
11.8744	0.78	1.7850	7.46544	0.30	2.1421
13.7935	12.31	0.2031	6.41484	4.78	0.2437
13.8280	6.15	0.2031	6.41484	2.39	0.2437
19.3352	3.23	2.4007	4.58696	1.25	2.8809
19.3837	1.62	2.4007	4.58696	0.63	2.8809
20.7311	12.76	0.8347	4.28117	4.95	1.0017
20.7831	6.38	0.8347	4.28117	2.48	1.0017
21.7670	58.23	0.1139	4.07969	22.60	0.1367
21.8218	29.12	0.1139	4.07969	11.30	0.1367
22.0161	148.82	0.1234	4.03410	57.76	0.1481
22.0715	74.41	0.1234	4.03410	28.88	0.1481
23.7192	75.87	0.1490	3.74816	29.45	0.1788
23.7789	37.93	0.1490	3.74816	14.72	0.1788
24.4905	28.36	0.3157	3.63183	11.01	0.3788
24.5523	14.18	0.3157	3.63183	5.50	0.3788
25.6399	18.66	0.1040	3.47156	7.24	0.1249
25.7047	9.33	0.1040	3.47156	3.62	0.1249
27.6849	42.49	3.0556	3.21960	16.49	3.6667
27.7551	21.24	3.0556	3.21960	8.25	3.6667
27.8285	257.64	0.1147	3.20331	100.00	0.1376
27.8991	128.82	0.1147	3.20331	50.00	0.1376
28.0764	119.64	0.0803	3.17559	46.44	0.0964
28.1476	59.82	0.0803	3.17559	23.22	0.0964
28.5243	85.82	0.0909	3.12673	33.31	0.1091
28.5967	42.91	0.0909	3.12673	16.66	0.1091
29.5199	69.01	0.1291	3.02351	26.79	0.1550
29.5949	34.51	0.1291	3.02351	13.39	0.1550
30.3567	34.44	0.1992	2.94204	13.37	0.2390
30.4340	17.22	0.1992	2.94204	6.68	0.2390
31.2983	13.90	0.8770	2.85565	5.39	1.0523
31.3780	6.95	0.8770	2.85565	2.70	1.0523
33.2162	21.39	0.1143	2.69501	8.30	0.1372
33.3012	10.70	0.1143	2.69501	4.15	0.1372
33.7935	13.78	0.1406	2.65029	5.35	0.1687
33.8800	6.89	0.1406	2.65029	2.67	0.1687
35.7447	37.99	0.5895	2.50996	14.75	0.7074
35.8365	19.00	0.5895	2.50996	7.37	0.7074
39.4716	15.99	0.2041	2.28113	6.21	0.2450
39.5738	7.99	0.2041	2.28113	3.10	0.2450
42.2461	21.94	0.1368	2.13751	8.52	0.1642
42.3561	10.97	0.1368	2.13751	4.26	0.1642
43.1915	8.65	0.7366	2.09289	3.36	0.8839
43.3043	4.33	0.7366	2.09289	1.68	0.8839
46.9619	3.26	2.6060	1.93327	1.26	3.1272
47.0856	1.63	2.6060	1.93327	0.63	3.1272
48.5741	14.36	0.2330	1.87280	5.57	0.2796
48.7026	7.18	0.2330	1.87280	2.79	0.2796
50.7489	5.15	4.0000	1.79753	2.00	4.8000
50.8504	10.88	0.0836	1.79418	4.22	0.1004
50.8839	2.57	4.0000	1.79753	1.00	4.8000
50.9858	5.44	0.0836	1.79418	2.11	0.1004
51.0093	5.86	3.8977	1.78896	2.27	4.6772
51.1452	2.93	3.8977	1.78896	1.14	4.6772
53.6147	1.86	4.0000	1.70801	0.72	4.8000
53.7586	0.93	4.0000	1.70801	0.36	4.8000
57.4882	3.26	3.1427	1.60179	1.26	3.7712
57.6445	1.63	3.1427	1.60179	0.63	3.7712
62.4833	4.78	1.7042	1.48520	1.85	2.0450
62.6561	2.39	1.7042	1.48520	0.93	2.0450

EG05

Anchor Scan Parameters: Raw Data Origin Scan Axis

BRUKER-binary V2 (.RAW) Gonio

ANEXOS

Edificio B, Templo Mayor

Start Position [°2Th.] 4.0000 End Position [°2Th.] 70.0100 Step Size [°2Th.] 0.0350 Scan Step Time [s] 0.5000 Scan Type Continuous Offset [°2Th.] 0.0000 Divergence Slit Type Fixed Divergence Slit Size [°] 1.0000 Specimen Length [mm] 10.00 Receiving Slit Size [mm] 0.1000 Measurement Temperature [°C] 25.00 Anode Material Cu K-Alpha1 [Å] 1.54060 K-Alpha2 [Å] 1.54443 K-Beta [Å] 1.39225 K-A2 / K-A1 Ratio 0.50000 Generator Settings 40 mA, 40 kV Diffractometer Type Theta/2Theta D5000

Diffractometer Number 0
Goniometer Radius [mm] 217.50
Dist. Focus-Diverg. Slit [mm] 91.00
Incident Beam Monochromator No
Spinning No

Pos. [°2Th.]	Height [cts]	FWHM [°2Th.]	d-spacing [Å]	Rel. Int. [%]	Tip width [°2Th.]
8.9849	-49.28	0.2638	9.83436	-22.21	0.3166
9.0072	-24.64	0.2638	9.83436	-11.11	0.3166
10.6824	42.61	0.0585	8.27508	19.21	0.0702
10.7090	21.30	0.0585	8.27508	9.60	0.0702
13.6885	3.06	3.4561	6.46380	1.38	4.1473
13.7227	1.53	3.4561	6.46380	0.69	4.1473
22.1191	25.17	0.7354	4.01554	11.35	0.8825
22.1748	12.58	0.7354	4.01554	5.67	0.8825
23.7786	89.77	0.1350	3.73892	40.47	0.1620
23.8386	44.88	0.1350	3.73892	20.23	0.1620
24.5913	64.03	0.1595	3.61717	28.87	0.1915
24.6534	32.02	0.1595	3.61717	14.43	0.1915
26.9152	16.33	0.7929	3.30990	7.36	0.9515
26.9833	8.17	0.7929	3.30990	3.68	0.9515
27.9088	221.83	0.1886	3.19428	100.00	0.2264
27.9795	110.92	0.1886	3.19428	50.00	0.2264
28.2041	150.18	0.1609	3.16150	67.70	0.1931
28.2757	75.09	0.1609	3.16150	33.85	0.1931
28.6120	136.86	0.1236	3.11735	61.70	0.1484
28.6846	68.43	0.1236	3.11735	30.85	0.1484
30.5187	12.12	0.8801	2.92679	5.46	1.0561
30.5964	6.06	0.8801	2.92679	2.73	1.0561
31.6410	30.78	0.0775	2.82549	13.87	0.0930
31.7217	15.39	0.0775	2.82549	6.94	0.0930
33.8982	5.81	0.0155	2.64233	2.62	0.0186
33.9850	2.91	0.0155	2.64233	1.31	0.0186
35.8887	21.16	0.5315	2.50022	9.54	0.6378
35.9809	10.58	0.5315	2.50022	4.77	0.6378
37.9751	3.60	0.3803	2.36751	1.62	0.4564
38.0731	1.80	0.3803	2.36751	0.81	0.4564
40.6705	0.85	0.7730	2.21661	0.38	0.9275
40.7760	0.43	0.7730	2.21661	0.19	0.9275
41.8893	14.01	0.0125	2.15489	6.32	0.0150
41.9983	7.01	0.0125	2.15489	3.16	0.0150
42.2005	1.47	1.8502	2.13972	0.66	2.2203
42.3104	0.74	1.8502	2.13971	0.33	2.2203
45.3120	2.36	0.9135	1.99975	1.06	1.0962
45.4308	1.18	0.9135	1.99975	0.53	1.0962
48.5515	4.22	0.0125	1.87362	1.90	0.0150
48.6799	2.11	0.0125	1.87362	0.95	0.0150

Edificio B, Temp	Edificio B, Templo Mayor									
50.8473	5.59	0.0125	1.79428	2.52	0.0150					
50.9827	2.80	0.0125	1.79428	1.26	0.0150					
51.5888	12.87	0.2801	1.77022	5.80	0.3362					
51.7264	6.44	0.2801	1.77022	2.90	0.3362					
58.2430	3.62	3.9140	1.58282	1.63	4.6968					
58.4016	1.81	3.9140	1.58282	0.82	4.6968					

EG07

Anchor Scan Parameters:

Raw Data Origin BRUKER-binary V2 (.RAW)

Scan Axis Gonio Start Position [°2Th.] 4.0000 End Position [°2Th.] 70.0100 0.0350 Step Size [°2Th.] Scan Step Time [s] 0.4000 Scan Type Continuous Offset [°2Th.] 0.0000 Divergence Slit Type Fixed Divergence Slit Size [°] 1.0000 Specimen Length [mm] 10.00 Receiving Slit Size [mm] 0.1000 Measurement Temperature [°C] 25.00 Anode Material Cu K-Alpha1 [Å] 1.54060 K-Alpha2 [Å] 1.54443 K-Beta [Å] 1.39225 K-A2 / K-A1 Ratio 0.50000 Generator Settings 40 mA, 40 kV Diffractometer Type Theta/2Theta D5000

Diffractometer Number 0
Goniometer Radius [mm] 217.50
Dist. Focus-Diverg. Slit [mm] 91.00
Incident Beam Monochromator No
Spinning No

Pos. [°2Th.]	Height [cts]	FWHM [°2Th.]	d-spacing [Å]	Rel. Int. [%]
12.3354	0.08	4.0000	7.16962	0.01
12.3662	0.04	4.0000	7.16962	0.01
15.2511	15.88	0.2146	5.80490	2.55
15.2892	7.94	0.2146	5.80490	1.28
21.2669	2.94	0.0125	4.17448	0.47
21.3204	1.47	0.0125	4.17448	0.24
22.0487	552.78	0.1687	4.02822	88.85
22.1041	276.39	0.1687	4.02821	44.42
23.7105	97.70	0.0518	3.74951	15.70
23.7703	48.85	0.0518	3.74951	7.85
23.9535	4.13	4.0000	3.71202	0.66
24.0139	2.06	4.0000	3.71202	0.33
24.4712	3.10	0.0125	3.63466	0.50
24.5329	1.55	0.0125	3.63466	0.25
25.9322	-22.67	0.0125	3.43310	-3.64
25.9977	-11.33	0.0125	3.43310	-1.82
27.7436	101.94	0.2495	3.21292	16.39
27.8139	50.97	0.2495	3.21292	8.19
28.1409	622.15	0.1057	3.16845	100.00
28.2123	311.07	0.1057	3.16845	50.00
28.5252	11.43	0.0125	3.12664	1.84
28.5976	5.71	0.0125	3.12664	0.92
30.0049	3.90	0.0125	2.97573	0.63
30.0812	1.95	0.0125	2.97573	0.31
30.8139	0.83	0.0125	2.89943	0.13
30.8923	0.41	0.0125	2.89943	0.07
31.5139	15.88	0.0245	2.83660	2.55

ANEXOS

Edificio B, Templo	Mayor			
31.5943	7.94	0.0245	2.83660	1.28
32.7843	4.70	0.0125	2.72953	0.76
32.8680	2.35	0.0125	2.72953	0.38
36.1734	38.86	0.4434	2.48118	6.25
36.2664	19.43	0.4434	2.48118	3.12
41.7927	16.40	0.0200	2.15964	2.64
41.9014	8.20	0.0200	2.15964	1.32
42.7619	17.99	0.1950	2.11292	2.89
42.8734	9.00	0.1950	2.11292	1.45
47.7665	6.46	1.0317	1.90256	1.04
47.8926	3.23	1.0317	1.90256	0.52
49.7571	-4.92	0.4600	1.83101	-0.79
49.8892	-2.46	0.4600	1.83101	-0.40
50.8620	115.50	0.0934	1.79380	18.56
50.9974	57.75	0.0934	1.79380	9.28
57.1521	5.54	1.6219	1.61041	0.89
57.3073	2.77	1.6219	1.61041	0.45
60.3656	0.81	0.0125	1.53214	0.13
60.5312	0.40	0.0125	1.53214	0.07
61.9775	10.73	0.1844	1.49610	1.72
62.1486	5.36	0.1844	1.49610	0.86
62.4582	18.47	0.0902	1.48574	2.97
62.6309	9.24	0.0902	1.48574	1.48
65.2029	6.66	1.0592	1.42968	1.07
65.3851	3.33	1.0592	1.42968	0.54

NA07

Anchor Scan Parameters:

Raw Data Origin BRUKER-binary V2 (.RAW)

Scan Axis Gonio Start Position [°2Th.] 4.0000 End Position [°2Th.] 70.0100 Step Size [°2Th.] 0.0350 Scan Step Time [s] 0.3500 Scan Type Continuous Offset [°2Th.] 0.0000 Divergence Slit Type Fixed Divergence Slit Size [°] 1.0000 Specimen Length [mm] 10.00 Receiving Slit Size [mm] 0.1000 Measurement Temperature [°C] 25.00 Anode Material Cu K-Alpha1 [Å] 1.54060 K-Alpha2 [Å] 1.54443 K-Beta [Å] 1.39225 K-A2 / K-A1 Ratio 0.50000 40 mA, 40 kV **Generator Settings** Diffractometer Type Theta/2Theta D5000

Diffractometer Number 0
Goniometer Radius [mm] 217.50
Dist. Focus-Diverg. Slit [mm] 91.00
Incident Beam Monochromator No
Spinning No

_						
	Pos. [°2Th.]	Height [cts]	FWHM [°2Th.]	d-spacing [Å]	Rel. Int. [%]	Tip width [°2Th.]
	8.9204	63.76	0.1134	9.90528	22.81	0.1361
	8.9426	31.88	0.1134	9.90528	11.41	0.1361
	10.6167	28.82	0.1153	8.32617	10.31	0.1384
	10.6431	14.41	0.1153	8.32617	5.16	0.1384
	11.6914	21.27	0.1821	7.56307	7.61	0.2185
	11.7206	10.64	0.1821	7.56307	3.81	0.2185
	13.8174	15.15	0.1695	6.40380	5.42	0.2034
	13.8519	7.57	0.1695	6.40380	2.71	0.2034

Edificio B, Tem	plo Mayor				
20.7159	8.61	1.6731	4.28426	3.08	2.0077
20.7680	4.31	1.6731	4.28426	1.54	2.0077
22.0227	279.49	0.1015	4.03290	100.00	0.1218
22.0781	139.74	0.1015	4.03290	50.00	0.1218
22.9103	17.68	0.1196	3.87862	6.33	0.1435
22.9680	8.84	0.1196	3.87862	3.16	0.1435
23.7459	81.53	0.1049	3.74400	29.17	0.1259
23.8057	40.76	0.1049	3.74400	14.58	0.1259
24.4774	46.51	0.1561	3.63374	16.64	0.1873
24.5392	23.25	0.1561	3.63374	8.32	0.1873
26.7906	87.33	0.1229	3.32501	31.25	0.1474
26.8585	43.67	0.1229	3.32501	15.62	0.1474
27.8304	271.93	0.1160	3.20310	97.29	0.1392
27.9010	135.96	0.1160	3.20310	48.65	0.1392
28.0922	224.05	0.0882	3.17384	80.16	0.1059
28.1635	112.02	0.0882	3.17384	40.08	0.1059
28.5089	78.64	0.0878	3.12839	28.14	0.1053
28.5813	39.32	0.0878	3.12839	14.07	0.1053
30.3692	19.28	0.1003	2.94086	6.90	0.1203
30.4465	9.64	0.1003	2.94086	3.45	0.1203
30.6474	6.20	4.0000	2.91480	2.22	4.8000
30.7254	3.10	4.0000	2.91480	1.11	4.8000
31.5181	26.32	0.1096	2.83624	9.42	0.1316
31.5984	13.16	0.1096	2.83624	4.71	0.1316
35.6219	31.45	0.1096	2.51833	11.25	0.1315
35.7134	15.72	0.1096	2.51833	5.63	0.1315
36.0057	21.82	0.5579	2.49236	7.81	0.6695
36.0983	10.91	0.5579	2.49236	3.90	0.6695
42.4295	10.72	0.9533	2.12870	3.83	1.1439
42.5400	5.36 4.59	0.9533	2.12870	1.92 1.64	1.1439
45.2843	4.59 2.29	2.3858 2.3858	2.00091	0.82	2.8630
45.4031	14.58	2.3656 0.1686	2.00091	5.22	2.8630 0.2024
48.5565 48.6850	7.29	0.1686	1.87344 1.87344	2.61	0.2024
49.7943	7.48	0.1204	1.82973	2.67	0.1445
49.8680	6.32	4.0000	1.82720	2.26	4.8000
49.9265	3.74	0.1204	1.82973	1.34	0.1445
50.0004	3.16	4.0000	1.82720	1.13	4.8000
51.2739	6.08	1.5528	1.78035	2.18	1.8633
51.4105	3.04	1.5528	1.78035	1.09	1.8633
53.4272	8.13	0.3318	1.71356	2.91	0.3982
53.5705	4.06	0.3318	1.71356	1.45	0.3982
57.2804	9.21	0.5825	1.60711	3.30	0.6990
57.4359	4.60	0.5825	1.60711	1.65	0.6990
62.4458	4.64	1.6854	1.48601	1.66	2.0224
62.6185	2.32	1.6854	1.48601	0.83	2.0224
68.5963	32.29	0.1003	1.36699	11.55	0.1203
68.7906	16.14	0.1003	1.36699	5.78	0.1203

NC01

Anchor Scan Parameters:

BRUKER-binary V2 (.RAW) Raw Data Origin Scan Axis Gonio Start Position [°2Th.] 4.0000 End Position [°2Th.]
Step Size [°2Th.] 70.0100 0.0350 Scan Step Time [s] 1.5000 Scan Type Continuous Offset [°2Th.] 0.0000 Divergence Slit Type
Divergence Slit Size [°] Fixed 1.0000 Specimen Length [mm] 10.00 Receiving Slit Size [mm] 0.1000 Measurement Temperature [°C] 25.00 Anode Material Cu K-Alpha1 [Å] 1.54060 K-Alpha2 [Å] 1.54443 K-Beta [Å] 1.39225

ANEXOS

Edificio B, Templo Mayor

K-A2 / K-A1 Ratio 0.50000
Generator Settings 40 mA, 40 kV
Diffractometer Type Theta/2Theta D5000

Diffractometer Number 0
Goniometer Radius [mm] 217.50
Dist. Focus-Diverg. Slit [mm] 91.00
Incident Beam Monochromator No
Spinning No

Peak List

Pos. [°2Th.]	Height [cts]	FWHM [°2Th.]	d-spacing [Å]	Rel. Int. [%]
8.8798	10053.46	0.1035	9.95048	100.00
8.9019	5026.73	0.1035	9.95048	50.00
12.4203	22.80	0.0187	7.12084	0.23
12.4513	11.40	0.0187	7.12084	0.11
17.7967	332.14	0.1222	4.97988	3.30
17.8413	166.07	0.1222	4.97988	1.65
26.8194	8134.11	0.1599	3.32151	80.91
26.8872	4067.05	0.1599	3.32151	40.45
36.0110	931.56	0.2003	2.49200	9.27
36.1036	465.78	0.2003	2.49200	4.63
45.4609	714.06	0.2766	1.99354	7.10
45.5803	357.03	0.2766	1.99354	3.55
55.2562	260.33	0.3239	1.66109	2.59
55.4053	130.16	0.3239	1.66109	1.29
65.4825	188.69	0.4345	1.42425	1.88
65.6657	94.34	0.4345	1.42425	0.94

NC02

Anchor Scan Parameters:

Raw Data Origin BRUKER-binary V2 (.RAW)

Scan Axis Gonio Start Position [°2Th.] 4.0000 End Position [°2Th.] 70.0100 Step Size [°2Th.] 0.0350 Scan Step Time [s] 0.4000 Scan Type Continuous Offset [°2Th.] 0.0000 Divergence Slit Type Fixed Divergence Slit Size [°] 1.0000 Specimen Length [mm] 10.00 Receiving Slit Size [mm] 0.1000 Measurement Temperature [°C] 25.00 Anode Material Cu K-Alpha1 [Å] 1.54060 K-Alpha2 [Å] 1.54443 K-Beta [Å] 1.39225 K-A2 / K-A1 Ratio 0.50000 40 mA, 40 kV **Generator Settings** Diffractometer Type Theta/2Theta D5000

Diffractometer Number 0
Goniometer Radius [mm] 217.50
Dist. Focus-Diverg. Slit [mm] 91.00
Incident Beam Monochromator No
Spinning No

Pos. [°2Th.]	Height [cts]	FWHM [°2Th.]	d-spacing [Å]	Rel. Int. [%]	Tip width [°2Th.]
10.5813	32.20	0.1377	8.35390	10.65	0.1652
10.6077	16.10	0.1377	8.35390	5.32	0.1652
13.7924	23.05	0.1288	6.41537	7.62	0.1546
13.8268	11.52	0.1288	6.41537	3.81	0.1546

Edificio B, Temp	olo Mayor				
22.0413	302.33	0.1327	4.02955	100.00	0.1592
22.0967	151.17	0.1327	4.02955	50.00	0.1592
22.9506	23.01	0.1121	3.87192	7.61	0.1345
23.0084	11.51	0.1121	3.87192	3.81	0.1345
23.7921	169.24	0.1389	3.73683	55.98	0.1666
23.8521	84.62	0.1389	3.73683	27.99	0.1666
24.4968	52.39	0.1462	3.63092	17.33	0.1754
24.5586	26.19	0.1462	3.63092	8.66	0.1754
26.1021	17.54	0.0125	3.41113	5.80	0.0150
26.1681	8.77	0.0125	3.41114	2.90	0.0150
26.3172	5.60	2.7817	3.38373	1.85	3.3381
26.3838	2.80	2.7817	3.38373	0.93	3.3381
27.8550	223.11	0.1810	3.20033	73.80	0.2172
27.9256	111.56	0.1810	3.20033	36.90	0.2172
28.1086	202.42	0.0884	3.17202	66.95	0.1061
28.1799	101.21	0.0884	3.17202	33.48	0.1061
28.5407	248.87	0.0907	3.12498	82.32	0.1088
28.6131	124.44	0.0907	3.12498	41.16	0.1088
30.4326	36.75	0.2198	2.93488	12.15	0.2638
30.4823	34.59	4.0000	2.93021	11.44	4.8000
30.5100	18.37	0.2198	2.93488	6.08	0.2638
30.5599	17.30	4.0000	2.93021	5.72	4.8000
31.5378	45.78	0.1556	2.83450	15.14	0.1867
31.6182	22.89	0.1556	2.83450	7.57	0.1867
33.0109	24.81	0.0912	2.71130	8.21	0.1094
33.0953	12.40	0.0912	2.71130	4.10	0.1094
35.7466	30.47	0.7624	2.50983	10.08	0.9148
35.8384	15.23	0.7624	2.50983	5.04	0.9148
42.2664	26.33	0.0890	2.13653	8.71	0.1069
42.3765	13.17	0.0890	2.13653	4.36	0.1069
43.2993 43.4124	3.57 1.79	4.0000 4.0000	2.08793 2.08793	1.18 0.59	4.8000 4.8000
46.7534	4.45	2.1214	1.94140	1.47	2.5457
	4.45 2.22		1.94140	0.74	2.5457 2.5457
46.8765 48.5878	19.57	2.1214 0.1676	1.87231	6.47	0.2011
48.7163	9.79	0.1676	1.87231	3.24	0.2011
49.8454	12.53	0.2033	1.82797	4.15	0.2439
49.9777	6.27	0.2033	1.82797	2.07	0.2439
51.5461	24.61	0.1058	1.77159	8.14	0.1270
51.6836	12.31	0.1058	1.77159	4.07	0.1270
52.0971	3.57	4.0000	1.75414	1.18	4.8000
52.2363	1.78	4.0000	1.75414	0.59	4.8000
57.0312	10.60	0.2867	1.61354	3.51	0.3440
57.1860	5.30	0.2867	1.61354	1.75	0.3440
61.9232	4.24	3.2924	1.49729	1.40	3.9508
62.0941	2.12	3.2924	1.49729	0.70	3.9508

NC15

Anchor Scan Parameters:

Raw Data Origin BRUKER-binary V2 (.RAW) Scan Axis Gonio

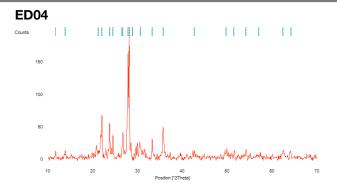
Start Position [°2Th.] 4.0000 End Position [°2Th.] 70.0100 Step Size [°2Th.] 0.0350 Scan Step Time [s] 1.5000 Scan Type Continuous Offset [°2Th.] 0.0000 Divergence Slit Type Fixed Divergence Slit Size [°] 1.0000 Specimen Length [mm] 10.00 0.1000 Receiving Slit Size [mm] Measurement Temperature [°C] 25.00 Anode Material Cu K-Alpha1 [Å] 1.54060 K-Alpha2 [Å] 1.54443

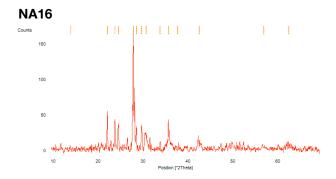
Edificio B, Templo Mayor

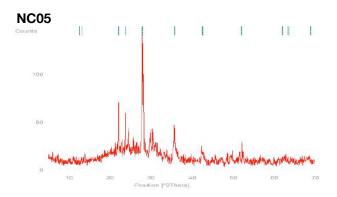
 K-Beta [Å]
 1.39225

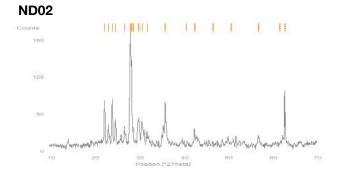
 K-A2 / K-A1 Ratio
 0.50000

 Generator Settings
 40 mA, 40 kV

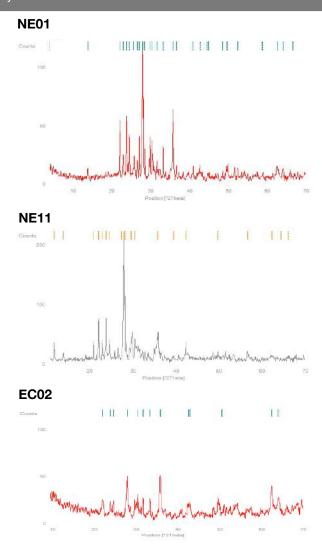

 Diffractometer Type
 Theta/2Theta D5000


Diffractometer Number 0
Goniometer Radius [mm] 217.50
Dist. Focus-Diverg. Slit [mm] 91.00
Incident Beam Monochromator No
Spinning No


Pos. [°2Th.]	Height [cts]	FWHM [°2Th.]	d-spacing [Å]	Rel. Int. [%]
20.4364	5.87	2.0995	4.34223	8.21
20.4877	2.93	2.0995	4.34223	4.10
21.6294	57.48	0.2356	4.10534	80.40
21.6838	28.74	0.2356	4.10534	40.20
23.4213	30.97	0.1093	3.79514	43.32
23.4804	15.48	0.1093	3.79514	21.66
24.1941	18.51	0.2403	3.67564	25.89
24.2552	9.25	0.2403	3.67564	12.94
26.3407	37.14	0.2280	3.38077	51.95
26.4073	18.57	0.2280	3.38077	25.97
27.5172	71.49	0.2758	3.23884	100.00
27.5869	35.74	0.2758	3.23884	50.00
27.7911	49.17	0.0910	3.20754	68.78
27.8616	24.58	0.0910	3.20754	34.39
28.8249	24.37	0.1540	3.09481	34.09
28.8981	12.19	0.1540	3.09481	17.05
29.9486	8.18	2.2491	2.98120	11.44
30.0247	4.09	2.2491	2.98120	5.72
31.1491	8.65	2.1072	2.86898	12.10
31.2285	4.32	2.1072	2.86898	6.05
32.8989	29.82	0.1959	2.72028	41.71
32.9829	14.91	0.1959	2.72028	20.85
35.4053	23.87	0.8490	2.53323	33.39
35.4962	11.93	0.8490	2.53323	16.69
42.4803	8.22	3.5123	2.12627	11.49
42.5910	4.11	3.5123	2.12627	5.75
49.1705	15.17	1.1163	1.85147	21.22
49.3008	7.59	1.1163	1.85147	10.61
49.9413	10.72	4.0000	1.82469	15.00
50.0739	5.36	4.0000	1.82469	7.50
52.0764	22.61	0.0896	1.75479	31.62
52.2155	11.30	0.0896	1.75479	15.81
52.7039	6.27	4.0000	1.73536	8.76
52.8450	3.13	4.0000	1.73536	4.38
58.5873	4.22	4.0000	1.57433	5.91
58.7471	2.11	4.0000	1.57433	2.95
62.3441	63.57	0.1311	1.48818	88.92
62.5164	31.79	0.1311	1.48818	44.46



Edificio B, Templo Mayor



Edificio B, Templo Mayor

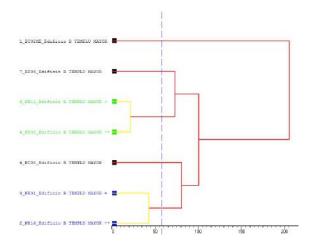
Dataset Comparison

FOM Type: Position Compare Threshold [%]: 0.75 Allow Pattern Shifts: Yes Correlation Matrix:

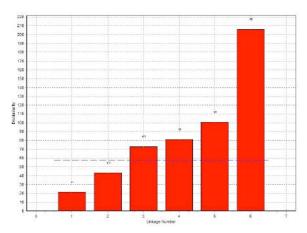
81	39	41	27	47	44	46
39	87	75	79	68	66	65
41	75	86	66	64	65	64
27	79	66	90	55	52	58
47	68	64		82		62
44	66	65	52			59
46	65	64		62		85

Edificio B, Templo Mayor

Shifts Matrix:


0.0000	-0.0729	0.0106	-0.2082	0.0106	0.0000	-0.1008
-0.0729	0.0000	0.0106	0.0451	0.0279	0.0106	-0.0729
0.0106	0.0106	0.0000	0.0279	0.0451	0.0106	-0.0729
-0.2082	0.0451	0.0279	0.0000	0.0279	-0.0172	-0.1008
0.0106	0.0279	0.0451	0.0279	0.0000	-0.0729	-0.0729
0.0000	0.0106	0.0106	-0.0172	-0.0729	0.0000	-0.0729
-0.1008	-0.0729	-0.0729	-0.1008	-0.0729	-0.0729	0.0000

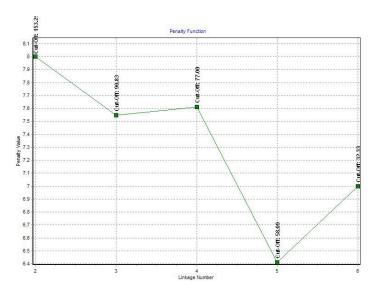
Hierarchical Agglomerative Cluster Analysis


Distance Measure: Manhattan Linkage Method: Average Linkage Alpha: 0.50 Exclude low-crystalline Data Sets: Yes Minimum Crystallinity [%]: 5.00

Object 1	Object 2	New Object	Distance
5	6	8	21.55
2	3	9	43.11
8	7	10	73.07
9	4	11	80.92
11	10	12	100.74
1	12	13	205.84

Dendrogram Graphics

Histogram Graphics


Edificio B, Templo Mayor

KGS Test Cut-Off Determination

Smooth Input for KGS Test: Yes

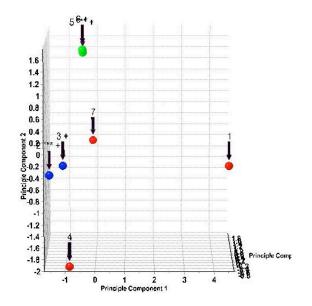
Total No. of Clust	No. of Clusters	Penalty Value	Cut-Off	% Change
6	1	7.0000	32.33	50.01
5	2	6.4112	58.09	41.00
4	2	7.6114	77.00	9.70
3	2	7.5486	7.5486 90.83	
2	1	8.0000	153.29	51.06

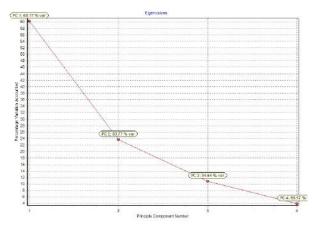
KGS Test Penalty Function Plot

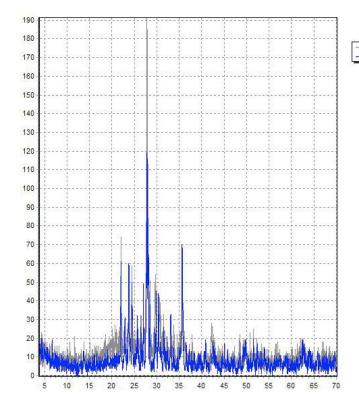
Principal Component Analysis (PCA)

Standardize PCA Input Matrix: No

Eigenvalue No.	Percentage	Total Percentage
1	60.17	60.17
2	23.60	83.77
3	10.87	94.64
4	3.93	98.57
5	1.20	99.77
6	0.23	100.00
7	0.00	100.00

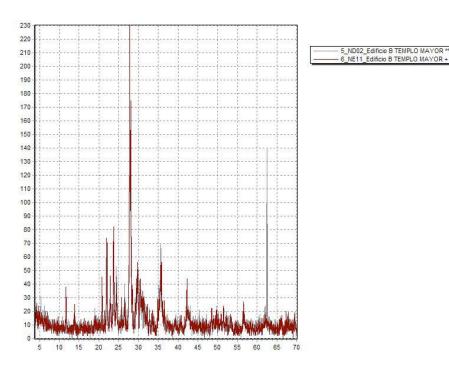

Scores:


Score No.	PC 1	PC 2	PC 3
1	4.5278	-0.3158	-0.2282
2	-1.5578	-0.4592	-0.2887
3	-1.1105	-0.3541	-0.0084
4	-0.8582	-1.9378	-0.7413
5	-0.4199	1.6402	-0.2361
6	-0.4095	1.7163	-0.4095
7	-0.1719	-0.2897	1.9123

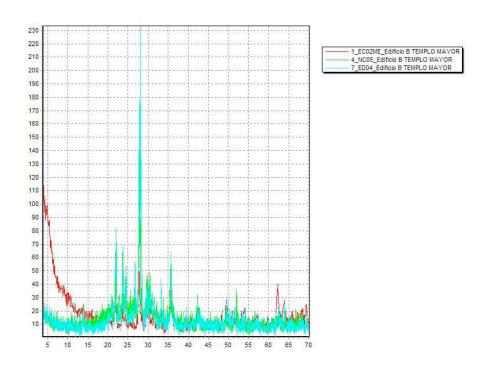

Edificio B, Templo Mayor

Principal Component Analysis Score Plot

Cluster Number: 1

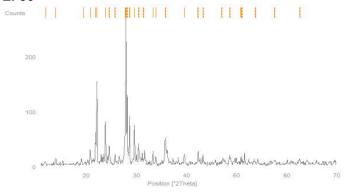


- 2_NA16_Edificio B TEMPLO MAYOR *** + - 3_NE01_Edificio B TEMPLO MAYOR +

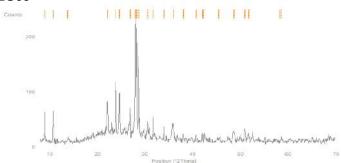


Edificio B, Templo Mayor

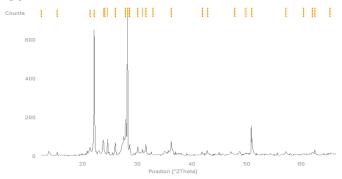
Cluster Number: 2

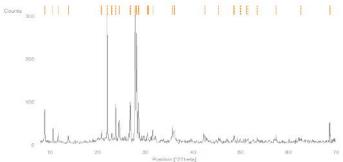


Not Clustered Scans

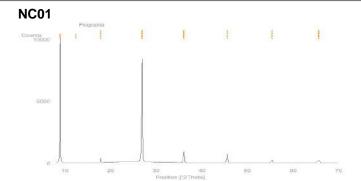


Edificio B, Templo Mayor

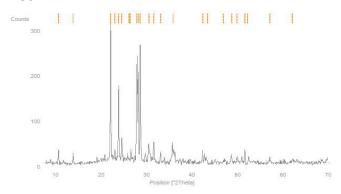

EF06

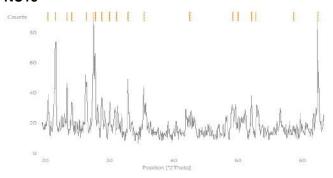

EG05

EG07



NA07




Edificio B, Templo Mayor

NC₀₂

NC15

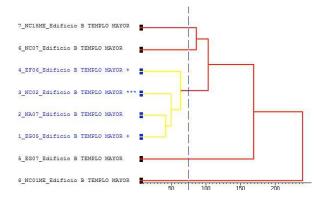
Hierarchical Agglomerative Cluster Analysis

Distance Measure: Manhattan Linkage Method: Average Linkage Alpha: 0.50 Exclude low-crystalline Data Sets: Yes Minimum Crystallinity [%]: 5.00

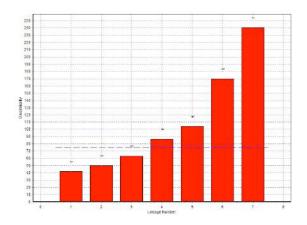
Object 1	Object 2	New Object	Distance
1	2	9	42.16
9	3	10	50.10
10	4	11	63.32
6	7	12	86.72
11	12	13	104.02
5	13	14	169.74
14	8	15	240.53

ANEXOS

Edificio B, Templo Mayor


Dataset Comparison

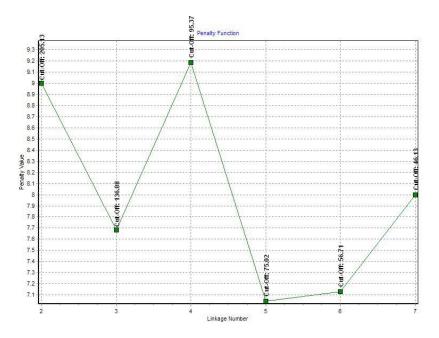
FOM Type: Position Compare Threshold [%]: 0.75 Allow Pattern Shifts: Yes


Correlation Matrix: Shifts Matrix:

0.0000	0.0451	0.0279	0.0451	0.0279	0.1180	0.4549	0.1180
0.0451	0.0000	-0.0172	0.0000	-0.0172	0.0279	0.3369	-0.0729
0.0279	-0.0172	0.0000	0.0451	-0.0279	0.0279	0.3541	-0.0729
0.0451	0.0000	0.0451	0.0000	-0.0729	0.0000	0.3369	-0.0729
0.0279	-0.0172	-0.0279	-0.0729	0.0000	0.1008	0.3369	-0.0729
0.1180	0.0279	0.0279	0.0000	0.1008	0.0000	0.2639	0.2082
0.4549	0.3369	0.3541	0.3369	0.3369	0.2639	0.0000	-0.3369
0.1180	-0.0729	-0.0729	-0.0729	-0.0729	0.2082	-0.3369	-0.0000

Dendrogram Graphics

Histogram Graphics


Edificio B, Templo Mayor

KGS Test Cut-Off Determination

Smooth Input for KGS Test: Yes

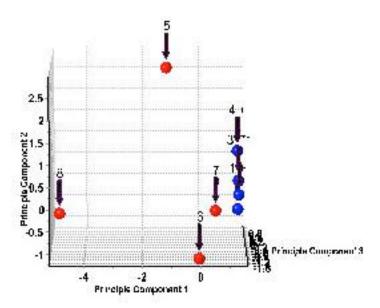
Total No. of Clust	No. of Clusters		Cut-Off	% Change
7	1	8.0000	46.13	15.84
6	1	7.1300	56.71	20.89
5	1	7.0427	75.02	26.98
4	2	9.1876	95.37	16.63
3	1	7.6820	136.88	38.72
2	1	9.0000	205.13	29.43

KGS Test Penalty Function Plot

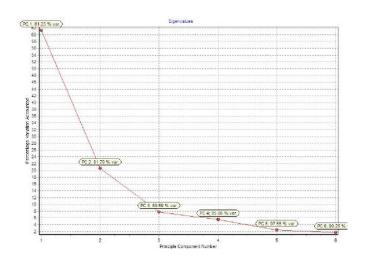
Principal Component Analysis (PCA)

Standardize PCA Input Matrix: No

Eigenvalue No.	Percentage	Total Percentage
1	61.23	61.23
2	20.55	81.79
3	7.80	89.59
4	5.48	95.06
5	2.49	97.55
6	1.70	99.25
7	0.75	100.00
8	0.00	100.00



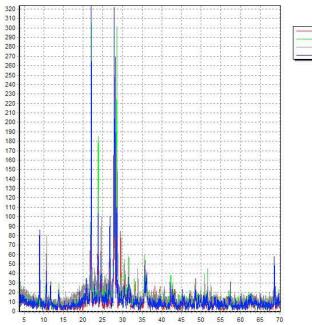
Edificio B, Templo Mayor


Scores:

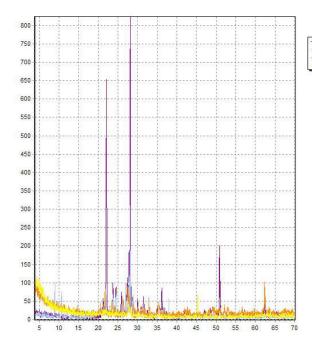
Score No.	PC 1	PC 2	PC 3
1	1.3907	-0.5921	0.1513
2	1.3995	-0.2014	-0.0652
3	1.4080	0.0902	0.0806
4	1.3754	0.6415	0.5898
5	-1.1722	2.8394	-0.3887
6	-0.0525	-1.1268	-1.6901
7	0.6265	-0.8654	0.8909
8	-4.9755	-0.7853	0.4314

Principal Component Analysis Score Plot

Principal Component Analysis Eigenvalues Plot

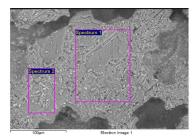


ANEXOS

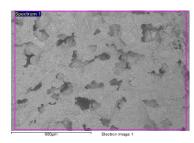

Edificio B, Templo Mayor

Cluster Number: 1

4_EF06_Edificio B TEMPLO MAYOR +
 3_NC02_Edificio B TEMPLO MAYOR ***
 1_EG05_Edificio B TEMPLO MAYOR +
 2_NA07_Edificio B TEMPLO MAYOR

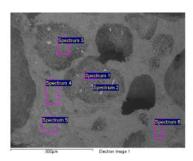

Not Clustered Scans

- 5_EG07_Edificio B TEMPLO MAYOR - 6_NC07_Edificio B TEMPLO MAYOR - 7_NC15ME_Edificio B TEMPLO MAYOR - 8_NC01ME_Edificio B TEMPLO MAYOR


Edificio B, Templo Mayor

EC02

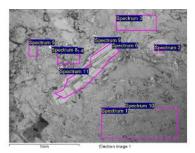
Processing option : All elements analysed (Normalised)


Spectrum	In stats	s. O	Na	Mg	Al	Si	K	Ca	Ti	Fe	Total
Spectrum 1	Yes	53.35	3.11	1.02	9.25	23.50	0.42	4.79	0.66	3.90	100.00
Spectrum 2	Yes	53.33	2.83	1.01	8.23	23.77	0.61	4.59	0.94	4.71	100.00
Mean		53.34	2.97	1.01	8.74	23.64	0.51	4.69	0.80	4.30	100.00
Std. deviation		0.02	0.20	0.01	0.72	0.19	0.13	0.14	0.19	0.57	
Max.		53.35	3.11	1.02	9.25	23.77	0.61	4.79	0.94	4.71	
Min.		53.33	2.83	1.01	8.23	23.50	0.42	4.59	0.66	3.90	

Processing option : All elements analysed (Normalised)

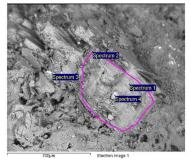
Spectrum	In stats.	0	Na	Mg	Al	Si	Р	K	Ca	Ti	Fe	Total
Spectrum 1	Yes	54.90	2.41	0.95	8.99	22.26	0.69	0.39	4.98	0.53	3.91	100.00
Mean		54.90	2.41	0.95	8.99	22.26	0.69	0.39	4.98	0.53	3.91	100.00
Std. deviation		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Max.		54.90	2.41	0.95	8.99	22.26	0.69	0.39	4.98	0.53	3.91	
Min.		54.90	2.41	0.95	8.99	22.26	0.69	0.39	4.98	0.53	3.91	

ED04


Processing option : All elements analysed (Normalised)

Spectrum	In stat	С	0	Na	Mg	Al	Si	Р	K	Ca	Ti	Mn	Fe	Total
Spectrum 1	Yes		52.71	2.07	2.47	7.59	22.63		1.42	2.66	0.75	0.78	6.92	100.00
Spectrum 2	Yes		51.26	2.07	2.00	6.58	22.53		1.36	2.93	0.82		10.44	100.00
Spectrum 3	Yes	0.00	52.53	2.29	2.12	6.71	22.85		1.26	3.14	0.00		9.10	100.00
Spectrum 4	Yes	6.76	53.96	2.98	1.50	6.55	20.32	0.35	0.66	2.96	0.55		3.40	100.00
Spectrum 5	Yes	0.00	52.00	2.19	3.53	6.65	23.96		0.69	5.19	0.48		5.30	100.00
Spectrum 6	Yes		50.62	3.01	1.86	7.43	23.64	0.36	1.50	4.31	0.95		6.33	100.00
Max.		6.76	53.96	3.01	3.53	7.59	23.96	0.36	1.50	5.19	0.95	0.78	10.44	
Min.		0.00	50.62	2.07	1.50	6.55	20.32	0.35	0.66	2.66	0.00	0.78	3.40	

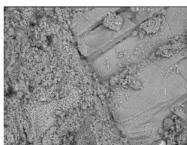
Edificio B, Templo Mayor


EG05

Processing option: All elements analysed (Normalised)

Spectrum	In stat	С	0	Na	Mg	Al	Si	Р	S	CI	K	Ca	Ti	Mn	Fe	Total
Spectrum 1	s. Yes		56.42	1.26	0.75	6.21	28.67				1.99	2.20			2.51	100.00
Spectrum 2	Yes		47.91	0.71	3.95	4.96	19.55	1.52		0.31	5.14	3.35	2.06		10.55	100.00
Spectrum 3	Yes	0.00	56.93	1.28	0.87	5.11	29.22		0.44		2.42	1.51			2.21	100.00
Spectrum 4	Yes	5.38	55.74	1.37	1.31	4.76	24.06				1.90	1.98			3.50	100.00
Spectrum 5	Yes	0.00	57.13	1.41	0.96	5.31	29.41				2.47	1.23			2.07	100.00
Spectrum 6	Yes	0.00	52.49	1.14	5.58	4.63	20.71				0.72	5.98	0.86		7.89	100.00
Spectrum 7	Yes	0.00	48.15	0.30	7.04	2.23	18.56				0.42	0.74	1.23	0.36	20.96	100.00
Spectrum 8	Yes	4.27	38.62	0.54	0.97	2.48	8.22				0.38	0.56	2.55	0.00	41.41	100.00
Spectrum 9	Yes		54.14	0.54	5.96	2.72	22.79		0.00	0.18	0.74	1.01	0.42	0.33	11.16	100.00
Spectrum 10	Yes	0.00	30.46	1.55	1.24	4.25	17.81				1.29	1.57	0.84		40.99	100.00
Spectrum 11	Yes		52.39	1.31	2.07	5.88	29.92			0.00	2.71	2.43	0.39		2.90	100.00
Max.		5.38	57.13	1.55	7.04	6.21	29.92	1.52	0.44	0.31	5.14	5.98	2.55	0.36	41.41	
Min.		0.00	30.46	0.30	0.75	2.23	8.22	1.52	0.00	0.00	0.38	0.56	0.39	0.00	2.07	

All results in weight%



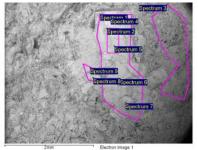
Processing option : All elements analysed (Normalised)

Spectrum	ln	С	0	Na	Mg	Al	Si	S	K	Ca	Ti	Mn	Fe	Total
Spectrum 1	stats Yes	3.	49.85		4.47	5.84	17.39		5.17		2.30		14.97	100.00
Spectrum 2	Yes	0.00	54.09	0.67	4.69	5.87	19.15		3.93	1.11	1.47		9.02	100.00
Spectrum 3	Yes		51.22	1.18	2.89	5.51	19.29	0.00	2.25	1.63	0.00		16.02	100.00
Spectrum 4	Yes		19.76		1.80	3.14	11.24		1.32	0.96	1.12	0.00	60.67	100.00
Max.		0.00	54.09	1.18	4.69	5.87	19.29	0.00	5.17	1.63	2.30	0.00	60.67	
Min.		0.00	19.76	0.67	1.80	3.14	11.24	0.00	1.32	0.96	0.00	0.00	9.02	

All results in weight%

EG07

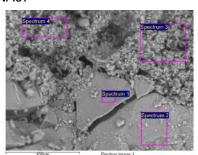
Electron Image 1


Processing option: All elements analysed (Normalised)

Spectrum	In -+-+-	С	0	Na	Mg	Al	Si	S	K	Ca	Ti	Fe	Total
Sum Spectrum	Yes	9.88	53.24	2.04	0.49	5.92	24.38	0.15	1.14	1.43	0.11	1.23	100.00
Mean		9.88	53.24	2.04	0.49	5.92	24.38	0.15	1.14	1.43	0.11	1.23	100.00
Std. deviation		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Max.		9.88	53.24	2.04	0.49	5.92	24.38	0.15	1.14	1.43	0.11	1.23	
Min.		9.88	53.24	2.04	0.49	5.92	24.38	0.15	1.14	1.43	0.11	1.23	

Edificio B, Templo Mayor

EG07



Processing option : All elements analysed (Normalised)

Spectrum	In	С	0	Na	Mg	Al	Si	S	K	Ca	Fe	Total
	stats.											
Spectrum 1	Yes	0.00	55.88	4.08	0.00	9.55	26.68		0.61	3.21	0.00	100.00
0	V		FO 40	4 4 7		10.11	07.70		0.70	0.05	0.00	100.00
Spectrum 2	Yes		53.43	4.17		10.11	27.72		0.72	3.85	0.00	100.00
Spectrum 3	Yes	0.00	56.26	2.06	1.02	5.01	31.34		1.82	0.00	2.49	100.00
opeotram o	1.00	0.00	00.20	2.00	1.02	0.01	01.01		1.02	0.00	2.10	100.00
Spectrum 4	Yes		50.58	2.80	0.00	7.31	26.16		1.29	8.48	3.37	100.00
-												
Spectrum 5	Yes		57.95	3.18		9.56	27.02			2.30	0.00	100.00
Spootrum 6	Yes	0.00	54.40	2 05	0.41	9.09	28.41	0.00	0.56	3.28	0.00	100.00
Spectrum 6	res	0.00	34.40	3.00	0.41	9.09	20.41	0.00	0.50	3.20	0.00	100.00
Spectrum 7	Yes	11.64	53.12	4.29		9.34	19.34		0.00	2.27		100.00
-												
Spectrum 8	Yes	0.00	57.21	5.08		10.24	24.68		0.00	2.80		100.00
	l.											
Spectrum 9	Yes	7.04	56.11	4.60		9.05	20.52		0.24	2.44	0.00	100.00
Max.		11 64	57.95	5 08	1.02	10.24	31.34	0.00	1.82	8.48	2 27	
ivian.		11.04	37.93	5.00	1.02	10.24	31.34	0.00	1.02	0.40	5.57	
Min.		0.00	50.58	2.06	0.00	5.01	19.34	0.00	0.00	0.00	0.00	

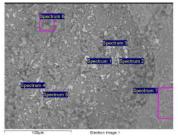
All results in weight%

NA07

Processing option : All elements analysed (Normalised)

Spectrum	In stats.	С	0	Na	Mg	Al	Si	K	Ca	Ti	Fe	Total
оросиин	liii olalo.	. •	Ü		wg	, u	O.		Ou	••		Total
Spectrum 1	Yes	6.68	56.70	3.17		9.80	18.90	0.23	4.18		0.34	100.00
Spectrum 2	Yes	7.79	52.12	2.57		9.48	21.52	0.70	5.48		0.33	100.00
Spectrum 3	Yes	8.89	52.35	1.73	0.38	6.63	23.39	0.96	3.47		2.21	100.00
Spectrum 4	Yes		54.56	1.28	0.77	6.81	25.44	1.94	5.64		3.56	100.00
Sum	Yes	6.87	55.16	2.13	0.31	7.45	20.45	0.76	5.38	0.15	1.35	100.00
Spectrum												
Max.		8.89	56.70	3.17	0.77	9.80	25.44	1.94	5.64	0.15	3.56	
Min.		6.68	52.12	1.28	0.31	6.63	18.90	0.23	3.47	0.15	0.33	

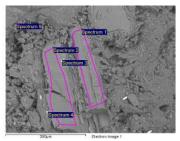
All results in weight%


Processing option : All elements analysed (Normalised)

Spectrum	In stats.	С	0	Na	Mg	Al	Si	K	Ca	Fe	Total
Spectrum 1	Yes	0.00	57.18	3.85	0.00	9.62	24.04	0.76	4.12	0.44	100.00
Spectrum 2	Yes	5.18	55.76	4.06		9.97	20.47		4.10	0.46	100.00
Spectrum 3	Yes	9.42	56.56	1.58	0.68	4.57	18.22	0.99	6.61	1.37	100.00
Spectrum 4	Yes		53.99	2.15	0.71	8.17	25.37	1.97	3.93	3.71	100.00
Spectrum 5	Yes	0.00	57.07	3.87		11.19	22.09	0.25	5.53		100.00
Max.		9.42	57.18	4.06	0.71	11.19	25.37	1.97	6.61	3.71	
Min.		0.00	53.99	1.58	0.00	4.57	18.22	0.25	3.93	0.44	

Edificio B, Templo Mayor

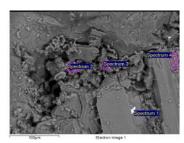
ED04



Processing option : All elements analysed (Normalised)

Spectrum	ln	0	Na	Mg	Al	Si	Р	K	Ca	Ti	Mn	Fe	Total
	stats.												
Spectrum 1	Yes	37.07	1.18	2.19	3.33	12.18		1.93	0.85	10.14	0.58	30.55	100.00
Spectrum 2	Yes	57.23	1.63	2.33	6.46	20.46		2.26	0.68	0.93		8.02	100.00
Spectrum 3	Yes	46.53	1.20	2.48	2.63	9.24		0.90	0.70	1.77	0.39	34.16	100.00
Spectrum 4	Yes	22.05	2.21	1.81	4.72	13.83		0.94	1.34	0.97		52.12	100.00
Spectrum 5	Yes	26.45	1.41	1.52	4.34	13.45		1.29	1.12	3.90	0.00	46.52	100.00
Spectrum 6	Yes	45.49	2.04	2.01	6.39	24.58		2.30	3.77	1.18	0.00	12.23	100.00
Spectrum 7	Yes	51.13	2.99	1.14	8.23	24.14	0.63	1.84	4.11	1.01		4.78	100.00
Max.		57.23	2.99	2.48	8.23	24.58	0.63	2.30	4.11	10.14	0.58	52.12	
Min.		22.05	1.18	1.14	2.63	9.24	0.63	0.90	0.68	0.93	0.00	4.78	

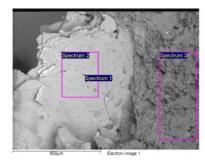
All results in weight%


EG05

Processing option: All elements analysed (Normalised)

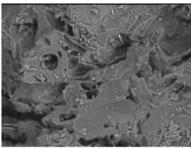
Spectrum	In stats.	0	Na	Mg	Al	Si	S	K	Ca	Ti	Cr	Fe	Ва	Total
Spectrum 1	Yes	58.76	0.00	0.00	4.86	22.71	2.71	2.78	4.31			3.88		100.00
Spectrum 2	Yes	52.86	1.34	6.62	4.19	19.99	0.35	0.47	6.08	0.91	0.00	7.21		100.00
Spectrum 3	Yes	49.12	1.57	0.76	7.69	17.90	4.38	0.49	4.55			0.90	12.63	100.00
Spectrum 4	Yes	53.24		1.66	3.89	20.52	3.57	1.75	1.26			3.13	10.99	100.00
Spectrum 5	Yes	35.75			1.67	7.27	9.52	0.46	2.01			1.48	41.86	100.00
Max.		58.76	1.57	6.62	7.69	22.71	9.52	2.78	6.08	0.91	0.00	7.21	41.86	
Min.		35.75	0.00	0.00	1.67	7.27	0.35	0.46	1.26	0.00	0.00	0.90	0.00	

All results in weight%


Processing option : All elements analysed (Normalised)

Spectrum	In stats	0	Na	Mg	Al	Si	S	K	Ca	Ti	Cr	Fe	Ва	Total
Spectrum 1	Yes	29.83	0.63	4.19	4.82	25.40	0.47	0.59	11.79	1.73		20.54		100.00
Spectrum 2	Yes	52.21	1.10	6.86	4.69	20.24		0.31	5.72	0.58		8.28		100.00
Spectrum 3	Yes	66.58	0.00	2.01	1.42	5.77	9.90	0.00	11.66	0.21		2.45		100.00
Spectrum 4	Yes	53.47	1.26	6.40	4.47	18.52	0.38	0.54	5.80	0.80		8.34		100.00
Max.		66.58	1.26	6.86	4.82	25.40	9.90	0.59	11.79	1.73	0.00	20.54		
Min.		29.83	0.00	2.01	1.42	5.77	0.00	0.00	5.72	0.21	0.00	8.34		

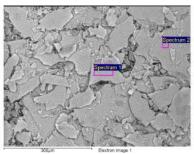
Edificio B, Templo Mayor


NC01

Processing option: All elements analysed (Normalised)

Spectrum	In stats	C	0	Na	Mg	Al	Si	K	Ca	Ti	Mn	Fe	Cu	Total
Spectrum 1	Yes		38.77	0.86	2.12	7.92	21.02	9.75				19.56	;	100.00
Spectrum 2	Yes	0.00	41.63		4.53	7.94	16.16	8.10	0.49	2.04	0.00	19.10)	100.00
Spectrum 3	Yes	0.00	57.97	1.81	0.40	6.19	28.15	2.94	0.82			1.72		100.00
Sum Spectrum	Yes	5.69	45.76	1.00	1.80	11.94	19.27	4.00	0.70	0.96	0.13	8.51	0.23	100.00
Max.		5.69	57.97	1.81	4.53	11.94	28.15	9.75	0.82	2.04	0.13	19.56	0.23	
Min.		0.00	38.77	0.86	0.40	6.19	16.16	2.94	0.49	0.96	0.00	1.72	0.23	

All results in weight%

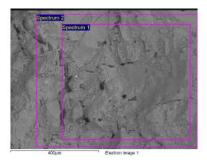


Electron Image 1

Processing option : All elements analysed (Normalised)

Spectrum	In stats	C s.	0	Na	Mg	Al	Si	K	Ca	Ti	Fe	Total
Sum Spectrum	Yes	4.01	57.46	1.69	0.28	5.51	24.46	2.49	2.22	0.15	1.74	100.00
Mean		4.01	57.46	1.69	0.28	5.51	24.46	2.49	2.22	0.15	1.74	100.00
Std. deviation		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Max.		4.01	57.46	1.69	0.28	5.51	24.46	2.49	2.22	0.15	1.74	
Min.		4.01	57.46	1.69	0.28	5.51	24.46	2.49	2.22	0.15	1.74	

All results in weight%


Processing option : All elements analysed (Normalised)

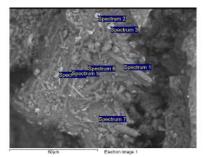
Spectrum	In stats.	. 0	Na	Mg	Al	Si	K	Ca	Ti	Mn	Fe	Total
Spectrum 1	Yes	47.91	0.40	5.80	6.71	17.00	6.32		1.67		14.20	100.00
Spectrum 2	Yes	44.11	0.00	6.21	6.97	17.34	7.48		2.02	0.33	15.54	100.00
Sum Spectrum	Yes	48.05	0.52	5.40	6.73	17.00	6.20	0.45	1.65	0.22	13.78	100.00
Man		40.05	0.50	0.01	0.07	17.04	7.40	0.45	0.00	0.00	15.54	
Max.		48.05	0.52	6.21	6.97	17.34	7.48	0.45	2.02	0.33	15.54	
Min.		44.11	0.00	5.40	6.71	17.00	6.20	0.45	1.65	0.22	13.78	

Edificio B, Templo Mayor

NC02

Processing option: All elements analysed (Normalised)

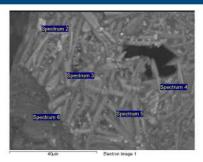
Spectrum	In stats.	С	0	Na	Al	Si	K	Ca	Fe	Total
Spectrum 1	Yes	0.00	58.55	3.62	9.27	23.67	0.95	3.22	0.72	100.00
Spectrum 2	Yes	0.00	57.65	3.57	9.86	23.47	0.93	3.59	0.93	100.00
Mean		0.00	58.10	3.59	9.56	23.57	0.94	3.41	0.83	100.00
Std. deviation		0.00	0.63	0.03	0.42	0.15	0.01	0.26	0.15	
Max.		0.00	58.55	3.62	9.86	23.67	0.95	3.59	0.93	
Min.		0.00	57.65	3.57	9.27	23.47	0.93	3.22	0.72	


All results in weight%

Processing option : All elements analysed (Normalised)

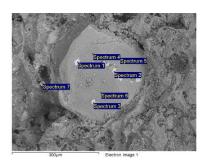
Spectrum	In stats.	С	0	Na	Mg	Al	Si	K	Ca	Fe	Total
Spectrum 1 Spectrum 2	Yes	12.65	49.33		9.85	1.52	19.07	0.39	0.50	6.71	100.00
Spectrum 2	Yes	12.55	47.26	0.71	9.40	1.84	19.28	0.31	0.80	7.85	100.00
Spectrum 3	Yes	0.00	57.40	2.41	0.41	6.04	27.64	2.27	1.65	2.19	100.00
Max.		12.65	57.40	2.41	9.85	6.04	27.64	2.27	1.65	7.85	
Min.		0.00	47.26	0.71	0.41	1.52	19.07	0.31	0.50	2.19	

All results in weight%


Processing option : All elements analysed (Normalised)

Spectrum	In	С	0	Na	Mg	Al	Si	Р	CI	K	Ca	Ti	Mn	Fe	Total
Spectrum	stats	-	O	iva	ivig	Λı	OI .	-	Oi	IX.	Oa	"	IVIII	16	IOIAI
Spectrum 1	Yes	0.00	53.43	1.78	4.10	3.36	15.52	0.51		0.45	2.43	5.24	0.00	13.19	100.00
Spectrum 2	Yes	0.00	58.30	3.41	1.17	5.27	14.83	0.38	0.16	0.86	1.81	5.60		8.23	100.00
Spectrum 3	Yes	11.48	59.25	1.26	1.87	2.29	9.55	0.62		0.50	9.35	0.82	0.00	2.99	100.00
Spectrum 4	Yes	7.47	50.09	1.10	1.87	2.36	8.87	0.00		0.51	0.93	11.10	0.00	15.70	100.00
Spectrum 5	Yes		51.53	3.94	2.77	7.51	24.51			0.88	3.22	0.38		5.27	100.00
Spectrum 6	Yes	0.00	50.74	4.27	0.63	9.32	25.47			1.66	4.66	0.51		2.74	100.00
Spectrum 7	Yes		57.76	3.73	0.97	7.54	23.57	0.30		1.56	2.56	0.37		1.63	100.00
Sum Spectrum	Yes	4.87	54.61	2.79	1.73	5.96	19.80	0.48		1.17	3.62	0.83	0.10	4.03	100.00
Max.		11.48	59.25	4.27	4.10	9.32	25.47	0.62	0.16	1.66	9.35	11.10	0.10	15.70	
Min.		0.00	50.09	1.10	0.63	2.29	8.87	0.00	0.16	0.45	0.93	0.37	0.00	1.63	
	1														

Edificio B, Templo Mayor


ND02

Processing option : All elements analysed (Normalised)

Spectrum	In stats	C 	0	Na	Mg	Al	Si	Р	CI	K	Ca	Ti	Mn	Fe	Total
Sum Spectrum	Yes	7.00	52.41	2.82	1.96	5.84	20.09	0.45	0.24	1.44	3.22	0.49		4.06	100.00
Spectrum 2	Yes		49.37	2.15	2.39	3.81	13.38	1.11		0.48	3.00	9.43		14.88	100.00
Spectrum 3	Yes	11.27	53.94	1.10	5.94	2.07	15.72	0.55	0.30	0.84	2.10	0.28		5.88	100.00
Spectrum 4	Yes	0.00	45.35	2.30	1.34	7.46	24.41	0.71	0.00	2.41	6.83	0.89		8.31	100.00
Spectrum 5	Yes	0.00	56.84	3.73	0.40	7.37	25.76		0.15	2.35	1.74	0.18	0.00	1.47	100.00
Spectrum 6	Yes		58.12	3.62	0.27	11.39	20.19			0.42	4.71	0.20		1.09	100.00
Max.		11.27	58.12	3.73	5.94	11.39	25.76	1.11	0.30	2.41	6.83	9.43	0.00	14.88	
Min.		0.00	45.35	1.10	0.27	2.07	13.38	0.45	0.00	0.42	1.74	0.18	0.00	1.09	

All results in weight%

Processing option : All elements analysed (Normalised)

Spectrum	In stats.	С	0	Na	Mg	Al	Si	K	Ca	Ti	Cr	Mn	Fe	Total
_														
Spectrum 1	Yes	5.07	49.89	1.89	4.29	6.20	10.79	0.32	1.54	1.16	5.54		13.30	100.00
Spectrum 2	Yes	0.00	28.18	1.56	7.26	3.01	11.06	0.00	1.10	2.42	13.75		31.66	100.00
Spectrum 3	Yes		36.48	0.78	7.29	4.30	7.58	0.27	0.54	2.31	11.77		28.69	100.00
Spectrum 4	Yes	6.03	47.93	0.56	16.09	1.77	17.41	0.22	0.79			0.27	8.93	100.00
Spectrum 5	Yes		43.78	0.80	17.99	2.00	20.65	0.34	1.11			0.00	13.32	100.00
Spectrum 6	Yes	6.30	49.88		17.23	1.03	16.34	0.27	0.46			0.21	8.28	100.00
Spectrum 7	Yes	0.00	47.68	2.96	4.20	6.03	19.82	0.89	2.68	0.66			15.08	100.00
Max.		6.30	49.89	2.96	17.99	6.20	20.65	0.89	2.68	2.42	13.75	0.27	31.66	
Min.		0.00	28.18	0.56	4.20	1.03	7.58	0.00	0.46	0.66	5.54	0.00	8.28	

Edificio B, Templo Mayor

FORMAT JEOL/EO VERSION 1.0 OPERATOR Dr Manuel E.Espinosa Pesqueira INSTRUMENT JSM-6610 ACCEL_VOLT 20

Muestra	Magnificación	Posición X	Posición Y	Posición Z	Posición R	Marcador	Tamaño del spo	Vacio
EC02	400	16.168	-13.398	17.538	0.003	50 <i>f</i> Êm	40	50
EC02	400	16.098	-13	17.538	0.003	50 <i>f</i> Êm	40	50
EC02	400	16.098	-13	17.538	0.003	50 <i>f</i> Êm	40	50
EC02	1000	16.622	-12.478	17.538	0.003	10 <i>f</i> Êm	40	50
EC02	50	17.416	-14.627	17.538	0.003	500 <i>f</i> Êm	40	50
EC02	200	17.416	-14.627	17.538	0.003	100 <i>f</i> Êm	40	50
EC02	200	17.416	-14.627	17.538	0.003	100 <i>f</i> Êm	40	50
ED04	30	16.024	-16.55	19.107	0.003	500 <i>f</i> Êm	40	48
ED04	100	16.289	-16.659	19.107	0.003	100 <i>f</i> Êm	40	50
ED04	400	15.986	-16.668	19.107	0.003	50 <i>f</i> Êm	40	50
ED04	80	15.004	-16.955	19.107	0.003	200 <i>f</i> Êm	40	50
ED04	200	14.936	-17.001	19.107	0.003	100 <i>f</i> Êm	40	50
ED04	500	14.871	-16.987	19.107	0.003	50 <i>f</i> Êm	40	50
ED04	500	14.871	-16.987	19.107	0.003	50 <i>f</i> Êm	40	50
EG05-1	75	16.417	-14.783	15.094	359.994	200 <i>f</i> Êm	40	45
EG05-10	850	15.47	-21.352	15.094	359.994	20 <i>f</i> Êm	40	45
EG05-2	200	16.403	-14.96	15.094	359.994	100 <i>f</i> Êm	40	45
EG05-3	370	16.585	-15.069	15.094	359.994	50 <i>f</i> Êm	40	45
EG05-4	50	19.779	-18.261	15.094	359.994	500 <i>f</i> Êm	40	45
EG05-5	90	19.918	-18.291	15.094	359.994	200 <i>f</i> Êm	40	45
EG05-6	85	15.698	-21.336	15.094	359.994	200 <i>f</i> Êm	40	45
EG05-7	220	15.349	-21.175	15.094	359.994	100 <i>f</i> Êm	40	45
EG05-8	500	15.276	-21.196	15.094	359.994	50 <i>f</i> Êm	40	45
EG05-9	850	15.463	-21.338	15.094	359.994	20 <i>f</i> Êm	40	45
EG05-11	220	16.755	-19.59	15.094	359.994	100 <i>f</i> Êm	40	45
EG05-12	90	16.755	-19.59	15.094	359.994	200 <i>f</i> Êm	40	45
EG07-B1	30	22.728	-14.308	17.623	0.003	500 <i>f</i> Êm	40	45
EG07-B2	100	22.889	-14.105	17.623	0.003	100 <i>f</i> Êm	40	45
EG07-B3	500	23.264	-14.187	17.623	0.003	50 <i>f</i> Êm	40	45
EG07-B4	250	23.264	-14.187	17.623	0.003	100 <i>f</i> Êm	40	45
EG07-B5	250	23.264	-14.187	17.623	0.003	100 <i>f</i> Êm	40	45
EG07-B6	200	26.097	-14.867	17.623	0.003	100 <i>f</i> Êm	40	45
EG07-B7	95	26.097	-14.867	17.623	0.003	200 <i>f</i> Êm	40	45
EG07-C1	650	-6.037	12.292	14.921	0.003	20 <i>f</i> Êm	40	50
EG07-C2	650	-6.037	12.292	14.921	0.003	20 <i>f</i> Êm	40	50
EG07-1	30	1.243	10.376	12.965	0.003	500 <i>f</i> Êm	40	45
EG07-2	2000	1.134	10.907	12.965	0.003	10 <i>f</i> Êm	40	45

Edificio B, Templo Mayor

Muestra	Magnificación	Posición X	Posición Y	Posición Z	Posición R	Marcador	Tamaño del spot	Vacio
EG07-3	500	1.36	9.102	12.965	0.003	50 <i>f</i> Êm	40	45
EG07-4	1000	1.36	9.102	12.965	0.003	10 <i>f</i> Êm	40	45
EG07-5	1500	-6.693	12.927	12.965	0.003	10 <i>f</i> Êm	40	45
EG07-6	1500	-6.693	12.927	12.965	0.003	10 <i>f</i> Êm	40	45
EG07-1-INT	30	22.728	-14.308	17.623	0.003	500 <i>f</i> Êm	40	45
NA07-1	50	-19.499	-14.929	15.094	359.994	500 <i>f</i> Êm	40	45
NA07-2	500	-19.502	-15.451	15.094	359.994	50 <i>f</i> Êm	40	45
NA07-3	500	-19.502	-15.451	15.094	359.994	50 <i>f</i> Êm	40	45
NA07-4	200	-18.398	-15.754	15.094	359.994	100 <i>f</i> Êm	40	45
NA07-5	200	-18.398	-15.754	15.094	359.994	100 <i>f</i> Êm	40	45
NA07-6	50	-21.706	-15.619	15.094	359.994	500 <i>f</i> Êm	40	45
NA07-7	50	-21.706	-15.619	15.094	359.994	500 <i>f</i> Êm	40	45
NA07-8	120	-25.154	-16.389	15.094	359.994	100 <i>f</i> Êm	40	45
NA07-9	30	-24.393	-16.303	15.094	359.994	500 <i>f</i> Êm	40	45
NA07-10	50	-15.928	-14.99	15.094	359.994	500 <i>f</i> Êm	40	45
NA07-11	75	-15.772	-14.946	15.094	359.994	200 <i>f</i> Êm	40	45
NC01-1	200	-14.957	3.338	15.798	0.003	100 <i>f</i> Êm	40	50
NC01-2	75	14.673	-17.262	17.623	0.003	200 <i>f</i> Êm	40	45
NC01-3	150	13.747	-17.043	17.623	0.003	100 <i>f</i> Êm	40	45
NC01-4	300	13.591	-16.98	17.623	0.003	50 <i>f</i> Êm	40	45
NC01-5	500	13.537	-17.211	17.623	0.003	50 <i>f</i> Êm	40	45
NC01-6	500	13.537	-17.211	17.623	0.003	50 <i>f</i> Êm	40	45
NC01-7	500	13.537	-17.211	17.623	0.003	50 <i>f</i> Êm	40	45
NC01-8	500	13.537	-17.211	17.623	0.003	50 <i>f</i> Êm	40	45
NC01-9	2000	13.54	-17.206	17.623	0.003	10 <i>f</i> Êm	40	45
NC01-Monocristal	200	-14.957	3.338	15.798	0.003	100 <i>f</i> Êm	40	50
NC02-1	50	-25.715	-14.368	17.623	0.003	500 <i>f</i> Êm	40	45
NC02-2	150	-25.191	-14.448	17.623	0.003	100 <i>f</i> Êm	40	45
NC02-3	400	-23.713	-15.644	17.623	0.003	50 <i>f</i> Êm	40	45
ND02-1	27	20.193	11.733	17.623	0.003	500 <i>f</i> Êm	40	45
ND02-2	250	20.193	11.733	17.623	0.003	100 <i>f</i> Êm	40	41
ND02-3	500	20.228	11.731	17.623	0.003	50 <i>f</i> Êm	40	43
ND02-4	1000	20.228	11.731	17.623	0.003	10 <i>f</i> Êm	40	45
ND02-5	1500	20.27	11.461	16.512	359.994	10 <i>f</i> Êm	40	50
ND02-6	1500	20.27	11.461	16.512	359.994	10 <i>f</i> Êm	40	50
ND02-7	200	20.284	12.334	16.512	359.994	100 <i>f</i> Êm	40	50

Instituto Nacional de Investigaciones Nucleares

Carretera México-Toluca S/N, La Marquesa, Edo. México.

