
Universidad Autónoma de San Luis Potośı
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Abstract

This thesis shows that the following statements are equivalent:

1. There is a hidden-variable model based on Local Realism for the experiment.

2. The experiment supports a local-realistic boolean probability algebra.

3. Correlation Function for the experiment satisfies Bell-CHSH inequalities.

The equivalence is obtained by algebraic methods. In particular, this work gives a
merely algebraic proof of Bell-CHSH inequality.
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Introduction

From the publication of Bell’s Theorem in 1965 [1], which states that no theory in-
volving locality and realism can reproduce the same statistical predictions of Quantum
Mechanics for the Bohm-EPR Experiment [2], [3], criteria to test the local-realistic char-
acter of this system have been sought.

The first attempt to classically explain this experiment were the hidden-variable phys-
ical models, which emphasized the production process. Bell proposed a Correlation Func-
tion for these models [1], which introduced a probability density function and a phase
space that fitted a boolean probability algebra.

Years later, Clause, Horne, Shimony and Holt (CHSH) showed that this Correlation
Function satisfies the well-known Bell-CHSH inequality [4], which is a necessary [4] and
sufficient [5] criterion to test the local-realistic character of the aforementioned experiment.

Then, the equivalence between the boolean probability algebra supported by the exper-
iment and Bell-CHSH inequality passed through the existence of hidden-variables, which
made them the essential part of the problem.

The aim of this thesis is to find the direct equivalence between the local-realistic
boolean probability algebra supported by the experiment and Bell-CHSH inequality. This
is achieved by means of a merely algebraic proof of this inequality. In addition, it is shown
that regardless of the production process, as long as it is real and local, the probabilities
involved by any hidden-variable physical model correspond to those ones of a local-realistic
boolean probability algebra.

In this way, the equivalence among the hidden-variable models, the boolean probabil-
ity algebra supported by the experiment and Bell-CHSH inequality is obtained by using
algebraic methods, thus showing that the essential part of the problem lies on the prob-
ability algebra supported by the experiment and not on the hidden-variables nor on the
production process.

This thesis is divided in four chapters. Chapter 1 comprise the Bohm-EPR experiment,
the hidden-variable physical models, Bell´s Theorem and the analytic proof of Bell-CHSH
inequality; Chapter 2 contains the construction of the local-realistic boolean probability
algebra for the experiment; Chapter 3 is the merely algebraic proof of Bell-CHSH inequality
and finally Chapter 4 shows the equivalence between the hidden-variable physical models
and the local-realistic boolean probability algebras supported by the experiment.
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Chapter 1

The Bohm-EPR experiment

The aim of this chapter is to explain the Bohm-EPR experiment [2], [3] and to in-
troduce the local-realistic hidden-variable physical models, and from these ones to obtain
Bell-CHSH inequality [4], which is a necessary [4] and sufficient [5] criterion to test the
local-realistic character of this experiment.

1.1 Description of the Bohm-EPR experiment [2], [3], [6]

Consider an ensemble of pairs of spin- 1
2 particles in singlet spin state moving freely

in opposite direction from the source that produced them. Measurements of the particle
1 are made by the observer Alice and measurements of the particle 2 are made by the
observer Bob. They both have a Stern-Gerlach (SG) apparatus and a detector (see Figure
1.1). Together, observer, SG apparatus and detector, form a subsystem, or site, which
will be denoted as A for Alice’s system and B for Bob’s system. Hence, we will say that
measurements of particle 1 are made at site A and measurements of particle 2 are made
at site B.

SG apparatus are oriented in directions ~a and ~b for sites A and B, respectively. The
detectors used for counting particles have, in turn, two outcome channels, labelled as +1
and −1 (see Figure 1.1).

Let us suppose that the results for A and B depend on both SG apparatus choices ~a
and ~b. Then, they will be represented by A(~a,~b) and B(~a,~b), each one equals +1 or −1
depending on whether the first or second channel is selected, i.e.:

A(~a,~b) =

{
+1 if partcile 1 hits channel +1.

−1 if particle 1 hits channel -1.
(1.1.1a)

B(~a,~b) =

{
+1 if partcile 2 hits channel +1.

−1 if particle 2 hits channel -1.
(1.1.1b)

Thus, in a single run we can obtain one of the following four results (simple events):
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Figure 1.1: Description of the experiment. a) A pair of spin- 1
2

particles in singlet spin state is
moving freely in opposite direction from the source that produced them. Each one will travel towards a
Stern-Gerlach (SG) apparatus, which is oriented in the direction ~a for site A and in the direction ~b for site
B. Finally, measurements are made by detectors with two outcomes. Depending on the orientation of the
SG apparatus, one of the two outcomes will be activated: +1 (green light in the picture) or −1 (red light in
the picture), assigning such value to the measurement of A or B, as required. b) We illustrate the particular

case when the chosen direction for any SG apparatus is ẑ (i.e., ~a or ~b = ẑ). c) Same case, but now the

chosen orientation is x̂ (i.e., ~a or ~b = x̂).

(A(~a,~b) = +1, B(~a,~b) = +1) , (1.1.2a)

(A(~a,~b) = +1, B(~a,~b) = −1) , (1.1.2b)

(A(~a,~b) = −1, B(~a,~b) = +1) , (1.1.2c)

(A(~a,~b) = −1, B(~a,~b) = −1) . (1.1.2d)

Furthermore, for a particular measurement, we will say that a pair of particles has a
positive correlation if they both choose the same channel, and a negative correlation if
they both choose a different channel. In other words:

A(~a,~b)B(~a,~b) =

{
+1 for a positive correlation.

−1 for a negative correlation.
(1.1.3)
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Due to the fact that the former product only has two possible values (+1 and -1), we
are rather interested in measuring compound events, in particular, those with one of the
following characteristics:

1. A(~a,~b) = B(~a,~b), or

2. A(~a,~b) = −B(~a,~b).

The compound events with these characteristics are the following ones:

εab ≡ (A(~a,~b) = +1, B(~a,~b) = +1) ∨ (A(~a,~b) = −1, B(~a,~b) = −1) , (1.1.4a)

δab ≡ (A(~a,~b) = +1, B(~a,~b) = −1) ∨ (A(~a,~b) = −1, B(~a,~b) = +1) , (1.1.4b)

where ∨ is the usual OR connector.

In this way:

A(~a,~b)B(~a,~b) =

{
+1 for εab.

−1 for δab.
(1.1.5)

Definition 1. Experimental correlation (Mab): is the statistical average of the pro-

duct A(~a,~b)B(~a,~b) after repeating the experiment many times, i.e.:

Mab ≡ A(~a,~b) B(~a,~b) (1.1.6)

Furthermore, as we have that A(~a,~b)B(~a,~b) = {+1,−1}, Mab (1.1.6) has a numerical
value between −1 and +1, i.e., −1 6Mab 6 +1 , where +1 is gotten for a totally correlated
system, while −1 is obtained for a totally anticorrelated system.

It is important to say that Mab (1.1.6) is a value that the experimentalist measures in
the lab. This value, once determined, completely characterizes the correlations system.

According to (1.1.6), we must count how many times each simple event (1.1.2), or
rather, each compound event (1.1.4), occurs when we perform the experiment many times,
i.e., we must find the frequencies for each of these events. Then, the frequencies for εab
and δab are given by:

fεab
≡ number of times that εab is obtained

number of total runs
(1.1.7a)

fδab
≡ number of times that δab is obtained

number of total runs
(1.1.7b)

Thereby, we have the following relation between the experimental correlation Mab

(1.1.6) and the frequencies fεab
and fδab

(1.1.7):

Mab = fεab
− fδab

(1.1.8)
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Then, as it is well known, we can associate these frequencies with probabilities in such
a way that we can get a probabilistic model capable to predict the experimental value
Mab. Thus, the task is now finding such a probability distribution.

1.2 Classical description of the Bohm-EPR experiment

1.2.1 Realism and Locality Hypotheses

The first probabilistic model we present is that one suggested by EPR [2]. They said
that the probability distribution for this problem should be given by any model based on
two important hypotheses: Realism and Locality.

Hypothesis 1. Realism. Each time a particular run is performed, the values for A(~a,~b)

and B(~a,~b) that correspond to each of the directions ~a and ~b are determined, although they

are not measured. In other words, for every experimental run the assignation {~a,~b} 7−→
{A(~a,~b), B(~a,~b)} is done for all the values of ~a and ~b.

A way (and for many years the only one) to establish the realism into the problem is
through a deterministic description, known as hidden-variable model, which says
that a complete specification of the system is effected by means of a parameter (or set of
parameters) λ, named hidden-variable. This λ is information (emphatically not quan-
tum mechanics) carried by and localized within each particle, and it was originated when
the particles constituting one pair were in contact and communication regarding this in-
formation. If we were able to determine λ, we could know the values of A(~a,~b) and

B(~a,~b) for any choice of ~a and ~b for particular measurements, avoiding in this way the
statistical behaviour of Quantum Mechanics. In this model, the map is described as

{~a,~b} λ7−→ {A(λ,~a,~b), B(λ,~a,~b)}; in other words, the assignation of values for A and B

from ~a and ~b is carried out by λ.

The other hypothesis is Locality.

Hypothesis 2. Locality. In the experimental setup of the Bohm-EPR experiment, sites
A and B can arbitrarily be far away from each other, in such a way that there is no
communication between them. Then, the particular orientation of a SG magnet should not
influence the result obtained in the opposite site. Then, we have that A(~a,~b) ≡ A(~a) and

B(~a,~b) ≡ B(~b).

In this chapter we will develop these hypotheses in the same way Bell [1], CHSH [4]
and Fine [7] did. Later on in Chapter 2 we will present a new model based on probabilities
defined over a boolean algebra of events, showing in this manner that λ is not the essential
part of the problem.

1.2.2 Hidden-variable models for the Bohm-EPR experiment

In 1965, Bell [1] found a general way to describe correlations in the Bohm-EPR ex-
periment for any local-realistic hidden-variable physical model. Such a way is known as
Correlation Function.
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Definition 2. The Correlation Function Qab that is consistent with Hypothesis 1 (Re-
alism) and 2 (Localty) has the following form:

Q(~a,~b) =

∫
Γ

A(~a, λ)B(~b, λ)ρ(λ) dλ , (1.2.1)

where ρ is the probability density function of λ and Γ is the λ’s phase-space.

As we can see, ρ is independent of ~a and ~b since the pair of particles is emitted by a
source in a manner physically independent from them.

From now on, it is convenient to use a new nomenclature:

Aa ≡ A(~a, λ) , (1.2.2a)

Bb ≡ B(~b, λ) , (1.2.2b)

Qab ≡ Q(~a,~b) , (1.2.2c)∫
Γ

Aa Bb dρ ≡
∫

Γ

A(~a, λ)B(~b, λ)ρ(λ)dλ . (1.2.2d)

In this notation, we have that the subscript a refers to the orientation of the SG appa-
ratus at site A, while the subscript b refers to the orientation of the SG apparatus at site B.

The Correlation Function Qab (1.2.1) is the prediction for the product of Aa and Bb,
and it only depends on the probability density function ρ, not on the quantum mechanical
state of the pair.

As we can see, Aa and Bb now depend on the parameter λ because we suppose it carries
the information that relates both particles and determines the specific configuration of the
system for individual measurements. In this way, the system would be predetermined by
the common past of the particles. On the other hand, locality is present because Aa does
not depend on ~b, nor Bb on ~a, since the two selections may occur at an arbitrarily great
distance from each other; locality also makes Aa and Bb to be independent functions, i.e.,
we are refusing any kind of dependence Aa(Bb) or Bb(Aa). So, the Correlation Function
Qab defined in the manner (1.2.1) includes every kind of models involving locality and de-
terminism. A different model, a different ρ.

In a complete physical theory, hidden-variables would have dynamical significance and
be subjected to laws of motion; our λ can then be thought of as initial values of these
variables at some suitable instant and ρ would be an invariant probability density.

The following 3-parameter inequality, which was used by Bell in his original article [1],
is an inherent property from the definition of the Correlation Function Qab (1.2.1), which
means it is satisfied by any hidden-variable model consistent with Hypothesis 1 and 2, and
it is totally independent of Quantum Mechanics.

Lemma 1. For every choice of vectors ~a,~b and ~c, and for all ρ, the Correlation Function
Q satisfies the following 3-parameter inequality:∣∣∣Qab −Qac∣∣∣ 6 2 +Qbc +Qbb , (1.2.3)
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Proof. From Definition 2, we have:

Qab =

∫
Γ

Aa Bb dρ , (1.2.4)

where Aa, Bb = {+1,−1}.

Then:

Qab −Qac =

∫
Γ

Aa Bb dρ −
∫

Γ

Aa Bc dρ

=

∫
Γ

Aa Bb
(
1 +Ab Bc

)
dρ −

∫
Γ

Aa Bc
(
1 +Ab Bb

)
dρ ,

(1.2.5)

where ~b and ~c are the orientations of the SG magnet at site B for different experimental
runs.

Making use of the known inequality
∣∣∣ ∫ f(x) dx

∣∣∣ 6 ∫ ∣∣∣f(x)
∣∣∣ dx and of

∣∣∣Aa∣∣∣ = 1, we get:

∣∣∣Qab −Qac∣∣∣ 6 ∫
Γ

∣∣∣Bb (1 +Ab Bc
)
− Bc

(
1 +Ab Bb

)∣∣∣ dρ . (1.2.6)

Knowing that
∣∣x− y∣∣ 6 ∣∣x∣∣+

∣∣y∣∣, where x, y ∈ R, we have:

∣∣∣Qab −Qac∣∣∣ 6 ∫
Γ

∣∣∣Bb (1 +Ab Bc)
∣∣∣ dρ +

∫
Γ

∣∣∣Bc (1 +Ab Bb)
∣∣∣ dρ

= 2 +

∫
Γ

Ab Bc dρ +

∫
Γ

Ab Bb dρ ,

(1.2.7)

where we have used that
∣∣Bb∣∣ =

∣∣Bc∣∣ = 1, and that the quantities in parentheses are never
negative.

Finally, using the definition of the Correlation Function Qab (1.2.1), we obtain:∣∣∣Qab −Qac∣∣∣ 6 2 +Qbc +Qbb , (1.2.8)

which is the expected result.

1.3 Quantum mechanical description of the Bohm-EPR ex-
periment

There is another model to explain the Bohm-EPR experiment based on quantum me-
chanical principles.

In first place, this system consists on spin- 1
2 particles in singlet state, i.e., particles

which vector state is given by:
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|ψ〉 =
1√
2

( |+〉A|−〉B − |−〉A|+〉B ) , (1.3.1)

or, in matrix representation:

|ψ〉 =
1√
2

[(
1
0

)
A

(
0
1

)
B

−
(

0
1

)
A

(
1
0

)
B

]
, (1.3.2)

where the subscript indicates the particle we are referring to.

In the quantum case, instead of A(~a,~b) and B(~a,~b), we are interested in measuring

the c-component of the orientation vector ~σC , where ~c = ~a,~b refers to the direction of the
SG-magnet at site C=A,B, respectively.

From this point of view, the SG apparatus selects a direction to measure on the com-
ponents of the orientation vectors ~σA and ~σB for particles at sites A and B, respectively.
These orientation vectors have as components the Pauli Matrices. Let ~c be a unit vector
that will be ~a for site A and ~b for site B. Then, the c-component of these orientation
vectors ~σ is given by:

~σ · ~c =

(
cz cx − i cy

cx + i cy −cz

)
, (1.3.3)

or:

〈+|~σ · ~c|+〉 = cz , 〈+|~σ · ~c|−〉 = cx − i cy ,

〈−|~σ · ~c|+〉 = cx + i cy , 〈−|~σ · ~c|−〉 = −cz . (1.3.4)

In this case, ~a and ~b are the directions of the components we are measuring in particles
at sites A and B, respectively.

Furthermore, in this quantum model we say that the outcome channels of the detectors
are selected according to the eigenvectors chosen by the SG apparatus.

Theorem 1. The Quantum Correlation Function Rab is given by:

Rab ≡ 〈 ~σA · ~a ~σB ·~b〉 = −~a ·~b , (1.3.5)

where the quantum expectation value is taken with respect to the singlet state (1.3.1).

Proof. Taking the expectation value 〈 ~σA ·~a ~σB ·~b〉 with respect to the singlet state (1.3.1)

and using (1.3.4) with ~c = ~a,~b, we obtain:

〈ψ| ~σA · ~a ~σB ·~b|ψ〉 = −azbz − ayby − axbx = −~a ·~b , (1.3.6)

which is the expected result.
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1.4 Bell’s Theorem

In the previous sections, we have described two very different models to foretell the
measurements of the same experiment. We now compare such predictions to see if they
are compatible for all ~a and ~b for any ρ, independently of the value for Mab obtained in
the experiment. If they do, we then have that Quantum Mechanics can be ”explained” in
terms of Hypothesis 1 and 2 for this particular problem.

In 1965 Bell [1] compared both models and found a specific configuration of parameters

~a and ~b for which is impossible for any ρ that both models predict the same results. In
this way, he showed that, for this particular problem, Quantum Mechanics cannot be
”explained” in terms of any model involving locality and realism. In other words, he
showed that Rab cannot be arbitrarily closely approximated by Qab.

Theorem 2. Bell’s Theorem. There are vectors ~a and ~b such that the quantum me-
chanical expectation value Rab cannot be arbitrarily closely approximated for any ρ by the
local-realistic average Qab.

Proof. Instead of Qab and Rab, let us consider the averages Qab and Rab, where the bar de-
notes independent averaging of Qa′b′ and Ra′b′ over vectors ~a′ and ~b′ within specified small
angles of ~a and~b, which means we average over cones with center in ~a and~b (see Figure 1.2).

Figure 1.2: a) Party A takes the average over a cone centred on the vector ~a. b) Party B takes the

average over a cone centred on the vector ~b.

Then, for all ~a and ~b, and δ > 0, there exist cones coaxial to ~a and ~b such that:∣∣∣Rab −Rab∣∣∣ 6 δ . (1.4.1)

This is a technical step to analyze the dispersion of the values, i.e., how width the cone
over which we average is. Averages are taken over sets of positive size to avoid individual
measurements and work with mean values (a individual measurement has size or proba-
bility zero).

The proof proceeds by contradiction.

Suppose that for every choice of vectors ~a and ~b, and for every ε > 0, there is a ρ and
a δ > 0 for which:
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∣∣∣Qab −Rab∣∣∣ 6 ε . (1.4.2)

This expression is to compare the predictions of both models: we want to see how far
the mean values predicted by each model are. We will show that there are vectors ~a and
~b for which (1.4.2) is not true for every ε > 0.

The difference between expressions (1.4.1) and (1.4.2) is that, while the first one as-

sumes the existence of cones coaxial to ~a and ~b for every δ, the second one assumes the
existence of δ and ρ for every ε > 0.

Adding (1.4.1) and (1.4.2), and using the triangle inequality we get:∣∣∣Qab −Rab∣∣∣ 6 ε+ δ . (1.4.3)

It is specially important the case ~a = ~b. So, making ~a = ~b in (1.4.3), we obtain:

Qbb + 1 6 ε+ δ . (1.4.4)

Coming back to (1.4.3), let us express it in a different form:

−(ε+ δ) 6 Qab −Rab 6 (ε+ δ)

−(ε+ δ) +Rab 6 Qab 6 (ε+ δ) +Rab .
(1.4.5)

In a similar way:

−(ε+ δ) +Rac 6 Qac 6 (ε+ δ) +Rac . (1.4.6)

Multiplying (1.4.6) by (-1):

−(ε+ δ)−Rac 6 −Qac 6 (ε+ δ)−Rac . (1.4.7)

Adding (1.4.5) and (1.4.7):

−2(ε+ δ) + (Rab −Rac) 6 Qab −Qac 6 2(ε+ δ) + (Rab −Rac)∣∣∣(Rab −Rac)− (Qab −Qac)∣∣∣ 6 2(ε+ δ) .
(1.4.8)

Using the relation
∣∣x∣∣− ∣∣y∣∣ 6 ∣∣x− y∣∣, where x, y ∈ R, we get:∣∣∣Rab −Rac∣∣∣− ∣∣∣Qab −Qac∣∣∣ 6 2(ε+ δ) . (1.4.9)

From here:
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∣∣∣Rab −Rac∣∣∣− 2(ε+ δ) 6
∣∣∣Qab −Qac∣∣∣ . (1.4.10)

On the other hand, from (1.4.5), making a −→ b and b −→ c, we have:

Qbc 6 (ε+ δ) +Rbc . (1.4.11)

Furthermore, from Lemma 1 (1.2.3), it turns out that:∣∣∣Qab −Qac∣∣∣ 6 2 +Qbc +Qbb , (1.4.12)

which is an inherent property from the definition of the Correlation Function Qab (1.2.1).

Substituting (1.4.4) in this expression we get:∣∣∣Qab −Qac∣∣∣ 6 1 +Qbc + ε+ δ . (1.4.13)

Replacing (1.4.10) and (1.4.11) in this equation, we obtain.∣∣∣Rab −Rac∣∣∣−Rbc − 1 6 4(ε+ δ) . (1.4.14)

Finally, making Rab = −~a ·~b (1.3.5), we get:∣∣∣~a ·~b− ~a · ~c∣∣∣+~b · ~c− 1 6 4(ε+ δ) . (1.4.15)

For example, if ~a · ~c = 0, ~a ·~b = ~b · ~c = 1√
2
, we have:

√
2− 1 6 4(ε+ δ) , (1.4.16)

which is independent of ρ.

Therefore, for arbitrarily small finite δ, ε cannot arbitrarily be small. It means that
(1.4.2) is not true for values of ε such that:

ε <

√
2− 1

4
, (1.4.17)

whatever the local-realistic state ρ is.

In this way, Bell found a specific experimental setup such that the predicted results

from any local-realistic hidden-variable physical model differ at least by
√

2−1
4 from those
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predicted by Quantum Mechanics.

Thus, the quantum mechanical expectation value Rab cannot be represented either ac-
curately or arbitrarily closely by the local-realistic average Qab.

1.5 Testing hidden-variables

So far, we have just showed that the results predicted by the local-realistic Correlation
Function Qab differ for some ~a and ~b from the quantum mechanical expectation value Rab,
but we have said nothing about which model is correct.

In 1969, Clauser, et al. (CHSH) [4] found the following necessary [4] and sufficient
[5] condition for any local-realistic hidden-variable model for this experiment, which also
is a test to experimentally verify if this particular problem can be explained in terms of
realism and locality.

For simplicity, from now on we will make reference to the vectors that represent the
orientation of the SG magnets as parameters of the experiment.

Theorem 3. Bell-CHSH inequality. For any choice of parameters a, b, c and d, and
for all ρ, the Correlation Function Q satisfies the following 4-parameter inequality:∣∣Qab −Qac∣∣+Qdb +Qdc 6 2 . (1.5.1)

Proof. From Definition 2 (1.2.1)∣∣∣Qab −Qac∣∣∣ =
∣∣∣ ∫

Γ

(Aa Bb −Aa Bc) dρ
∣∣∣ . (1.5.2)

Due to the known inequality
∣∣∣ ∫ f(x)dx

∣∣∣ 6 ∫ ∣∣∣f(x)
∣∣∣dx, we have that:

∣∣∣Qab −Qac∣∣∣ 6 ∫
Γ

∣∣∣Aa Bb −Aa Bc∣∣∣ dρ
6
∫

Γ

∣∣∣Aa Bb∣∣∣(1−Bb Bc
)
dρ

6
∫

Γ

(
1−Bb Bc

)
dρ

6 1 −
∫

Γ

Bb Bc dρ ,

(1.5.3)

where we have used the fact that Bb
2 = 1 and that

∣∣∣Aa Bb∣∣∣ = 1.
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Thus: ∣∣∣Qab −Qac∣∣∣ 6 1−
∫

Γ

Bb Bc dρ . (1.5.4)

Notice that the left hand side of (1.5.4) depends on a, while the right hand side does not.

On the other hand, let us now divide Γ into two regions Γ+ and Γ− such that:

Γ± ≡
{
λ
∣∣Ad = ±Bb

}
. (1.5.5)

As we can see, Γ+ and Γ− are disjoint subsets of the phase space, with the property
that Γ+ ∪ Γ− = Γ.

Then, using (1.5.5) and the properties of the probability distribution functions, we get:

∫
Γ

Bb Bc dρ =

∫
Γ+

Bb Bc dρ +

∫
Γ−

Bb Bc dρ

=

∫
Γ+

Ad Bc dρ −
∫

Γ−

Ad Bc dρ

=

∫
Γ

Ad Bc dρ − 2

∫
Γ−

Ad Bc dρ .

(1.5.6)

The first term of the right hand side of the last equation corresponds to Qdc, while for
the second one we have that:∫

Γ−

Ad Bc dρ 6
∫

Γ−

∣∣Ad Bc∣∣ dρ 6
∫

Γ−

dρ , (1.5.7)

where we have used again the relation
∣∣∣ ∫ f(x)dx

∣∣∣ 6 ∫ ∣∣∣f(x)
∣∣∣dx and that

∣∣∣Ad Bc∣∣∣ = 1.

In this way, we get: ∫
Γ

Bb Bc dρ > Qdc − 2

∫
Γ−

dρ . (1.5.8)

On the other hand, from the properties of the probability distribution functions, we
have that: ∫

Γ

dρ =

∫
Γ+

dρ +

∫
Γ−

dρ = 1 . (1.5.9)

From here: ∫
Γ+

dρ = 1 −
∫

Γ−

dρ . (1.5.10)
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Moreover, using again (1.5.5), we obtain:

Qdb =

∫
Γ

Ad Bb dρ

=

∫
Γ+

Ad Bbdρ +

∫
Γ−

Ad Bb dρ

=

∫
Γ+

Bb Bb dρ −
∫

Γ−

Bb Bb dρ

=

∫
Γ+

dρ −
∫

Γ−

dρ .

(1.5.11)

Substituting (1.5.10) in the last equation, we get:

Qdb = 1 − 2

∫
Γ−

dρ . (1.5.12)

Furthermore, we can express Qdb in a different way:

Qdb = −1 + γ , (1.5.13)

where γ is a parameter such that 0 6 γ 6 2 (γ = 0 for a totally anticorrelated system
and γ = 2 for a totally correlated system).

Equating (1.5.12) and (1.5.13) we obtain:∫
Γ−

dρ = 1− γ

2
. (1.5.14)

Replacing this expression in (1.5.8), we get:∫
Γ

Bb Bc dρ > Qdc + γ − 2 . (1.5.15)

Substituting γ from (1.5.13) in this expression, we have that:∫
Γ

Bb Bc dρ > Qdc +Qdb − 1 . (1.5.16)

Finally, replacing this equation in (1.5.4), we obtain:∣∣Qab −Qac∣∣+Qdb +Qdc 6 2 (1.5.17)

which is the expected result.
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We developed this inequality directly from the definition of the Correlation Function
Qab (1.2.1). Thus, if it is verified in the experiment, we will have shown that there is any
model involving locality and realism for this particular problem; otherwise, we will have
shown that such a model does not exist.

This step is a great achievement because the Correlation Function Qab includes any
hidden-variable physical model involving locality and realism.

A fundamental difference between this last inequality (1.5.1) and that one founded by
Bell (1.2.3) is that this one is a 4-parameter inequality, while the other one only depends
on 3.

In this chapter Bell-CHSH inequality was gotten by assuming the existence of hidden-
variables. Later on in Chapter 3 we will give a merely algebraic proof of this inequality,
showing that the essential part of the problem lies on the probability algebra of the exper-
iment and not on the hidden-variables.
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Chapter 2

Boolean algebras and local realism

The aim of this chapter is to show that Bohm-EPR experiment supports a local-realistic
boolean probability algebra for the first non-trivial case (2 measurement parameters per
site).

In this new approach, Aa and Bb refer only to A(~a) and B(~b) and not to A(~a, λ) and

B(~b, λ) any more because they do not make reference to any hidden variable.

In addition, from now on we will use for simplicity the following nomenclature for the
simple events from (1.1.2):

(+1,+1)ab ≡ (Aa = +1, Bb = +1) (2.0.1a)

(+1,−1)ab ≡ (Aa = +1, Bb = −1) (2.0.1b)

(−1,+1)ab ≡ (Aa = −1, Bb = +1) (2.0.1c)

(−1,−1)ab ≡ (Aa = −1, Bb = −1) (2.0.1d)

2.1 Boolean algebra for the case of one observable per site

2.1.1 Realism Hypothesis

In section 1.1 we talked about the Bohm-EPR experiment and the four simple events
that it is possible to get in a single run of it when we only consider one measurement
parameter per site (1.1.2). We have not said, however, at what point particles decide to
adopt these values.

Let us assume that the values particles acquire are determined at the moment of parti-
cle’s production and not at the measurement moment, in such a way that the information
remained within them and would be there even if the measurement was never carried out.
Under this assumption, it is possible to say that this information is a particles’ inherent
property, giving rise to the following hypothesis:

Hypothesis 3. Realism. Particles emitted from the source carry within them the infor-
mation to be measured. It is so, even if not measured.

So, under this hypothesis, an event is the manifestation of a property that the pair
of particles got at the time of production. In this way, Aa and Bb are the result of some
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inherent properties of the particles.

2.1.2 Important events

The objective of the Bohm-EPR experiment is to measure correlations, which implies
measuring the properties of both particles simultaneously. Thereby, a simple, elementary
or atomic event consists in the simultaneous measurement of Aa and Bb, which measured
values are actually the properties gotten by the pair of particles at the time of production.

The four simple events for this experiment along with the value of the properties Aa
and Bb measured on them are shown in Table 2.1.

Simple event Aa Bb
G1 = (+1,+1)ab +1 +1
G2 = (+1,−1)ab +1 −1
G3 = (−1,+1)ab −1 +1
G4 = (−1,−1)ab −1 −1

Table 2.1: Simple events and values of the properties Aa and Bb measured on them.

Each of these events corresponds to a function f assigned during production process,
that goes from the pair of measurement options s = (sA, sB) to the pair of possible results
v = (vA, vB) in such a way that:

f : s = (sA, sB) 7−→ v = (vA, vB) (2.1.1)

where sA = a and sB = b designate the measurement options at sites A and B, respectively,
while that vA = {+1,−1} and vB = {+1,−1} are the possible values to be measured at
sites A and B, respectively.

From these events it is possible to get the sample space for this experiment, denoted
as Ωab:

Ωab =
{

(+1,+1)ab, (+1,−1)ab, (−1,+1)ab, (−1,−1)ab

}
(2.1.2)

The boolean algebra of events (BAE) for this system is constructed from the four events
of the sample space Ωab. For such a reason, we will denote this BAE as B(Ωab), which is
an algebra of order 4, and it will have, therefore, 24 = 16 events. These events are gotten
by using the operation conjunction (AND, ∧) and disjunction (OR, ∧) over the elementary
events of this algebra.

The properties of any BAE and the complete list of events of B(Ωab) are shown in the
Appendix.

Like any BAE, the elementary events of B(Ωab) have the following properties:
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i) G1 ∨G2 ∨G3 ∨G4 = Iab (2.1.3a)

ii) Gi ∧Gj =

{
Gi if i = j, with i, j = 1, 2, 3, 4

∅ab if i 6= j, with i, j = 1, 2, 3, 4
(2.1.3b)

where Iab and ∅ab are the certain and impossible events, respectively, of B(Ωab).

Our interest is in measuring the properties particles carry with them. So, it is natural
identifying events on which individual properties of each particle are measured. Such
events receive the name of marginal events and, along with the individual property
measured on them, which appears in parentheses, are presented below:

(+1, Ib)ab ≡ (+1,+1)ab ∨ (+1,−1)ab = G1 ∨G2 (Aa = +1) (2.1.4a)

(−1, Ib)ab ≡ (−1,+1)ab ∨ (−1,−1)ab = G3 ∨G4 (Aa = −1) (2.1.4b)

(Ia,+1)ab ≡ (+1,+1)ab ∨ (−1,+1)ab = G1 ∨G3 (Bb = +1) (2.1.4c)

(Ia,−1)ab ≡ (+1,−1)ab ∨ (−1,−1)ab = G2 ∨G4 (Bb = −1) (2.1.4d)

However, what we are really interested in measuring is the correlation between parti-
cles. Therefore, it is more convenient to measure a property involving both particles.

So, from all the events of B(Ωab), only two of them are connected with the correlation
between the pairs of particles since they tell us whether properties Aa and Bb have or not
the same value. Such events (1.1.4) are the following:

εab ≡(+1,+1)ab ∨ (−1,−1)ab = G1 ∨G4 (Aa = +Bb) (2.1.5a)

δab ≡(+1,−1)ab ∨ (−1,+1)ab = G2 ∨G3 (Aa = −Bb) (2.1.5b)

Measuring correlations involves measuring properties from two particles. For this rea-
son, it is more convenient to use the value of the product AaBb as property of the pair of
particles to measure during the experimental runs. So, it is possible to see that for the
event εab the product AaBb takes the value +1 while for the event δab it acquires the value
−1.

Given that εab and δab are related with the value of the product AaBb, they will be
named product events.

This kind of event is what we are really interested in measuring during a experimental
run because they help us to get the mean value of AaBb, which gives us, according to
(1.1.6), the complete description of the correlations system.

An important property of the pair of product events {εab, δab} is that they are com-
plementary events, i.e., δ′ab = εab and ε′ab = δab. It can be easily verified by using (2.1.3)
and (2.1.5).

In Table 2.2 we show the product events, their equivalence in atomic events and the
value of the property AaBb measured on them.
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Product event Equivalence in atomic events AaBb
εab (+1,+1)ab ∨ (−1,−1)ab G1 ∨G4 +1
δab (+1,−1)ab ∨ (−1,+1)ab G2 ∨G3 −1

Table 2.2: Product events, their equivalence in atomic events and the value of the property AaBb
measured on them.

2.1.3 The probability algebra < B(Ωab), P >

The BAE B(Ωab), together with the Probability Function P , form a probability alge-
bra, denoted as < B(Ωab), P >. A fuller explanation about probability algebras is given
in Appendix C.

In such an algebra, a probability to happen is assigned to each of the events, specially
to the atomic ones.

As we are interested in measuring correlations, we must find this occurrence probability
for the product events εab and δab.

In this way:

i) P
(
εab
)

= P
(
(+1,+1)ab ∨ (−1,−1)ab

)
= P

(
(+1,+1)ab

)
+ P

(
(−1,−1)ab

)
= P

(
G1

)
+ P

(
G4

) (2.1.6)

and

ii) P
(
δab
)

= P
(
(+1,−1)ab ∨ (−1,+1)ab

)
= P

(
(+1,−1)ab

)
+ P

(
(−1,+1)ab

)
= P

(
G2

)
+ P

(
G3

) (2.1.7)

where we have used in both cases (2.1.3b) and the properties of the Probability Function P .

Before finishing this section, it is important to say that thanks to the probability algebra
< B(Ωab), P > it is possible to find a realistic model for the experimental correlation
Mab (1.1.8) through the following definition:

Definition 3. According to the probability algebra < B(Ωab), P >, the Correlation
Function Qab, which predicts the value for the experimental correlation Mab (1.1.8),
is given by:

Qab = P
(
εab
)
− P

(
δab
)

(2.1.8)

Qab is, in this way, a prediction for the experimental value Mab (1.1.8).
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2.2 Boolean algebra for the case of two observables per site

2.2.1 Motivation

So far, we have just considered the experimental setup which parameters are a for site
A and b for site B. However, we could equally change the parameters for such sites. In
particular, we are interested in preparing an experimental setup such that the parameter
for site A is still a, but now site B has switched its measurement parameter to c.

For this new experimental setup we have a new BAE, similar to B(Ωab), which sample
space, denoted as Ωac, contains the following simple events:

Ωac =
{

(+1,+1)ac, (+1,−1)ac, (−1,+1)ac, (−1,−1)ac

}
. (2.2.1)

We will refer to this new BAE as B(Ωac), which also forms a probability algebra
< B(Ωac), P >. Both, B(Ωac) and < B(Ωac), P >, have the same properties that B(Ωab)
and < B(Ωab), P >, respectively.

We now want to prepare a experimental setup with two configurations. In the first one,
the parameter to carry out the measurements at site B is b, while in the second configura-
tion is c. These configurations are, however, excluyent, i.e., we can perform measurements
with b or c, but not with both in the same experimental run . For such a reason,
the measurement parameter to be used will be selected randomly in each experimental run.

In order to study such situation, we must construct a more general BAE apt to simulta-
neously describe both configurations, no matter if one of them is not measured. This new
algebra must include any event from B(Ωab) and B(Ωac), and even it should be reduced
to these ones under the appropriate limits.

2.2.2 Construction of the algebra. Realism Hypothesis

As we have already said, we are interested in constructing an algebra apt to describe
a system with two configurations, from which we can measure only in one of them, being
impossible for us to know the information for the not-measured configuration.

Unlike the system having only one measurement parameter per site, where it was known
with certainty what parameter would be used to measure in each site, in this new system it
is impossible for the source that is emitting the particles to know what parameter will be
selected at site B to perform the measurements given that the parameter to be used there
will be chosen randomly. This leads us to extend the Realism Hypothesis stated above.

Hypothesis 4. Realism. Particles emitted from the source must carry within the infor-
mation to be measured for all the possible pairs of parameters to be selected at sites A and
B. It is so, even if the information for one or more pairs of parameters is not measured.

This hypothesis tells us that properties for every configuration are acquired during
production process, and that these ones will be present within the particles even if not
measured.
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For such a reason, we look for an algebra which events are actually a list or set of
properties, one for each system’s configuration.

Given that both configurations are excluyent, an event simply is the manifestation of
a property associated to the configuration where we perform the measurement.

Based on the above, we define the sample space of the algebra we are looking for in
the following way:

Definition 4. Sample space Ωabc. Let Ωab and Ωac be the sample spaces for each
configuration of the system separately. Then, the sample space for the system involving
both configurations, denoted as Ωabc, is defined as:

Ωabc ≡ Ωab
∨

Ωac = Ωac
∨

Ωab =
{
{xab, yab}

∣∣∣xab ∈ Ωab, yac ∈ Ωac

}
(2.2.2)

As {xab, yab} is only a grouping of properties, regardless the order of its elements, it
turns out that {xab, yab} = {yab, xab}.

It is important to clarify that xab and yac are distinct properties because they refer to
different configurations.

Once gotten the sample space Ωabc, it is possible to construct the complete BAE for the
2-configuration system, which will be denoted as B(Ωabc), by adding to Ωabc the operations
conjunction (AND, ∧) and disjunction (OR, ∨). In addition to their usual properties (see
Appendix A), these operations must comply with the following characteristics, which are
derived directly from Definition 4 :

1. Distributivity of the conjunction:{
xab, yac ∧ zac

}
=
{
xab, yac

}
∧
{
xab, yac

}
(2.2.3a){

xab ∧ wab, yac
}

=
{
xab, yac

}
∧
{
wab, yac

}
(2.2.3b)

2. Distributivity of the disjunction:{
xab, yac ∨ zac

}
=
{
xab, yac

}
∨
{
xab, zac

}
(2.2.4a){

xab ∨ wac, yac
}

=
{
xab, yac

}
∨
{
wab, yac

}
(2.2.4b)

where xab and wab ∈ Ωab while yac and zac ∈ Ωac.

Given that Ωab and Ωac have each 4 simple events, Ωabc will have 16 simple events.
Consequently, B(Ωabc) will have 216 = 65, 536 events. Since it is impossible to analize such
a number of events, we will only consider those ones useful to measure correlations. We
dedicate subsections 2.2.5, 2.2.6 and 2.2.7 to study such events.

(Note: As heretofore we have not assumed anything about locality yet, we have to take
as feasible all those events. Later, restrictions imposed by Locality Hypothesis will make
many of them to be the impossible event.)
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2.2.3 Atomic events

Let us now study the elementary events of B(Ωabc). As we have already said before,
this BAE has 16 elementary events, which are shown in Table 2.3.

Elementary events of B(Ωabc)

E1 =
{

(+1,+1)ab, (+1,+1)ac

}
E9 =

{
(−1,+1)ab, (+1,+1)ac

}
E2 =

{
(+1,+1)ab, (+1,−1)ac

}
E10 =

{
(−1,+1)ab, (+1,−1)ac

}
E3 =

{
(+1,+1)ab, (−1,+1)ac

}
E11 =

{
(−1,+1)ab, (−1,+1)ac

}
E4 =

{
(+1,+1)ab, (−1,−1)ac

}
E12 =

{
(−1,+1)ab, (−1,−1)ac

}
E5 =

{
(+1,−1)ab, (+1,+1)ac

}
E13 =

{
(−1,−1)ab, (+1,+1)ac

}
E6 =

{
(+1,−1)ab, (+1,−1)ac

}
E14 =

{
(−1,−1)ab, (+1,−1)ac

}
E7 =

{
(+1,−1)ab, (−1,+1)ac

}
E15 =

{
(−1,−1)ab, (−1,+1)ac

}
E8 =

{
(+1,−1)ab, (−1,−1)ac

}
E16 =

{
(−1,−1)ab, (−1,−1)ac

}

Table 2.3: The 16 elementary events of B(Ωabc).

Like any BAE, atomic events of B(Ωabc) have the following properties:

i) E1 ∨ · · · ∨ E16 = Iabc (2.2.5a)

ii) Ei ∧ Ej =

{
Ei if i = j, with i, j = 1, . . . , 16

∅abc if i 6= j, with i, j = 1, . . . , 16
(2.2.5b)

where Iabc ≡
(
Iab, Iac

)
and ∅abc ≡

(
∅ab, yac

)
∨
(
xab,∅ac

)
are the certain and impossible

events, respectively, of B(Ωabc).

These properties can be verified by using (2.2.3), (2.2.4) and the properties of B(Ωab)
and B(Ωac).

Using the notation introduced in Table 2.3, we can express Ωabc as:

Ωabc =
{
E1, · · · , E16

}
(2.2.6)

On the other hand, Realism Hypothesis states that values to be measured at sites A
and B for all possible pair of parameters are determined during production process. Under
this hypothesis, each event from Table 2.3 corresponds to a function f determined during
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production process that goes from the set of measurement parameters s = (sA, sB) to the
set of measured values v = (vA, vB), i.e.:

f : s = (sA, sB) 7−→ v = (vA(s), vB(s)) (2.2.7)

where sA = a and sB = {b, c} designate the measurement options at sites A and B, re-
spectively, while that vA = {+1,−1} and vB = {+1,−1} are the measured values at sites
A and B, respectively.

Since there are two pairs of parameters for s and four pairs of possible values for v,
then there are 42 = 16 distinct functions, which correspond to each of the 16 simple events
of B(Ωabc).

(Note: Later, with the introduction of Locality Hypothesis, we will impose restrictions
on f , in such a way that, under this hypothesis, the number of simple events decreases.)

2.2.4 Sub-algebras B(Ωab) and B(Ωac) in B(Ωabc)

In the previous subsection we constructed Ωabc from Ωab and Ωac. Then, it should be
possible to reduce B(Ωabc) to B(Ωab) and B(Ωac) in the appropriate limit.

We now show that it is possible to recover the simple events of B(Ωab) and B(Ωac),
and in consequence both algebras, from the elementary events of B(Ωabc) (Table 2.3) and
from equations (2.2.3) and (2.2.4).

The atomic events of B(Ωab) in B(Ωabc)

Let us begin finding the equivalence in B(Ωabc) of the 4 simple events of B(Ωab).

i) (+1,+1)ab ≡
{

(+1,+1)ab, Iac
}

=
{

(+1,+1)ab, (+1,+1)ac ∨ (+1,−1)ac ∨

(−1,+1)ac ∨ (−1,−1)ac

}
=
{

(+1,+1)ab, (+1,+1)ac

}
∨{

(+1,+1)ab, (+1,−1)ac

}
∨{

(+1,+1)ab, (−1,+1)ac

}
∨{

(+1,+1)ab, (−1,−1)ac

}
= E1 ∨ E2 ∨ E3 ∨ E4

(2.2.8)

where we have used the property (2.2.4a).

In a similar way:
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ii) (+1,−1)ab ≡
{

(+1,−1)ab, Iac
}

=
{

(+1,−1)ab, (+1,+1)ac ∨ (+1,−1)ac ∨

(−1,+1)ac ∨ (−1,−1)ac

}
=
{

(+1,−1)ab, (+1,+1)ac

}
∨{

(+1,−1)ab, (+1,−1)ac

}
∨{

(+1,−1)ab, (−1,+1)ac

}
∨{

(+1,−1)ab, (−1,−1)ac

}
= E5 ∨ E6 ∨ E7 ∨ E8

(2.2.9)

iii) (−1,+1)ab ≡
{

(−1,+1)ab, Iac
}

=
{

(−1,+1)ab, (+1,+1)ac ∨ (+1,−1)ac ∨

(−1,+1)ac ∨ (−1,−1)ac

}
=
{

(−1,+1)ab, (+1,+1)ac

}
∨{

(−1,+1)ab, (+1,−1)ac

}
∨{

(−1,+1)ab, (−1,+1)ac

}
∨{

(−1,+1)ab, (−1,−1)ac

}
= E9 ∨ E10 ∨ E11 ∨ E12

(2.2.10)

iv) (−1,−1)ab ≡
{

(−1,−1)ab, Iac
}

=
{

(−1,−1)ab, (+1,+1)ac ∨ (+1,−1)ac ∨

(−1,+1)ac ∨ (−1,−1)ac

}
=
{

(−1,−1)ab, (+1,+1)ac

}
∨{

(−1,−1)ab, (+1,−1)ac

}
∨{

(−1,−1)ab, (−1,+1)ac

}
∨{

(−1,−1)ab, (−1,−1)ac

}
= E13 ∨ E14 ∨ E15 ∨ E16

(2.2.11)

A summary of these equivalences is shown in Table 2.4.

The Atomic Events of B(Ωac) in B(Ωabc)

Let us now find the equivalence in B(Ωabc) of the 4 Simple Events of B(Ωac).
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Simple events of B(Ωab) Equivalence in B(Ωabc)

(+1,+1)ab

{
(+1,+1)ab, Iac

}
E1 ∨ E2 ∨ E3 ∨ E4

(+1,−1)ab

{
(+1,−1)ab, Iac

}
E5 ∨ E6 ∨ E7 ∨ E8

(−1,+1)ab

{
(−1,+1)ab, Iac

}
E9 ∨ E10 ∨ E11 ∨ E12

(−1,−1)ab

{
(−1,−1)ab, Iac

}
E13 ∨ E14 ∨ E15 ∨ E16

Table 2.4: Equivalence of the 4 atomic events of B(Ωab) in B(Ωabc).

i) (+1,+1)ac ≡
{
Iab, (+1,+1)ac

}
=
{

(+1,+1)ab ∨ (+1,−1)ab ∨

(−1,+1)ab ∨ (−1,−1)ab, (+1,+1)ac

}
=
{

(+1,+1)ab, (+1,+1)ac

}
∨{

(+1,−1)ab, (+1,+1)ac

}
∨{

(−1,+1)ab, (+1,+1)ac

}
∨{

(−1,−1)ab, (+1,+1)ac

}
= E1 ∨ E5 ∨ E9 ∨ E13

(2.2.12)

where we have used the property (2.2.4b).

Analogously:

ii) (+1,−1)ac ≡
{
Iab, (+1,−1)ac

}
=
{

(+1,+1)ab ∨ (+1,−1)ab ∨

(−1,+1)ab ∨ (−1,−1)ab, (+1,−1)ac

}
=
{

(+1,+1)ab, (+1,−1)ac

}
∨{

(+1,−1)ab, (+1,−1)ac

}
∨{

(−1,+1)ab, (+1,−1)ac

}
∨{

(−1,−1)ab, (+1,−1)ac

}
= E2 ∨ E6 ∨ E10 ∨ E14

(2.2.13)
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iii) (−1,+1)ac ≡
{
Iab, (−1,+1)ac

}
=
{

(+1,+1)ab ∨ (+1,−1)ab ∨

(−1,+1)ab ∨ (−1,−1)ab, (−1,+1)ac

}
=
{

(+1,+1)ab, (−1,+1)ac

}
∨{

(+1,−1)ab, (−1,+1)ac

}
∨{

(−1,+1)ab, (−1,+1)ac

}
∨{

(−1,−1)ab, (−1,+1)ac

}
= E3 ∨ E7 ∨ E11 ∨ E15

(2.2.14)

iv) (−1,−1)ac ≡
{
Iab, (−1,−1)ac

}
=
{

(+1,+1)ab ∨ (+1,−1)ab ∨

(−1,+1)ab ∨ (−1,−1)ab, (−1,−1)ac

}
=
{

(+1,+1)ab, (−1,−1)ac

}
∨{

(+1,−1)ab, (−1,−1)ac

}
∨{

(−1,+1)ab, (−1,−1)ac

}
∨{

(−1,−1)ab, (−1,−1)ac

}
= E4 ∨ E8 ∨ E12 ∨ E16

(2.2.15)

These equivalences are summarized in Table 2.5.

Simple events of B(Ωac) Equivalence in B(Ωabc)

(+1,+1)ac

{
Iab, (+1,+1)ac

}
E1 ∨ E5 ∨ E9 ∨ E13

(+1,−1)ac

{
Iab, (+1,−1)ac

}
E2 ∨ E6 ∨ E10 ∨ E14

(−1,+1)ac

{
Iab, (−1,+1)ac

}
E3 ∨ E7 ∨ E11 ∨ E15

(−1,−1)ac

{
Iab, (−1,−1)ac

}
E4 ∨ E8 ∨ E12 ∨ E16

Table 2.5: Equivalence of the 4 simple events of B(Ωac) in B(Ωabc).

Once known the equivalence of the atomic events of B(Ωab) and B(Ωac) in B(Ωabc), it
is possible to find the equivalence in B(Ωabc) of any event from B(Ωab) and B(Ωac).

2.2.5 Correlation events

In subsection 2.1.2 we saw that it is more useful to measure the product AaBb that the
individual properties Aa and Bb when we look for measuring correlations between pairs of
particles because AaBb involves properties from both of them. We also said that in order
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to completely characterize the correlations system, it was enough to determine the value
of Mab, i.e., the mean value of AaBb (1.1.6).

We now have a system with two excluyent configurations to perform the measurements.
In the configuration with measurement parameter b for site B, the product to determine
is still AaBb; however, for the other configuration, whose measurement parameter for site
B is c, the product to be determined is AaBc. For such a reason, we now need a greater
amount of information to completely characterize the correlations system.

In particular, along with the mean value of the two products mentioned above, we need
to determine the mean value of the product BbBc, which involves information related with
the properties of the particle located at site B for both configurations.

However, there is a little problem: it is not possible to measure the three products in
a same experimental run given that the two configurations are excluyent.

Nevertheless, according to Realism Hypothesis (Hypothesis 4) ”particles emitted
from the source carry within them the information to be measured for all possible pairs
of parameters to be selected at sites A and B; it is so, even if the information for one or
more pairs of parameters is not measured”. Therefore, we can assume that the information
for AaBb, AaBc and BbBc, which is related to some inherent properties of the particles,
is already contained within them, even if we are not able to measure for all the pairs of
parameters in a same experimental run.

We must now identify the events of B(Ωabc) producing those three products.

To obtain the value of AaBb, AaBc and BbBc from each elementary event of Table 2.3,
we must multiply:

1. The two values of the first parentheses, which refers to the configuration with param-
eters a and b, to get AaBb.

2. The two values of the second parentheses, which refers to the configuration with pa-
rameters a and c, to get AaBc.

3. The second value of both parentheses, which involves both configurations, to get
BbBc.

Once knowing the value of AaBb, AaBc and BbBc for each atomic event, it is conve-
nient to define a new kind of event from the disjunction of the elementary events with
the same value for each of these products. These new events will be named correlation
events because they provide to each single run of a complete description of the correlation
between the pair of particles, i.e., they contain the value for the products AaBb, AaBc and
BbBc for each single run.

Given that these products can each take two values (+1 and −1), it is possible to form
8 events of this kind. These events are shown in the Table 2.6. There it is possible to see
the value of each product for the 8 correlation events.

Correlation events comply with the following properties:
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Correlation events Equivalence in atomic events AaBb AaBc BbBc
C1 E1 ∨ E16 +1 +1 +1
C2 E4 ∨ E13 +1 +1 −1
C3 E3 ∨ E14 +1 −1 +1
C4 E2 ∨ E15 +1 −1 −1
C5 E8 ∨ E9 −1 +1 +1
C6 E5 ∨ E12 −1 +1 −1
C7 E6 ∨ E11 −1 −1 +1
C8 E7 ∨ E10 −1 −1 −1

Table 2.6: Definition of the correlation events, their equivalence in elementary events of B(Ωabc) and
their value for the products AaBb, AaBc and BbBc.

i) C1 ∨ · · · ∨ C8 = Iabc (2.2.16a)

ii) Ci ∧ Cj =

{
Ci if i = j, with i, j = 1, . . . , 8

∅abc if i 6= j, with i, j = 1, . . . , 8
(2.2.16b)

These properties can be verified by using (2.2.5) and the values from the Table 2.6.

Since correlation events contain the information for each product and they have the
properties mentioned above (2.2.16), they are a useful set of events to describe the cor-
relations between the pairs of particles. For such a reason, from now on we will express
everything in terms of these events.

It is important to remember that we have not said anything about locality yet. Later
on we will see that with the introduction of this hypothesis, several correlation events will
be the impossible event.

2.2.6 Product events and the Correlation Function

In the previous subsection we said that in order to completely characterize the corre-
lations system between the pairs of particles we needed to determine the mean value of
AaBb, AaBc and BbBc. For this reason, we defined the correlation events, which contain
the values for each of these products to be measured in a single run.

However, given that the two configurations of the experimental setup are excluyent, it
is impossible for us to measure in a same run the value of the three products.

Therefore, we need to find a new kind of event that only contains the information
that we are able to completely measure in a single experimental run, i.e., we must look
for events containing only the information for one of those products. To do this, we will
follow a similar way to that from section 2.1.2.

In that section we looked for determining the mean value of AaBb, so we found conve-
nient to define the events εab and δab based on the value that this product took in each
measurement: the event εab considered the cases where Aa and Bb got the same value (i.e.,
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AaBb = +1), while δab took into account the cases where Aa and Bb acquired a different
value (i.e., AaBb = −1).

We named product events to εab and δab because they were defined based on the
value that the product AaBb get when measured. We then said that this kind of event
was what we must measure in the lab.

Finally, we said that the Correlation Function Qab, which is the classical prediction for
the mean value of AaBb, depended only on the events εab and δab (2.1.8).

Something similar happens with the configuration with measurement parameter c: the
product AaBc has as Correlation Function to Qac, which depends, in turn, on the product
events εac (AaBc = +1) and δac (AaBc = −1).

Then, we see that product events contain the information for only one product, re-
gardless the information for the other products.

Let us now come back to the 2-configuration system where we were working on. Such
system considers the two configurations described above.

Product events for B(Ωabc) must be similar to those developed for B(Ωab) and B(Ωac),
thus the only thing we need to do is to express εab, δab, εac and δac in terms of common
algebra B(Ωabc), which contains the information for both configurations. Therefore, from
Tables 2.4, 2.5, 2.6, we have that:

i) εab ≡
{
εab, Iac

}
=
{

(+1,+1)ab ∨ (−1,−1)ab, Iac
}

=
{

(+1,+1)ab, Iac
}
∨
{

(−1,−1)ab, Iac
}

=
{
E1 ∨ E2 ∨ E3 ∨ E4

}
∨
{
E13 ∨ E14 ∨ E15 ∨ E16

}
= E1 ∨ E2 ∨ E3 ∨ E4 ∨ E13 ∨ E14 ∨ E15 ∨ E16

= C1 ∨ C2 ∨ C3 ∨ C4

(2.2.17)

ii) δab ≡
{
δab, Iac

}
=
{

(+1,−1)ab ∨ (−1,+1)ab, Iac
}

=
{

(+1,−1)ab, Iac
}
∨
{

(−1,+1)ab, Iac
}

=
{
E5 ∨ E6 ∨ E7 ∨ E8

}
∨
{
E9 ∨ E10 ∨ E11 ∨ E12

}
= E5 ∨ E6 ∨ E7 ∨ E8 ∨ E9 ∨ E10 ∨ E11 ∨ E12

= C5 ∨ C6 ∨ C7 ∨ C8

(2.2.18)

iii) εac ≡
{
Iab, εac

}
=
{
Iab, (+1,+1)ac ∨ (−1,−1)ac

}
=
{
Iab, (+1,+1)ac

}
∨
{
Iab, (−1,−1)ac

}
=
{
E1 ∨ E5 ∨ E9 ∨ E13

}
∨
{
E4 ∨ E8 ∨ E12 ∨ E16

}
= E1 ∨ E4 ∨ E5 ∨ E8 ∨ E9 ∨ E12 ∨ E13 ∨ E16

= C1 ∨ C2 ∨ C5 ∨ C6

(2.2.19)
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iv) δac ≡
{
Iab, δac

}
=
{
Iab, (+1,−1)ac ∨ (−1,+1)ac

}
=
{
Iab, (+1,−1)ac

}
∨
{
Iab, (−1,+1)ac

}
=
{
E2 ∨ E6 ∨ E10 ∨ E14

}
∨
{
E3 ∨ E7 ∨ E11 ∨ E15

}
= E2 ∨ E3 ∨ E6 ∨ E7 ∨ E10 ∨ E11 ∨ E14 ∨ E15

= C3 ∨ C4 ∨ C7 ∨ C8

(2.2.20)

where the terms to the left of the equivalence sign are events of B(Ωab) and B(Ωac), while
the terms to the right are events of B(Ωabc).

To make it simple, it is convenient to use a new nomenclature for the product events
described above:

U1 ≡
{
εab, Iac

}
(2.2.21a)

U2 ≡
{
δab, Iac

}
(2.2.21b)

and

V1 ≡
{
Iab, εac

}
(2.2.22a)

V2 ≡
{
Iab, δac

}
(2.2.22b)

where {U1, U2} and {V1, V2} ⊂ B(Ωabc).

In the same way as we did in subsection 2.1.2, it is convenient to group by pairs
the product events {U1, U2} and {V1, V2} because they are complementary events, i.e.,
U2 = U ′1, U1 = U ′2, V2 = V ′1 and V1 = V ′2 . It can be easily verified by using (2.2.17) -
(2.2.20) and (2.2.16). We will see the usefulness of this property later in Chapter 3.

The importance of the product events lies on that they are what we are interested in
measuring in the lab.

Let us now define the probability algebra < B(Ωabc), P > in a similar way as we did in
subsection 2.1.3. Such an algebra assigns a probability to happen to each event of B(Ωabc).

We are particularly interested in assigning such probability to the product events be-
cause the Correlation Functions Qab and Qac only depend on them. In this way, we can
now express (2.1.8), which is defined in < B(Ωab), P >, in terms of < B(Ωabc), P >.

Then:

Qab = P (εab)− P (δab) ≡ P (U1)− P (U2) , (2.2.23)

where εab and δab ∈ B(Ωab), while U1 and U2 ∈ B(Ωabc).
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In a similar way:

Qac = P (εac)− P (δac) ≡ P (V1)− P (V2) , (2.2.24)

where εac and δac ∈ B(Ωac), while V1 and V2 ∈ B(Ωabc).

At this point, it is possible to think that, as well as AaBb and AaBc have a Correlation
Function and they are associated to specific pairs of product events, BbBc must be too.
However, there is a little difference.

While AaBb and AaBc involve information about only one configuration and they can
be measured in a same run, BbBc involves information about the two configurations and,
as a consequence, it cannot be measured in a same run.

For this reason, it is precise to define a new pair of product events and a new Correla-
tion Function for BbBc.

Definition 5. Product events ξbc and ηbc.

1. The product event ξbc is the compound event formed by the disjunction of all the
simple events of Ωabc such that Bb = Bc, i.e.:

ξbc =
{

(+1,+1)ab, (+1,+1)ac

}
∨
{

(+1,+1)ab, (−1,+1)ac

}
∨{

(+1,−1)ab, (+1,−1)ac

}
∨
{

(+1,−1)ab, (−1,−1)ac

}
∨{

(−1,+1)ab, (+1,+1)ac

}
∨
{

(−1,+1)ab, (−1,+1)ac

}
∨{

(−1,−1)ab, (+1,−1)ac

}
∨
{

(−1,−1)ab, (−1,−1)ac

}
= E1 ∨ E3 ∨ E6 ∨ E8 ∨ E9 ∨ E11 ∨ E14 ∨ E16

= C1 ∨ C3 ∨ C5 ∨ C7

(2.2.25)

2. The product event ηbc is the compound event formed by the disjunction of all the
simple events of Ωabc such that Bb = −Bc, i.e.:

ηbc =
{

(+1,+1)ab, (+1,−1)ac

}
∨
{

(+1,+1)ab, (−1,−1)ac

}
∨{

(+1,−1)ab, (+1,+1)ac

}
∨
{

(+1,−1)ab, (−1,+1)ac

}
∨{

(−1,+1)ab, (+1,−1)ac

}
∨
{

(−1,+1)ab, (−1,−1)ac

}
∨{

(−1,−1)ab, (+1,+1)ac

}
∨
{

(−1,−1)ab, (−1,+1)ac

}
= E2 ∨ E4 ∨ E5 ∨ E7 ∨ E10 ∨ E12 ∨ E13 ∨ E15

= C2 ∨ C4 ∨ C6 ∨ C8

(2.2.26)
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Let us now state a useful lemma about the symmetry of these events in relation to the
interchange of the parameters b and c.

Lemma 2. The events ξbc and ηbc are symmetric in relation to the interchange of sub-
scripts, i.e.:

ξbc = ξcb (2.2.27a)

ηbc = ηcb (2.2.27b)

Proof. It is a direct consequence from Definitions 4 and 5.

Once defined ξbc and ηbc, it is possible to obtain the Correlation Function for the
product BbBc. This new function must be similar to the Correlation Function Q because
they are classical predictions for the mean value of the product of two properties.

Definition 6. The Correlation Function D is defined as the classical prediction for
the mean value of the product BbBc. This function only depends on the events ξbc and ηbc,
and is given by:

Dbc ≡ P
(
ξbc
)
− P

(
ηbc
)

(2.2.28)

Given that ξbc and ηbc are symmetric in relation to the interchange of parameters b
and c, the Correlation Function D is too. It is shown in the following corollary:

Corollary 1. The Correlation Function D is symmetric in relation to the interchange of
subscripts, i.e.:

Dbc = Dcb (2.2.29)

Proof.

Dbc = P (ξbc)− P (ηbc)

= P (ξcb)− P (ηcb)

= Dcb ,

(2.2.30)

where we have used Lemma 2 to get the second line.

As {U1, U2} and {V1, V2}, it is also convenient to group in a pair the events {ξbc, ηbc}
because they are complementary events too, i.e., ηbc = ξ′bc and ξbc = η′bc. It can be easily
verified by using (2.2.25), (2.2.26) and (2.2.16).

The fact that the pairs {U1, U2}, {V1, V2} and {ξbc, ηbc} are complementary events is a
handy property that will be used later in Chapter 3 to obtain the Bell-CHSH inequality
in a merely algebraic way.

The product events, their equivalence in B(Ωabc) and the products they are related to
are shown in Table 2.7.
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Events in B(Ωab) and B(Ωac) Equivalence in B(Ωabc) Product measured and its value

εab

{
εab, Iac

}
U1 C1 ∨ C2 ∨ C3 ∨ C4 AaBb = +1

δab

{
δab, Iac

}
U2 C5 ∨ C6 ∨ C7 ∨ C8 AaBb = −1

εac

{
Iab, εac

}
V1 C1 ∨ C2 ∨ C5 ∨ C6 AaBc = +1

δac

{
Iab, δac

}
V2 C3 ∨ C4 ∨ C7 ∨ C8 AaBc = −1

——— ξbc C1 ∨ C3 ∨ C5 ∨ C7 BbBc = +1

——— ηbc C2 ∨ C4 ∨ C6 ∨ C8 BbBc = −1

Table 2.7: The product events, their equivalence in B(Ωabc) and the products they are related to.

2.2.7 Events defined from two conditions

In previous subsections we have already studied events defined on 3 conditions (corre-
lation events) and over 1 condition (product events). The first ones provide a complete
description of the correlations system for each single run, while the second ones only con-
tain the information we are able to measure in a single run.

Let us now study events defined on 2 products or conditions. In order to obtain them,
we will use the conjunction of product events.

1. Events obtained from pairs {U1, U2} and {V1, V2}: (conditions on AaBb and
AaBc)

i) U1 ∧ V1 =
(
C1 ∨ C2 ∨ C3 ∨ C4

)
∧
(
C1 ∨ C2 ∨ C5 ∨ C6

)
= C1 ∨ C2

(2.2.31)

ii) U1 ∧ V2 =
(
C1 ∨ C2 ∨ C3 ∨ C4

)
∧
(
C3 ∨ C4 ∨ C7 ∨ C8

)
= C3 ∨ C4

(2.2.32)

iii) U2 ∧ V1 =
(
C5 ∨ C6 ∨ C7 ∨ C8

)
∧
(
C1 ∨ C2 ∨ C5 ∨ C6

)
= C5 ∨ C6

(2.2.33)

iv) u2 ∧ v2 =
(
C5 ∨ C6 ∨ C7 ∨ C8

)
∧
(
C3 ∨ C4 ∨ C7 ∨ C8

)
= C7 ∨ C8

(2.2.34)

2. Events obtained from pairs {U1, U2} and {ξbc, ηbc}: (conditions on AaBb and
BbBc)

i) U1 ∧ ξbc =
(
C1 ∨ C2 ∨ C3 ∨ C4

)
∧
(
C1 ∨ C3 ∨ C5 ∨ C7

)
= C1 ∨ C3

(2.2.35)
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ii) U1 ∧ ηbc =
(
C1 ∨ C2 ∨ C3 ∨ C4

)
∧
(
C2 ∨ C4 ∨ C6 ∨ C8

)
= C2 ∨ C4

(2.2.36)

iii) U2 ∧ ξbc =
(
C5 ∨ C6 ∨ C7 ∨ C8

)
∧
(
C1 ∨ C3 ∨ C5 ∨ C7

)
= C5 ∨ C7

(2.2.37)

iv) U2 ∧ ηbc =
(
C5 ∨ C6 ∨ C7 ∨ C8

)
∧
(
C2 ∨ C4 ∨ C6 ∨ C8

)
= C6 ∨ C8

(2.2.38)

3. Events obtained from pairs {V1, V2} and {ξbc, ηbc}: (conditions on AaBc and
BbBc)

i) V1 ∧ ξbc =
(
C1 ∨ C2 ∨ C5 ∨ C6

)
∧
(
C1 ∨ C3 ∨ C5 ∨ C7

)
= C1 ∨ C5

(2.2.39)

ii) V1 ∧ ηbc =
(
C1 ∨ C2 ∨ C5 ∨ C6

)
∧
(
C2 ∨ C4 ∨ C6 ∨ C8

)
= C2 ∨ C6

(2.2.40)

iii) V2 ∧ ξbc =
(
C3 ∨ C4 ∨ C7 ∨ C8

)
∧
(
C1 ∨ C3 ∨ C5 ∨ C7

)
= C3 ∨ C7

(2.2.41)

iv) V2 ∧ ηbc =
(
C3 ∨ C4 ∨ C7 ∨ C8

)
∧
(
C2 ∨ C4 ∨ C6 ∨ C8

)
= C4 ∨ C8

(2.2.42)

These events are summarized in Table 2.8. Their importance will be seen later on with
the introduction of Locality Hypothesis.

2.2.8 Locality Hypothesis

As we have already said, Realism Hypothesis proposes that particles emitted from the
source carry within the information to be measured for all possible pairs of parameters
to be selected at sites A and B. This hypothesis, however, does not place any kind of
restriction on the information carried within the particles beyond the fact that this one is
produced by pairs, one for each system’s configuration.
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∧ U1 U2 V1 V2 ξbc ηbc
U1 U1 ∅abc C1 ∨ C2 C3 ∨ C4 C1 ∨ C3 C2 ∨ C4

U2 ∅abc U2 C5 ∨ C6 C7 ∨ C8 C5 ∨ C7 C6 ∨ C8

V1 C1 ∨ C2 C5 ∨ C6 V1 ∅abc C1 ∨ C5 C2 ∨ C6

V2 C3 ∨ C4 C7 ∨ C8 ∅abc V2 C3 ∨ C7 C4 ∨ C8

ξbc C1 ∨ C3 C5 ∨ C7 C1 ∨ C5 C3 ∨ C7 ξbc ∅abc
ηbc C2 ∨ C4 C6 ∨ C8 C2 ∨ C6 C4 ∨ C8 ∅abc ηbc

Table 2.8: Events defined on two conditions. Given that each product event is related to the value of
one product, then the conjunction of two of them contains information on the value of two products.

The absence of an additional restriction allows, for example, cases where Aa takes a
different value depending on the measurement option chosen at site B, which implies in-
stant and long-distance communication, specially if sites A and B are located far away
from each other.

Given that we want to reject this kind of communication from the problem’s descrip-
tion, we must add any restriction on information so that cases like the stated above are
prohibited. Thus, we propose the following hypothesis:

Hypothesis 5. Locality. Sites A and B are arbitrarily far away from each other and
from the source that is emitting the particles, and any kind of instant and long-distance
communication between them has been rejected. Then, measurements made at site A have
no effect on measurements carried out at site B, and vice-versa. In particular, switching
the measurement parameter at site B does not affect the result at site A.

The hypothesis above implies that, although the information was produced by pairs
during production process, each particle carries within only those properties assigned to
it, regardless of the properties laid on the other particle. Then, it is possible to ”factorize”
a unique value for Aa, Bb and Bc from the information contained within the simple events.

Therefore, under locality there are independent functions vA and vB such that vA :
a 7−→ {+1,−1} at site A and vB : {b, c} 7−→ {+1,−1} at site B, which enables that
function f (2.2.7) can be factorized in the following way:

f : s = (sA, sB) 7−→ v = (vA(sA), vB(sB)) (2.2.43)

Then, function vA corresponds to the property Aa, while function vB corresponds to
the properties measured at site B.

Each function f corresponds to one atomic event allowed by Locality Hypothesis. Then,
since there are 2 vA and 4 vB different functions, the total number of simple events under
locality is 2 × 4 = 8. These events along with their factorized values for Aa, Bb and Bc
are shown in Table 2.9.

In this way, factorization is the condition imposed by locality on the algebra of events.

On the other hand, simple events with no factorizable function f as given in (2.2.43)
are prohibited; in other words, those events for which it is not possible to factorize a unique
value for Aa, Bb and Bc from the information contained within them are the impossible
event ∅abc. It can be expressed in the following way:

36



Atomic event Aa Bb Bc

E1

{
(+1,+1)ab, (+1,+1)ac

}
+1 +1 +1

E2

{
(+1,+1)ab, (+1,−1)ac

}
+1 +1 −1

E5

{
(+1,−1)ab, (+1,+1)ac

}
+1 −1 +1

E6

{
(+1,−1)ab, (+1,−1)ac

}
+1 −1 −1

E11

{
(−1,+1)ab, (−1,+1)ac

}
−1 +1 +1

E12

{
(−1,+1)ab, (−1,−1)ac

}
−1 +1 −1

E15

{
(−1,−1)ab, (−1,+1)ac

}
−1 −1 +1

E16

{
(−1,−1)ab, (−1,−1)ac

}
−1 −1 −1

Table 2.9: Atomic events allowed by locality along with their factorized values for Aa, Bb and Bc.

{
(±1, x)ab, (∓1, y)ac

}
= ∅abc , where x, y = {+1,−1} . (2.2.44)

So, under locality, atomic events E3, E4, E7, E8, E9, E10, E13 and E14 are the impos-
sible event ∅abc.

Locality Hypothesis drastically reduces the number of events allowed by the single Re-
alism Hypothesis since the number of atomic events is reduced from 16 to 8, going from
an algebra of 216 = 65, 536 events to one of only 28 = 256 events.

Moreover, with the introduction of Locality Hypothesis and the condition of factoriza-
tion, we are also imposing a restriction on the values that AaBb, AaBc and BbBc can take.
Thus, we obtain the following Locality Criterion for products:

AaBb ×AaBc = BbBc (2.2.45)

This is also a Locality Criterion for correlation events since these ones are based on
the value each of the three products takes for a single run.

Correlation events along with their value for each product are shown in Table 2.10. If
the event complies with the property of factorization imposed by the Locality Hypothesis
(2.2.43) or (2.2.45), such an event is a local event (L); otherwise, the event is non-local
(NL), being, therefore, the impossible event ∅abc.

From this table it is possible to see that the non-local character of correlation events
C2, C3, C5 and C8 can be obtained by using either (2.2.44) or (2.2.45).

As under locality many atomic and correlation events are the impossible event ∅abc,
product events are simplified. It is shown in Table 2.11.

Let us now discuss the importance of Locality Hypothesis.

In Table 2.8 events defined on 2 conditions were shown. With the simplifications in-
troduced by locality, events from that table get smaller. This is shown in Table 2.12.
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Correlation events Equivalence in atomic events AaBb AaBc BbBc Locality
C1 E1 ∨ E16 +1 +1 +1 L
C2 E4 ∨ E13 +1 +1 −1 NL
C3 E3 ∨ E14 +1 −1 +1 NL
C4 E2 ∨ E15 +1 −1 −1 L
C5 E8 ∨ E9 −1 +1 +1 NL
C6 E5 ∨ E12 −1 +1 −1 L
C7 E6 ∨ E11 −1 −1 +1 L
C8 E7 ∨ E10 −1 −1 −1 NL

Table 2.10: Local (L) and non-local (NL) correlation events.

Product event Equivalence in atomic events Equivalence in correlation events

U1 E1 ∨ E2 ∨ E15 ∨ E16 C1 ∨ C4

U2 E5 ∨ E6 ∨ E11 ∨ E12 C6 ∨ C7

V1 E1 ∨ E5 ∨ E12 ∨ E16 C1 ∨ C6

V2 E2 ∨ E6 ∨ E11 ∨ E15 C4 ∨ C7

ξbc E1 ∨ E6 ∨ E11 ∨ E16 C1 ∨ C7

ηbc E2 ∨ E5 ∨ E12 ∨ E15 C4 ∨ C6

Table 2.11: Product events and their equivalence in terms of atomic and correlation events allowed
by Locality Hypothesis.

∧ U1 U2 V1 V2 ξbc ηbc
U1 U1 ∅abc C1 C4 C1 C4

U2 ∅abc U2 C6 C7 C7 C6

V1 C1 C6 V1 ∅abc C1 C6

V2 C4 C7 ∅abc V2 C7 C4

ξbc C1 C7 C1 C7 ξbc ∅abc
ηbc C4 C6 C6 C4 ∅abc ηbc

Table 2.12: Events defined on two conditions allowed by Locality Hypothesis.

From this table it is now easy to obtain the following relations:

i) U1 ∧ V1 = U1 ∧ ξbc = V1 ∧ ξbc = C1 (Aa = Bb = Bc) (2.2.46a)

ii) U1 ∧ V2 = U1 ∧ ηbc = V2 ∧ ηbc = C4 (Aa = Bb 6= Bc) (2.2.46b)

iii) U2 ∧ V1 = U2 ∧ ηbc = V1 ∧ ηbc = C6 (Aa = Bc 6= Bb) (2.2.46c)

iv) U2 ∧ V2 = U2 ∧ ξbc = V2 ∧ ξbc = C7 (Aa 6= Bb = Bc) (2.2.46d)

These relations are very important because of two reasons:
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1. They are a Locality and Realism Criterion for the boolean algebra of events since
they were obtained by applying these hypotheses.

2. They are the connection between the boolean probability algebra and Bell-CHSH
inequality given that they introduce Locality and Realism into the algebraic proof of
this last one, as it will be seen later.

In this chapter we have shown that Bohm-EPR experiment supports a local-realistic
boolean probability algebra, which has been constructed. The following step is to show
the equivalence between this last one and Bell-CHSH inequality. This will be done in the
following chapter.
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Chapter 3

Algebraic proof of Bell-CHSH
inequality

In this chapter we use the boolean probability algebra developed in the previous chap-
ter to give a merely algebraic proof of Bell-CHSH inequality, showing that the essential
part of the problem lies on the probability algebra associated to the experiment and not
on the hidden-variables.

Let us begin this chapter stating a lemma that will be useful in the algebraic proof of
Bell-CHSH inequality.

Lemma 3. Let T be an arbitrary event and let {S1, S2} be an arbitrary pair of comple-
mentary events. Then:

P (T ) = P (T ∧ S1) + P (T ∧ S2) (3.0.1)

The proof is given in the Appendix.

This lemma is specially handy when used with the pairs of complementary events
{U1, U2}, {V1, V2} and {ξbc, ηbc}.

We now give the algebraic proof of Bell-CHSH inequality. The first step is to state two
lemmas, which are Locality and Realism Criteria for the Correlation Function Q given by
(2.1.8), (2.2.23) and (2.2.24).

Lemma 4. For every choice of parameters a, b and c, the Correlation Function Q for any
local-realistic boolean probability algebra satisfies the following inequality:

Qab −Qac 6 1−Dbc (3.0.2)

where

Dbc ≡ P (ξbc)− P (ηbc) (3.0.3)

Proof. From (2.2.23) we have that:

Qab = P (U1)− P (U2) (3.0.4)
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where U1 and U2 ∈ B(Ωabc).

In a similar way, from (2.2.24) we have that:

Qac = P (V1)− P (V2) (3.0.5)

where V1 and V2 ∈ B(Ωabc).

Then:

Qab −Qac =
(
P (U1)− P (U2)

)
−
(
P (V1)− P (V2)

)
(3.0.6)

Using Lemma 3 (3.0.1), with {S1, S2} = {V1, V2} in the terms of the first parentheses
and {S1, S2} = {U1, U2} in the terms of the second parentheses, we get:

Qab −Qac =
(
P (U1 ∧ V1) + P (U1 ∧ V2)

)
−
(
P (U2 ∧ V1) + P (U2 ∧ V2)

)
−(

P (V1 ∧ U1) + P (V1 ∧ U2)
)

+
(
P (V2 ∧ U1) + P (V2 ∧ U2)

) (3.0.7)

Knowing that events are commutative (A.0.1b) and simplifying:

Qab −Qac = 2
(
P (U1 ∧ V2)− P (U2 ∧ V1)

)
(3.0.8)

Using the fact that probability functions are always non-negative and that, if x > 0
and y > 0, then x+ y > x− y, with x, y ∈ <+, we have that:

Qab −Qac 6 2
(
P (U1 ∧ V2) + P (U2 ∧ V1)

)
(3.0.9)

Adding and subtracting P (U1 ∧ V1) and P (U2 ∧ V2):

Qab −Qac 6 2
(
P (U1 ∧ V2) + P (U2 ∧ V1)

)
+
(
P (U1 ∧ V1)− P (U1 ∧ V1)

)
+(

P (U2 ∧ V2)− P (U2 ∧ V2)
)

6
(
P (U1 ∧ V1) + P (U1 ∧ V2)

)
+
(
P (U2 ∧ V1) + P (U2 ∧ V2)

)
+(

P (U1 ∧ V2)− P (U1 ∧ V1)
)

+
(
P (U2 ∧ V1)− P (U2 ∧ V2)

)
(3.0.10)

From Lemma 3 (3.0.1) and rearranging terms we obtain:

Qab−Qac 6 P (U1)+P (U2)+
(
P (U1∧V2)+P (U2∧V1)

)
−
(
P (U1∧V1)+P (U2∧V2)

)
(3.0.11)

where we have used {S1, S2} = {U1, U2}.
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Knowing that P (S1) + P (S2) = 1, with {S1, S2} = {U1, U2}, we get:

Qab −Qac 6 1 +
(
P (U1 ∧ V2) + P (U2 ∧ V1)

)
−
(
P (U1 ∧ V1) + P (U2 ∧ V2)

)
(3.0.12)

Using the relations stated in (2.2.46), we have that:

Qab −Qac 6 1 +
(
P (U1 ∧ ηbc) + P (U2 ∧ ηbc)

)
−
(
P (U1 ∧ ξbc) + P (U2 ∧ ξbc)

)
(3.0.13)

Finally, using again Lemma 3 (3.0.1) with {S1, S2} = {U1, U2}, we obtain:

Qab −Qac 6 1 + P (ηbc)− P (ξbc)

6 1−
(
P (ξbc)− P (ηbc)

)
6 1−Dbc ,

(3.0.14)

which is the expected result.

A remarkable fact is that terms on the left hand side depend on the parameter a, while
the terms on the right do not. It means that if we switched parameter a to d, we would
get the same result.

From the previous lemma, we can get the following corollary.

Corollary 2. For every choice of parameters a,b and c, the Correlation Function Q for
any local-realistic boolean probability algebra satisfies the following inequality:∣∣∣Qab −Qac∣∣∣ 6 1−Dbc (3.0.15)

Proof. From the equations (3.0.2) and (3.0.3) we have that:

Qab −Qac 6 1−Dbc (3.0.16)

On the other hand, from Corollary 1 (2.2.29), we have that Dbc = Dcb. Hence:

Qac −Qab 6 1−Dcb

6 1−Dbc

(3.0.17)

Now, let x = Qab − Qac and y = 1 − Dbc be. Then, knowing that 1 − Dbc > 0, we
obtain, from (3.0.16) and (3.0.17): x 6 y and −x 6 y. This can be expressed in a different
way: |x| 6 y.

Thus:
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∣∣∣Qab −Qac∣∣∣ 6 1−Dbc , (3.0.18)

which is the expected result.

We now state the second lemma.

Lemma 5. For every choice of parameters a, b and c, the Correlation Function Q for any
local-realistic boolean probability algebra satisfies the following inequality:

Qab +Qac 6 1 +Dbc (3.0.19)

Proof. From (2.2.23) we have that:

Qab = P (U1)− P (U2) (3.0.20)

where U1 and U2 ∈ B(Ωabc).

In a similar way, from (2.2.24) we have that:

Qac = P (V1)− P (V2) (3.0.21)

where V1 and V2 ∈ B(Ωabc).

Then:

Qab +Qac =
(
P (U1)− P (U2)

)
+
(
P (V1)− P (V2)

)
(3.0.22)

Using Lemma 3 (3.0.1), with {S1, S2} = {V1, V2} in the terms of the first parentheses
and {S1, S2} = {U1, U2} in the terms of the second parentheses, we get:

Qab +Qac =
(
P (U1 ∧ V1) + P (U1 ∧ V2)

)
−
(
P (U2 ∧ V1) + P (U2 ∧ V2)

)
+(

P (V1 ∧ U1) + P (V1 ∧ U2)
)
−
(
P (V2 ∧ U1) + P (V2 ∧ U2)

) (3.0.23)

Knowing that events are commutative (A.0.1b) and simplifying:

Qab +Qac = 2
(
P (U1 ∧ V1)− P (U2 ∧ V2)

)
(3.0.24)

Using the fact that probability functions are always non-negative and that, if x > 0
and y > 0, then x+ y > x− y, with x, y ∈ <+, we have that:

Qab +Qac 6 2
(
P (U1 ∧ V1) + P (U2 ∧ V2)

)
(3.0.25)
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Adding and subtracting P (U1 ∧ V2) and P (U2 ∧ V1):

Qab +Qac 6 2
(
P (U1 ∧ V1) + P (U2 ∧ V2)

)
+
(
P (U1 ∧ V2)− P (U1 ∧ V2)

)
+(

P (U2 ∧ V1)− P (U2 ∧ V1)
)

6
(
P (U1 ∧ V1) + P (U1 ∧ V2)

)
+
(
P (U2 ∧ V1) + P (U2 ∧ V2)

)
+(

P (U1 ∧ V1)− P (U1 ∧ V2)
)

+
(
P (U2 ∧ V2)− P (U2 ∧ V1)

)
(3.0.26)

From Lemma 3 (3.0.1) and rearranging terms we obtain:

Qab +Qac 6 P (U1) + P (U2) +
(
P (U1 ∧ V1) + P (U2 ∧ V2)

)
−
(
P (U1 ∧ V2) + P (U2 ∧ V1)

)
,

(3.0.27)
where we have used {S1, S2} = {U1, U2}.

Knowing that P (S1) + P (S2) = 1, with {S1, S2} = {U1, U2}, get:

Qab +Qac 6 1 +
(
P (U1 ∧ V1) + P (U2 ∧ V2)

)
−
(
P (U1 ∧ V2) + P (U2 ∧ V1)

)
(3.0.28)

Using the relations stated in (2.2.46), we have that:

Qab +Qac 6 1 +
(
P (U1 ∧ ξbc) + P (U2 ∧ ξbc)

)
−
(
P (U1 ∧ ηbc) + P (U2 ∧ ηbc)

)
(3.0.29)

Finally, using again Lemma 3 (3.0.1) with {S1, S2} = {U1, U2}, we obtain:

Qab +Qac 6 1 + P (ξbc)− P (ηbc)

6 1 +
(
P (ξbc)− P (ηbc)

)
6 1 +Dbc ,

(3.0.30)

which is the expected result.

As before, terms on the left hand side depends on parameter a, while the terms to the
right do not. Switching parameter a to d produces the same result.

Based on Corollary 2 (3.0.15) and Lemma 5 (3.0.19), we now state the Bell-CHSH
inequality.

Theorem 4. For every choice of parameters a, b ,c and d, the Correlation Function Q
for any local-realistic boolean probability algebra satisfies the following inequality:∣∣∣Qab −Qac∣∣∣+Qdb +Qdc 6 2 (3.0.31)
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Proof. From Corollary 2 (3.0.15) we have that:∣∣∣Qab −Qac∣∣∣ 6 1−Dbc (3.0.32)

On the other hand, from Lemma 5 (3.0.19):

Qdb +Qdc 6 1 +Dbc (3.0.33)

where we have switched a to d.

Adding (3.0.32) and (3.0.33), we obtain:∣∣∣Qab −Qac∣∣∣+Qdb +Qdc 6 2 (3.0.34)

which is the expected result.

We have thereby shown that Correlation Function Q satisfies Bell-CHSH inequality in
addition to two new Locality and Realism Criteria. Then, because the proof is merely
algebraic, boolean probability algebra over which Q is defined and Bell-CHSH inequality
are equivalent.

In the following chapter we will show that any hidden-variable physical model corre-
sponds to a local-realistic boolean probability algebra, evincing that both approaches are
completely equivalent.
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Chapter 4

Equivalence between
hidden-variables models and
boolean probability algebras

The aim of this chapter is to show that probabilities over any hidden-variable physical
model correspond to those ones for a local-realistic boolean probability algebra.

4.1 The Γ-phase space

4.1.1 Regions of Γ

In Chapter 1, we said that Bell introduced the Γ-phase space as a way of representing
the space where λ lies in. Let us now study its properties carefully.

According to Realism Hypothesis, each region of Γ contains the information for all the
possible configurations of the experiment. On the other hand, Locality Hypothesis states
that the asymptotic value of λ keeps a unique value for Aa, Bb and Bc. Therefore, regions
with a distinct value for Aa depending on the configuration are prohibited.

Then, the local-realistic region of Γ can be divided in 8 regions, named origin regions,
which are shown below:

Γ1 = {λ|Aa(λ) = +1, Bb(λ) = +1, Bc(λ) = +1} (4.1.1a)

Γ2 = {λ|Aa(λ) = +1, Bb(λ) = +1, Bc(λ) = −1} (4.1.1b)

Γ3 = {λ|Aa(λ) = +1, Bb(λ) = −1, Bc(λ) = +1} (4.1.1c)

Γ4 = {λ|Aa(λ) = +1, Bb(λ) = −1, Bc(λ) = −1} (4.1.1d)

Γ5 = {λ|Aa(λ) = −1, Bb(λ) = +1, Bc(λ) = +1} (4.1.1e)

Γ6 = {λ|Aa(λ) = −1, Bb(λ) = +1, Bc(λ) = −1} (4.1.1f)

Γ7 = {λ|Aa(λ) = −1, Bb(λ) = −1, Bc(λ) = +1} (4.1.1g)

Γ8 = {λ|Aa(λ) = −1, Bb(λ) = −1, Bc(λ) = −1} (4.1.1h)

Thus, when we carry out a measurement, variables Aa, Bb and Bc take the value spec-
ified in the brackets according to the λ determined at the time of production process.
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As origin regions are sets of values of λ, from now on we will treat them as sets.

Using the Set Theory and the union (∪) and intersection (∩) operations, we can express
the characteristics of the origin regions in a more adequate way:

i) Γ1 ∪ · · · ∪ Γ8 = Γ (4.1.2a)

ii) Γi ∩ Γj =

{
Γi if i = j , with i, j = 1, . . . , 8

∅ if i 6= j , with i, j = 1, . . . , 8
(4.1.2b)

where Γ is the local-realistic region of the phase space and ∅ is the empty region.

In addition, it is possible to construct any region of Γ from the eight origin regions
(4.1.1). Let γ be an arbitrary region (distinct of ∅) of Γ. Then:

γ = Γi ∪ · · · ∪ Γm , (4.1.3)

where i, . . . ,m = 1, . . . , 8.

4.1.2 The Probability Integral over Γ

So far, we have just discussed the origin regions of Γ and their properties, but we have
not said anything about the integral

∫
dρ yet. This integral is a function that takes a

region from Γ and returns a numerical value between 0 and 1. In particular, it complies
with the following:

i)

∫
Γ

dρ = 1 (4.1.4a)

ii)

∫
∅
dρ = 0 (4.1.4b)

Also, from Set Theory, we have that if γ1 and γ2 are two arbitrary (not necessarily
origin) regions , it turns out that:∫

γ1∪γ2
dρ =

∫
γ1

dρ +

∫
γ2

dρ −
∫
γ1∩γ2

dρ , (4.1.5)

In particular, for the case where γ1 and γ2 are two different origin regions, say Γk and
Γl, with k 6= l, we get, using (4.1.2b) and (4.1.4b):∫

Γk∪Γl

dρ =

∫
Γk

dρ +

∫
Γl

dρ (4.1.6)

where k, l = 1, . . . , 8.

So, as any arbitrary region γ (distinct from ∅) can be expressed as the union of origin
regions (4.1.3), it turns out that:∫

γ

dρ =

∫
Γi ∪···∪Γm

dρ =

∫
Γi

dρ + · · · +

∫
Γm

dρ (4.1.7)
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where i, . . . ,m = 1, . . . , 8.

The usefulness of this equation lies on that all can be expressed in terms of the origin
regions (4.1.1).

4.2 Connection of Γ with the boolean probability algebras

In the previous subsection, we emphasized that the Probability Integral is a function
over Γ which returns a numerical value between 0 and 1. Let us now denote this function
as ℘. With this notation, properties of the Probability Integral over Γ can be rewritten in
the following way:

∫
Γ

dρ = 1 −→ ℘(Γ) = 1 (4.2.1a)∫
∅
dρ = 0 −→ ℘(∅) = 0 (4.2.1b)∫

γ1∪γ2
dρ =

∫
γ1

dρ +

∫
γ2

dρ −
∫
γ1∩γ2

dρ −→ ℘(γ1 ∪ γ2) = ℘(γ1) + ℘(γ2)− ℘(γ1 ∩ γ2)

(4.2.1c)

with γ1 and γ2 arbitrary regions of Γ.

In particular, given that from (4.1.3) an arbitrary region γ can be expressed in terms
of the origin regions (4.1.1), we have that:

∫
γ

dρ =

∫
Γi

dρ + · · · +

∫
Γm

dρ −→ ℘(γ) = ℘(Γi) + · · ·+ ℘(Γm) (4.2.2)

where Γi, . . . ,Γm are origin regions.

With this notation we can realize that the function acting over Γ does not have to be
an integral but any function such that satisfies the properties stated above. Then, it is
evident that ℘ corresponds to the Probability Distribution Function P .

The fact that we can associate the integral
∫
dρ with the Probability Distribution

Function P gives us the ”sight” of a boolean probability algebra. To see it clearer, let us
denote the operations ∪ and ∩ as ⊕ and ⊗, respectively. In this way:

Γ = Γ1 ∪ · · · ∪ Γ8 −→ Γ = Γ1 ⊕ · · · ⊕ Γ8 (4.2.3a)

Γi ∩ Γj =

{
Γi if i = j

∅ if i 6= j
−→ Γi ⊗ Γj =

{
Γi if i = j

∅ if i 6= j
(4.2.3b)

γ = Γi ∪ · · · ∪ Γm −→ γ = Γi ⊕ · · · ⊕ Γm (4.2.3c)

where i,m = 1, . . . , 8.

Then, it is easy to realize that the origin regions do not have to be ”necessarily” sets
but elements of any boolean algebra, in such a way that they could even not make reference
to sets of λ, but the event itself of Aa, Bb and Bc obtaining a specific value.
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This fact has a great transcendence because we are going from an algebra of sets to
a boolean algebra of events. The main difference is that while in the first one everything
turns around λ (i.e., λ determines the entire system), in the second one the essential part
are the events themselves, without the necessity of recurring to the hidden-variable λ.

Given that any region of Γ can be gotten from its eight origin regions (4.1.1) and that
under locality any event of B(Ωabc) can be obtained from its eight simple events (Table
2.9), it is enough to get the connection between the origin regions and the simple events
and between the operations

∫
dρ and P to show the equivalence between hidden-variable

models and local-realistic boolean algebras of events.

Definition 7. The connection of the origin regions of Γ (4.1.1) and the simple events of
B(Ωabc) under locality (Table 2.9) is given by the following relations:

Γ1 ≡ E1 (4.2.4a)

Γ2 ≡ E2 (4.2.4b)

Γ3 ≡ E5 (4.2.4c)

Γ4 ≡ E6 (4.2.4d)

Γ5 ≡ E11 (4.2.4e)

Γ6 ≡ E12 (4.2.4f)

Γ7 ≡ E15 (4.2.4g)

Γ8 ≡ E16 (4.2.4h)

Definition 8. The connection between the Probability Integral over Γ and the Probability
Function over B(Ωabc) is given by the following relations:

∫
Γ1

dρ ≡ P (E1) (4.2.5a)∫
Γ2

dρ ≡ P (E2) (4.2.5b)∫
Γ3

dρ ≡ P (E5) (4.2.5c)∫
Γ4

dρ ≡ P (E6) (4.2.5d)∫
Γ5

dρ ≡ P (E11) (4.2.5e)∫
Γ6

dρ ≡ P (E12) (4.2.5f)∫
Γ7

dρ ≡ P (E15) (4.2.5g)∫
Γ8

dρ ≡ P (E16) (4.2.5h)

We will now use these relations to show the equivalence of the definitions of Q and D
in both approaches.
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Lemma 6. Correlation Function: For every choice of parameters a, b and c, the
Correlation Functions Q and D satisfy the following equivalences:

Qab =

∫
Γ

Aa(λ)Bb(λ) dρ = P (U1)− P (U2) (4.2.6a)

Qac =

∫
Γ

Aa(λ)Bc(λ) dρ = P (V1)− P (V2) (4.2.6b)

Dbc =

∫
Γ

Bb(λ)Bc(λ) dρ = P (ξbc)− P (ηbc) (4.2.6c)

We give the proof for the first expression. The other two have similar demonstrations.

Proof. From Definition 2 (1.2.1) we have that:

Qab =

∫
Γ

Aa(λ)Bb(λ) dρ (4.2.7)

Using (4.1.2a) and (4.1.6) we obtain:

Qab =

8∑
i=1

∫
Γi

Aa(λ)Bb(λ)ρ(λ)dλ

=

∫
Γ1

dρ +

∫
Γ2

dρ −
∫

Γ3

dρ −
∫

Γ4

dρ −
∫

Γ5

dρ −
∫

Γ6

dρ +

∫
Γ7

dρ +

∫
Γ8

dρ

(4.2.8)

where we have used the values of Aa and Bb for the eight origin regions (4.1.1). Using the
equivalences from Definition 8 (4.2.5) and rearranging terms:

Qab =
(
P (E1) + P (E2) + P (E15) + P (E16)

)
−(

P (E5) + P (E6) + P (E11) + P (E12)
) (4.2.9)

Using the point 2b of Lemma 7 (Appendix C) and the values from Table 2.11 we
obtain:

Qab = P
(
E1 ∨ E2 ∨ E15 ∨ E16

)
− P

(
E5 ∨ E6 ∨ E11 ∨ E12

)
= P (U1)− P (U2)

(4.2.10)

which is the expected result.

Since the Correlation Function Q is the starting point in both approaches, we have thus
shown the equivalence between hidden-variable models and boolean probability algebras.

Then, any hidden-variable physical model supported by the experiment, regardless of
production process and its physical realization, admits a local-realistic boolean probability
algebra, being this last one the essential part of the problem.
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Conclusions

This thesis shows that the following statements are equivalent:

1. There is a hidden-variable model based on local Realism for the experiment.

2. The experiment supports a local-realistic boolean probability algebra.

3. Correlation Function for the experiment satisfies Bell-CHSH inequalities.

The equivalence was obtained by algebraic methods. In particular, a merely algebraic
proof of Bell-CHSH inequality was given.
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Appendix A

General properties of the boolean
algebras [8]

A boolean algebra A is a set of elements X, Y, Z, ... endowed of two binary operations
called sum and product, denoted respectively as ∨ and ∧, and a monary operation called
complement, denoted with a prime (′), with the following properties:

1. Commutativity:

X ∨ Y = Y ∨X (A.0.1a)

X ∧ Y = Y ∧X (A.0.1b)

2. Associativity:

(X ∨ Y ) ∨ Z = X ∨ (Y ∨ Z) (A.0.2a)

(X ∧ Y ) ∧ Z = X ∧ (Y ∧ Z) (A.0.2b)

3. Distributivity:

(X ∨ Y ) ∧ Z = (X ∧ Z) ∨ (Y ∧ Z) (A.0.3a)

(X ∧ Y ) ∨ Z = (X ∨ Z) ∧ (Y ∨ Z) (A.0.3b)

4. Neutral elements:

There is a neutral element ∅ for the sum such that X ∨∅ = X, ∀X ∈ A. (A.0.4a)

There is a neutral element I for the product such that X ∧ I = X, ∀X ∈ A.
(A.0.4b)

5. Complement: ∀X ∈ A there is an X ′ ∈ A called complement of X, such that:

X ∨X ′ = I (A.0.5a)

X ∧X ′ = ∅ (A.0.5b)

From here, we can obtain other important properties:

1. Idempotency:

X ∨X = X (A.0.6a)

X ∧X = X (A.0.6b)
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2. Maximality of I and minimality of ∅:

X ∨ I = I (A.0.7a)

X ∧∅ = ∅ (A.0.7b)

3. Involution:

(X ′)′ = X (A.0.8a)

4. Immersion:

X ∨ (X ∧ Y ) = X (A.0.9a)

X ∧ (X ∨ Y ) = X (A.0.9b)

5. Morgan’s Law:

(X ∨ Y )′ = X ′ ∧ Y ′ (A.0.10a)

(X ∧ Y )′ = X ′ ∨ Y ′ (A.0.10b)
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Appendix B

Boolean algebras of events

We will start by giving two important definitions.

Definition 9. Sample space (S): is the collection of all possible outcomes of an exper-
iment or trial.

Definition 10. Event: is any collection of possible outcomes of an experiment or trial.

Let us now consider an experiment that consists on N different outcomes. Then, from
these ones it is possible to form a boolean algebra of events of order N, denoted as B(S),
which is a set which includes every collection of events from the sample space S and is
closed under the operations conjunction ∧ (AND) and disjunction ∨ (OR).

Such an algebra consists on 2N events, which have the following classification:

1. Impossible event (∅): is an event that never occurs.

2. Simple or atomic event (E): is any event that consists of exactly a single outcome
from the experiment.

3. Compound event: is any event that consists of more than one outcome from the
experiment.

4. Complementary event: consists of all the outcomes not in the original event. The
complementary of X ∈ B(S) is denoted by X ′ (X ′ ∈ B(S)).

5. Certain event (I): is an event that always occurs.

In particular, simple events have the following properties:

i) E1 ∨ · · · ∨ EN = I (B.0.1a)

ii) Ei ∧ Ej =

{
Ei if i = j, with i, j = 1, . . . , N

∅ if i 6= j, with i, j = 1, . . . , N
(B.0.1b)

where I and ∅ are the certain and impossible events, respectively, of B(S).
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Appendix C

Probability Function over a boolean
algebra of events

Definition 11. An ordered pair < B(S), P > is a probability algebra if B(S) is a
boolean algebra of events and P a real-value function (a Probability Function) defined
on elements of the universe of B(S) which is:

1. Strictly positive: P (X) > 0, ∀X ∈ B(S).
Moreover: P (X) = 0 if and only if X = ∅.

2. Normed: P (X) = 1 if and only if X = I.
3. Additive: P (X ∨ Y ) = P (X) + P (Y )− P (X ∧ Y ), ∀X,Y ∈ B(S).

From this definition it is possible to obtain the following properties for any probability
algebra.

Lemma 7. Properties of a probability algebra

1. P (X) + P (X ′) = 1, ∀X ∈ B(S).

2. Let Ei and Ej ∈ B(S), with i 6= j, two different atomic events. Then:

(a) P (Ei ∧ Ej) = 0 because Ei ∧ Ej = ∅.

(b) P (Ei ∨ Ej) = P (Ei) + P (Ej).

3. Let E1, . . . , EN the N atomic events of B(S). Then:
∑N
i=1 P (Ei) = 1.

Elements of a probability algebra are referred to as events.

Let us now state a handy lemma to be used with pairs of complementary events.

Lemma 8. Let T be an arbitrary event and let {S1, S2} be an arbitrary pair of comple-
mentary events. Then:

P (T ) = P (T ∧ S1) + P (T ∧ S2) (C.0.1)
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Proof. First, let us prove two important relations.

i) T = T ∧ I
= T ∧ (S1 ∨ S2)

= (T ∧ S1) ∨ (T ∧ S2)

(C.0.2)

ii) T ∧ (S1 ∧ S2 = ∅)

(T ∧ T ) ∧ (S1 ∧ S2) = T ∧∅
(T ∧ S1) ∧ (T ∧ S2) = ∅

(C.0.3)

Using these relations we get:

P (T ) = P
(

(T ∧ S1) ∨ (T ∧ S2)
)

= P (T ∧ S1) + P (T ∧ S2)− P
(

(T ∧ S1) ∧ (T ∧ S2)
)

= P (T ∧ S1) + P (T ∧ S2)

(C.0.4)

where we have used the additive property of the Probability Function (point 3 of Definition
11 ) and that P (∅) = 0.
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Appendix D

Classification of events from B(Ωab)

Events from B(Ωab) are classified in the following way:

1. Impossible event:

∅ab (D.0.1a)

2. Simple or atomic events:

(+1,+1)ab (D.0.2a)

(+1,−1)ab (D.0.2b)

(−1,+1)ab (D.0.2c)

(−1,−1)ab (D.0.2d)

3. Compound events:

(+1, Ib) ≡ {Aa = +1} = (+1,+1)ab ∨ (+1,−1)ab (D.0.3a)

(−1, Ib) ≡ {Aa = −1} = (−1,+1)ab ∨ (−1,−1)ab (D.0.3b)

(Ia, +1) ≡ {Bb = +1} = (+1,+1)ab ∨ (−1,+1)ab (D.0.3c)

(Ia, −1) ≡ {Bb = −1} = (+1,−1)ab ∨ (−1,−1)ab (D.0.3d)

εab ≡ {Aa = Bb} = (+1,+1)ab ∨ (−1,−1)ab (D.0.3e)

δab ≡ {Aa = −Bb} = (+1,−1)ab ∨ (−1,+1)ab (D.0.3f)

4. Complementary events:

(+1,+1)′ab = (+1,−1)ab ∨ (−1,+1)ab ∨ (−1,−1)ab (D.0.4a)

(+1,−1)′ab = (+1,+1)ab ∨ (−1,+1)ab ∨ (−1,−1)ab (D.0.4b)

(−1,+1)′ab = (+1,+1)ab ∨ (+1,−1)ab ∨ (−1,−1)ab (D.0.4c)

(−1,−1)′ab = (+1,+1)ab ∨ (+1,−1)ab ∨ (−1,+1)ab (D.0.4d)

5. Certain event:

Iab = (+1,+1)ab ∨ (+1,−1)ab ∨ (−1,+1)ab ∨ (−1,−1)ab (D.0.5a)

The Hasse Diagram for this boolean algebra of events is shown in Figure D. In this
scheme it is possible to see in a graphical way the relation among the events stated above.
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Figure D: Hasse Diagram for the boolean algebra of events of the Bohm-EPR experiment with one

measurement parameter per site.
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