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Prologue
For us, and for our tragedy,
Here stooping to your clemency,
We beg your hearing paticntly.
[Exit]
Hamlet
Is this a prologue, or the posy of a ring?
Ophelia
"Tis brief, my lord.

Harmlet

As woman’s love.

WILLIAM SHAKESPEARE, Hamlet, Act 11l scene n.



Abstract

Melting of a two-dimensional colloidal crystal is considered on the base of the concept
of spontaneous thermal creation of dislocations. The melting condition strongly depends on
the elastic moduli of the two-dimensional crystal. These moduli are calculated in the specific
limit of a colloidal particle interaction dominated by the magnetic dipole-dipole potential
induced by an applied magnetic field. The melting condition is obtained in terms of magnetic
field, particle density, and temperature. The obtained theoretical functional dependence of

the melting curve coincides with the experimental observation.
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Introduction

Colloidal systems have been a subject of an intense investigation during the last years [1].
One of the important aspects of colloids is melting of colloidal crystals, which has been ob-
served experimentally [2]. The theoretical background of this phenomenon has been done
by Kosterlitz and Thouless [3], who proposed that solid-liquid phase transition in a two-
dimensional system is due to the spontaneous creation of edge dislocations. These disloca-
tions destroy crystalline order. The reason for spontaneous creation of such dislocations is
that the free energy becomes negative at T > T,,,, where T}, is the melting temperature.
Using linear theory of elasticity, one can show, that the free energy of a single dislocation
depends logarithmically on the size of the crystal, determining, together with the entropic

term, the critical temperature 7;, at which dislocations are created.

The use of elasticity theory implies knowledge of elastic coefficients, which, in turn, de-
pend on interparticle interaction potential. The interparticle interaction is a serious problem,
and it was a subject of long-standing interest [4, 5]. However, sone colloidal particles in an
external magnetic field, acquire magnetic moment, and the interaction potential can be do-
minated by the dipole-dipole interaction, which can be tuned to exceed the Van der Walls
and electrostatic interactions. Such a colloidal system has been realized experiinentally [6],

providing the unique possibility to describe this system exactly.

In the next chapters we derive the expressions for elastic moduli of a two-dimensional
colloidal crystal, taking into account only the magnetic interaction between particles. We
also find the melting condition of such a system as a function of temperature 7", particle
density n, and magnetic fieid B.
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Ordering in two-dimensional systems

As will be seen, it is necessary to define orientational order to describe a phase that differs
topologically from both solid and isotropic liquid phases. This phase has been called hezatic,
and it is characterized by quasi-long-range orientational order but short-range transaltional

order.

2.1 Translational and orientational order

Two-dimensional systems can be described by two kinds of ordering: translational and orien-
tational. The correlation functions give a quantitative way to analyze order. In the case of

translational order, the density-density correlation function is used:

go(7) = (G ur—uOy (2.1)

where u is the displacement from the equilibrium, and G is the reciprocal lattice vector.
When particles of the crystal are located outside of the points of the lattice (defined by the
vector G}, the correlation function is different from 1, and it is said that the translational
order is destroyed. This 1s represented in Fig. 2.1(a)

On the other hand, when hexagons in a triangular lattice have differcnt orientation than
most of the other ones, it is said that orientational order is destroyed The way of measure

this loss of order 1s by mean of the orientational correlation function gg{r):

g5(r) = (21000 (2.2)

Here, 6(r) is the angle between the z-axis and the vector that connect two neighbor
particles of the crystal, as indicated in Fig. 2.1(b). As can be noted, when orientation is

lost, translational order is diminished too.
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Figure 2.1: (a) Loss of translational order. (b) Loss of orientational order.

Although long-range translational order —this is, go(r) = const- is impossible in two-

dimensional colloids, a sort, of quasi-long-range order is presented in the solid phase:

golr) « L, (2.3)

e
but long-range orientational order is present, i.e., gs(r) = const.
If the temperature in the crystal is augmented, thermal excitations can be strong enough
to create topological defects in the latiice. When dislocations appears at a temperature Ty,

translational order is lost, in the sense that the correlation function now decays rapidly:

ge(r) oc el (2.4)

but orientational order still remains, since gg{r) now decays as r=7 . This is a BKT-type
transition, after articles from Berezinskii [7] and Kosterlitz and Thouless [3], explaining the
mechanism of this kind of continuous transitions in two-dimensional systems. Dislocations

are characterized by the fact that, when a path around the dislocation is drawn, it fails to
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close by certain amount, as can be scen in Fig. 2 2(a).
Ay T =T, greater than T3, another BKT transition occurs via spontaneous creation of

disclinations which destroys the orientational order:

g6{r) x e /e (2.5)

Disclinations can be viewed as points in the lattice that have an unusual number of
neighbors. This is showed in Fig. 2.2(b). It can be noted that a dislocation in a hexagonal

lattice is formed by the union of a five-fold and a seven-fold disclination.

Figure 2.2: (a) Dislocation. (b) Disclination

This intermediate phase between order and disorder (i.c., between solid and isotropic
fluid phases), exclusive of two-dimmensional systems, is called hezafic phase due to the six-

fold orientational order in hexagonal lattices.

2.2 Hexatic phases

Murray and Van Winkle {2] observed this hexatic phase in a two-dimensional colloidal sus-
pension of charged particles, at fixed temperature but varying the particle density. The
obtained images of the particles are shown in Fig. 2.3(a), as well as the computed structure
factor and correlation function for each image. It is easy to note that, meanwhile density is
decreased, translational order is lost before orientational order. The corresponding angular
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averages of go(r) and ge(r) are sketched in Fig. 2.3(b) (the labels b, d and f corresponds
to the images in Fig. 2.3(a)). Note that small particle displacements are enough to take the

svstem to the hexatic phase.

©=

(a) (b)

Figure 2.3: (a) Top: S{K); center: particles in the colloid; bottom: g¢(r). Density increases
from left to right. (b) Angular averages of g (r) (left column) and ge(r) (right column).
Density is higher at top. From Ref. [2].

Unilike the solid phase, in the hexatic phase the system does not react to shear, as a direct
consequence of the absence of translational order. On the other hand, the hexatic liquid
reacts to twist, differing in this with the isotropic, no orientational ordered liquid phase.
These differences are included in Table 2.1, as well as the expressions for both translational
and orientational correlation functions.

In the next chapters we will consider the solid—to-hexatic phase transition, since current
experiments [6] involve a transition of this kind. To do this, elasticity theory will be used,

since the energy associated to a dislocation depends on the elastic modulus of the system.



22 Hexatic phases

T

7,

crystal

hexatic hquid

isotropic liquid

power law
translational order

no long range
translational order

golr) o 7%

no long range
translational order

golr) e "t

long range
ortentational order

g6(7} x const

power law
orientational order

gs(r) ox ,—rla.;

no long range
orientational order

QG(T) ox e_r/‘EG

reaction on both
shear and twist

reaction on twist

no reaction on hoth
shear and twist

Table 2.1.

|
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Elasticity theory

3.1 Strain and stress tensors

The displacement of a point in a body, due to a deformation, is given by the displacemnent
vector U
U =X -X, (3.1)

where X and X’ are the original and final position vectors of the point, respectively.

The distance between two nearest points, dl, is given by

di* = dX2, (32
before the deformation, and by
dli”? = dX?, (3.3)
after the deformation (we are considering here the summation rule).
If
. ou,
dU, = ax, X (3.4}
au, au, ou,
2 _ 2 ' - - -
dl’ = dl +28){ dA dz\k‘i' E)X a/\, d/\ d/\;,
but
ou, (U, N Uy 3
dX, \0X, 98X, 5.9)
and
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o, du, ou, ol
dXedX, = X
oX,ax;, TN ax, ox, Qaks b (5:0]
and then.
di’? = di? + 2U,, dX,d X, (37)

where we present the stramn tensor {8]

170U, 8l oty ol
U =3 (axk N axz) 9X, X, (3:8)
For small deformations the derivatives are small too, and then we can write
ou, ol

this is the expression for the strain tensor that we are going to usc in the rest of the treat-
ment. From (3.7), we see that, if Uy is diagonal, its principal values represents the relative
extensions of the elements of length along the principal axis.

Let [ F dV be the total force on some portion of a body. Each [ F, dV/ can be transformed
into an integral over the surface of this portion. Then, the vector F, must he the divergence

of a tensor of rank two-

agdc
F, = . 10
oX, (3.10)
o is called stress tensor In this way,
[de—/a""cdv—f df 3.11
2 = an == Tk k- ( . )

where o, dfy is the »th component of the force acting on the surface element df, as llustrated
in Fig. 3.1

The work done on the body by the internal stresses, changing U, by a small amount, 40/,

is given by
aO'.tk aslul.
/ / ( an)ch, v ){ o8, dfi / T AV (3.12)
In an infinite volume, o,; = 0 at the surface, and then,
ol ael,  aAdUy
/5RdV_—/ama T = 2/01,;(3& ax,)dv’ (3.13)

faRdv - —aik/w,k av |
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Figure 3.1: In a rectangular volume element dzx dy dz, the stresses 0., , 0,y and ¢,, are the
forces per unit area.

50

oR = —O’ikéUtk 5 (314)
For a reversible process, the internal energy is given by

dE = TdS — dR =T dS + oy dUp , (3.15)

and, since the Helmholtz free energy per volume unit is F = E — TS, then

dFf = -5dT + 0, dU,;. | (3.16)
and
gF
= . 3.17
St (aUﬂ.)T (3:17)

3.2 The elastic modul

Let us consider a slightly deformed body, at a temperature that remains constant throughout
it. Then, we can expand F near U, = 0. But, since when U,, = 0, g, = 0 too, and

Tk = %‘%, then there is no linear term, and F takes the general form (at second order)

1 1
F= E/AzklmUikUlmdxdy = E/CaﬁUaUﬁ dz dy. (3.18)
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The fact that g, = Agpnl , this is, that the strain is proportional to the stress, is just
the generalized form of the Hooke’s Law. Ay, 15 a fourth-rank tensor —the elastic lensor—,
and its components are known as elastic modul.

For a hexagonal system, we take the sixth-order axis as the z-axis, and use the coordinates
£=ax+41wy, and 5 = 2 ~1y. In arotation through %, £ — £els |, and  — ne™'5. By
symmetry, only those components Ay, which are unchanged after this rotation can be
different from zero, this is, only those which contains the sane nunber of suffixes £ and n,

since e'5e™*5 = 1. The energy is [8]

1 )
F = 5 /(’\ErrfrrUé?n + )‘??Ef?f.Ur?E + ’\EUTIEUETPUU'E + /\nﬁfTrUnfon i ’\'EffﬁiUEEUm? (3-19)
. +ATJUE‘EUW7?UE£) dx d’lj p

but, since Uye = Ugy, then Agen = Ayene = Aenne = Apeen s A0 Ageyyy = Aynee . In this way

F= / (27enenlZ, + AcmUeeUnn) da dy (3.20)

In terms of the coordinates z, y:

62 = (’T + iy)g =%+ yg + 2izy = U{g =Upz + Uyy s 27:ny§ (321)
2
7

&n = (3' s iy)(x - iy) =z’ + y2 = qu = Upx + Uyy ,

(z—wy)?=at+y? —2izy =  Up = Uy + Uy — 2il,,;

in such a way that we obtain that

UeeUpy = (Uzw — Uy’ + 4U3%, (3.22)
Ugn = (Uzz + Uyy)z,
and then,
F= / 20enea(Uzz + Uyy)? + Mg (Ve — Uyy)? + 4U2))] dzdy. (3.23)
To express the elastic moduli Ay, in the coordinates z, ¥ , we must note that
Azzzz = 4Aenen + 2Aeenm (3.24)

’\xysvy = 2)\5&777 !
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and then the free energy in terms of the elastic moduli Ayzp, and Ayyyy is

1 -
T2 / [(Am” = Aayay) (Ve + Uyy)z + Aryay ((Um — Uyy) 2 4U'z ] dx dy. (3.25)

Making Aszaz = C11» Aeyzy = Coo , and using the fact that U, = (5 + %ﬂlﬂ) . then the
expression for the free energy is
L 9u, : oU, U\’ oU, U, U, dU
C r v 40 4 ¥y T Yy i .
2/ [C“ ( dy ) o ( dy Oz ) e ( dy Oz  dz dy )} dz dy

(3.26)

Chy is called the compression modulus, since the first element on the right of (3.26)
represents an increment of £ due to a change of area {not shape), this is, a hydrostatic
compression. Similarly, Cge is called the shear modulus, since the second term in (3.26)

represents a pure shear, change in shape without alteration of volume.

3.3 The equations of equilibrium

In a state of thermodynamic equilibrium, the energy F'is at a minimum, so the conditions

to fulfill by the system are

or aF
=0 o= :
o, ey, (3.27)
where F' is given by (3.26). From the first condition,
9*U, U @l o*U,
Cy—— 522 +C“8 ay+055 ay2 —Csﬁm—o, (328)
and from the second,
o*U, 82U, U U,
Chyy—- G + C”(’Bmay Cﬁﬁ—ayaI +Cﬁﬁ—8m6y =) (3.29)

(note that, in absence of dislocations, the third element on the integral have no effect at all,
since the derivatives cancels mutually).

Dividing BF by 2Css and using the strain tensor, we have

U, U, (1Cy U, AU
=+ g ( ) +

o P 1 ¥y —
dz Ay oz oz ) O (3.30)

Uy Uy (1 Cn ) OUzz  OU,y,
oy | Ty 1 bt
dz * dy = dy + Jy

=0.
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13
This two conditions can be putted in the following way
AU 1Cnh oUy
+lzm— 1 =0. :
2Xx (2 Cis ) ax, O (3.31)

This is the form of the conditions of equilibrium to use in our treatment of isolated
dislocations in the crystal, as will be shown in the next section

3.4 The effect of an edge dislocation

Consider an edge dislocation on the lattice, as indicated in the Fig 3.2. The cnergy associated
to this dislocation is determined by the form of the vector field U(X).

Y

[ ] [ ] o ] * ] * ]

] * * ] L] ] * ®

] L) L) * L [ ] ] L

® ® [ ] L 4 | ] L ] * .

X

[ ] L} ] ] ] ] L] L]

* ® L * * L] L J *

* ] * * * L] Ld | ]

L4 ] L ] L] * [ ] L J L ]

Figure 3.2: Edge dislocation located at the origin of coordinates. The displacernent vector
increments a vector b, equal to one lattice vector in magntude and direction

The displacement vector U seems incremented by a Burgers vector b, were b is the lattice
parameter. This can be expressed as [g]

}ﬁdu fan AXp= =, . (3.32)

Specifically, in our problem,

jga'U aX T dXy = by, (b, = b, = 0).

According to Stokes’ theorem

(3.33)
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M
Liz,y)de + M{z,y)dy] = — | dxdy, KT
f[ z,y)de + M(x,y) dy] //5:,( o )rr(y, (3.34)
oU, U, oU.
fody = —b, .
ﬁ{[az 0?} ] //SL [&L(E)y) 81}(83:)}(“?" b

This integral is zero, except in the origin, the point associated to the dislocation. From

the definition of the two-dimensional delte function

Joor de=n [ s0di=1. (3.35)
Here 7 and f points to z, so,
| 8(e)dzdy =1, (3.36)
and then
J*U. &?
ud Ue —1,.6(E)b; . (3.37)

dzdy  Oydx -

Defining the distortion fensor, Wi :

oUx

I’Vt = = n 338
= oy, (3.38)
and using the €, tensor, we can put this equation as
OW ok .
Ethn—,‘“&' = “Tibké(é) ) i k: ls m: {1; 2, 3} § (339)
axX,
Multiplying this by €y,
Wk
Etlmﬁikn-a_éf;i = —CunTi0kO(E) (3.40)
Wk oW, .
“5‘1t'rnfiﬁcnHﬂi = (61!:677171 (-slncsmk) a/\, u = _(T X b)nfS(E)
Writing the equations of equilibrium
Ol 1Ch aly
. S —
ax, | (2 Coo ) ax, ~ ° (3.42)

in terms of the distortion tensor:
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d 1 1Ch oWy
Wi + W ) (-h 2 1) -0 A2
aXy ( ol i Pl T i g e X, (3.42)
oWy, (Cn ) oWy =
—— =1 = (7 x b),8(£),
8/\'k CG(S a‘XI (T )t (5)
and, returning this expression to its dependence on U,
a?U, Cu ) d {au
— + | — =1 = "><b15 : 3.43
ONy (CGB ax, \ax,) ~ (Fxphotd) (3:43)
Here, %}Ul are the components of the vector AU, and 5 (g—;ui) are the componcents of the

vector V x V - U. Then, putting this in terms of the vector U:

Cll
Ces
Since T points to —z, and b = b.i points to z:

AU + ( 1) ¥ x V.U = (7 x b)3(€). (3.44)

AU + (@ — 1) V x V- U = —bjé(r) (3.45)

Cee
{r lies on the zy-plane). The solution of equation (3.45) describes the displaccment of the
points of the lattice from their equilibrium positions, including the effect of the dislocation.
To solve this equation, we must to seek a solution of type U = Up + U, , where U, is
monovaluated, and Ujp satisfies the equation {3.32). To choose Up, we can make usc of
the residue theorem §. f(z)dz = 2mResf(a). Consider the integral §df = §%dz. ir

f(z) = £ 1nz, then

fdf(z) :§ j}; dz = f%dz =X (2!;) =1b. (3.46)

This is, U® = ¥(f) and Ui = R(f) satisfies (3.32). Explicitly,

b b
0 - 7% 0 - —
U, - U, 5 Inr. (3.47)

Since V- U® = 0, and AU = b6(r), it follows that

C'll

66

AUW 4 ( 1) Vx VU= ~bys(r)UN = ~2658(r) (3.48)

This is the same problem of that of determine the deformation of equilibrium of an infinite

elastic medium under forces concentrated along the z axis, with volume density Ebjé(r)[ag“ :fcae]
[8]. Thus,
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U“):i(l—%)%fom {(M)ijLﬂ} dz . (3.49)

R=yrt427 (3.50)

giving the result of

b Y Ce Ty
, b Cﬁﬁ Css 72
N T (- g |
Ly o [Cn nyat 4yl + Tl (3.52)

To evaluate the integral that appears in (3.26), that gives the value of the free encrgy of

the crystal, we need the following derivatives:

aUI — i Y 2&5‘2 Cssl e J (3 53)
gz maAg\ Py Cnz ety '
a(j‘y o __E?_ y 2.’E2 Cﬁ(j 3T + 17 J (3 54)
Oy 2ma?+y? \x2 4 y? C“ xQ_HJ i
e, _ b =@ 22" 4 Cio y? —a’ (3.55)
dy e+ \B 4y Cpad |
aUy . b N 2y2 CGG 'y g T
8r 2w a? + 12 ( z? + y? T = Ch 22 + 12 (3.56)

and then the expression for the free energy is equal to

lb2 dy? 2 4z* 22 (22%  Ceev® — 22\ [ =% Cusv? — 2
/[Cn%‘ﬁéﬁ-i-css‘?"r 4066(?"—4 + =27 )( A )(3-57)

72 Ch 7 e Cll =

_y2 —23;2 n Cﬁﬁ I2 == ’y 2.’132 Cﬁﬁ 31‘2 =+ y2 Jod
rd 2 Cy 72 72 G 2 el

After some of algebra, all this reduces to

where r? = 2% 4+ 42,

. 62 55/ 1 Cﬁﬁy _2 _ 6'65 22 06263:
o r2'Chur? e Oy r? -

that, in polar coordinates, gives

2
Y \dzdy, (3.58)
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T’
56 : C&

b2 B dy CGG 4 C 5 C ;

= C’/ 27 | ==(sin’ @) + (cos® ¢) — 2= (cos® =56 (¢0g* %6 (sin® :

onzte [ T (C“( in® ¢) + {cos” ¢) Ch (cos” @) + 2 (cos” ) ) (sin @) | ;
(3.59)

where a3 is the area of the lattice’s unitary cell. This gives the result

b? Cis R
F=—C (1 = i) In —, (3.60)
2 1 )

this is, the energy associated to a single dislocation depends logarithmically on the size of

the crystal.
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Melting on the colloidal crystal

4.1 The condition of melting

When isolated dislocations are present, the free energy of the crystal 1s affected by the
increment in the internal energy -due to the work produced by the external potential that
generate the dislocations— as well as by the entropy associated to these dislocations, since
there are so many possible positions for a dislocation as pomnts 1n the array of the crystal
We will show in the next lines that this entropy contribution to the free energy deterinines
the solid-to-liquid transition. As we pointed out in the preceding section, the clastic energy
of the colloidal crystal —that we denote now as E- is given by [3]
2
E:;’—ﬂceﬁ (1-%??) 1n§0 (a.1)

There are approximately %'0; possible positions for a dislocation, so this is the number of
accessible states for the system, having associated an elastic cnergy ££. Then, the entropy
assoctated to this dislocation goes as

2

SoInN=1In —R—2 (4.2)
g

In this way, both the energy and the entropy of an 1solated dislocation depends logarith-
mically on the size of the system. The free energy, considering possible variations on the
temperature, ' = £ —T5, 15 then

2 Ces\. R R
F = —Ci (1 _ C—“) In = — 2T - (4.3)

The free energy takes negative values when T > T,,,, where

b2 Cﬁﬁ
o, = — B ,
’ zwcﬁs (1 C”) et

18
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When T < T, F is mimimized 1f there is no dislocation present; f T > T,,, F'is minimized
when theie are dislocations, this 1s, a phase transition takes place when the temperature
takes a value that makes that £ = 0, independently of the size of the system. This critical
tempetature at which isolated dislocations appears spontaneously will vary depending on the
magnitude of the clastic moduli. The next step 15 to calculate the values of the shear and
compression modulus, that will be determined by the nature of the interparticle potential in

the lattice.

4.2 Calculus of the elastic moduli

We derive in this section the expression for the elastic moduli, in terms of the dominating
interparticle potential in the lattice. If R is the vector that describe the equilibrium positions
of the crystal points, and V(R) the interaction potential between thie lattice points, then

the change in the free energy, due to a displacement U,, will be

- %Z[y-(Rﬂ“'Un_R'nl_Um)*V(R'u_Rfm)}, ?l?éTTL, (45)

where both n and m enumerates the points in the crystal. The lattice points are restricted
to small displacements (in agreement with our elasticity theory description), thus R can be

expanded for U, small, taking the following form:

1 10U () Yy (ra) V(R —Ra)
e ) B oy (B Rudp(Re = R OROR, (4.6)

n.amn

where we consider again the summation rule. Re-ordinating this expression in two indepen-

dent sums, such that one of them does not depend on the potential V', we obtain

_ 1 (¢ OU(rm) 3U (rm 2V (R,,)
F - 4 (; aTP ) (Z R"‘p!{"q ]?ﬂlta]?'n_]) (47)

If U{rm) does not vary too much, we can substitute the sum over m for an integral over

all the surface, this is,

@ V(R [ OV AU(r)
F=T (Z‘ R"I’R“qaﬁmaRﬂ,) 5 e (4.8)

here, n is the particle density, thisis, n = ;ly Remembering that, at absence of dislocations,
0

the third integral in (3.26) is zero, the energy of the crystal in terms of the clastic moduli is

U BU BU _ oy,
F I
[ 3len(GE + G2+ s

IV da dy (4.9)
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and comparing term by term this expression with (4.8), we note that

33‘/ ’
Ch :*Z e aRQR")I. (4.10)

n P?V{R,)
Cﬁﬁ = 5 Z Rm} aRQ .

“TLL

(4.11)

If V depends only on the magnitude of R, as in our case, this can be written as

i ZEZ[niREV”(m) (nZ — n3) RV (Ry)] (4.12)

and

G = Z[nganzV R,)+ (1 — 2 )R,V (R,)], (4.13)

where n; = %ﬂf Instead of this, we can use the averaged values

{nz) = 3, {nz) =¢, {nzny) =3, (4.14)
and obtain

Cy = —2[332 R,) + RV (R,)], (4.15)

s = E (RZV"(Ra) + 3R,V (R)].

Now we have explicit expressions for the elastic moduli, in terms of the interparticle
potential. In the following section we will consider the case of magnetic interactions between
points of the colloidal crystal and use these expressions 1o find the condition of melting of

the system.

4.3 Colloids in a magnetic field

In this section we consider the specific case of colloidal particles in a inagnetic field. Each
particle acquires a magnetic moment g proportional to the magnetic induction B. If this
induction is high enough, the interaction energy V{R,) is dominated by the magnetic dipole

interaction

V(R,) = £ (4.16)
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where 17, 1s the from the n-th point to the origin. Then the elastic moduli reduces to

330 1 ! Jpien 1
C”: 16 gﬁg, 655: 16 : R_% 'H.?EO, (4]7)

that is to say G, = 11Cg. The sum can be calculated in the following form. The lattice

pomts can be arranged in such a way that

b b3
RI:nb+m5, iRy :mT., (4.18)

as indicated in the figure 4.1.

¥
L 4 ® L 4 L ] L] L J
1-2.2) l =12 .2 a,2)
- L »
-2 1 1.1 t0.1) a0 2.1 [ERY)
®--..- L ® ®
A
. B
L]
s oa i
1-2.0) -1.0) oo N ] 2.0/ n.o
» *r—,— -
- - x
1.1 0 -1 it -1 2.-1 a,-1 -1
L L L J L]
© -2 -2 2, o
» L ] » L ] L 4

Figure 4.1: Hexagonal two-dimensional lattice, arranged in pairs (n,m). aZ is the area of
the unitary cell, and 0 is the lattice parameter.

The sum over R% reduces to
Hi s

1 2 1
Y mTpl (4.19)

n n,m {3m2 =+ (21’1 + Tn)g]% ’

with {n,m} # {0,0}. The sum of the right can be estimated, and it gives a value of 1.373638.

As can be seen from the figure, b = (7%;)% and then, in terms of the density n, the elastic

moduli Cgg gives

31 5 1
Chp = ——11° EE
o 4\/§,un

o 3m? 4+ (2n 4+ m)?)?

; {n,m} # {0,0}. (4.20)

With this result, we can write the melting condition (4.4) as
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4.3, Collaids in a magnetic field
A—Ce(1 = =) - 2T = 0. 4,
o 66 ( C“) (4.21)
The factor A is due to the effect of screening of dislocation pairs [9]. In terms of the
moment it and the density n, an equivalent relation reads
1
: {n,m} # {0,0}. (4.22)

T  15-3%
pini 44V o [3m? + (2n + m)Q]%
After the numerical calculation of this sum, one can write down the final formula, for the

(4.23)

= 0.1387A.

solid-liquid boundary, as
Tom
.’EE

% 1)

The theoretical estimate gives 4 = 0.65 [9).
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Conclusions

The phase diagram (4.23) of the colloidal system is the main issue of this work. The melting
condition depends only on temperature, two-dimensional particle density, and the magnetic
moment, which is linearly proportional to the magnetic field. The experimental data (6]
confirm the phase diagram of the type {4.23). The numerical value in the right-hand side of
equation (4.23) is to be compared with more accurate experimental results to be provided

in the nearest future.

Let us summarize the results:

1. expressions for elastic modulus for a colloidal system in a magnetic field are derived;

2. the melting condition of a colloidal crystal in a magnetic field is obtained;

3. the magnetic field, at which the phase transition occurs, B,, ~ Tin~1 is schemati-
cally plotted in figure 5.1. The experimental measurement of such melting curve gives
the same functional dependence in terms of B, and n [6]. The experimental verification

of the numerical value in the right-hand side of (4.23) is in progress [6).
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Figure 5.1: Schematic phase diagram of the colloidal system in the magnetic ficld

! 3 . - . 2
(B ~ T3n~7), where n is the concentration of colloidal particles.
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