

UNIVERSIDAD AUTONOMA DE SAN LUIS POTOSI

FACULTAD DE INGENIERIA

UTILIZACION DEL PROGRAMA SPIPR PARA LA CLASIFICACION DE DIFERENTES TIPOS DE ROCAS Y LA IDENTIFICACION DE AREAS DE ALTERACION.

TRABAJO RECEPCIONAL

QUE PARA OBTENER EL TITULO DE

INGENIERO GEOLOGO

PRESENTA

PAULINO ACUÑA MEDELLIN

SAN LUIS POTOSI, S.L.P.

UNIVERSIDAD AUTONOMA DE SAN LUIS POTOSI FACULTAD DE INGENIERIA DR. MANUEL NAVA NO. 8 TELEFONO 13-11-86 FAX (91-48) 13-09-24 C.P. 78290 SAN LUIS POTOSI, S.L.P., MEXICO

NOVIEMBRE 26, 1992

Al Pasante Señor Paulino Acuña Medellín Presente. -

En atención a su solicitud de autorización de Temario, presentada por el Ing. Joel Milán Navarro, Asesor del Trabajo Recepcional que desarrollará Usted, con el objeto de sustentar Examen Profesional en la Licenciatura de Ingeniero Geólogo. Me es grato comunicarle que en la Sesión de Consejo Técnico Consultivo celebrada el día 26 de Noviembre del presente, fué aprobado el Temario propuesto:

"UTILIZACION DE PROGRAMA SPIPR PARA LA CLASIFICACION DE DIFERENTES TI-POS DE ROCAS Y LA IDENTIFICACION DE AREAS DE ALTERACION"

TEMARIO:

- I.- INTRODUCCION
- II.- GEOGRAFIA DEL AREA
- III.- GEOLOGIA DEL AREA
 - IV.- PRINCIPIOS DEL ANALISIS DIGITAL DE IMAGENES
 - V.- EL PROGRAMA SPIPR PARA LA CLASIFICACION DE-ROCAS Y ZONAS DE ALTERACION
 - VI.- ANALISIS DIGITAL DE IMAGENES
- VII.- CONCLUSIONES Y RECOMENDACIONES BIBLIOGRAFIA

Ruego a Usted tomar debida nota de que en cumplimiento con lo especificado or la Ley de Profesiones, debe prestar Servicio Social durante un tiempo mínimo de seis meses como requisito indispensable para sustentar su Examen Profesional.

A MIS PADRES

RAFAEL ACUÑA ZAPATA (Q.E.P.D.) E ISIDORA MEDELLIN VDA. DE ACUÑA

> QUE SON LA FUENTE INAGOTABLE DE CARIÑO, COMPRENSION, Y LUCHA --CONTINUA, DE QUIENES ME SIENTO-MUY ORGULLOSO.

A MIS HERMANOS

RAFAEL ACUÑA MEDELLIN MARTHA EUGENIA ACUÑA MEDELLIN PATRICIA ACUÑA MEDELLIN

> QUIENES CON SU CARIÑO Y APOYO--INCONDICIONAL, HICIERON POSIBLE LA REALIZACION DE ESTE TRABAJO.

A MIS ABUELITOS

PAULINO MEDELLIN NIÑO (Q.E.P.D.) E ISIDORA AHUMADA VDA. DE MEDELLIN

POR SU LUCHA INAGOTABLE DE VERNOS REALIZADOS.

A MI TIA

MARIA DEL CARMEN MEDELLIN AHUMADA

QUIEN NOS HA ENTREGADO TODA SU-VIDA, PARA REALIZARNOS TANTO --MORAL COMO PROFESIONALMENTE. A MI TIO

Dr. ANTELMO MEDELLIN AHUMADA

,

POR SU APOYO INCONDICIONAL DU--RANTE LA REALIZACION DE MI CA--RRERA PROFESIONAL, CON GRAN ---RESPETO Y CARIÑO. A TODA MI FAMILIA

TIOS PRIMOS SOBRINOS

CON CARIÑO.

1

`

PARA UNA PERSONA MUY ESPECIAL

MIRIAM FRIAS BARRAGAN

CON GRAN RESPETO Y CARIÑO.

C.

-

A MIS COMPAÑEROS Y AMIGOS

ROBERTO GARCIA NALES TOMAS RODRIGUEZ FLORES RODOLFO CABALLERO LOPEZ JOSE MANUEL CASTRILLON BORBOLLA JOSE DAVID MEDIATO HERRERA LOBARDO GOMEZ COLORADO JOSE RODRIGUEZ MORIN JOSE SOCORRO LOERA DIAZ JUAN MANUEL LOERA DIAZ

Y A TODOS LOS QUE ME HAN BRINDADO SU AMISTAD SINCERA.

CON AGRADECIMIENTO.

AL APOYO ACADEMICO

ING. JOEL MILAN NAVARRO ING. CARLOS PUENTE MUÑIZ ING. CARLOS CHAM AMARAL ING. MANUEL MUÑOZ MUÑOZ ING. RAMIRO GALLEGOS GONZALEZ

> POR LOS CONOCIMIENTOS DE USTE-DES ADQUIRIDOS, POR SU AMISTAD Y LA POSIBLE REALIZACION DE MI-TRABAJO RECEPCIONAL.

U. A. S. L. P.

AREA CIENCIAS DE LA TIERRA

UTILIZACION DEL PROGRAMA SPIPR PARA LA CLASIFICACION DE DIFERENTES TIPOS DE ROCAS Y LA IDENTIFICACION DE AREAS DE ALTERACION.

PAGI	[NA
I INTRODUCCION	, 1
II GEOGRAFIA DEL AREA	.3
II.1 Localización y vias de acceso	, 3
II.2 Vegetación	,6
II.3 Geomorfología	.7
III GEOLOGIA	.9
III.1 Marco Geológico Regional	.9
III.2 Estratigrafía Regional del Area	.9
III.2.A Formación Indidura	.9
III.2.B Formación Caracol1	11
III.2.C Toba Clavellinas1	12
III.2.D Clásticos Continentales Terciarios	12
III.2.E Andesita1	12
III.2.F Toba Pinos1	12
III.2.G Latita Porfirítica1	13
III.2.H Riolita Quelital	13
III.2.I Riolita San Miguelito	13
III.2.J Toba Lítica	14
III.2.K Ignimbrita Cantera	14
III.2.L Riolita Panalilło	15
III.2.M Ignimbrita Bolas	15
• III.2.N Toba el Peaje	16
III.2.0 Ignimbrita Escalerillas	16
III.2.P Ignimbrita Ahualulco Miembro Inferior	16
III.2.Q Basalto	16
III.2.R Conglomerado	17
III.2.S Suelo Residual	17
III.2.T Pumicita el Desierto	17
III.2.U Aluvión	17
III.3 Geología Estructural	18
III.4 Historia Geológica del Area	18
III.5 Alteraciones	19

INDICE

I

$I \lor$	PRINCIPIOS	DEL	ANALIS	IS DIC	SITAL	DE	IMA-	
	GENES	•••••						21
	IV.1 Tipos de Satél	ites par	a estudiar lo	s recursos	de la tiern	°a		21
	IV.2 Característica	s de las	órbitas de l	os LANDSAT	4 y 5			21

PAGINA

	IV.3 Sensores a bordo de los LANDSAT 4 y 521
	IV.4.~ Interpretación de imagenes MSS del LANDSAT,,,,
	IV.5 Fuentes de energía y principios de radiación
	IV.6 Introducción al proceso de interpretación de imagenes
	IV.7 Efectos atmosféricos
	IV.8 Energía irradiada por el sol32
	IV.9 Reflectancia
	IV.10 Análisis digital de imagenes para aplicaciones geológicas
	IV.11 Histograma de valores de brillantes
	IV.12 Realce de imagenes
v	EL PROGRAMA SPIPR PARA LA CLASIFICACION
	DE ROCAS Y ZONAS DE ALTERACION
	V.1 Introducción
	V.2 Proceso digital de imagenes
	V.3 Reconocimiento de valores espectrales
	V.4 Reconocimiento de valores espaciales40
	V.5 Clasificación de imagenes41
	V.5.A Clasificación supervisada42

V.5.B Campos de	entrenamiento,,,,	
V.6 Metodo de traba	ajo para la clasificación	

\vee I	ANALISIS DIGITAL DE IMAGENES	49
	VI.1 Imagen 12	49
	VI.1.A Sistema de procesamiento de imagenes de satélite	49
	VI.1.8 Despliegue de la imagen clasificada	.,61
	VI.1.C Comentarios de la imagen clasificada	62
	VI.1.C.1 Comparación de la imagen clasificada en relación al plano uti-	
	lizado para la identificación de los diferentes tipos de roca	63
	VI.2 Imagen 5	65
	VI.2.A Sistema de procesamiento de imagenes de satélite	65
	VI.2.B Despliegue de la imagen clasificada	77
	VI.2.C Comentarios de la imagen clasificada	78
	VI.2.C.1 Comparación de la imagen clasificada en relación al plano uti-	

lizado para la identificación de los diferentes tipos de roca7
I.3 Imagen 11
VI.3.A Sistema de procesamiento de imagenes de satélite
VI.3.B Despliegue de la imagen clasificada8
VI.3.C Comentarios de la imagen clasificada8

PAGINA

	VI.3.C.1 Comparación de la imagen clasificada en relación al plano uti-
	lizado para la identificación de los diferentes tipos de roca89
	VI.4 Imagen 4
	VI.4.A Sistema de procesamiento de imagenes de satélite
	VI.4.B Despliegue de la imagen clasificada
	VI.4.C Comentarios de la imagen clasificada
	VI.4.C.1 Comparación de la imagen clasificada en relación al plano uti-
	lizado para la identificación de los diferentes tipos de roca106
	VI.5 Imagen 10
	VI.5.A Sistema de procesamiento de imagenes de satélite
	VI.5.B Despliegue de la imagen clasificada
	VI.5.C Comentarios de la imagen clasificada
	VI.5.C.1 Comparación de la imagen clasificada en relación al plano uti-
	lizado para la identificación de los diferentes tipos de roca116
	VI.6 Imagen 3
	VI.6.A Sistema de procesamiento de imagenes de satélite
	VI.6.B Despliegue de la imagen clasificada126
	VI.6.C Comentarios de la imagen clasificada127
	VI.6.C.1 Comparación de la imagen clasificada en relación al plano uti-
	lizado para la identificación de los diferentes tipos de roca127
	VI.7 Imagen PLANO
VII.	 VI.7 Imagen PLANO
VII.	VI.7 Imagen PLANO
VII.	 VI.7 Imagen PLANO
VII.	 VI.7 Imagen PLANO. VI.7.A Sistema de procesamiento de imagenes de satélite. VI.7.B Despliegue de la imagen clasificada. VI.7.C Comentarios de la imagen clasificada. VI.8 Imagen ZONA1. VI.8.A Sistema de procesamiento de imagenes de satélite. VI.8.B Despliegue de la imagen clasificada. VI.8.B Despliegue de la imagen clasificada. VI.8.C Comentarios de la imagen clasificada. VI.8.C Conclusiones del Marco Geológico. VII.1 Conclusiones del Análisis Digital de Imagenes. VI.3 Conclusiones del Programa S.P.I.P.R. para la Clasificación de rocas y zo-
VII.	 VI.7 Imagen PLANO
VII.	 VI.7 Imagen PLANO. VI.7.A Sistema de procesamiento de imagenes de satélite. VI.7.B Despliegue de la imagen clasificada. VI.7.C Comentarios de la imagen clasificada. VI.8 Imagen ZONA1. VI.8.A Sistema de procesamiento de imagenes de satélite. VI.8.B Despliegue de la imagen clasificada. VI.8.C Comentarios de la imagen clasificada. VI.8.C Conclusiones de la imagen clasificada. VII.1 Conclusiones del Marco Geológico. VII.2 Conclusiones del Análisis Digital de Imagenes. VII.3 Conclusiones del Programa S.P.I.P.R. para la Clasificación de rocas y zonas de alteración. VII.4 Conclusiones de la utilización del programa S.P.I.P.R. para el procesa
VII.	 VI.7 Imagen PLANO. VI.7.A Sistema de procesamiento de imagenes de satélite. 130 VI.7.B Despliegue de la imagen clasificada. 139 VI.7.C Comentarios de la imagen clasificada. 140 VI.8 Imagen ZONA1. VI.8.A Sistema de procesamiento de imagenes de satélite. 142 VI.8.B Despliegue de la imagen clasificada. 151 VI.8.C Comentarios de la imagen clasificada. 152 CONCLUSIONES Y RECOMENDACIONES. 154 VII.1 Conclusiones del Marco Geológico. 154 VII.2 Conclusiones del Análisis Digital de Imagenes. 154 VII.3 Conclusiones del Programa S.P.I.P.R. para la Clasificación de rocas y zonas de alteración. 155 VII.4 Conclusiones de la utilización del programa S.P.I.P.R. para el procesa miento de imagenes de satélite.

- -

I.- INTRODUCCION

Los sensores remotos son la ciencia y arte de obtener información acerca de un objeto, área o fenómeno a través del análisis de datos adquiridos por un instrumento que no está en contacto conel objeto, área o fenómeno bajo investigación.

En nuestra investigación estaremos reducidos solo a sensores que captan la energía electromag-nética y específicamente utilizaremos en nuestro análisis digital por computadora con el programa-SPIPR, información de los Satélites Landsat (MSS).

La información de los satélites no representa otra cosa que el registro de una serie de datos sobre la manera en que diferentes rasgos superficiales de la tierra emiten ó reflejan la energía electromagnética y la manera en que estos datos serán analizados para obtener un máximo de infor-mación (figura 1).

Asentemos que un proceso de análisis digital de imagenes involucra la manipulación e interpre-tación de imagenes digitales con la ayuda de un computador.

Nuestro objetivo con este trabajo es determinar las características geológicas de una área, enla que se conozca la geología con lo cuál se evaluará la habilidad del programa SPIPR para la clasificación litoestratigráfica y la detección de zonas de alteración.

La idea central detrás de un proceso digital de imagenes es simple. La imagen digital es ali--mentada dentro de la computadora pixel por pixel. La computadora es programada para insertar estos datos dentro de una ecuación o serie de ecuaciones, y luego almacenar los resultados de la opera-ción para cada pixel. Estos resultados forman una nueva imagen digital para que pueda ser exhibida o guardada en forma de imagen o puede ser ella misma a su vez manipulada por programas adiciona--les. Las formas posibles para la manipulación de imagenes es literalmente infinita.

El paquete SPIPR tiene 4 tipos de operaciones asistidas por computadora:

1.- Rectificación y Restauración de Imagenes

- 2.- Realce de Imagenes
- 3.- Clasificación de Imagenes
- 4.- Mezcia de Datos

Sin embargo, creemos por experiencia que nuestra investigación hará un uso mucho mayor de las técnicas de Realce y Clasificación, por ser estas las que nos lleven a resolver, nuestra propuesta inicial, que es la de utilizar el análisis digital de imagenes para reconocer diferentes caracte-rísticas geológicas.

Este trabajo pretende tan solo ser una aportación para que la persona que se interese en obte-ner información geológica, por medio de interpretación de imagenes de satélite, através del pro--grama SPIPR, pueda de una manera simple y concisa, siguiendo algunos pasos, resaltar determinadascaracterísticas y lograr de una manera rápida y eficaz la interpretación general de un área de estudio.

II.- GEOGRAFIA DEL AREA

II.1.- LOCALIZACION Y VIAS DE ACCESO

El área estudiada se encuentra entre los paralelos 22[°]00' y 22[°]20' de latitud Norte y los meridianos 101[°]00' y 101[°]40' de longitud Oeste.

Las principales vías de comunicación son:

La parte SE del área de estudio está localizada hacia el Oeste de la Ciudad de San Luis Potosí. Sus principales vías de acceso son:

a) La carretera federal No. 80 que une la capital del Estado con la Ciudad de Guadalajara, y -que cruza la zona de NE A SW.

b) La carretera federal No. 49 de San Luis Potosí a Zacatecas que pasa por la esquina NE del área.

La parte NE del área de estudio esta localizada al NW de la Ciudad de San Luis Potosí. Sus principales vías de acceso son:

a) La carretera federal No. 49, tramo San Luis - Zacatecas.

b) La carretera estatal pavimentada que parte del km 31 de la carretera No. 49, que va a Ahua-lulco, Moctezuma y Charcas.

c) El ferrocarril San Luis Potosí - Aguascalientes que cruza el área de SE a NW.

Las partes NW y SW del área de estudio estan localizadas al poniente de la ciudad de San Luis-Potosí.

Sus principales vías de acceso son:

a) La carretera federal No. 49 que une a las ciudades de San Luis Potosí y Zacatecas, y que --cruza el área en dirección NW-SE en el norte del área.

II.2.- VEGETACION

En la tabla siguiente se muestran los principales tipos de vegetación del área de estudio.

PRINCIPALES TIPOS DE VEGETACION									
SURESTE DEL AREA	NORESTE DEL AREA	EL AREA NOROESTE DEL AREA SUROESTE DEL							
DE ESTUDIO	DE ESTUDIO	UDIO DE ESTUDIO DE ESTUDI							
MATORRAL DESERTICO	MATORRAL DESERTICO	MATORRAL DESERTICO	MATORRAL DESERTICO						
MICROFILO	MICROFILO	MICROFILO	MICROFILO						
ZACATAL	ZACATAL	MATORRAL CRASICAULE	MATORRAL CRASICAULE						
PIÑONAR	MATORRAL CRASICAULE	ZACATAL	ZACATAL						
MATORRAL	MATORRAL DESERTICO	ENCINAR	ENCINAR						
CRASICAULE	ROSETOFILO	ARBUSTIVO	ARBUSTIVO						

A continuación se da la descripción generalizada de los diferentes tipos de vegetación:

1.- Matorral Desértico Microfilo

Los suelos son característicamente de origen aluvial, suelen ser pobres en materia orgánica y de color mas bien claro, entre grisaceo, rojizo y castaño. Las especies predominantes son: El Ma-guey, La Gobernadora, El Nopal, y La Biznaga. Generalmente descansan sobre depósitos profundos a-cumulados en el fondo de los valles o depresiones.

2.- Encinar Arbustivo

Son característicos de un clima intermedio árido, requiere temperaturas relativamente bajas; -se desarrolla en suelos pedregosos, someros y bien drenados; de color castaño y negros a rojizos. Predomina el genero Quercus.

3.- Zacatal

Se desarrolla sobre suelos inmaduros, poco profundos de las laderas de los cerros. Las especies predominantes son Boutelova Sp y Muhlenbergia Sp.

4.- Piñonar

Se caracteriza por un clima con una precipitación anual de 400 a 700 mm, con 6 a 7 meses de sequia. Esta vegetación se desarrolla sobre suelos someros y bien drenados de las laderas de los cerros. La dominancia de Pinus Cembroides es siempre completa.

5.- Matorral Crasicaule

Se desarrolla sobre las laderas de los cerros riolíticos y basálticos y sobre los abanicos aluviales situados en la base de los mismos cerros. Los suelos son de color castaño a rojizo-grisa--ceo. Las especies predominantes son: Los Nopales y El Maguey.

6.- Matorral Desértico Rosetófilo

Se desarrolla sobre cerros calizos, el suelo es de color obscuro y relativamente rico en mate--ria orgánica. Las especies predominantes son: Agave Striata, Agave Lechuguilla, Yucca Carnerosanay Hechtla Glomerata.

II.3.- GEOMORFOLOGIA DEL AREA

La información que se presenta a continuación es una recopilación de los trabajos elaborados -por el Instituto de Geología y Metalurgia.

Estos trabajos estan principalmente a cargo de:

Labarthe, Tristán y Aguillón.

El área estudiada se encuentra dentro de la Provincia Fisiográfica de la Mesa Central. (Alvarez Jr., 1949).

Hacia la parte SE del área de estudio la cuál pertenece a la Sierra de San Miguelito, presentauna topografía abrupta, con elevaciones que llegan hasta 2700 msnm y que culminan en el Cerro del-Potosí. Todo este sistema montañoso esta formado por rocas félsicas terciarias. El resto lo cons-tituye el derrame Riolítico San Miguelito y en sus flancos la Ignimbrita Riolítica. Ya en las es-tribaciones de esta sierra y sobre todo en la esquina NE aparece el derrame de Latita Porfíritica, que presenta una topografía más suave, aunque con algunos picachos aislados.

El drenaje es de tipo rectangular estando controlado por los sistemas de fracturamiento. Aparece algo de drenaje de tipo dendrítico, pero siempre predominando el primero. Todos los arroyos son intermitentes desaguando en el valle de San Luis Potosí hacia el NE y en el graben de Villa de Reyes al SE.

Hacia la parte NE del área de estudio se encuentra caracterizada por 4 unidades de roca, que -son Calizas, Lutitas, Lutitas y Areniscas y rocas Igneas Extrusivas.

Las morfologías que presentan estas unidades son las siguientes:

Hacia la parte central se encuentra un gran paquete de aluvión formando planicies alargadas entre estas unidades de rocas.

Dentro del paquete sedimentario, que se encuentra predominantemente hacia la parte superior o-riente (Lutitas y Areniscas) presenta una morfología de lomas arredondeadas con pendientes suaves.

Las rocas (gneas existentes como son riolitas, ignimbritas y algunas tobas presentan una topo-grafía en forma de lomeríos arredondeados poco escarpados.

Dentro de esta parte se presenta un drenaje de tipo dendrítico espaciado que predomina en todala zona, haciendose un poco más denso hacia el paquete de rocas sedimentarias.

Hacia las partes SW Y NW del área de estudio esta formada por un conjunto de lomas arredondea-das, formadas principalmente por sedimentos marinos, teniendo su máxima elevación de 2550 msnm,--así como por rocas (gneas extrusivas presentando algunas zonas de alteración hacia la porción de -Pinos Zac.. El drenaje que se presenta es principalmente de tipo dendrítico y subparalelo.

En su parte central sur se encuentra una gran meseta de rocas volcánicas (Mesa de la Misericordia) con su máxima elevación de 2500 msnm y su mínima 2200 msnm; el drenaje que presenta es del -tipo dendrítico y subparalelo principalmente.

En general esta zona se encuentra cubierta principalmente por aluvión llegando a formar exten-sas llanuras a excepción de unas pequeñas lomas y cerros que llegan a sobresalir sobre la planicie.

III.- GEOLOGIA

III.1.- MARCO GEOLOGICO REGIONAL

El contenido de la geología de esta área de estudio, está fundamentada en una recopilación de-trabajos hechos por el Instituto de Geología y Metalurgia.

Estos trabajos estan principalmente a cargo de:

Labarthe, Tristán y Aguillón.

Hacia la parte SE del área de estudio el dominio es exclusivamente Volcánico Terciario.

El área está localizada dentro de una gran Provincia Geológica de rocas volcánicas, en su mayoría félsicas, del Oligoceno y Mioceno que va desde el Eje Neovolcanico en el Sur, hasta los Esta-dos Unidos de América en el Norte, con una dirección NW.

La secuencia de depósito de las rocas extrusivas es: Andesita, Latita, Riolita, Ignimbritas ---Riolíticas, con muy aisladas y pequeñas extrusiones de Basalto.

Hacia la parte NE del área de estudio todos los sedimentos de la cuenca fuerón depositados en aguas profundas principalmente.

El Terciario es eminentemente volcánico, y forma parte de la misma Provincia Volcánica ya men-cionada.

Las rocas sedimentarias del Terciario consisten de sedimentos clásticos continentales del Pa--leoceno-Eoceno y rocas volcanoclásticas del Mioceno ?, que rellenarón algunas depresiones, encon-trandose además sedimentos hacia el centro de ellas.

Hacia la parte NW y SW del área de estudio el medio ambiente corresponde a sedimentos de poca profundidad y que principia a comienzos del Cretácico Superior, al iniciarse la regresión marina.

Las rocas sedimentarias del Terciario, consisten de sedimentos clásticos continentales del Pa-leoceno-Eoceno depositados en las cuencas aisladas. El Terciario Medio y Superior está representado por las rocas (gneas extrusivas y flujos de lava e ignimbritas generalmente félsicas, que lle-gan a cubrir discordantemente a los sedimentos marinos cretácicos.

En el norte del área el Cuaternario esta representado por rocas volcánicas máficas, las cualesson del tipo andesítico y basáltico.

III.2.- ESTRATIGRAFIA DEL AREA DE ESTUDIO

CRETACICO

III.2.A.- FORMACION INDIDURA (Ksi)

Cretácico Superior (Turoniano)

Esta formación fué descrita originalmente por Kelly, W.A. (1936), quien la estudió en la región de Delicias, Coah., dando este nombre a unos 30 m de lutitas, calizas resquebrajadas y lajas de -- caliza.

ERA	SISTEMA	SERIE			PISO EUROPEO	EDAD H.A.		SE AREA DE ESTUDIO	N E AREA DE ESTUDIO	NW AR DE ESTUD	EA IO	SW AL	EA JDIO
	Q PLEISTOCENO							ALUXION PUMICITA EL DESIERTO CONGLOMERADO	ALUVION, SUELO RESIDUAL.DEP. DE TALUD.CON- GLOMERADO.	ALUVION DEPOSITOS TALUD. CONGLOMER	DE ▲DO.	ALUVIO DEPOSITO TALUI SUELO RESIDU)N.) DE).)
CEN		PLIOCENO						· · · · · · · · · · · · · · · · · · ·					
		MIOCENO	CENO			25			BASALTO. IGNIMBRITA AHUALULCO MIEMBRO INF,				
20100	TERCIARIO	OLIGOCENO				36		TOBAS RIOLI- TICAS. RIOLITAS Y LATITAS. TOBA LITICA.	RIOLITA PANALILLO. RIOLITA SAN MIGUELITO.	RIOLIIA PANALILLO. (MIEMBRO SUP. MIEMBRO INFERIOR). RIOLIIA SAN MIGUELIIO Y ZONAS DE AL- TERACION. TOBA PINOS.		RIOLITA PANALILLO (MIEMBRO SUP.Y MIEMBRO INFE- RIOR) IGNIMBRITA CANTERA. RIOLITA SAN MIGUELITO. TOBA PINOS.	
		EOCENO		1		58		?	CLASTICOS CONTINENTALES		TT		
		PALEOCENO				63			TERCIARIOS. ANDESITA. TOBA CLAVE				
		SUP	G 0 1	s					FORMACION	FORMACI	0.14	EORMAC	
				N O N I	SANTONLANG	8 4			CARACOL	CARACO	L	CARACO	
ME	CR	E R I O	A N A	A N O	CONTACIANŬ								
070	L L	к			TURON LANO	9 a			FORMACION INDIDURA	FORMACI	0 N A	FORMAC	ION JRA
I C O	C O				CENOMANIANO	1 i e							
		IN	0 14 14	A L	SUPERIOR								
		F E R I		8 เ 	MEDIO								
			Ö R	N .	0	INFERIOR	128						
1		O LABARTHE	н.	-	3 ALFREDO A	AGULLON ROB	ц 3L	ES I	2	3		4	
2	2 GUILLERMO LABARTHE H. 4 ALFREDO AGUILLON ROBLES MARGARITO TRISTAN G. 4 ALFREDO AGUILLON ROBLES CARLOS FCO. PUENTE MUÑIZ.												

TABLA ESTRATIGRAFICA

Se encuentra distribuida en diferentes partes del área de estudio; sus mayores afloramientos -están en la parte norte y poniente del área.

Según Aguillón esta formación está constituída principalmente por calizas en estratos de 10-40cm de color gris obscuro a negro, algo carbonosa, que intemperiza en un color gris crema, intercalada con estratos de caliza de 5-10 cm, lajosa y arcillosa, de color violáceo y algunos estratos delgados de limolitas del mismo color; esporádicamente contiene algunos nódulos y bandas de pedernal negro.

Su espesor es difícil de medir por la gran cantidad de pliegues secundarios que presenta.

Esta formación sobreyace a la formación Cuesta del Cura, la cuál no aflora en el área y subyace a la formación Caracol, siendo ambos contactos, concordantes y ligeramente transicionales.

Estos depósitos por sus características lito-estratigráficas se supone que fuerón depositados cerca del medio batial, ya que presentan una secuencia más o menos ritmica de las capas calcáreas, con muy poca aportación de arcilla, habiendo también suministro de material orgánico, presencia de pirita singenética, por lo que se sugiere que se trata de un medio ambiente reductor, sin o muy -poca circulación de agua.

En conclusión estos sedimentos fuerón depósitados desde la parte alta del medio batial, pasando por la subzona circalítoral, hasta llegar a la subzona infralítoral (45-180 m) de profundidad.

III.2.B.- FORMACION CARACOL (Ksc)

Cretácico Superior (Coniaciano-maestrichtiano)

Descrita inicialmente por Imlay, R.W. (1936), el lugar en donde aparecen varios afloramientos--es en el Arroyo de Caracol, situado en la Sierra de San Angel, en la parte oriental de la Sierra--de Parras, Coah.

Esta formación se encuentra ampliamente distribuida en el área de estudio; en algunas ocasiones aflora en las laderas de los cerros, o se encuentra aflorando en forma de pequeñas ventanas, en -- diferentes arroyos y algunas veces esta cubierta por una delgada capa de material aluvial.

Según Aguillón esta formación consiste de lutitas de color gris-verdoso, físiles que al partirse se astillan fácilmente, las cuales intemperizan en color café rojizo, alternandose con arenis-cas en estratos de 10-30 cm, de color verdoso con granos subarredondeados de feldespatos, cuarzo y una cantidad abundante de muscovita, contenidos en una matríz calcárea. Su espesor se desconoce -por estar fuertemente plegada y casi totalmente cubierta.

Su contacto con la formación Indidura, es concordante y ligeramente transicional y está gene--ralmente cubierta por sedimentos, terciarios continentales, por ignimbritas y lavas riolíticas --del terciario o directamente por sedimentos cuaternarios.

Por sus características sedimentológicas, como son la estratificación bien marcada, uniforme, ritmica, de lutitas laminares y areniscas gradadas, este deposito tubo lugar en aguas poco profundas y serenas, debajo del tren de olas con libre circulación de agua, y suficiente penetración deluz solar.

III.2.C.- TOBA CLAVELLINAS (Tc1) (Paleoceno-Eoceno)

Esta formación descansa discordantemente sobre la formación Caracol, subyaciendo a los clásti-cos continentales terciarios.

Según Labarthe y Tristán esta formación es un flujo de cenizas de color rosa con 30% de feno--cristales de cuarzo y sanidino, este flujo se halla sin soldar o parcialmente soldado, presentando lenticularmente zeolitización de la matríz.

III.2.D.- CLASTICOS CONTINENTALES TERCIARIOS (Tc) Paleoceno-Eoceno

Estos Clásticos Continentales fuerón depositados discordantemente sobre los sedimentos cretá--cicos marinos, o en algunos lugares sobre una roca andesítica, afloran estos sedimentos hacia la parte NE del área.

Según Labarthe y Tristán estos sedimentos consisten de un conglomerado formado predominantemente por fragmentos lajosos de las areniscas y lutitas de la formación Caracol, en ocasiones con --clastos de caliza y pedernal negro.

En general se presentan en forma aislada rellenando depresiones y con espesores muy variables.

Sobreyacen discordantemente a una roca andesítica. O sea, que hubo actividad volcánica, antes y después del depósito de esta formación. La Riolita San Miguelito también sobreyace discordantemente a los Clásticos Continentales del Terciario, siendo el contacto un vitrófido.

Por su posición estratigráfica, se les asigna una edad del Paleoceno-Eoceno.

III.2.E.- ANDESITA (Tan)

Paleoceno-Eoceno

Aflora sobre todo en la parte central NE del área. Según Labarthe y Tristán se trata de una roca de color gris obscuro verdoso, afanítica. Se presenta en forma aislada, tanto abajo como arriba estratigráficamente, de los Sedimentos Clásticos Continentales Terciarios. También se halla dis--cordantemente sobre la formación Caracol.

Subyace discordantemente a la Dacita Jacavaquero, la cuál no aflora en nuestra área. En ocasiones esta cubierta también discordantemente por la Latita Porfirítica.

III.2.F.- TOBA PINOS (Ttp)

Terciario (Oligoceno)

Según Aguillón esta formación es una ceniza volcánica, se le ha asignado este nombre a un con-junto de tobas que se encuentran en la base de un derrame lávico de tipo riolítico. En el área de estudio se encuentra aflorando al lado SW y hacia la parte baja de la sierra que se localiza en la parte NE del poblado de Pinos, Zac., y aproximadamente a 6 km al norte de estemismo poblado.

En general se trata de una ceniza volcánica, de color blanco a amarillento, de grano fino, conun 15% de fenocristales de cuarzo y feldespato y con fragmentos de líticos de 2 cm de diámetro, -presenta también aislada estratificación cruzada. Hacia su base presenta un toba de grano fino, yhacia su parte media se hace muy lítica y con bastante poméz sin colapsar; hacia su cima se hace grano fino.

El espesor medido en una sección al norte de Pinos, Zac., fué de 295 m.

Esta unidad se encuentra sobreyaciendo discordantemente a la formación Caracol y se encuentra subyaciendo discordantemente a la Riolita San Miguelito, y al miembro inferior de la Riolita Panalillo.

III.2.G.- LATITA PORFIRITICA (TIp)

Según Tristán y Labarthe se trata de una roca de color café grisáceo, de textura porfirítica, empacados en una matríz fina. Esta formación aflora en las inmediaciones de la Iglesia del Desierto. En algunos lugares se le observa una textura fluidal. Intemperiza en un color grisáceo amari-ilento, haciéndose arenosa.

Subyace más o menos concordantemente a la Riolita San Miguelito, siendo el contacto un vitrófido de espesor variable, desde 1 m hasta 20 m. Este vitrófido es bastante fenticular y en los lugares en donde no aparece, el contacto es marcado por una zona brechosa de la Riolita San Miguelito.

También subyace concordantemente a la Ignimbrita Cantera, Bolas y Panalillo, siendo en generalel contacto un horizonte de toba depositada por aire hasta de 15 m de espesor y un vitrófido de --0.5 a 2 m de grueso.

III.2.H.- RIOLITA QUELITAL (Trq)

Según Tristán y Labarthe, se trata de un paquete de rocas riolíticas que en su base consiste --de un derrame lávico, de color rojizo, fuertemente oxidado, con 60% de fenocristales de cuarzo y -sanidino, en una matríz fina. Tiene abundante hematita diseminada y en vetillas. Se le aprecia estructura fluidal. Sobre él, existe una ignimbrita de la misma composición, en la que se observan -algunos fragmentos de poméz colapsada. Su cima esta formada primero por una toba depositada por --aire de unos 6 m de espesor, luego un vitrófido de unos 10 m y sobre este una zona brechosa de 15m de espesor, la que subyace a la Riolita San Miguelito. Toda esta parte superior es en general --lenticular.

En el SE del área de estudio la base de esta formación no aflora pero se considera la roca másantigua.

III.2.I.- RIOLITA SAN MIGUELITO (Tsm) Terciario (Oligoceno)

Originalmente descrita por Labarthe -Tristán (1978) y propuesta formalmente por Labarthe Tris-tán-Aranda (1982), tiene como localidad tipo la estribación norte de la sierra San Miguelito, bordeando el valle de la Ciudad de San Luis Potosí. Consiste generalmente de un derrame riolítico que cubre junto con otras unidades volcánicas toda la sierra mencionada; esta unidad se continua hasta los estados de Guanajuato, Zacatecas y Aguascalientes.

Esta formación aflora desde la parte central del área de Pinos, Zac., hasta su límite sur, continuandose hasta la parte norte del área del Obraje, Zac., así como en gran parte del SE del área.

Esta formación consiste de un derrame Lávico de color gris claro, con un 20-25% de fenocrista-les de 2-4 mm de sanidino o cuarzo, en la misma proporción; algunas veces los fenocristales son de 1-2 mm, con algo de magnetita diseminada en la matríz, parcialmente alterada a hematita, presentamatríz desvitrificada.

En el área de Pinos, Zac., esta formación presenta alteración hidrotermal que la silicifica y oxida totalmente; son de color blanco y rojizo respectivamente.

En el área de estudio esta roca sobreyace discordantemente a la Toba Pinos; está separada por un vitrófido negro de 10 m de espesor, y subyace discordantemente en el área del Obraje, Zac., a la Ignimbrita Cantera por medio de un vitrófido negro de 10 m de espesor; en el área de Pinos también subyace a los miembros superior e inferior de la Riolita Panalillo; en el área de Ojuelos, --Jal., tambien subyace a la Traquita Los Castillos, todos estos contactos son discordantes.

Este derrame se depositó sobre superficies erosionadas en un medio completamente continental.

III.2.J.- TOBA LITICA (Ttl)

Según Tristán y Labarthe esta formación aflora abundantemente hacia la parte SE del área de estudio, asociada a la fuente principal del derrame San Miguelito. Consiste de una Toba Lítica, bien estratíficada de color crema a amarillo claro, en ocasiones verdosa. El contenido de líticos es -muy variable en toda la unidad. En general se encuentra muy poco soldada, aunque llega a tener zonas con soldamiento parcial y también algunas partes bien soldadas.

Sobreyace concordantemente al derrame de Riolita San Miguelito con un zona brechosa lenticularde unos 20 m de espesor, a su vez subyace tambien concordantemente a la Ignimbrita Bolas.

Esta unidad tiende a acuñarse hacia el NW y su espesor es del orden de 100 m.

III.2.K.- IGNIMBRITA CANTERA (Tic) Terciario (Oligoceno)

Esta unidad fué descrita originalmente por Labarthe-Tristán (1978) y propuesta formalmente por-Labarthe-Tristán-Aranda (1982), tiene como localidad tipo el Arroyo de la Cantera, localizado a --2.5 km al NE del poblado los Arroyos, S.L.P. y su sección tipo en la barranca del Cerro Alto, al norte del poblado de Calderón S.L.P., en donde aflora su cima y su base.

En el área de estudio el principal afloramiento de esta unidad es una gran meseta que se encu-entra en los límites del área de el Obraje, Zac., y Ojuelos, Jal., llegando a medir 12 km en su -parte más larga y 10 km en su parte más angosta. Se trata de una roca de color gris rosaceo, de textura porfirítica, con 30-40% de fenocrista--les de sanidino y cuarzo rotos, en una matríz fina desvitrificada.

También tiene una fuerte alteración hidrotermal en el Cerro Colorado, al oriente del Obraje --presentandose la ignimbrita como un flujo zeolitizado hacia su base.

Su espesor es muy variable ya que se depósito en una superficie irregular, llegando a medir 65m en su parte más delgada y 200 m en su parte más gruesa.

Esta unidad se observó descansando discordantemente sobre sedimentos marinos de la formación --Caracol y de la formación Indidura, algunas veces con un vitrófido negro y eutaxítico de aproximadamente 10 m de espesor hacia su base.

Esta unidad se encontró subyaciendo principalmente al miembro superior de la Riolita Panalillo.

III.2.L.- RIOLITA PANALILLO (Trp)

Terciario (Oligoceno Superior)

Según Tristán y Labarthe, bajo esta denominación se agrupa un paquete de rocas riolíticas queafloran en los flancos norte y poniente del SE del área de estudio. Su base es un vitrófido grisobscuro de 1 a 5 m de espesor. Sobre el descansa una toba depositada por aire, de espesor varia-ble, desde unos cuantos metros, cerca de Barbecho, hasta 50 m en la zona de Cerro Prieto. Esta -toba está bien estratificada, en capas de 5 a 30 cm, con interestratificación de horizontes de -granos muy finos con otros arenosos y algunos con abundancia de líticos. Es de color crema a li-geramente rojizo. Sobreyaciendola está propiamente la Ignimbrita que es una roca de color gris--rosáceo y café claro, de textura porfirítica y eutaxítica con 10 a 15% de fenocristales de sani-dino y cuarzo. Son muy notables una serie de fragmentos delgados, muy colapsados de poméz. Se --trata de una Ignimbrita Riolítica. Tiene un espesor en las cercanías de Cerro-Prieto del orden de 40 m sobre ella descansa concordantemente una riolita esferolítica, de color cafe, con abundantes esferulitas que van desde unos cuantos mm hasta de 4 cm de diametro, que aumentan de tamaño hacia el contacto de la Ignimbrita.

Descansa concordantemente sobre la Latita Porfirítica, Sobre la Riolita San Miguelito.

III.2.M.- IGNIMBRITA BOLAS (Tib)

Según Tristán y Labarthe esta formación aflora hacia las estribaciones norte y oriente de la --sierra San Miguelito, y como casquetes más o menos aislados sobre el derrame de la Riolita San Miguelito. Es una roca de color gris rosado a café grisáceo, de textura porfirítica con 30-40% de -fenocristales de 2-5 mm, de cuarzo y de sanidino en una matríz fina. Se le clasificó como Ignim--brita Riolítica.

En su parte media presenta dos unidades. La inferior es una toba depositada por aire, que lla-mamos Toba el Peaje y la Superior es una Ignimbrita poco soldada denominada Ignimbrita Escaleri--llas.

Sobreyace concordantemente a la Riolita Panalillo.

III.2.N.- TOBA EL PEAJE (Ttp)

Según Tristán y Labarthe esta Toba se encuentra intercalada entre la Ignimbrita Bolas. Esta toba depositada por aire se cartográfio separadamente, tiene unos 80 m de espesor, es de un color -blanquecino a crema y café claro, bien gradada, en capas de 5-40 cm de espesor, con interestrati-ficación de horizontes de granos muy finos caolinizados, otros con fragmentos de tamaños de arenagruesa y otros con abundantes líticos de 1-5 cm de diametro. Presenta en ocasiones capas de colorcafé rojizo claro de grano muy fino.

Esta toba se encuentra sobreyaciendo a la Ignimbrita Bolas y aflora en las estribaciones nortey oriente de la sierra de San Miguélito.

Subyace a la Ignimbrita Escalerillas en forma concordante.

III.2.0.- IGNIMBRITA ESCALERILLAS (Tie)

Según Tristán y Labarthe esta formación se encuentra descansando concordantemente sobre la Toba El Peaje, aparece un horizonte de 10-30 cm de espesor de una toba poco soldada, de color rosa, con poméz sin colapsar y con un 5-10% de fragmentos líticos de color rojizo y algunos verdosos. En elárea aflora al norte de la cortina de la presa del Peaje y descansa sobre el material de fuente.

III.2.P.- IGNIMBRITA AHUALULCO MIEMBRO INFERIOR (Tia1)

Según Labarthe y Tristán se trata de una roca de color gris rosáceo a gris rojizo, de textura porfirítica, con fenocristales de cuarzo, sanidino y plagioclasas. En general hacia su base se intemperiza más fácilmente que el resto y predomina un sistema de juntas horizontales. Hacia su parte media es columnar, con un color más rojizo; se le nota mejor la fluídez y presenta opalo blanco y rosa en fracturas.

Su parte superior es un horizonte brechoso con abundantes cavidades,

Su contacto inferior con las rocas a las que sobreyacen es siempre un vitrófido negro, sobre el que es frecuente observarse una toba blanca parcialmente soldada.

Aflora principalmente hacia la parte NE del área de estudio.

III.2.Q.- BASALTO (B)

Según Labarthe y Tristán, en la brecha que va de Palmar Segundo a Mexquitic, existe un pequeño afloramiento de basalto negro, vesicular, con fenocristales de olivino que descansa discordante--mente sobre la Latita Porfirítica. Es difícil situarlo dentro de toda la columna de las rocas ---volcánicas, aunque por lo observado en areas cercanas, puede tratarse o bien del Basalto Cabras que sobreyace al miembro superior de la Panalillo, o de los Basaltos Pleistocénicos de la Joya ---Honda.

CUATERNARIO

III.2.R.- CONGLOMERADO (Cg)

Según Labarthe y Tristán, con este nombre se está agrupando una serie de sedimentos acumuladostanto en los taludes de los cerros como en las partes bajas donde predominan fragmentos del tamaño de bloques y guijarros, poco retrabajados en los taludes.

Las lomas que aparecen al W y S de la Ciudad de San Luis Potosí están formadas por un conglomerado mal clasificado, sin estratificación, de rocas volcánicas del área. Su espesor es de unos 30m.

III.2.S.- SUELO RESIDUAL

Los suelos residuales son el resultado de un sistema complejo de agentes atmosféricos, que a--fectan directamente a la superficie de la roca aflorante, y que dan origen a la meteorización de ellas y por consiguiente a la formación de estos, en este trabajo se han separado dichos suelos de los depositos aluviales o suelos transportados.

Algunas rocas volcánicas, pero principalmente la Ignimbrita Bolas, intemperizan en las partes planas, dejando una capa de 0.5 a 1 m de espesor de un suelo residual de color gris. En ocasionesformando capas compactas, que localmente se les llama "TEPATATE".

III.2.T.- PUMICITA EL DESIERTO (Qd)

Según Labarthe y Tristán, aisladamente en el área, y sobre todo al SW de la Iglesia del Desierto y a unos 300 m del Club de Tiro Halcones, aparece un horizonte de Cenizas Volcánicas de 0.5 a -2.5 m de espesor, casi sin consolidación, de grano muy fino, de color blanco, muy ligero. Por lo tanto su depósito fué en agua, en pequeñas depresiones. Descansa discordantemente sobre Suelo Re-sidual de la roca aflorante en esa zona o directamente sobre la misma roca.

Se tratan de Cenizas que representan la última actividad volcánica y que fuerón depositadas y conservadas en pequeñas depresiones de la zona.

Este material se utiliza como abrasivo, para moldes de fundición y también para planilla de los techos, debido a su ligereza.

Sobre él existe una capa de suelo.

III.2.U.- ALUVION (Q)

El área se encuentra cubierta por una extensa capa de material aluvial, que varía desde unos -cuantos metros, hasta espesores de 100 m o mas.

Se pueden encontrar aluviones formando lomeríos y extensas llanuras siendo generalmente de poco espesor.

También se pueden encontrar formados por gravas, arenas y limos que se acumulan en la desembo--cadura de los arroyos formando pequeños abanicos aluviales, cuyos espesores no sobrepasan de los -5 m.

III.3.- GEOLOGIA ESTRUCTURAL

La Geología estructural de ésta área ha sido una recopilación de los trabajos realizados por el Instituto de Geología y Metalurgia.

Estos trabajos están principalmente a cargo de:

Labarthe, Tristán y Aguillón.

Según Tristán y Labarthe, la parte SE del área de estudió la estructura general de las rocas -volcánicas está caracterizada por un fuerte fracturamiento y fallamiento N40^{\circ} a 50^{\circ}W, paralelo alrumbo de las unidades, las cuales tienen un echado de 15 a 20^{\circ} al NE.

La Riolita San Miguelito presenta dos zonas de fuentes principales: una en el área de Cerro ---Grande y la otra en la esquina SE del área. Este derrame, además de haber presentado una depresión hacia la parte de la carretera No. 80, se falló en esa zona, dando como resultado una área baja en la cuál se depositarón la serie de ignimbritas y tobas.

Los sistemas principales de fracturamiento son en orden de importancia: N40[°]-50[°]W, N40[°]-50[°]E, -N70[°]W, N20[°]W, N20[°]E, Norte y Este.

Es notable el fallamiento longitudinal y normal de las unidades, con fallas escalonadas que e-chan hacia el SW.

Otra estructura importante es el alto de la Latita Porfirítica que se observa en el área de la-Iglesia del Desierto.

En general la tectónica del terciario, consistio escencialmente de una tafrogenía, representada por númerosas fallas normales de extensión.

Según Aguillón la parte SW y NW del área, la cuenca estuvo emergida durante el Jurásico Inferior y Medio, y consistio de un grueso paquete de depósitos marinos del Júrasico al Cretácico Supe--rior. El diastrofismo Laramídico originado a fines del Cretácico y principios del Terciario, plegó y produjo intrusiones, que dieron como resultado plegamientos grandes, asimétricos de rumbo NW-SE, generalmente recostados al NE, con el flanco SW de echados suaves y el NE con echados fuertes.

De las estructuras importantes de las rocas volcánicas, se encuentran las fuentes por donde e-manó la lava de las rocas existentes en el área; una de las fuentes principales se localiza al NEde San Juan de los Herrera, y se encuentran otras pequeñas a lo largo de la Sierra, las cuales --presentan fluidez vertical, vidrio en forma de brecha y cristalización en fase de vapor.

III.4.- HISTORIA GEOLOGICA DEL AREA

Según Labarthe y Tristán, hubo lugares en el área en donde prevalecio un medio ambiente reduc-tor indicado por las calizas carbonosas de la formación Indidura y por la presencia de la pirita en algunos sitios.

Durante el turoniano empieza una transgresión, representada por la unidad superior de la Formación Indidura, que continua con el depósito tipo flysh.

A fines del cretácico y principios del Terciario, la Orogenia Laramide plegó intensamente y falló, sobre todo con fallas longitudinales, a las rocas cretácicas, haciendo emerger definitivamente a la zona. En algunas depresiones se depositarón sedimentos continentales producto de la ero--- sión de las rocas expuestas; ya durante está epoca (Paleoceno-Eoceno), empieza la actividad ígneacon la emisión de las Lavas Andesíticas.

Después, y solo en la parte SE de la zona vino la extrusión de Riolita Quelital junto con una ignimbrita. Posteriormente se efectúa el derrame de la Riolita San Miguelito, la cuál salió por -numerosas fuentes, siendo las principales; la del área de Cerro Grande y la de la esquina SE del área de estudio.

Se puede decir que la actividad volcánica en el área fué de tipo efusivo y explosivo. El derrame San Miguelito puede explicarse como un magma viscoso que salió através de un conducto abierto,ascendiendo todavía en estado líquido e incandesente formando domos de laderas muy inclinadas. Lalava debe de haberse encontrado tan cerca al estado sólido que en ocasiones se levanta en forma de capas y prismas muy inclinados, los cuales sobresalen en forma de placas o espinas en la superificie del domo (Cerro del Potosí).

Estas emisiones no se llevarón a cabo por un solo conducto, sino por una serie de fuentes, so-bre todo alineadas a lo largo del fracturamiento principal y de la gran falla que atravieza el á-rea de SW a NE.

A consecuencia de la alta viscosidad de la lava, el conducto no pudo permanecer siempre abierto sino que fué descabezado en varias ocasiones, formandose cúpulas de estancamientos en las abertu-ras. Estas cúpulas al cabo de un tiempo volvieron a tener actividad, cuando la presión de los ga-ses en su interior fué muy elevada, dando como resultado una serie de explosiones y la emisión denubes ardientes, consistentes primeramente de los materiales desprendidos de la roca del conducto. Le siguieron un conjunto de explosiones que lanzaron sobre todo cenizas y partículas en estado incandecente, en una suspensión de pequeñas escamas de vidrio, poméz pulverizada y fenocristales ---aislados.

Esta suspensión o nube ardiente ascendió atraves de los flancos de los cerros, depositándose --sobre todo en las depresiones ya existentes. Esto dió origen a la serie de Ignimbritas y Tobas ---(Cantera, Peaje, Escalerillas y Bolas). Posteriormente, otra actividad similar, con sus fuentes -hacia el NW, ya fuera del área de estudio, dio origen a las tobas e ignimbritas de la Riolita Pa-nalillo, con pequeñas efusiones de basalto que subyace a esta roca.

La temperatura de la nube fué tan elevada, que hacia la parte central se encuentra totalmente soldada dando el aspecto de lava. En cambio, hacia las partes inferior y superior, asi como hacialos flancos, pasa a un soldamiento parcial y a una toba sin soldar.

Posteriormente a esta serie, se registra una actividad fumarólica en la zona de fuentes, que -dió origen a la intensa oxidación observada.

Ya muy posterior y como última actividad volcánica en el área, una serie de explosiones dió o-rigen a los depósitos de Pumicita el Desierto, la cuál se deposito y conservó en cuerpos de agua en pequeñas depresiones.

La erosión ha dado como resultado depósitos de conglomerados en el flanco oriente de la Sierrade San Miguelito, así como áreas de aluvión en los valles de San Luis Potosí y Villa de Arriaga.

III.5.- ALTERACIONES

En los trabajos de Aguillón, se describen diferentes alteraciones como las que se encuentran en el SW y NW del área de estudio. Estas se consideran de interés minero.

En algunas áreas se trata de una silicificación y oxidación de la roca, principalmente de la -formación Indidura, aunque se llega a observar en la formación Caracol, que la convierte en una -roca de color gris obscura a negra, silicoza, de grano muy fino, con depósito de oxidos de fierroen fase de vapor. Este tipo de alteración se encuentra en el límite poniente del área a la alturade la carretera S.L.P. - Zacatecas.

Al sur del área, la Ignimbrita Cantera tiene una zona de alteración hidrotermal.
IV. - PRINCIPIOS DEL ANALISIS DIGITAL DE IMAGENES

IV.1.- TIPOS DE SATELITES PARA ESTUDIAR LOS RECURSOS DE LA TIERRA.

El estudio de la tierra desde el espacio ha evolucionado rápidamentente. Actualmente se depende de sensores localizados en el espacio para auxiliar tareas que van desde predicciones del clima, de cosechas, a la exploración de minerales y aplicaciones tan diversas como detección de contami-nación, pesca comercial, etc. Todo esto ha sucedido en un corto período de tiempo y el avance de los sensores remotos continúa rápidamente, lo que garantiza que esta técnica, continuará desarro-llandose a un ritmo acelerado.

Revisaremos de manera general al satélite Landsat que se utiliza en las investigaciones geoló-gicas.

IV.2.- CARACTERISTICAS DE LA ORBITA DE LOS LANDSAT 4 Y 5.

Los landsat 4 y 5 como sus predecesores, fuéron lanzados en órbitas casi polares, repetitivas,circulares y sincronizadas con el sol. Aunque la órbita fué bajada de 900 a 705 km, entre otras -razones para manejar la resolución de los sensores a bordo del satélite.

Las principales características de la órbita se muestran en la figura 2 y 3.

Deacuerdo a esta órbita el ciclo se repite cada 16 días para cada satélite. Las órbitas de los-Landsat 4 y 5 se establecieron con un desplazamiento de 8 días, de tal manera que cuando ambos están operando se puede completar un ciclo cada 8 días, utilizando el cubrimiento de cada satélite.

IV.3.- SENSORES A BORDO DE LOS LANDSAT 4 Y 5.

La figura 4 muestra el diseño de los satélites Landsat 4 y 5 que incluyen tanto el MSS (Multi-espectral Scanner) como el TM (Tematic Mapper). El MSS transmite 15 megabites por segundo (Mbps) y el TM transmite 85 Mbps.

La óptica del sistema MSS también a sido modificada para dar un IFOV de 82 x 82 m que corres--ponde escensialmente al IFOV de 79 x 79 m de los sistemas previos.

IV.4.- INTERPRETACION DE IMAGENES MSS DEL LANDSAT.

La resolución efectiva de las imagenes MSS LANDSAT es de cerca de 79 m².

La mayoría de las interpretaciones de las imagenes Landsat se hacen monoscopicamente. De hecho, dada la gran altitud y lo estrecho de su campo de vista en el MSS, las imagenes a partir del ras-treador contienen poco o ningún desplazamiento de relieve en áreas no montañosas.

Las bandas o combinaciones de bandas más apropiadas de imagenes MSS deben ser seleccionadas para cada tema. Las bandas 1 (verde) y 2 (roja) usualmente son mejores para detectar rasgos "cultu-rales", como áreas urbanas, caminos, divisiones, cerretera, etc. En estas áreas la banda 2 es preferible por la mejor penetración atmosférica de las ondas con longitudes en el rojo lo que nos dauna imagen con un contraste más alto. En área con agua clara, profunda, la mejor penetración en el agua lo da la banda 1. La banda 2 es excelente para mostrar agua turbia (arcillas) fluyendo sobreun agua clara. Las bandas 3 y 4 (Infrarrojo-cercano) son mejores para delinear los cuerpos de a---gua. Ya que la energía de las longitudes de onda en el infrarrojo penetran solo una corta distan--cia dentro del agua, por lo que ellas son absorbidas con muy poca reflexión, los rasgos superfi---ciales del agua tienen un tono muy obscuro en las bandas 3 y 4.

Tierras húmedas con agua estancada o suelos orgánicos húmedos con poca vegetación también tie-nen tonos obscuros en las bandas 3 y 4, así como áreas pavimentadas con asfalto y áreas en suelosdesnudos húmedos. La banda 2 y 4 son muy valiosas en estudios geológicos.

IV.5.- FUENTES DE ENERGIA Y PRINCIPIOS DE RADIACION.

La luz visible es tan solo una de varias formas de energía electromagnética. Las ondas de radio el calor, los rayos ultravioleta y X son otras formas de energía. Todas estas energías son similares e irradian de acuerdo con la teoría basica de las ondas. Como se muestra en la figura 5; estateoría describe la energía electromagnética como viajando de una manera sinusoidal, armonica o a la velocidad de la luz. La diferencia de una cresta de onda y la siguiente, es la longitud de Onda; y el número de crestas que pasan por un punto fijo por unidad de tiempo es la frecuencia "v" de la onda.

En sensores remotos, es más común categorizar las ondas electromagnéticas por la localización de su longitud de onda dentro del espectro electromagnético (figura 6). La unidad más común utilizada para medir la longitud de onda a lo largo del espectro es el Micrón-metro (Mm). Un micrón-metro equivále a 1 x 10⁻⁶ m.

Aunque generalmente se asignan nombres a las regiones del espectro electromagnético por conve-niencia, no existe una línea de división clara entre una región nominada del espectro y la sigui-ente. Las divisiones del espectro obedecen más a los métodos para medir cada tipo de radiación que a las diferencias inherentes en las características de energía de las diversas longitudes de onda.

La porción visible del espectro es extremadamente pequeña ya que la sensibilidad espectral delojo humano se extiende solamente desde 0.4 Mm hasta 0.7 Mm. El color "azul" es atribuido al rangode 0.4 a 0.5 MM, el "verde" de 0.5 a 0.6 Mm, y el "rojo" de 0.6 a 0.7 Mm. La energía ultravioletase encuentra junto al "azul" de la porción visible del espectro. Junto al "rojo" en la porción del visible hay 3 categorías diferentes de infrarrojo (IR): IR-cercano (0.7-1.3 Mm), IR-medio (1.3----3.0 Mm) e IR- termal (> 3.0 Mm). A longitudes de onda más grandes (1mm a 1m) esta la porción de microondas del espectro.

Compo Electrico λ = Longitud de ondo (distancia entre crestas sucesivas de la onda) Distancia Campo magnético Velocidad de la luz Frecuencia (número de ciclos por segundo) FIGURA 5 Una anda electromagnética. Las componentes incluyen una onda eléctronica sinuscidat (E) y una onda magnética similar (M) en los óngulos derechos, ambos son perpendiculares a la dirección de propagación. FACULTAD DE INGENIERIA AREA CIENCIAS DE LA TIERRA TRABAJO RECEPCIONAL U Α. FIGURA 5 S ELABORO: PAULINO ι ACUÑA M. Ρ FECHA 1993 ESCALA -

Aunque varias características de la radiación electromagnética son más facilmente descritas por la teoría ondulatoria, otra teoría ofrece útilies conceptos para explicar como la energía electromagnéticas interactua con la materia.

La teoría de las partículas sugiere que la radiación electromagnética es compuesta por diversas unidades descritas llamadas FOTONES o QUANTUM.

Existe una ecuación:

Q= Energía del quantum

C= Velocidad de la luz

λ= Longitud de onda

h= Constante

De este modo vemos que la energía de un quantum es inversamente proporcional a su longitud de onda.

Entre más grande sea la longitud de onda involucrada menor será su contenido de energía. Esto tiene importantes implicaciones en los sensores remotos desde el punto de vista de que, radiacio-nes emitidas naturalmente en longitudes de ondas grandes, como las emisiones de microondas a par-tir de rasgos del terreno, son más difíciles de captar que radiaciones en longitudes de onda más cortas.

El sol es la más obvia fuente de radiación electromagnética para los sensores remotos. Sin em-bargo, toda materia a temperatura por encima del cero absoluto (0° K, o -273[°]C) continuamente emi-ten radiación, aunque hay una diferencia considerable en magnitud y composición espectral, en comparación a la del sol. Cuanta energía irradia un objeto, es entre otras cosas, una función de la-temperatura superficial de un objeto.

Un cuerpo negro es un parámetro ideal hipotético, que absorbe totalmente y re-emite toda la e-nergía incidente sobre él. Los objetos reales solo se aproximana a este ideal.

Así como la energía total emitida por un objeto varía con la temperatura, la distribución es--pectral de la energía emitida también varía. La figura 7 muestra las curvas de distribución de e-nergía para cuerpos negros a temperaturas que van de 200^{°°} a 6000^{°°}K. Entre más alta sea la temperatura del radiador, mayor será la cantidad total de radiación emitida.

La longitud de onda dominante o la longitud de onda a la cuál la curva de radiación de un cuerpo negro alcanza su máximo, está relacionado con su temperatura.

Por ello, para un cuerpo negro, la longitud de onda a la cuál ocurre la máxima exitancia irra-diada varía inversamente con la temperatura absoluta del cuerpo negro.

El sol emite de la misma manera que un cuerpo negro cuya temperatura es cercana a 6000[°]K.

La temperatura ambiente de la tierra (Suelo, agua, vegetación) es cerca de 300[°]K o 27[°]C. El máximo de exitancia irradiada para los rasgos terrestres ocurre a longitudes de onda cercanas a 9.7-Mm.

Dado que esta radiación coincide con el calor terrestre, es llamada energía IR-termal. Esta e-nergía no puede ser ni vista ni fotografiada, pero puede ser captada por artefactos termales comoradiómetros y barredores (Scanner).

FIGURA 7 Distribución espectral de la energía radiada por cuerpos negros a varias temperaturas.

	FACULTAD DE INGENIERIA				
	AREA CIENCIAS DE LA TIERRA				
	TRABAJO RECEPCIONAL				
U					
A	FIGURA 7				
S					
L	ELABORO: PAULINO ACUÑA M.				
P	FECHA: 1993 ESCALA				

IV.6.- INTRODUCCION AL PROCESO DE INTERPRETACION DE IMAGENES

La adquisición de imágenes através de sensores remotos depende de la detección y grabados de la energía electromagnética reflejada o emitida desde la superficie de rasgos (naturales o hechos por el hombre) dentro del campo de "vista" del sensor. Los patrones formados sobre la imagen son una función sobre la interacción entre la materia y energía dentro del espectro electromagnético.

Los materiales de la tierra responden de una manera diferente a la energía de las diferentes -longitudes de onda, dependiendo de sus propiedades físicas y químicas, de la configuración y aspereza de su superficie, de la intensidad de iluminación y del ángulo de incidencia. Las diferentesrespuestas de los materiales de la Tierra, cuando son registrados por sensores remotos, forman patrones que pueden proveernos de medios para determinar rasgos terrestres. Através del análisis deestos patrones y de sus interrelaciones, el que interpreta las imagenes puede deducir la identidad de los materiales de la tierra, y ya que diferentes tipos de sensores remotos registran en bandasde energía diferentes grados de resolución, sensibilidad y distorción, el interprete debe generalmente conocer el proceso de formación de imagenes para poder entender el significado de los patrones en la imagen.

IV.7.- EFECTOS ATMOSFERICOS

La atmósfera es un medio turbio compuesto por una mezcla heterogénea de gases y partículas a--través de las cuales la energía solar debe penetrar en una ruta hacia la superficie terrestre. Una compleja interacción entre la energía electromagnética que arriba y los materiales terrestres (incluyendo los constituyentes de la atmósfera) da como resultado la transmisión, reflexión, absorción, emisión y dispersión de la energía.

Existen ciertos materiales en la atmósfera como la húmedad, el bioxido de carbono y el ozono, que causan que la energía que pasa através de ellos sea absorbida o bloqueada.

La banda espectral con longitudes de onda entre 0.3 y 3.0 Mm es atractiva para los sensores remotos porque la luz del sol es fuerte en este rango y porque la atmósfera libre de nubes es casi transparente.

Las nubes normalmente cubren al menos la mitad de la tierra, y son usualmente opacas a los sensores remotos en todo el espectro.

Consecuentemente, las medidas características de radiación reflejada de un objeto, cambian conforme el espesor de la atmósfera y se incrementa entre el sensor y el objeto.

Por ello es necesario primero, mostrar cuales efectos atmosféricos son aparente y directamenterelacionados a las aplicaciones de los sensores remotos dentro del rango espectral de 0.3 a 3 Mm.

La atmósfera absorbe y difunde la energía radiante haciéndola tanto un atenuador como una fuente de energía radiante. La luz difundida por la atmósfera ilumina el terreno y también ayuda a laenergía irradiada en la superficie (figura 8). El efecto de la difusión de la luz causa que los -colores se diluyan y se pierda resolución espacial. Por ejemplo, montañas lejanas aparecen comun-mente de color azul, pero cuando se les observa de más cerca se comienzan a diferenciar áreas másobscuras y brillantes.

IV.8.- ENERGIA IRRADIADA POR EL SOL.

El sol es la fuente más potente de energía radiante para las bandas del espectro entre 0.3 hasta 3.0 Mm.

La porción a la cuál el total de la energía irradiada por el sol fluye através de una unidad de de área, normal a la dirección de propagación y localizada a la distancia media entre la Tierra yel Sol, es llamada "Constante Solar". El valor de esta constante es 1353 Wm , con un error estimado de = 21 W .

Cerca del 35% de la luz del sol es reflejada desde la tierra, su atmósfera y nubes. Cerca del-17% es absorbida en la atmósfera y cerca del 47% alcanza la superficie de la Tierra donde ella es absorbida.

La figura 9 muestra esquemáticamente los parámetros e interacciones que determinan las radia--ciones que alcanzan el sensor del satélite.

Las radiaciones captadas en un satélite consisten de 2 partes:

1.- Radiación Solar difundida por la atmosfera en la dirección del sensor, se indica con la --componente LA.

2.- Radiación Solar que alcanza la superficie de la tierra y es reflejada hacia el sensor del satélite, como lo indica la componente LS. El total de radiación que recibe el satélite esta re-presentada por la ecuación L= LS+LA.

IV.9.- REFLECTANCIA

Esta es definida como una proporción (sin dimensiones) entre la cantidad de radiación reflejada por la superficie, y la radiación sobre ese plano.

Los materiales de la superficie terrestre varían ampliamente en sus propiedades reflectoras enalgunas regiones del espectro EM aún cuando ellas son observadas o medidas sin referencia a la -atmósfera que interviene entre la superficie y el sensor remoto. Debe reconocerse en el análisisfinal que los efectos combinados entre la Tierra-atmósfera-sensor son registrados por el sensor ydeben ser tomados en cuenta.

IV.10.- ANALISIS DIGITAL DE IMAGENES PARA APLICACIONES GEOLOGICAS

El principal objetivo para el análisis digital de imagenes por computadora es el MEJORAR EL – DESPLIEGUE de datos de la imagen para el analista o para facilitar la evaluación de las caracte--rísticas multiespectrales de los datos. Las técnicas de procesamiento digital se emplean con lasimagenes porque:

1.- Los datos originales están en forma digital.

2.- Los errores relativos al sistema pueden ser corregidos.

3.- Se pueden hacer correcciones por iluminación solar o por efectos atmosféricos.

4.- Los elementos "picture "individuales pueden ser analizados y desplegados.

5.- Se pueden utilizar procesos de funciones matemáticas para su análisis.

Ρ

FECHA

1993

ESCALA -

6.- Se pueden emplear técnicas de análisis estadísticos.

7.- Grandes cantidades de datos pueden ser procesados y analizados en cortos períodos de tiempo. La mayoría de los procesos de análisis digital de imagenes involucra 3 procedimientos:

- a) Procesamiento de datos
- b) Realce de imagenes
- c) Clasificación de imagenes

El procesamiento de datos involucrá la corrección de errores debidos al sistema, correcciones por efectos atmosféricos y de iluminación solar y contempla también el registro de datos.

El realce de imagenes es realizado para lograr hacer que los patrones espaciales que son des--plegados en diferentes tonos y colores, sean más obvios en la imagen.

La clasificación de imagenes es llevada a cabo para delimitar patrones multiespectrales a par-tir de los datos de la imagen.

Las interpretaciones geológicas se desarrollan a partir de datos de imagenes realzadas y clasificadas através del uso de un procedimiento que debe involucrar un interprete con experiencia en geología. El análisis manual de imagenes involucra la delimitación de los patrones espaciales so-bre la imagen. La interpretación de imagenes involucra la identificación de los patrones espacia-les en las imagenes, ya sea como formas del terreno, drenajes y patrones de cobertura. Un análista de imagenes con enfásis geológico debe analizar los patrones de las formas terrestres sobre la i-magen, para interpretarlos desde el punto de vista geomorfológico. Las relaciones geomorfológicasson analizadas para desarrollar las interpretaciones estratigráficas y estructurales. Las inter--pretaciones geodinámicas se efectuán através de las relaciones estrátigraficas y el análisis es---tructural, la estratigrafía y la geomorfología.

El análisis de patrones multiespectrales involucra la ayuda de la computadora para delimitar -los patrones multiespectrales.

La clasificación multiespectral de los patrones multiespectrales delimitados debe de ser hechapor un analista que determine las relaciones entre los patrones multiespectrales y los patrones de cobertura de la superficie del terreno.

Si existe una fuerte relación entre los depósitos económicos por explorar y los patrones de cobertura (entre metales base y zonas de alteración) entonces, un plan de exploración puede ser de-sarrollado en base a clasificación de imagenes. Usualmente las clasificaciones estratigráficas y estructurales, y el tipo de exploración debe basarse en una interpretación geológica desarrolladaa partir tanto, de patrones espaciales como de patrones multiespectrales.

Muchos dispositivos para la obtención de imagenes producen datos en forma de arreglos bidimen-sionales de pixeles. Cada pixel tiene asignado a él un número digital, o DN, que representa la e-nergía asociada deacuerdo al rango de longitud de onda del EM al cuál el detector del sensor es -sensitivo. La mayoría de los sistemas de imagenes forman datos simultaneamente en varias bandas -dentro de este rango, bancos separados de detectores son dedicados a bandas individuales. La pro-ducción de cada detector es re-escalada para dar rangos compatibles con la computadora DN que vande 0 a 255. Estos valores pueden ser codificados por un byte (8 bits) en aritmética binaria, y son por ellos convenientes para el manejo digital. El DN es por tanto una medida de BRILLANTES RELATI-VA de paquetes de tamaño de pixel de la superficie dentro de este rango, también es llamado VALOR- DE BRILLANTES O BV.

Todos los datos digitales multiespectrales de un dispositivo para toma de imagen tiene el mismo formato. El DN de una banda para un pixel particular a lo largo de una linea dada, tiene las mis-mas coordenadas espaciales que los DN para todas las otras bandas para una misma área de la superficie. Los datos se relacionan exactamente entre sí. Por ello, se pueden mostrar convinaciones devarias bandas como rojas, verdes y azules ya sea en monitores de video o en dispositivos que muestren imagenes digitales y con ello producir fotos a color de alta calidad. Este tipo de registro también permite que el DN de bandas diferentes sea comparado y combinado de diferentes maneras sin alterar la estructura básica de la imagen. La estructura regular también hace muy simple para la computadora englobar las propiedades colectivas de todos los DN comprendidos en una escena. Por -ello, se pueden obtener varías estadísticas las cuales son usadas en manipulaciones de datos y para extraer información de ellos.

IV.11.- HISTOGRAMA DE VALORES DE BRILLANTES

El realce y clasificación de imagenes comunmente involucra la evaluación de los histogramas delos datos que se procesarán. El realce de imagen involucra ajustes de valores de brillantés para -"pixeles" individuales.

La clasificación de imagenes involucran la determinación de los valores de brilantés de los pixeles para un tipo particular de cobertura. Los histogramas son comunmente utilizados para mostrar el rango y la frecuencia de ocurrencia de los valores de brillantés.

Una técnica de realce de imagenes debe cambiar los valores de brillantés de tal manera que solo los valores de brillantés asociados con "carreteras" sean movidos hacia la derecha del histograma. De esta manera se dará una enorme diferencia de brillantés entre las carreteras y el fondo (back-ground) en el que se muestran las carreteras en la imagen.

Dado que las cintas (CCT) del Landsat contiene 7,581,600 pixeles, no es práctico desplegar to-dos los valores de brillantés de los pixeles gráficamente en un histograma. Los histogramas usualmente son "normalizados" de tal modo que el máximo conteo de pixeles de un valor particular que -sea menor que el de conteo máximo, son ajustados en relación al máximo conteo de tal modo que, e-llos son porcentajes del máximo conteo (figura 10).

La abscisa generalmente obtiene valores de 0-127 para las bandas 4,5 y 6 y valores de 0-63 para la banda 7 si son leídos directamente. La mayoría de los procesos de computadora se hacen de un -modo de 8 bites, y en este caso, las abscisas de los histogramas tendrán valores de 0-255.

Una imagen de una sola banda de datos digitales de datos obtenidos por un sensor remoto, es una representación de como la energía EM es reflejada por la superficie, en dos dimensiones espacia--les. La energía es expresada como DN, lo cuál es representado en un despliegue por variación en --los tonos de gris. Ya que el ojo humano es solo capaz de distinguir 30 niveles de gris, un des---pliegue de más de 256 niveles de gris parecería como contínuo.

El histograma de distribuciones de DN es probablemente la medida más utilizable en el proceso digital de imagenes. Su forma indica el contraste y la homogeneídad de la escena. Por ejemplo, una escena de una superficie homogenea con poco contraste produciría un histograma con un solo pico --

FIGURA IO. Histogramas desplegado de ocurrencia de valores de brillantes en una banda landsat

	FACULTAD DE INGENIERIA				
	AREA CIENCIAS DE LA TIERRA				
	TRABAJO RECEPCIONAL				
U					
A	FIGURA IO				
s					
ι	ELABORO: PAULINO ACUÑA M.				
Ρ	FECHA: 1993 ESCALA				

conspicuo. Un solo y amplio pico sugiere homogeneídad, pero un amplio rango de contraste.

IV.12.- REALCE DE IMAGENES

El objetivo general del realce de imagenes es optimizar el despliegue de los datos para el analista.

La imagen de un monitor en un procesador digital de imagenes, expresa valores de DN de un rango de intensidad desde 0 (negro) hasta 255 (máxima intensidad ó saturación). Programas para el procesamiento de imagenes pueden cambiar cualquier DN en una imagen a otro de los 256 niveles de gris.-También puede ser transformado de DN a otro. Esta es la base de la extensión de contraste.

El objetivo de todos los sistemas de sensores remotos orientados hacia la tierra, es registrarel mayor rango posible de todo tipo de material de la superficie. En otras palabras, diferencias reales entre las superficies obscuras y brillantés, deben idealmente ser expresadas por diferen--cias en el DN. Los objetos obscuros no deben aparecer totalmente descoloridos por la saturación -del sensor. Sin embargo algunas partes, muy pocas, de la superficie de la tierra expresan estos -extremos. Como resultado de esto los histogramas de la mayor parte de las imagenes están comprimidos dentro de una parte relativamente pequeña del rango entre 0-255.

El medio más simple para mejorar el despliegue de una imagen es cambiar el rango de los datos extendiendolo igualmente sobre el rango de 0-255. Esta es una "EXTENSION LINEAL".

En la mayoría de los casos una extensión de contraste lineal con corrección atmosférica es su-ficiente para producir una imagen de alta calidad. Imagenes realzadas de bandas unicas o imagenesen falso color que comprenden 3 bandas con extensión de contraste pueden ser interpretadas geoló-gicamente con buenas posibilidades de éxito.

Algunas veces es necesario extender la parte obscura de una imagen lo más posible con una EX---TENSION LOGARITMICA lo contrario se logra usando una EXTENSION EXPONENCIAL.

V.- EL PROGRAMA SPIPR PARA LA CLASIFICACION DE --ROCAS Y ZONAS DE ALTERACION.

V.1.- INTRODUCCION

El sistema de procesamiento de imagenes de percepción remota (SPIPR), es un sistema diseñadopara proporcionar una amplia gama de funciones en el proceso digital de imagenes, en un ambiente interactivo, amigable y eficaz para lograr resultados muy variados, como el despliegue, filtrado,generación de estadísticas, etc.

Con SPIPR el usuario, incluyendo a aquél que no posea experiencia en programación de computadoras, puede estudiar y analizar una gran cantidad de información que se encuentra contenida dentrode las imagenes, aplicar algoritmos para obtener datos de ellas y probar nuevas técnicas para el procesamiento digital.

El usuario de SPIPR es llevado através de menús en los cuales pueden seleccionar las operacio-nes que desee. Los menús también piden parametros para la ejecución de programas que brindan re-sultados de manera interactiva. Se cuenta con una tecla que proporciona ayuda en cualquier momento para dar asistencia a las dudas que el usuario tenga sobre que parámetro utilizar y como dar un más eficiente al SPIPR.

V.2.- PROCESO DIGITAL DE IMAGENES

El proceso digital de imagenes se puede definir como el manejo de la información visual en computadoras digitales.

Una imagen digital esta formada por celdas cuadrangulares, cada una de las cuales tienen un --cierto tono de gris.

Estos elementos de la imagen se llaman PIXELES (Picture Elements).

En realidad, una imagen digital no es otra cosa que una matríz de valores númericos que son --proporcionales a la cantidad de luz reflejada por los objetos.

Para reconstruírla, asignamos una escala de tonos de gris a esos valores.

Para manejar las imagenes a color se capturan 3 cuadros por imagen, uno para el rojo, otro para el verde y el último para el azul.

La imagen se obtiene por medio de transductores que son sensores que miden la energía reflejada por el objeto.

Los sensores funcionan en diferentes longitudes de onda del espectro electromagnético, algunasde estas no son visibles, como por ejemplo, la infrarroja de manera que se obtiene información a-dicional a la de los métodos tradicionales. Normalmente percibimos una parte muy pequeña de las longitudes de onda que se pueden captar.

V.3.- RECONOCIMIENTO DE VALORES ESPECTRALES

El reconocimiento asistido por computadora de materiales superficiales, es llamado CLASIFICA---

CION, y esta basado en sus propiedades espectrales.

Las bandas usadas son usualmente seleccionadas para resaltar tipos especificos de rasgos espectrales para materiales específicos.

La inspección de histogramas para diferentes categorías de superficie permiten que diferentes tipos de DN en el histograma general completo, sean asignados a aquellas categorías o grupos de -categorías.

Estos rangos pueden ser resaltados sobre una imagen asignandoles un color a cada uno y desple-gando cada pixel cuyos DN caigan dentro del rango según el color apropiado.

Esta simplificación de datos, de hecho una cruda clasificación, es llamada "REBANADAS DE DEN--SIDAD ". Donde un área esta compuesta de solo unos cuantos tipos distintivos de superficies, este puede ser un medio rápido y seguro de mapear la distribución de cada tipo . Un ejemplo de la a--plicación anterior es la "rebanada de densidad " de la relación banda 4 entre banda 2 del MSS ----LANDSAT, para expresar variaciones en la densidad de la cubierta de vegetación. Otro ejemplo es rebanar el rango de DN de la reflectancia de la banda 1 a partir del hecho de que un cuerpo de ---agua clara puede expresar en esta banda variaciones batimétricas.

Algunas superficies despliegan reflectancias contrastantes a diferentes longitudes de onda. La vegetación tiene un alto DN en la banda 4 y un bajo DN en la banda 1, por ejemplo, usando datos de dos bandas, seleccionados dado su contraste, pueden realizarse diferencias entre categorías y me--jorar su diferenciación.

El medio más simple de hacer esto es dividir un histograma bi-dimensional en "cajas" rectangu-lares. Los límites de las cajas representan los rangos de DN para las dos bandas dentro de pequeñas áreas conocidas de las categorías superficiales de intéres. Estas áreas son seleccionadas du-rante el trabajo de campo y son llamadas AREAS DE ENTRENAMIENTO, dado que ellas son usadas para -entrar a la computadora.

La computadora compara el DN de pixeles desconocidos con las cajas. Si ellos caen dentro de una "caja" ellos son asignados a la CLASE revelante. Si no caen dentro de ninguna caja, ellos permanecerán sin clasificar y posiblemente indicarán la necesidad de refinar los medios de clasificacióno de incrementar el número de clases.

El mismo principio puede ser aplicado a cualquier número de dimensiones, y es conocida como ---CLASIFICACION POR PARALELEPIPEDOS. Una limitación importante es que las categorías naturales generalmente son graficadas como elipsoides en histogramas de n-dimensiones y los paralelepipedos solo son una burda representación de estas.

Un refinamiento es representar el volumen ocupado por los datos de las áreas de entrenamiento por un conjunto de pequeños paralelepipedos.

El suministrar a la computadora con un juego de reglas más simplificadas para decisiones "si,-si" mediante el empleo de las estadísticas de los datos de las áreas de entrenamiento facilitarían más el procedimiento. La más simple de estas rutinas de clasificación es identificar el DN medio para cada categoría en cada banda a usarse. La distancia en el espacio de n-dimensiones en la gráfica de DN para un pixel desconocido puede entonces ser calculada. El pixel es asignado a la clase que tenga su media mas aproximada a él. Un refinamiento de ésto es utilizar la varianza de DN dentro de las áreas de entrenamiento en juego. Si el DN dentro de una área de entrenamiento, se asume

que forman distribuciones normales para cada banda, entonces los histogramas pueden ser consideran dos con forma de campana.

Dependiendo de la varianza - una medida de la amplitud de la distribución - entre más alejado este un DN de la media es menos la probabilidad de que este represente la mayoría en cuestión. El "plot" de DN de un pixel desconocido puede entonces ser señalado en este contexto probabilístico por la computadora calculando la probabilidad del pixel perteneciente a cada clase predefinida v asignandolo a la clase donde la probabilidad es máxima. Este método es conocido como CLASIFICADOR DE MAXIMA PROBABILIDAD.

Antes de hacer una clasificación de máxima probabilidad, un intérprete debe ser capaz de asig-nar burdamente cuánto de una escena parece ser ocupado por cada categoría de superficie. Esto --puede resultar de observaciones de campo o por una inspección rápida de la imagen. Esta estima--ción burda puede ser entonces usada para darle "peso" a las probabilidades involucradas en la clasificación.

Otro factor a anticipar es que no todas las categorías de superficies reales, estan representadas en las áreas de entrenamiento. La clasificación puede ser "pesada" en conformidad, de tal manera, que la computadora no trate de forzar el 100% de la escena dentro de las clases. Ambos re-finamientos ayudan a asegurar que la clasificación sea tan cercana a la realidad como lo permite--la calidad de los datos y de la presición del método de clasificación.

Los métodos de clasificación anteriores confían en que el operador haga decisiones a cerca de las áreas sobre el terreno que son más representativas de las categorías de superficie de intéres.

Con el modo llamado CLASIFICACION SUPERVISADA, es posible permitir a la computadora examinar -los datos en cada banda y realizar correlaciones particulares entre ellos. Esto en efecto, se hace dividiendo el histograma de n-dimensiones en segmentos arbitrarios simplemente en base a las -heterogeneidades en la distribución del DN.

El operador puede controlar la finura y el número de las divisiones, pero basicamente deja quela computadora con sus propios medios asigne los pixeles a las diferentes clases. Esto es, la ---CLASIFICACION NO SUPERVISADA y expresa diferencias puramente en base a propiedades espectrales.

Es muy útil en áreas completamente desconocidas, donde provee al operador de un medio para i--dentificar espectralmente diferentes tipos de terreno. Esto puede entonces orientar el futuro --trabajo de campo, o ser usado como una ayuda a la interpretación visual más convencional de imagenes.

V.4.- RECONOCIMIENTO DE PATRONES ESPACIALES

La textura superficial de diferentes tipos de roca, es expresada por la red de drenaje, por elbandeado o abigarrado de sus colores, entre otras; estos son importantes parámetros en la fotoin-terpretación. Representan la distribución espacial de las variaciones de tono.

Ellos predominan donde el tono, o el DN, en una imagen varía con una alta frecuencia.

Donde las frecuencias bajas dominan, el análisis textural es secundario en importancia para laevaluación del tono. La visión humana es muy perceptiva para reconocer rasgos texturales. Sin -embargo, es muy difícil para un intérprete hacer decisiones acertadas respecto a los límites entre

áreas de sútiles diferencias de textura. El uso de medidas de texturas de imagenes asistidas porcomputadora, aunque muy difíciles y consumidoras de tiempo, pueden ayudar a la clasificación de -imagenes. Un método es calcular la varianza de DN dentro de "cajones" rectangulares predeterminados através de la imagen. Una alta varianza sugiere texturas finas y agudas, mientras que una varianza baja indica texturas gruesas y alisadas. Otra aproximación es extraer diferentes frecuen-cias espaciales de una imagen usando una variedad de filtros.

Cualquier clasificación busca clasificar los límites entre áreas superficiales de diferentes -tipos y determinar la extensión de las áreas de cada clase tan acertadamente como sea posible. Un medio de hacer esto es por SEGMENTACION DE IMAGENES, el cuál consiste en crear áreas de varios pixeles que muestren similaridades espectrales.

V.5.- CLASIFICACION DE IMAGENES

Dado que los rasgos geológicos son muy variables y que pueden estar enmascarados por suelos y vegetación, la interpretación visual es comunmente ambigua, aunque lo haga una persona experimen-tada. El problema aumenta por el número de teorías que un geólogo puede utilizar para apreciar el contexto con los rasgos de la imagen, ademas del individual.

La inteligencia artificial (medios matemáticos que extraen información automáticamente a partir de las imagenes digitales) y el patrón de reconocimiento (CLASIFICACION) abren ahora la posibili--dad de que geólogos entrenados en computación puedan hacer decisiones geológicas de una manera menos parcial.

Esta clasificación es la tarea de asignar a cada objeto a una de varias clases que se conocen de manera tal que se agrupen todos los objetos para que nuestros fines sean practicamente iguales.

A continuación se muestra un ejemplo de clasificación aplicado a una imagen obtenida por mediode satélite de percepción remota.

PROCESO

Imagen Multiespectral --> Clasificador --> Imagen con los colores asignados por el Clasificador deacuerdo al número asignado a la clase.

Edición --> Imagen con clave de identificación de clases y con colores de acuerdo al significado de la clase.

COLORES QUE EL CLASIFICADOR ASIGNA A CADA NUMERO DE CLASE

1.- Azul 3.- Cyan 5.- Magneta 7.- Blanco 2.- Verde 4.- Rojo 6.- Café 8.- Gris

(Todos los colores, excepto el gris tienen sus respectivas tonalidades intensas).

V.5.A.- CLASIFICACION SUPERVISADA

Clasificación Supervisada significa asignar elementos de una imagen (pixeles) dentro de un conjunto de clases con características comúnes. El proceso de clasificación consiste en asignar una etiqueta (etiqueta de clase) a cada pixel de la imagen. Cuando el usuario tiene algún conocimiento del contenido de la imagen, puede definir el tipo y número de clases dentro de las cuales la ima-gen va a ser clasificada.

A este tipo de enfoque se le conoce como Clasificación Supervisada; el clasificador bayesiano es un buen ejemplo de este enfoque. Bayesiano de Máxima Verosimilitud, basado en el teorema de Bayes asigna a cada pixel una de las clases definidas por el usuario y calcula la verosimilitud para una eficiente similitud. Las salidas de este modulo son reportes, tablas de resultados y mapas decolor clasificados.

Los menús permiten generar las estadísticas (necesarias para el algoritmo), seleccionar las --bandas de imagen que participarán en una clasificación, además de utilizar las clases definidas en el modulo de campos de entrenamiento. SPIPR dá la facilidad para realizar corridas multiples cam-biando los parámetros de corrida en corrida.

La escencia de la metodología de la clasificación Bayesiana es un proceso de 2 pasos, en el --cuál:

1.- Las clases de intéres son caracterizadas através del análisis de los datos que representan --esas clases (campos de entrenamiento).

 Los datos son clasificados por reglas númericas (en el caso de SPIPR, la regla de decisión bayesiana) las cuales utilizan las características de los campos.

El número y tipo de clases a generar depende de la meta del estudio, tamaño del pixel y escalade salida; el usuario elige solo aquellas que el necesita. El clasificador bayesiano SPIPR asignaa cada pixel a una de las clases definidas. Si el pixel pertenece en algún momento a una clase que no haya sido definida por el usuario, éste tendrá baja verosimilitud asociada a él, y por lo tanto deberá ser considerado para los umbrales del resultado final de la corrida de clasificación.

Aspectos importantes a considerar:

Es necesario considerar lo siguiente para la obtención de mejores resultados en la clasifica--ción.

Lo más importante es que el clasificador bayesiano presupone una distribución normal de los valores espectrales de los datos que componen la imagen y para ayudar a que las estadísticas se apeguen a esto se deben observar los siguientes puntos:

1.- DEFINIR CAMPOS DE ENTRENAMIENTO HOMOGENEOS: El usuario debe decidir que tanta heterogenei-dad es permitida en cada uno de los campos que defina. Si una clase es heterogénea, está debe serseparada en 2 o más subclases. Estas subclases pueden ser combinadas más tarde asignando colores en el mapa clasificado.

2.- DEFINIR UNA POBLACION LO SUFICIENTEMENTE GRANDE: Esto permite al usuario para que las esta-

dísticas sean representativas. Esto puede ser mediante la definición de varios campos de la mismaclase, o bien, eligiendo campos más grandes.

3.- PARA CADA CLASE: El usuario debe probar y escoger el mejor umbral para eliminar los pixeles que tengan baja frecuencia (se recomienda un umbral de al menos 1%).

Cuando se seleccionan las clases que se van a utilizar se observan dos restricciones:

a) Al menos una clase debe ser usada para la clasificación

b) El número máximo de clases es de 15

El tiempo necesario para realizar la clasificación depende del número de clases seleccionadas.

El algoritmo de Bayes asigna valores de probabilidad para la clasificación con un mismo porcentaje a cada clase, pero es posible modificar valores para dar mayor peso a clases que el usuario considere.

A continuación se presenta un diagrama de flujo del funcionamiento básico del clasificador en una corrida sencilla.

V.5.B.- DEFINICION DE CAMPOS DE ENTRENAMIENTO

Este módulo permite la identificación de zonas dentro de una imagen, las cuales serán almacenadas para ser utilizadas en la Clasificación Supervisada.

Los menús de esta parte del sistema permiten:

- * Crear polígonos
- * Editar polígonos
- * Almacenamiento
- * Reportes de polígonos en impresora y/o pantalla

Cuando se crea un polígono se debe tener mucho cuidado al definirlo dentro de la imagen. Ini--cialmente se piden los parámetros para el despliegue (40 tonos de gris).

En todos los casos, un campo es un polígono con las siguientes características:

- * Es un polígono cerrado
- * Es un polígono simple, es decir, no se pueden cruzar las líneas del propio polígono.
- * Debe contar con un mínimo de 3 vértices
- * Todos los vértices son unicos

Una vez que se tiene la imagen desplegada, se localiza el lugar donde se desea tener el campo de entrenamiento y se oprime la letra "d" para comenzar con la digitalización del polígono.

Los pasos para la digitalización del poligono deben ser seguidos en estricto orden, y son los siguientes pasos:

- a) Boton # 1 para marcar vértices
- b) Boton # 2 para borrar el último vértice marcado
- b) Boton # 3 ambos botones

Cuando se termina con la digitalización, el sistema nos lleva a un menú que nos permite lo si-guiente:

Edición/Corrección del Polígono.- Esto es para alguna revisión antes de salvarlo.

Guardar el Polígono.- Queda guardado con algún nombre de archivo y contiene los vértices además de todos los atributos que identifican a este polígono.

Cargar cualquier Polígono con cualquier Imagen.- Esto nos sirve para sobreponer el polígono enbandas diferentes de la misma imagen y obser--

var que realmente se marcó la zona deseada,

ə

Reportes.- Puede ser en pantalla o bien en impresora.

V.6.- METODO DE TRABAJO PARA LA CLASIFICACION

Deacuerdo al objetivo de este trabajo, que es determinar las características geológicas vía a-nálisis digital de imagenes en cierta área, a partir de una geología conocida, y con esto evaluarla habilidad del programa SPIPR para la clasificación litoestrátigrafica y la identificación de -zonas de alteración, las cartas geológicas en las que se baseo la información geológica utilizadapara la comparación con el análisis digital son:

- 1.- Plano Geológico de la Hoja Tepetate Instituto de Geología y Metalurgia Guillermo Labarthe H. Margarito Tristán G. Esc. 1 : 50.000
- 2.- Plano Geológico de la Hoja Ahualulco Instituto de Geología y Metalurgia Guillermo Labarthe H. Margarito Tristán G.

Esc. 1 : 50,000

- 3.- Plano Geológico de la Hoja Pinos Instituto de Geología y Metalurgia Alfredo Aguillón Robles Juan Manuel Moctezuma B. Esc. 1 : 50,000
- 4.- Plano Geológico de la Hoja Obraje Instituto de Geología y Metalurgia Alfredo Aguillón Robles Carlos Fco. Puente Muñiz

Esc. 1 : 50,000

Dentro de estos planos geológicos se encuentra localizada el área de estudio entre, los paralelos 22°00' y 22°20' de latitud norte y los meridianos 101°00' y 101°40' de longitud oeste.

La utilización de estos planos geológicos sirvierón para delimitar con colores todas las unidades de roca y zonas de alteración que afloran en el área de estudio, para así llevar a cabo la ---Clasificación Supervisada.

Una vez delimitadas todas las unidades de rocas y zonas de alteración se procedio a lo siguiente:

Lo primero en realizarse fué la ubicación del área de estudio, dentro de la imagen MSS del ----Landsat debido a que ésta imagen tiene un área de 3596 pixeles por 2983 líneas, por lo que húbo -necesidad de efectuar cortes de 512 pixeles por 512 líneas de tal manera que:

1.- Se obtuviera un detalle adecuado de la zona en cada imagen.

2.- Que pudiera ser desplegada la imagen completa en el monitor. (La version 1.2 del SPIPR --tiene la límitante de desplegar imagenes con un formato máximo de 512 pixeles por 512 lí--neas).

Una vez realizados estos cortes nuestro mosaico del área de estudio estuvo formado de la siguiente manera:

MOSAICO DEL AREA DE ESTUDIO

Los números asignados a cada imagen son arbitrarios y representan solamente el corte efectuadoen la imagen MSS del Landsat, (Cada corte contiene las 4 bandas).

Con estos cortes son con los que se trabajo la clasificación supervisada.

Los pasos a seguir para la clasificación son:

Se selecionaron las imagenes 3, 4, 5, 10, 11 y 12 en forma individual y en cada una de ---ellas se generaron tanto los campos de entrenamiento como la clasificación supervisada.

Una vez terminada la clasificación de estas imagenes se procedio a realizar reducciones de lasmismas, a un tamaño de 256 pixeles por 256 líneas, para poder realizar 2 planos que abarcaran el área de estudio completa, debido a que toda el área no se puede desplegar en una sola imagen por-que excede el número de pixeles y el número de líneas permitidas para el despliegue en la pantalla del monitor.

Lo que se realizó fué lo siguiente:

 Se llevó a cabo la reducción de las imagenes 4, 5, 11, y 12 a un tamaño de 256 pixeles por-256 líneas cada una.

2.- Se realizó el pegado de las imagenes reducidas de la siguiente manera:

* La imagen 4 con la imagen 11

* La imagen 5 con la imagen 12

3.- Una vez realizado esto se procedio al pegado de la imagen completa de la siguiente manera:

* La imagen 4 y 11 con la imagen 5 y 12

Como resultado de estó obtuvimos una imagen llamada PLANO.

De la misma manera se llevó a cabo el otro plano correspondiente a la otra parte del área de -estudio.

En esta zona se realizó lo siguiente:

 Se llevó a cabo la reducción de las imagenes 3, 4, 10, y 11 a un tamaño de 256 pixeles por-256 líneas cada una.

2.- Se realizó el pegado de las imagenes reducidas de las siguiente manera:

* La imagen 3 con la imagen 10

* La imagen 4 con la imagen 11

3.- Una vez realizado estó se procedió al pegado de la imagen completa de la siguiente manera:

* La imagen 3 y 10 con la imagen 5 y 12

Como resultado de esto obtuvimos una imagen llamada ZONA1.

Con estos planos que abarcan toda el área de estudio, también se trabajo la clasificación su--pervisada, realizandoles a cada uno de ellos, la generación de los campos de entrenamiento y su -clasificación.

En el siguiente capitulo se explica en forma muy detallada los pasos y seguimientos que se de-ben emplear para la generación de los campos de entrenamiento así como la aplicación y resultadosde la clasificación supervisada del programa SPIPR. VI. - ANALISIS DIGITAL DE IMAGENES

VI.1.- IMAGEN 12

VI.1.A.- SISTEMA DE PROCESAMIENTO DE IMAGENES DE SATELITE

UNA VEZ DESPLEGADO EL MENU PRINCIPAL DEL PROGRAMA S.P.I.P.R. CON LAS FLECHAS DIRECCIONALES U OPRI-MIEDO EL NUMERO ASIGNADO A CADA MODULO, SELECCIONAR EL DE CLASIFICACION.

- 1.- AYUDA GENERAL
- 2.- PRE-PROCESO
- 3.- DESPLIEGUE
- 4.- REALCE
- 5. CLASIFICACION
- 6.- GEO-REFERIR
- 7.- SALIDA

UNA VEZ SELECCIONADO ESTE MODULO NOS MOSTRARA EL SIGUIENTE MENU, EN EL CUAL SELECCIONAREMOS EN ----PRIMER LUGAR CAMPOS DE ENTRENAMIENTO.

> MODULO DE CLASIFICACION ELIJA UNA DE LAS OPCIONES SIGUIENTES:

- 1. CLASIFICACION NO SUPERVISADA
- 2.- CAMPOS DE ENTRENAMIENTO
- 3. CLASIFICACION SUPERVISADA
- 4.- SALIDA

AL SER SELECCIONADA LA OPCION DE CAMPOS DE ENTRENAMIENTO SE NOS PRESENTA EL SIGUIENTE MENU:

MODULO DE CAMPOS DE ENTRENAMIENTO ELIJA UNA DE LAS OPCIONES SIGUIENTES:

1. - CREAR UN NUEVO POLIGONO USANDO EL RATON

2. - DIBUJAR UN POLIGONO EN UNA IMAGEN DESPLEGADA

3.- IMPRIMIR EL REPORTE DE UN POLIGONO

4.- SALIDA

EN ESTA PANTALLA SELECCIONAREMOS LA OPCION #1, "CREAR UN NUEVO POLIGONO USANDO EL RATON", EL CUAL-NOS PREGUNTARA EL NOMBRE, NUMERO DE BANDA Y TABLA DE ASIGNACION CORRESPONDIENTE A DICHA IMAGEN. --UNA YEZ DADOS ESTOS DATOS LA IMAGEN SERÀ DESPLEGADA EN PANTALLA EN 40 TONOS DE GRIS. LA LISTA DE COLORES QUE SE ANEXA, ES EL ORDEN EN QUE EL CLASIFICADOR ASIGNA A CADA CLASE SELECCIO-NADA EL COLOR CORRESPONDIENTE AL REALIZARSE DICHA CLASIFICACION.

NOMBRE DE LA IMAGEN_12____

NUMERO DE BANDA___4___ TABLA DE ASIGNACION__I___

1 AZUL>_Tsm	5 MAGNETA>_B
2 VERDE>_Trp	6 CAFE>_Tib
3 MORADO>_Q	7 BLANCO>_Ttp
4 ROJO>_Qr	8 GRIS>_Tab

NOTA: LAS ABREVIATURAS IDENTIFICAN LAS UNIDADES GEOLOGICAS SEGUN LOS PLANOS Y CARTAS UTILIZADAS.

UNA VEZ DESPLEGADA LA IMAGEN LOS PASOS A SEGUIR SON:

ESTANDO YA DENTRO DE ESTE MENU, LOS PASOS A SEGUIR SON:

GUARDAR EL POLIGONO ACTUAL E; INICIAR UN NUEVO POLIGONO

ESTOS PASOS SE REPITEN SEGUN EL NUMERO DE CLASES SELECCIONADAS.

RETORNAR A CAPTURAR/EDITAR 1.-

- GUARDAR EL POLIGONO ACTUAL 2.-
- 3.-RECUPERAR UN POLIGONO ANTERIOR
- INICIAR UN NUEVO POLIGONO 4 . -
- 5.- IMPRIMIR EL REPORTE DEL POLIGONO ACTUAL
- 6. SALIDA DEL MODULO

GUARDAR POLIGONO ACTUAL

NOMBRE DEL CAMPO:_ROCA1__

NOMBRE DE LA CLASE:_Tsm____

TIPO DE CAMPO:_1___

INICIAR UN NUEVO POLIGONO

UNA VEZ DESPLEGADA LA IMAGEN LOS PASOS A SEGUIR SON:

GUARDAR POLIGONO ACTUAL

NOMBRE DEL CAMPO:_ROCA2__ NOMBRE DE LA CLASE:_Trp____

TIPO DE CAMPO:_2____

INICIAR UN NUEVO POLIGONO

UNA VEZ DESPLEGADA LA IMAGEN LOS PASOS A SEGUIR SON:

- 1.- SELECCIONAR EL AREA DE ESTUDIO CON LAS FLECHAS DIRECCIONALES.
 2.- OPRIMIR LA LETRA "D" Y ESPERAR A QUE APAREZCA EL CURSOR DEL RATON.
 3.- MARCAR LOS PUNTOS DESEADOS CON EL BOTON IZQUIERDO DEL RATON (#1).
 4.- EN CASO DE EQUIVOCACION EN EL ULTIMO PUNTO MARCADO, SE OPRIME EL BOTON DERECHO DEL RATON (#3).
 5.- PARA CERRAR EL POLIGONO, LA ULTIMA LINEA SE GENERA CON EL BOTON DE ENMEDIO (#2) Y ENSEGUIDA SE OPRIMEN EL BOTON (#1) Y EL BOTON (#3) DEL RATON AL MISMO TIEMPO HASTA QUE APAREZCA UN PUNTO --- ROJO, EL CUAL NOS MARCARA EL CIERRE DEL POLIGONO.
 6.- UNA VEZ QUE SE CERRO EL POLIGONO SE OPRIMEN LOS BOTONES 1 Y 3 DEL RATON PARA ENTRAR AL MENU --- PRINCIPAL DE ESTA SECCION.

GUARDAR POLIGONO ACTUAL

- NOMBRE DEL CAMPO: ROCA3
- NOMBRE DE LA CLASE:_Q___
- TIPO DE CAMPO:_3____

INICIAR UN NUEVO POLIGONO

UNA VEZ DESPLEGADA LA IMAGEN LOS PASOS A SEGUIR SON:

GUARDAR POLIGONO ACTUAL

NOMBRE DEL CAMPO:_ROCA4___

NOMBRE DE LA CLASE:_Qr___

TIPO DE CAMPO:__4___

INTCIAR UN NUEVO POLIGONO

UNA VEZ DESPLEGADA LA IMAGEN LOS PASOS A SEGUIR SON:

- SELECCIONAR EL AREA DE ESTUDIO CON LAS FLECHAS DIRECCIONALES.
 OPRIMIR LA LETRA "D" Y ESPERAR A QUE APAREZCA EL CURSOR DEL RATON.
 MARCAR LOS PUNTOS DESEADOS CON EL BOTON IZQUIERDO DEL RATON (#1).
 EN CASO DE EQUIVOCACION EN EL ULTIMO PUNTO MARCADO, SE OPRIME EL BOTON DERECHO DEL RATON (#3).
 PARA CERRAR EL POLIGONO, LA ULTIMA LINEA SE GENERA CON EL BOTON DE ENMEDIO (#2) Y ENSEGUIDA SE OPRIMEN EL BOTON (#1) Y EL BOTON (#3) DEL RATON AL MISMO TIEMPO HASTA QUE APAREZCA UN PUNTO --- ROJO, EL CUAL NOS MARCARA EL CIERRE DEL POLIGONO.
 UNA VEZ QUE SE CERRO EL POLIGONO SE OPRIMEN LOS BOTONES 1 Y 3 DEL RATON PARA ENTRAR AL MENU --- PRINCIPAL DE ESTA SECCION.

GUARDAR POLIGONO ACTUAL

NOMBRE DEL CAMPO:_ROCA5___

NOMBRE DE LA CLASE:_B____

TIPO DE CAMPO:_5____

INICIAR UN NUEVO POLIGONO

UNA VEZ DESPLEGADA LA IMAGEN LOS PASOS A SEGUIR SON:

GUARDAR POLIGONO ACTUAL

NOMBRE DEL CAMPO:__ROCA6___

NOMBRE DE LA CLASE:_Tib___

TIPO DE CAMPO:_6_

INICIAR UN NUEVO POLIGONO

UNA VEZ DESPLEGADA LA IMAGEN LOS PASOS A SEGUIR SON:

- PRINCIPAL DE ESTA SECCION.

GUARDAR POLIGONO ACTUAL

NOMBRE DEL CAMPO:_ROCA7___

NOMBRE DE LA CLASE:_Ttp____

TIPO DE CAMPO:_7___

INICIAR UN NUEVO POLIGONO

UNA YEZ DESPLEGADA LA IMAGEN LOS PASOS A SEGUIR SON:

GUARDAR POLIGONO ACTUAL

NOMBRE DEL CAMPO:_ROCA8_ NOMBRE DE LA CLASE:_Tab___ TIPO DE CAMPO:_8____

UNA VEZ DETERMINADOS LOS CAMPOS DE ENTRENAMIENTO, SELECCIONAREMOS EL MODULO DE CLASIFICACION SU----SUPERVISADA.

> MODULO DE CLASIFICACION ELIJA UNA DE LAS OPCIONES SIGUIENTES:

- 1. CLASIFICACION NO SUPERVISADA
- 2. CAMPOS DE ENTRENAMIENTO
- 3. CLASIFICACION SUPERVISADA
- 4.- SALIDA

AL SER SELECCIONADA DICHA OPCION SE NOS PRESENTARA EL SIGUIENTE MENU:

MODULO DE CLASIFICACION DE IMAGENES CLASIFICADOR BAYESIANO DE MAXIMA VEROSIMILITUD

1. - CALCULAR ESTADISTICAS PARA LA CLASIFICACION

2.- ESTABLECER CORRIDA DE CLASIFICACION

3. - PRESENTAR REPORTES DE LA CLASIFICACION

4.- SALIDA

EN ESTA PANTALLA, EN PRIMER LUGAR SELECCIONAREMOS LA OPCION #1, "CALCULAR ESTADISTICAS PARA LA --- CLASIFICACION.

1.- NOMBRE DE LA IMAGEN_12____

SELECCIONE CON UNA "S" LAS BANDAS QUE DESEE CLASIFICAR:

DENTRO DE ESTA MISMA OPCION, "CALCULAR ESTADISTICAS PARA LA CLASIFICACION" SE NOS PRESENTA OTRO --MENU, EN EL CUAL TENDREMOS OTRAS DOS OPCIONES LAS QUE SELECCIONAREMOS INDIVIDUALMENTE: CALCULAR ESTADISTICAS PARA LOS CAMPOS DE ENTRENAMIENTO Y; CALCULAR ESTADISTICAS PARA CLASES SELECCIONADAS.

CALCULO DE ESTADISTICAS

- 1.- CALCULAR ESTADISTICAS PARA CAMPOS DE ENTRENA--MIENTO
- 2.- CALCULAR ESTADISTICAS PARA CLASES SELECCIONA--DAS
- 3.- REGRESAR

CALCULAR ESTADISTICAS PARA LOS CAMPOS DE ENTRENAMIENTO

SELECCIONE CON UNA "S" LOS CAMPOS:

CAMPO		CAMPO	
ROCA1	_5	_ROCA6	_5_
ROCA2	_5	ROCA7	_5
_ROCA3	_5	ROCA8	_5
ROCA4	_S		
ROCA5	_S		

CALCULAR ESTADISTICAS PARA LAS CLASES SELECCIONADAS

SELECCIONE CON UNA "S" LAS CLASES:

CLASE		CLASE	
_Tsm	_5	Tib	_5
Trp	_3	_Ttp	_5
_Q	_5	Tab	_5
_Qr	_5		
_B	_3		

UNA VEZ TERMINADO EL CALCULO DE LAS ESTADISTICAS TANTO DE LOS CAMPOS DE ENTRENAMIENTO COMO LA DE -LAS CLASES SELECCIONADAS SALDREMOS DE ESTE MODULO Y EN SEGUIDA OPRIMIREMOS LA TECLA ESC PARA SALIR DEL MODULO DE BANDAS. UNA VEZ ESTANDO EN LA PANTALLA DEL CLASIFICADOR BAYESIANO DE MAXIMA VEROSI---MILITUD ESCOGEREMOS LA OPCION, ESTABLECER CORRIDA DE CLASIFICACION.

> MODULO DE CLASIFICACION DE IMAGENES CLASIFICADOR BAYESIANO DE MAXIMA VEROSIMILITUD

1. - CALCULAR ESTADISTICAS PARA LA CLASIFICACION

2. - ESTABLECER CORRIDA DE CLASIFICACION

3. - PRESENTAR REPORTES DE LA CLASIFICACION

UNA VEZ REALIZADO ESTO SE NOS PRESENTARA LA SIGUIENTE PANTALLA:

ESTABLECER CORRIDA DE CLASIFICACION

IDENTIFICADOR DE LA CORRIDA:_CLASI____ NOMBRE DE LA IMAGEN A CLASIFICAR:_12____ NOMBRE DE LA IMAGEN DESDE LA CUAL LAS ESTADISTICAS DEBERAN SER USADAS:_12____ DEFAULT: IMAGEN A SER CLASIFICADA.

SELECCIONE CON UNA "S" LAS BANDAS A CLASIFICAR:

SELECCIONE CON UNA "S" LAS CLASES:

CLASE	CLASE			
_Q	S	Tsm	_S	
_Qr	_S	_Ttp	_S	
_Tib	_S	_B	_S	
_Tab	_S			
_Trp	_S			

REPORTE DE CLASES SELECCIONADAS

OPCIONALMENTE TU PUEDES ASIGNAR UN PESO A LAS CLASES SELECCIONADAS INTRODUCIENDO VALORES A PRIORI-ENTRE 0-100 (EL DEFAULT ES EL MISMO PORCENTAJE), PARA EL CASO DEL UMBRAL SE RECOMIENDA 2 O 8.

CLASE	VAP	U	CLASE	VAP	U
_Q	12.50	2		12.50	2
_Qr	12.50	2	_Ttp	12.50	2
_Tib	12.50	2	_B	12.50	_2_
_Tab	12.50	_2_			
_Trp	12.50	2		-	-

VAP. - VALOR A PRIORI U.- UMBRAL

DENTRO DE LA OPCION, "ESTABLECER CORRIDA DE CLASIFICACION", SE NOS PRESENTA OTRA PANTALLA CON DOS-OPCIONES LAS CUALES SON: CLASIFICACION DE CAMPOS DE ENTRENAMIENTO; Y CLASIFICACION DE LA IMAGEN EN ESTA PANTALLA PRIMERO SELECCIONAREMOS LA OPCION DE CLASIFICACION DE CAMPOS DE ENTRENAMIENTO, Y-UNA VEZ REALIZADA ESTA OPCION FINALMENTE SELECCIONAREMOS LA OPCION DE LA CLASIFICACION DE LA IMA--

GEN.

1. - CLASIFICACION DE CAMPOS DE ENTRENAMIENTO

2. - CLASIFICACION DE LA IMAGEN

3. - REGRESAR

CLASIFICACION DE CAMPOS DE ENTRENAMIENTO

SELECCIONE CON UNA "S" LOS CAMPOS:

CAMPO		CAMPO	
_ROCA1	_S	_ROCA6	_S
_ROCA2	_S	_ROCA7	_S
_ROCA3	_S	_ROCA8	_S
_ROCA4	S		
_ROCA5	_S		

REPORTE SUMARIO DE CAMPO

IDENTIFICADOR DE LA CORRIDA: __CLAS1____

IMAGEN CLASIFICADA:	_12	REPORTE DEL CAMPO:_ROCA1
CLASE:	_Tsm	NUMERO DE PIXELES:_191
PIXELES NO CLASIFICADOS	:_1	% NO CLASIFICADO: _0.52

CLASE	# DE PIXELES	æ
_Q	0	0.00
_Qr	0	0.00
_Tib	Ø	0.00
_Tab	0	0.00
_Trp	0	0.00
_Tsm	_184	_96.34
_Ttp	0	0.00
_B	6	3.14

IDENTIFICADOR DE LA CORRIDA: _CLAS1____

IMAGEN CLASIFICADA:	_12	REPORTE DEL CAMPO:_ROCA2
CLASE:	_Trp	NUMERO DE PIXELES:_124
PIXELES NO CLASIFICADOS	:_0	% NO CLASIFICADO: _0.00

CLASE # DE PIXELES %

_Q	5	4.03
_Qr	3	2.42
_Tib	_13	_10.48
_Tab	_13	_10.48
_Trp	_83	_66.94
_Tsm		0.00
_Ttp	5	4,03
<u>_</u> B	2	_1.61
IDENTIFICADOR DE LA CORRIDA: ______

IMAGEN CLASIFICADA:	_12	REPORTE DEL CAMPO:_ROCA3
CLASE:	_Q	NUMERO DE PIXELES:_139
PIXELES NO CLASIFICADOS	:_2	% NO CLASIFICADO: _1.44

CLASE	# DE PIXELES	%
_Q	_110	_79.14
_Qr	13	_9.35
_Tib	3	_2.16
_lab	0	0.00
_Trp	5	_3.60
_Tsm	0	0.00
_Ttp	5	3.60
B	1	_0.72

IDENTIFICADOR DE LA CORRIDA: __CLASI____

IMAGEN CLASIFICADA:	_12	REPORTE DEL CAMPO:_ROCA4
CLASE:	_Qr	NUMERO DE PIXELES:_59
PIXELES NO CLASIFICADOS	:_0	% NO CLASIFICADO: _0.00

CLASE # DE PIXELES %

_Q	8	_13.56
_Qr	_32	_54.24
_Tib	_13	_22.05
_Tab	0	0.00
_Ĩrp	5	8.47
_Tsm	0	0.00
_Ttp	<u> </u>	_1.69
_B	0	0.00

IDENTIFICADOR DE LA CORRIDA: ______

IMAGEN CLASIFICADA:	_12	REPORTE DEL CAMPO:_ROCA5
CLASE:	_8	NUMERO DE PIXELES:_118
PIXELES NO CLASIFICADOS	:_	% NO CLASIFICADO: _0.85

CLASE	# DE PIXELES	%
_Q	0	.00.00
_Qr	2	f.69
Tib	0	0.00
Tab	9	7.63
_Trp	_13	_11.02
Tsm	0	0.00
_Ttp	3	2.54
_B	_90	_76.27

IDENTIFICADOR DE LA CORRIDA: __CLASI____

IMAGEN CLASIFICADA:	_12	REPORTE DEL CAMPO:_ROCA6
CLASE:	_Ttp	NUMERO DE PIXELES:_66
PIXELES NO CLASIFICADOS	:_2	% NO CLASIFICADO: _3.03

CLASE # DE PIXELES %

_Q	3	4.55
_Qr	6	9.09
_Tib	6	9.0 <u>9</u>
_Tab	_13	_19.70
_Trp	_18	_27.37
_155	0	0.00
_Ttp	_18	_27.27
_В	0	(A \$)

IDENTIFICADOR DE LA CORRIDA: __CLAS1____

IMAGEN CLASIFICADA:	_12	REPORTE DEL CAMPO:_ROCA7
CLASE:	_Tib	NUMERO DE PIXELES:_23
PIXELES NO CLASIFICADOS	:_0	% NO CLASIFICADO: _0.00

CLASE	# DE PIXELES	%
_Q	l	4,35
_Qr	4	_17.39
_Tib	16	69.57
_Tab	0	0.00
_Trp	_2	8.70
Tsm	0	0.00
_Ttp	_0	_0.00
_B	0	0.00

IDENTIFICADOR DE LA CORRIDA: _____

IMAGEN CLASIFICADA:	_12	REPORTE DEL CAMPO:_ROCA8
CLASE:	_Tab	NUMERO DE PIXELES:_41
PIXELES NO CLASIFICADOS	:_0	% NO CLASIFICADO: _0.00

CLASE # DE PIXELES %

_Q	0	0.00
_Qr	0	0.00
_Tib	0	0.00
_Tab	_34	_82.93
_Trp	6 ·	_14.63
_Tsm	0	0.00
_Ttp	0	0.00
_В	1	2.44

UNA YEZ REALIZADA LA OPCION DE "CLASIFICACION DE CAMPOS DE ENTRENAMIENTO", FINALMENTE SELECCIONARE-MOS LA OPCION DE "CLASIFICACION DE LA IMAGEN". AL TERMINAR DICHA CLASIFICACION SE NOS PRESENTARA EL SIGUIENTE REPORTE:

CLASIFICACION DE LA IMAGEN

REPORTE DE AREAS DE LA IMAGEN CLASIFICADA

IDENTIFICADOR DE LA CORRIDA:_CLASI____ IMAGEN CLASIFICADA:_12____

PIXELES EN LA IMAGEN: _262144__

CODIGO PARA PIXELES NO CLASIFICADOS:_0____ PIXELES NO CLASIFICADOS:_26920___

PARA OBTENER AREAS INTRODUZCA EL AREA SIMPLE DE UN PIXEL: 6400 m.

CLASE	CODIGO	# PIXELES	AREA
_Q	_1	42544	2.722816E+008
_Qr	_2	_22085	1.413440E+008
_Tib	_3	6989	4.472960E+007
_Tab	_4	8794	5.628160E+007
_Trp	_5	_17112	1,095168E+008
_lsm	_6	57223	3.662272E+008
_Ttp	_7	_16434	1.051776E+008
_B	_8	_64043	4,098752E+008

UNA VEZ CLASIFICADA TODA LA IMAGEN SE DEBERAN CREAR TANTO EL ENCABEZADO COMO LA TABLA DE ASIGNACION CO-RRESPONDIENTE A LA IMAGEN. UNA VEZ REALIZADO ESTO, LA IMAGEN CLASIFICADA PODRA SER DESPLEGADA EN "MONOBANDA".

CREAR ENCABEZADO DE LA IMAGEN CLASIFICADA

- NOMBRE DE LA IMAGEN.-_CLASI____
- TIPOS DE IMAGEN.-_C____

NUMERO DE BANDA.-_B____

NUMERO DE PIXEL.-_512____

NUMERO DE LINEAS.-__512____

CREAR TABLA DE ASIGNACION A LA IMAGEN CLASIFICADA NOMBRE DE LA IMAGEN.-_CLASI____ NUMERO DE BANDA.-_B_____

TABLA DE ASIGNACION.-___

VI.1.B.- DESPLIEGUE DE LA IMAGEN CLASIFICADA NOMBRE DE LA IMAGEN A CLASIFICAR: IMAGEN 12 (Ver pagina 49) NOMBRE DE LA IMAGEN CLASIFICADA: CLASI

UNA VEZ TERMINADA LA CLASIFICACION DE LA IMAGEN, EL SIGUIENTE PASO ES EL "DESPLIEGUE EN MONOBANDA". LOS PASOS A SEGUIR SON:

ENTRAR EN EL MENU PRINCIPAL DEL PROGRAMA Y SELECCIONAR LA OPCION DE "DESPLIEGUE":

AYUDA GENERAL
 PRE-PROCESO
 DESPLIEGUE
 REALCE
 CLASIFICACION
 GEO-REFERIR
 SALIDA

UNA VEZ SELECCIONADA LA OPCION DE DESPLIEGUE, MOSTRARA EL SIGUIENTE MENU EN EL QUE SELECCIONAREMOS "DESPLIEGUE EN MONOBANDA".

> MODULO DE CLASIFICACION ELIJA UNA DE LAS OPCIONES SIGUIENTES: 1. - DESPLIEGUE EN RGB 2. - DESPLIEGUE EN GRIS-16 3. - DESPLIEGUE EN GRIS-40 4. - DESPLIEGUE EN MONOBANDA 5. - SALIDA

UNA VEZ SELECCIONADA LA OPCION DESPLIEGUE EN MONOBANDA SE PRESENTARA EL SIGUIENTE MENU:

MODULO DE DESPLIEGUE DE IMAGENES DESPLIEGUE DE IMAGENES MONOBANDA

NOMBRE DE LA IMAGEN:_CLASI____ TIPO DE IMAGEN C)LASIFICADA B)ANDA:____C____ TABLA DE COLOR:____i____

(TECLEE UNA """ EN CA'SO DE QUE SEA, COLOR POR VALOR DE PIXEL, DE OTRO MODO DE EL NOMBRE DE LA LA BLA). VI.I.C.- COMENTARIOS DE LA IMAGEN CLASIFICADA

EL AREA DE ESTUDIO COMPRENDIDA EN LOS MOSAICOS DE LAS IMAGENES DE SATELITE YA CLASIFICADAS QUE CU-BREN EL AREA DE ESTUDIO, FUERON DIVIDIDAS EN 6 BLOQUES:

(LAS3C	(LAS2B	(LASIA
CLAS10	(LASI 10	ICLAS1

MOSAICO COMPLETO

LA IMAGEN QUE A CONTINUACION SE PRESENTA CORRESPONDE AL BLOQUE ACHURADO, EN LA CUAL SE ESCOGIERON-8 ZONAS A CLASIFICAR, LAS CUALES SON:

1.- RIOLITA SAN MIGUELITO (Tsm) 2.- RIOLITA PANALILLO (Trp) 3.- ALUVION (Q)

4.- SUELO RESIDUAL (Or)

5.- BASALTO (B) 6.- IGNIMBRITA BOLAS (Tib) 7.- TOBA EL PEAJE (Ttp) 8.- TOBA DEPOSITADA POR AIRE (Tab)

UNA YEZ REALIZADA LA CLASIFICACION, LOS COLORES ASIGNADOS POR EL CLASIFICADOR BAYESIANO DE MAXIMA-VEROSIMILITUD NO FUERON RESPETADOS EN ESTA CLASIFICACION.

A CONTINUACION SE DARA LA DESCRIPCION DE LAS ZONAS CLASIFICADAS Y EL COLOR ASIGNADO A DICHAS ZONAS POR EL CLASIFICADOR.

1.- RIOLITA SAN MIGUELITO (Tsm)

ESTE TIPO DE ROCA FUE CLASIFICADA EN UN COLOR NARANJA LA CUAL SE PUEDE DISTINGUIR MUY BIEN DE LOS-OTROS TIPOS DE ROCAS, AFLORANDO PRINCIPALMENTE HACIA LA PARTE NOR-OESTE Y ESTE DE LA IMAGEN.

2.- RIOLITA PANALILLO (Trp)

ESTE TIPO DE ROCA NO FUE CLASIFICADO DEBIDO PRINCIPALMENTE A SUS AFLORAMIENTOS MUY PEQUEÑOS EN EL-AREA EN RELACION A LA RESOLUCION DE LAS IMAGENES MSS.

3 = ALUVION (0)

ESTE MATERIAL FUE CLASIFICADO EN UN COLOR AZUL AFLORANDO PRINCIPALMENTE HACIA LA PARTE NOR-OESTE --DE LA IMAGEN.

4.- SUELO RESIDUAL (Qr)

ESTE TIPO DE MATERIAL NO FUE CLASIFICADO DEBIDO PRINCIPALMENTE A SUS AFLORAMIENTOS MUY PEQUEÑOS EN EL AREA EN RELACION A LA RESOLUCION DE LAS IMAGENES MSS.

5.- BASALTO (B)

ESTE TIPO DE ROCA NO FUE CLASIFICADO DEBIDO PRINCIPALMENTE A SUS AFLORAMIENTOS MUY PEQUEÑOS EN EL-AREA EN RELACION A LA RESOLUCION DE LAS IMAGENES MSS.

6.- IGNIMBRITA BOLAS (Tib)

ESTE TIPO DE ROCA FUE CLASIFICADA EN UN COLOR ROSA, LA CUAL SE PUEDE DISTINGUIR MUY BIEN TANTO DEL ALUVION COMO DE LA RIOLITA SAN MIGUELITO HACIA LA PARTE NOR-ESTE DE LA IMAGEN.

B) PLANO

- 1.- EL ALUVION SE PRESENTA EN UN COLOR AMARILLO.
- 2.- LA RIOLITA SAN MIGUELITO SE PRESENTA EN UN COLOR NARANJA.
- 3.- LA IGNIMBRITA BOLAS SE PRESENTA EN UN COLOR ROSA.

PLANG UTILIZADO PARA REFERENCIAR LA IMAGEN CLASIFICADA: CLASI

VI.2,- IMAGEN 5

VI.2.A. - SISTEMA DE PROCESAMIENTO DE IMAGENES DE SATELITE

UNA YEZ DESPLEGADO EL MENU PRINCIPAL DEL PROGRAMA S.P.I.P.R. CON LAS FLECHAS DIRECCIONALES U OPRI-MIEDO EL NUMERO ASIGNADO A CADA MODULO, SELECCIONAR EL DE CLASIFICACION.

1.- AYUDA GENERAL
2.- PRE-PROCESO
3.- DESPLIEGUE
4.- REALCE
5.- CLASIFICACION
6.- GEO-REFERIR
7.- SALIDA

UNA VEZ SELECCIONADO ESTE MODULO NOS MOSTRARA EL SIGUIENTE MENU, EN EL CUAL SELECCIONAREMOS EN ----PRIMER LUGAR CAMPOS DE ENTRENAMIENTO.

> MODULO DE CLASIFICACION ELIJA UNA DE LAS OPCIONES SIGUIENTES:

- 1. CLASIFICACION NO SUPERVISADA
- 2. CAMPOS DE ENTRENAMIENTO
- 3. CLASIFICACION SUPERVISADA
- 4.- SALIDA

AL SER SELECCIONADA LA OPCION DE CAMPOS DE ENTRENAMIENTO SE NOS PRESENTA EL SIGUIENTE MENU:

MODULO DE CAMPOS DE ENTRENAMIENTO ELIJA UNA DE LAS OPCIONES SIGUIENTES:

1. - CREAR UN NUEVO POLIGONO USANDO EL RATON

2. – DIBUJAR UN POLIGONO EN UNA IMAGEN DESPLEGADA

3.- IMPRIMIR EL REPORTE DE UN POLIGONO

4. – SALIDA

EN ESTA PANTALLA SELECCIONAREMOS LA OPCION #1, "CREAR UN NUEVO POLIGONO USANDO EL RATON", EL CUAL-NOS PREGUNTARA EL NOMBRE, NUMERO DE BANDA Y TABLA DE ASIGNACION CORRESPONDIENTE A DICHA IMAGEN. --UNA VEZ DADOS ESTOS DATOS LA IMAGEN SERA DESPLEGADA EN PANTALLA EN 40 TONOS DE GRIS. LA LISTA DE COLORES QUE SE ANEXA, ES EL ORDEN EN QUE EL CLASIFICADOR ASIGNA A CADA CLASE SELECCIO-NADA EL COLOR CORRESPONDIENTE AL REALIZARSE DICHA CLASIFICACION.

NOMBRE DE LA IMAGEN_5_

NUMERO DE BANDA___4___ TABLA DE ASIGNACION__I___

1 AZUL>_Tsm	5 MAGNETA>
2 VERDE>_Agua_	6 CAFE>_lib
3 MORADO>_Q	7 BLANCO>_TIP
4 ROJO>_Qr	8 GRIS>_Ksc

NOTA: LAS ABREVIATURAS IDENTIFICAN LAS UNIDADES GEOLOGICAS SEGUN LOS PLANOS Y CARTAS UTILIZADAS.

UNA VEZ DESPLEGADA LA IMAGEN LOS PASOS A SEGUIR SON:

ESTANDO YA DENTRO DE ESTE MENU, LOS PASOS A SEGUIR SON:

GUARDAR EL POLIGONO ACTUAL E; INICIAR UN NUEVO POLIGONO

ESTOS PASOS SE REPITEN SEGUN EL NUMERO DE CLASES SELECCIONADAS.

1. - RETORNAR A CAPTURAR/EDITAR

2. - GUARDAR EL POLIGONO ACTUAL

з. – RECUPERAR UN POLIGONO ANTERIOR

- 4.-INICIAR UN NUEVO POLIGONO
- 5.-IMPRIMIR EL REPORTE DEL POLIGONO ACTUAL
- SALIDA DEL MODULO 6.-

GUARDAR POLIGONO ACTUAL

NOMBRE DEL CAMPO:_ROCATA_

NOMBRE DE LA CLASE:_Tsm

TIPO DE CAMPO:_1_

INICIAR UN NUEVO POLIGONO

UNA VEZ DESPLEGADA LA IMAGEN LOS PASOS A SEGUIR SON:

- 1.- SELECCIONAR EL AREA DE ESTUDIO CON LAS FLECHAS DIRECCIONALES.
 2.- OPRIMIR LA LETRA "D" Y ESPERAR A QUE APAREZCA EL CURSOR DEL RATON.
 3.- MARCAR LOS PUNTOS DESEADOS CON EL BOTON IZQUIERDO DEL RATON (#1).
 4.- EN CASO DE EQUIVOCACION EN EL ULTIMO PUNTO MARCADO, SE OPRIME EL BOTON DERECHO DEL RATON (#3).
 5.- PARA CERRAR EL POLIGONO, LA ULTIMA LINEA SE GENERA CON EL BOTON DE ENMEDIO (#2) Y ENSEGUIDA SE OPRIMEN EL BOTON (#1) Y EL BOTON (#3) DEL RATON AL MISMO TIEMPO HASTA QUE APAREZCA UN PUNTO ---- ROJO EL CUAL NOS MARCARA EL CIERRE DEL POLIGONO.
 6.- UNA VEZ QUE SE CERRO EL POLIGONO SE OPRIMEN LOS BOTONES 1 Y 3 DEL RATON PARA ENTRAR AL MENU ------ PRINCIPAL DE ESTA SECCION.

GUARDAR POLIGONO ACTUAL

NOMBRE DEL CAMPO:_ROCA2A_ NOMBRE DE LA CLASE: PRESA___ TIPO DE CAMPO:_2

INICIAR UN NUEVO POLIGONO

UNA VEZ DESPLEGADA LA IMAGEN LOS PASOS A SEGUIR SON:

- PRINCIPAL DE ESTA SECCION.

GUARDAR POLIGONO ACTUAL

NOMBRE DEL CAMPO:_ROCA3A_

NOMBRE DE LA CLASE: Q

TIPO DE CAMPO:_3____

INICIAR UN NUEVO POLIGONO

UNA VEZ DESPLEGADA LA IMAGEN LOS PASOS A SEGUIR SON:

- SELECCIONAR EL AREA DE ESTUDIO CON LAS FLECHAS DIRECCIONALES.
 OPRIMIR LA LETRA "D" Y ESPERAR A QUE APAREZCA EL CURSOR DEL RATON.
 MARCAR LOS PUNTOS DESEADOS CON EL BOTON IZQUIERDO DEL RATON (#1).
 EN CASO DE EQUIVOCACION EN EL ULTIMO PUNTO MARCADO, SE OPRIME EL BOTON DERECHO DEL RATON (#3).
 PARA CERRAR EL POLIGONO, LA ULTIMA LINEA SE GENERA CON EL BOTON DE ENMEDIO (#2) Y ENSEGUIDA SE OPRIMEN EL BOTON (#1) Y EL BOTON (#3) DEL RATON AL MISMO TIEMPO HASTA QUE APAREZCA UN PUNTO ---- ROJO, EL CUAL NOS MARCARA EL CIERRE DEL POLIGONO.
 UNA VEZ QUE SE CERRO EL POLIGONO SE OPRIMEN LOS BOTONES 1 Y 3 DEL RATON PARA ENTRAR AL MENU ----- PRINCIPAL DE ESTA SECCION.

GUARDAR POLIGONO ACTUAL

NOMBRE DEL CAMPO: ROCA4A

NOMBRE DE LA CLASE: Or

TIPO DE CAMPO:_4__

INICIAR UN NUEVO POLIGONO

UNA YEZ DESPLEGADA LA IMAGEN LOS PASOS A SEGUIR SON:

GUARDAR POLIGONO ACTUAL

NOMBRE DEL CAMPO: ROCA5A

NOMBRE DE LA CLASE:_Cq___

TIPO DE CAMPO:_5___

INICIAR UN NUEVO POLIGONO

UNA VEZ DESPLEGADA LA IMAGEN LOS PASOS A SEGUIR SON:

- SELECCIONAR EL AREA DE ESTUDIO CON LAS FLECHAS DIRECCIONALES.
 OPRIMIR LA LETRA "D" Y ESPERAR A QUE APAREZCA EL CURSOR DEL RATON.
 MARCAR LOS PUNTOS DESEADOS CON EL BOTON IZQUIERDO DEL RATON (#1).
 EN CASO DE EQUIVOCACION EN EL ULTIMO PUNTO MARCADO, SE OPRIME EL BOTON DERECHO DEL RATON (#3).
 PARA CERRAR EL POLIGONO, LA ULTIMA LINEA SE GENERA CON EL BOTON DE ENMEDIO (#2) Y ENSEGUIDA SE OPRIMEN EL BOTON (#1) Y EL BOTON (#3) DEL RATON AL MISMO TIEMPO HASTA QUE APAREZCA UN PUNTO --- ROJO, EL CUAL NOS MARCARA EL CIERRE DEL POLIGONO.
 UNA VEZ QUE SE CERRO EL POLIGONO SE OPRIMEN LOS BOTONES 1 Y 3 DEL RATON PARA ENTRAR AL MENU --- PRINCIPAL DE ESTA SECCION.

GUARDAR POLIGONO ACTUAL

NOMBRE DEL CAMPO:_ROCA6A_

NOMBRE DE LA CLASE:_Tib____

TIPO DE CAMPO:_6___

INICIAR UN NUEVO POLIGONO

UNA VEZ DESPLEGADA LA IMAGEN LOS PASOS A SEGUIR SON:

GUARDAR POLIGONO ACTUAL

NOMBRE DEL CAMPO:_ROCA7A_

NOMBRE DE LA CLASE:_[|p____

TIPO DE CAMPO:_7__

INICIAR UN NUEVO POLIGONO

UNA VEZ DESPLEGADA LA IMAGEN LOS PASOS A SEGUIR SON:

- SELECCIONAR EL AREA DE ESTUDIO CON LAS FLECHAS DIRECCIONALES.
 OPRIMIR LA LETRA "D" Y ESPERAR A QUE APAREZCA EL CURSOR DEL RATON.
 MARCAR LOS PUNTOS DESEADOS CON EL BOTON IZQUIERDO DEL RATON (#1).
 EN CASO DE EQUIVOCACION EN EL ULTIMO PUNTO MARCADO, SE OPRIME EL BOTON DERECHO DEL RATON (#3).
 PARA CERRAR EL POLIGONO, LA ULTIMA LINEA SE GENERA CON EL BOTON DE ENMEDIO (#2) Y ENSEGUIDA SE OPRIMEN EL BOTON (#1) Y EL BOTON (#3) DEL RATON AL MISMO TIEMPO HASTA QUE APAREZCA UN PUNTO --- ROJO, EL CUAL NOS MARCARA EL CIERRE DEL POLIGONO.
 UNA YEZ QUE SE CERRO EL POLIGONO SE OPRIMEN LOS BOTONES 1 Y 3 DEL RATON PARA ENTRAR AL MENU --- PRINCIPAL DE ESTA SECCION.

GUARDAR POLIGONO ACTUAL

NOMBRE DEL CAMPO:_ROCA8A

NOMBRE DE LA CLASE: Ksc

TIPO DE CAMPO:_8___

UNA VEZ DETERMINADOS LOS CAMPOS DE ENTRENAMIENTO, SELECCIONAREMOS EL MODULO DE CLASIFICACION SU SUPERVISADA.

MODULO DE CLASIFICACION ELIJA UNA DE LAS OPCIONES SIGUIENTES:

1. - CLASIFICACION NO SUPERVISADA

- 2. CAMPOS DE ENTRENAMIENTO
- 3. CLASIFICACION SUPERVISADA
- 4.- SALIDA

AL SER SELECCIONADA DICHA OPCION SE NOS PRESENTARA EL SIGUIENTE MENU:

MODULO DE CLASIFICACION DE IMAGENES CLASIFICADOR BAYESIANO DE MAXIMA VEROSIMILITUD

1. - CALCULAR ESTADISTICAS PARA LA CLASIFICACION

2. - ESTABLECER CORRIDA DE CLASIFICACION

3. - PRESENTAR REPORTES DE LA CLASIFICACION

4. - SALIDA

EN ESTA PANTALLA, EN PRIMER LUGAR SELECCIONAREMOS LA OPCION #1, "CALCULAR ESTADISTICAS PARA LA --- CLASIFICACION.

1.- NOMBRE DE LA IMAGEN_5____

SELECCIONE CON UNA "S" LAS BANDAS QUE DESEE CLASIFICAR:

NOMBRE DE LA BANDA SELECCION

- _5. B-1_____S____
- _5. B-2_____S____
- _5. B-3_____S____
- _5. B-4_____5___

DENTRO DE ESTA MISMA OPCION, "CALCULAR ESTADISTICAS PARA LA CLASIFICACION" SE NOS PRESENTA OTRO --MENU, EN EL CUAL TENDREMOS OTRAS DOS OPCIONES LAS QUE SELECCIONAREMOS INDIVIDUALMENTE: CALCULAR ESTADISTICAS PARA LOS CAMPOS DE ENTRENAMIENTO Y; CALCULAR ESTADISTICAS PARA CLASES SELECCIONADAS.

CALCULO DE ESTADISTICAS

- 1.- CALCULAR ESTADISTICAS PARA CAMPOS DE ENTRENA--MIENTO
- 2.- CALCULAR ESTADISTICAS PARA CLASES SELECCIONA--DAS
- 3.- REGRESAR

CALCULAR ESTADISTICAS PARA LOS CAMPOS DE ENTRENAMIENTO

SELECCIONE CON UNA "S" LOS CAMPOS:

CAMPO		CAMPO	
ROCA1A	5	_ROCA6A	_5
ROCA2A	5	ROCA7A	_5
ROCA3A	_S	_ROCA8A	_S
_ROCA4A	5		
ROCA5A	_S		

CALCULAR ESTADISTICAS PARA LAS CLASES SELECCIONADAS

SELECCIONE CON UNA "S" LAS CLASES:

CLASE		CLASE		
īsm	5	_Tib	_5	
_Presa	5	_TIP_	_5	
_Q	5	_Ksc	_5	
_Qr	_S			
Cg	_S			

UNA VEZ TERMINADO EL CALCULO DE LAS ESTADISTICAS TANTO DE LOS CAMPOS DE ENTRENAMIENTO COMO LA DE -LAS CLASES SELECCIONADAS SALDREMOS DE ESTE MODULO Y EN SEGUIDA OPRIMIREMOS LA TECLA ESC PARA SALIR DEL MODULO DE BANDAS. UNA VEZ ESTANDO EN LA PANTALLA DEL CLASIFICADOR BAYESIANO DE MAXIMA VEROSI---MILITUD ESCOGEREMOS LA OPCION, ESTABLECER CORRIDA DE CLASIFICACION.

MODULO DE CLASIFICACION DE IMAGENES

CLASIFICADOR BAYESIANO DE MAXIMA VEROSIMILITUD

1. - CALCULAR ESTADISTICAS PARA LA CLASIFICACION

2. - ESTABLECER CORRIDA DE CLASIFICACION

3. - PRESENTAR REPORTES DE LA CLASIFICACION

UNA VEZ REALIZADO ESTO SE NOS PRESENTARA LA SIGUIENTE PANTALLA:

ESTABLECER CORRIDA DE CLASIFICACION

IDENTIFICADOR DE LA CORRIDA:_CLASIA___ NOMBRE DE LA IMAGEN A CLASIFICAR:_5____ NOMBRE DE LA IMAGEN DESDE LA CUAL LAS ESTADISTICAS DEBERAN SER USADAS:_5____ DEFAULT: IMAGEN A SER CLASIFICADA.

SELECCIONE CON UNA "S" LAS BANDAS A CLASIFICAR:

NOMBRE DE LA SELECCION BANDA

- _5. B-1_____5__
- _5. B-2_____S___
- _5. B-3_____S___
- _5. B-4_____S___

70

SELECCIONE CON UNA "S" LAS CLASES:

CLASE		CLASE		
_Q		_T im	_5	
_Qr	5	_Ksc	_S	
_Tib		_Tsm	_S	
_Presa	<u>`</u>			
.Cg				

REPORTE DE CLASES SELECCIONADAS

OPCIONALMENTE TU PUEDES ASIGNAR UN PESO A LAS CLASES SELECCIONADAS INTRODUCIENDO VALORES A PRIORI-ENTRE 0-100 (EL DEFAULT ES EL MISMO PORCENTAJE), PARA EL CASO DEL UMBRAL SE RECOMIENDA 2 O 8.

CLASE	VAP	U	CLASE	VAP	U
<u></u>	12.50	2	_TIP	12.50	2
Qr	12.50	2	_Ksc	12.50	_2_
_tib	12.50	_2_	Tsm	12.50	_2_
_Presa	12.50	2			
Cg	12.50	2			

VAP. - VALOR A PRIORI U. - UMBRAL

DENTRO DE LA OPCION, "ESTABLECER CORRIDA DE CLASIFICACION", SE NOS PRESENTA OTRA PANTALLA CON DOS-OPCIONES LAS CUALES SON: CLASIFICACION DE CAMPOS DE ENTRENAMIENTO; Y CLASIFICACION DE LA IMAGEN EN ESTA PANTALLA PRIMERO SELECCIONAREMOS LA OPCION DE CLASIFICACION DE CAMPOS DE ENTRENAMIENTO, Y-UNA VEZ REALIZADA ESTA OPCION FINALMENTE SELECCIONAREMOS LA OPCION DE LA CLASIFICACION DE LA IMA--GEN.

1. - CLASIFICACION DE CAMPOS DE ENTRENAMIENTO

2. - CLASIFICACION DE LA IMAGEN

3. - REGRESAR

CLASIFICACION DE CAMPOS DE ENTRENAMIENTO

SELECCIONE CON UNA "S" LOS CAMPOS:

CAMPO CAMPO

- _ROCA1A____S___ _ROCA6A___S__
- _ROCA2A____S___ _ROCA7A____S___
- _ROCA3A____S___ _ROCA8A____S___
- _ROCA4A____S___ _____
- _ROCA5A____S___ _ _

IDENTIFICADOR DE LA CORRIDA: ________

IMAGEN CLASIFICADA:	_5	REPORTE DEL CAMPO:ROCA1A
CLASE:	_Tsm	NUMERO DE PIXELES:_359
PIXELES NO CLASIFICADOS	:_1	% NO CLASIFICADO: _0.28

CLASE	# DE PIXELES	*
_Q	0	0.00
_Qr	0	0.00
_Tib	1	0.28
_Presa	0	0.00
Cg	0	0.00
_TIp	16	4.46
_Ksc	33	0.84
_Tsm	_338	_94.15

IMAGEN CLASIFICADA:	_5	REPORTE DEL CAMPO:_ROCA2A
CLASE:	_PRESA	NUMERO DE PIXELES:_352
PIXELES NO CLASIFICADOS	:_3	% NO CLASIFICADO: _1.85

CLASE # DE PIXELES %

e

_Q	0	0.00
_Qr	0	0.00
_Tib	0	0.00
_Presa	_76	_95.00
Cg	_2	2.50
_TIp	1	1.25
_Ksc	0	0.00
_Tsm	0	0.00

IDENTIFICADOR DE LA CORRIDA: __CLASIA___

IMAGEN CLASIFICADA:	_5	REPORTE DEL CAMPO:_ROCA3A
CLASE:	_Q	NUMERO DE PIXELES:_318
PIXELES NO CLASIFICADOS	:_3	% NO CLASIFICADO: _0.94

CLASE	# DE PIXELES	x
_Q	_234	_73.58
_Qr	_ 33	_10.38
_Tib	28	8.81
_Presa	0	0.00
_Cg	10	3.14
_Tlp	5	1.57
_Ksc	5	1.57
_Tsm	0	0.00

IDENTIFICADOR DE LA CORRIDA: ______

IMAGEN CLASIFICADA:	_5	REPORTE DEL CAMPO:_ROCA4A
CLASE:	Qr	NUMERO DE PIXELES:_393
PIXELES NO CLASIFICADOS	:_0	% NO CLASIFICADO: _0.00

CLASE # DE PIXELES

IXELES %

_Q____ ____I __0.25____ _Qr____ _360____ _91.60____ ___29_____ __7.38___ _Tib____ _Presa____ ____0_____ __0.00____ _Cg____ __0.76____ ____3_____ _TIp____ ___0____ __0.00____ ____0_____ __0.00____ _Ksc____ _Tsm____ ___0____ __0.00____ _____ _____ _____ ____ _____ _____

IDENTIFICADOR DE LA CORRIDA: __CLASIA___

IMAGEN CLASIFICADA:	_5	REPORTE DEL CAMPO:_ROCA5A
CLASE:	_Cg	NUMERO DE PIXELES:_321
PIXELES NO CLASIFICADOS	:_26	% NO CLASIFICADO: _8.10

CLASE	# DE PIXELES	%
_Q	1	0.3
_Qr	2	0.62
_Tib	_118	_36,76
_Presa	2	0.62
_Cg	_114	_35.51
_TIP	53	_16.51
_Ksc	5	1.56
_Tsm	0	0.00

IDENTIFICADOR DE LA CORRIDA: ______CLASIA____

IMAGEN CLASIFICADA:	_5	REPORTE DEL CAMPO:_ROCA6A
CLASE:	_1ib	NUMERO DE PIXELES:_291
PIXELES NO CLASIFICADOS	:_4	% NO CLASIFICADO: _1.37

CLASE	# DE PIXELES	x
_Q	8	2.75
_Qr	31	_10.65
_T;b	_210	_72.16
_Presa	0	0.00
_Cg	9	3.09
_TIp	28	9.62
_Ksc	0	0.00
_Tsm	1	0.34

IDENTIFICADOR DE LA CORRIDA: ________

IMAGEN CLASIFICADA:	_5	REPORTE DEL CAMPO:_ROCA7A
CLASE:	_TIp	NUMERO DE PIXELES:_163
PIXELES NO CLASIFICADOS	:_0	% NO CLASIFICADO: _0.00

CLASE	# DE PIXELES	x
_Q	0	0.00
_Qr	5	3.07
_Tib	_51	_31.29
_Presa	0	0.00
_Cg	2	1.23
_TIp	_70	_42.93
_Ksc	7	4.29
_Tsm	_28	_17.18

IDENTIFICADOR DE LA CORRIDA: _____CLASIA____

IMAGEN CLASIFICADA:	_5	REPORTE DEL CAMPO:_ROCA8A
CLASE:	_Ksc	NUMERO DE PIXELES:_235
PIXELES NO CLASIFICADOS		% NO CLASIFICADO: _0.00

CLASE	# DE PIXELES	*
_Q	_14	_10.29
_Qr	0	0.00
_Tib	0	0.00
_Presa	1	0.74
_Cg	1	0.74
_TIp	_17	_12.50
_Ksc	_83	_61.03
_Tsm	5	3.68

UNA VEZ REALIZADA LA OPCION DE "CLASIFICACION DE CAMPOS DE ENTRENAMIENTO", FINALMENTE SELECCIONARE-MOS LA OPCION DE "CLASIFICACION DE LA IMAGEN". AL TERMINAR DICHA CLASIFICACION SE NOS PRESENTARA EL SIGUIENTE REPORTE:

CLASIFICACION DE LA IMAGEN

REPORTE DE AREAS DE LA IMAGEN CLASIFICADA

IDENTIFICADOR DE LA CORRIDA:_CLASIA____IMAGEN CLASIFICADA:_5_____

PIXELES EN LA IMAGEN:_262144___

CODIGO PARA PIXELES NO CLASIFICADOS:_0____ PIXELES NO CLASIFICADOS:_53189__

PARA OBTENER AREAS INTRODUZCA EL AREA SIMPLE DE UN PIXEL:_6400 m ._

CLASE	CODIGO	# PIXELES	AREA
_Q	_1	_18492	1.183488E+008
_Qr	_2	_17491	1.119424E+008
_Tib	_3	_38462	2.461568E+008
_Presa	_4	7117	4.55
_Cg	_5	_39657	2.53
_TIp	_6	_44691	2.86
_Ksc	_7	_23759	1.52
_Tsm	_8	_19286	1.23

UNA VEZ CLASIFICADA TODA LA IMAGEN SE DEBERAN CREAR TANTO EL ENCABEZADO COMO LA TABLA DE ASIGNACION CO-RRESPONDIENTE A LA IMAGEN. UNA VEZ REALIZADO ESTO, LA IMAGEN CLASIFICADA PODRA SER DESPLEGADA EN "MONOBANDA".

CREAR ENCABEZADO DE LA IMAGEN CLASIFICADA

- NOMBRE DE LA IMAGEN.-_CLASIA___
- TIPOS DE IMAGEN.-_C____

NUMERO DE BANDA.-_B____

NUMERO DE PIXEL.-_512____

NUMERO DE LINEAS.-_512____

CREAR TABLA DE ASIGNACION A LA IMAGEN CLASIFICADA

NOMBRE DE LA IMAGEN.-_CLASIA___ NUMERO DE BANDA.-_B____ TABLA DE ASIGNACION.-__I VI.1.B.- DESPLIEGUE DE LA IMAGEN CLASIFICADA NOMBRE DE LA IMAGEN A CLASIFICAR: IMAGEN 5 (Ver pagina 65) NOMBRE DE LA IMAGEN CLASIFICADA: CLASIA

UNA VEZ TERMINADA LA CLASIFICACION DE LA IMAGEN, EL SIGUIENTE PASO ES EL "DESPLIEGUE EN MONOBANDA". LOS PASOS A SEGUIR SON:

ENTRAR EN EL MENU PRINCIPAL DEL PROGRAMA Y SELECCIONAR LA OPCION DE "DESPLIEGUE":

AYUDA GENERAL
 PRE-PROCESO
 DESPLIEGUE
 REALCE
 CLASIFICACION
 GEO-REFERIR
 SALIDA

UNA VEZ SELECCIONADA LA OPCION DE DESPLIEGUE, MOSTRARA EL SIGUIENTE MENU EN EL QUE SELECCIONAREMOS "DESPLIEGUE EN MONOBANDA".

> MODULO DE CLASIFICACION ELIJA UNA DE LAS OPCIONES SIGUIENTES: 1. - DESPLIEGUE EN RGB 2. - DESPLIEGUE EN GRIS-16 3. - DESPLIEGUE EN GRIS-40 4. - DESPLIEGUE EN MONOBANDA 5. - SALIDA

UNA VEZ SELECCIONADA LA OPCION DESPLIEGUE EN MONOBANDA SE PRESENTARA EL SIGUIENTE MENU:

MODULO DE DESPLIEGUE DE IMAGENES DESPLIEGUE DE IMAGENES MONOBANDA

NOMBRE DE LA IMAGEN:_CLASIA___ TIPO DE IMAGEN C)LASIFICADA B)ANDA:___C___ TABLA DE COLOR:____i

(TECLEE UNA """ EN CASO DE CIVE SEA, COLOR POR VALOR DE PIXEL, DE OTRO MODO DE EL NOMBRE DE LA TA-BLA). EL AREA DE ESTUDIO COMPRENDIDA EN LOS MOSAICOS DE LAS IMAGENES DE SATELITE YA CLASIFICADAS QUE CU-BREN EL AREA DE ESTUDIO. FUERON DIVIDIDAS EN 6 BLOQUES:

MOSAICO COMPLETO

LA IMAGEN QUE A CONTINUACION SE PRESENTA CORRESPONDE AL BLOQUE ACHURADO, EN LA CUAL SE ESCOGIERON-8 ZONAS A CLASIFICAR, LAS CUALES SON:

1.- RIOLITA SAN MIGUELITO (Tsm)

- 2.- AGUA 3.- ALUVION (Q)
- 4.- SUELO RESIDUAL (Qr)

5.- CONGLOMERADO (Cg) 6.- IGNIMBRITA BOLAS (Tib) 7.- LATITA_PORFIRITICA (TIP)

8.- FORMACION CARACOL (Ksc)

UNA VEZ REALIZADA LA CLASIFICACION, LOS COLORES ASIGNADOS POR EL CLASIFICADOR BAYESIANO DE MAXIMA-VEROSIMILITUD NO FUERON RESPETADOS EN ESTA CLASIFICACION.

A CONTINUACION SE DARA LA DESCRIPCION DE LAS ZONAS CLASIFICADAS Y EL COLOR ASIGNADO A DICHAS ZONAS POR EL CLASIFICADOR.

1.- RIOLITA SAN MIGUELITO (Tsm)

ESTE TIPO DE ROCA FUE CLASIFICADA EN UN COLOR CAFE OBSCURO, LA CUAL SE PUEDE DISTINGUIR DE LAS O---TRAS UNIDADES DE ROCAS DEBIDO A QUE SU CONTACTO ESTA MUY BIEN DELIMITADO EN LA IMAGEN, ESTA UNIDAD DE ROCA SE ENCUENTRA AFLORANDO PRINCIPALMENTE HACIA LA PARTE SW DE LA IMAGEN.

2.- AGUA

ESTA ZONA QUE CORRESPONDE A LA PRESA DE SAN JOSE, FUE CLASIFICADA EN UN COLOR ROJO INTENSO, PERO--PIERDE SU TONALIDAD DEBIDO POSIBLEMENTE AL TIPO DE EMULSION DEL ROYO FOTOGRAFICO O BIEN AL TIPO DE PROCESO UTILIZADO EN LA IMPRESION. TAMBIEN ES PROBABLE QUE SU CLASIFICACION NO ES MUY CLARA PORQUE SU EXTENSION NO ES LO DEMASIADO --GRANDE, CON RELACION A LA RESOLUCION DE LAS IMAGENES MSS.

3.- ALUYION (Q)

ESTE MATERIAL FUE CLASIFICADO EN UN COLOR AZUL AFLORANDO PRINCIPALMENTE HACIA LA PARTE SE Y SW DE-LA IMAGEN, ESTA CLASIFICACION SE CONFUNDE DEBIDO A QUE HACIA LA PARTE DEL VALLE DE SAN LUIS POTO---SI, LA IMAGEN SE ENCUENTRA CUBIERTA POR NUBES LAS CUALES NO PERMITIERON DICHA CLASIFICACION.

4.- SUELO RESIDUAL (Or)

ESTE TIPO DE MATERIAL NO FUE CLASIFICADO DEBIDO PRINCIPALMENTE A SUS AFLORAMIENTOS MUY PEQUENOS EN-EL AREA EN RELACION A LA RESOLUCION DE LAS IMAGENES MSS.

5. - CONGLOMERADO (Ca)

ESTE TIPO DE ROCA NO FUE CLASIFICADO DEBIDO PRINCIPALMENTE A SUS AFLORAMIENTOS MUY PEQUENOS EN EL-AREA EN RELACION A LA RESOLUCION DE LAS IMAGENES MSS.

6.- IGNIMBRITA BOLAS (TID)

HACIA LA PARTE SUR-ESTE DE LA IMAGEN, EN DONDE AFLORA ESTE TIPO DE ROCA FUE CLASIFICADA EN COLOR -AZUL-VERDOSO, PERO DICHA CLASIFICACION SE PIERDE POR COMPLETO DEBIDO A QUE HACIA LA PARTE SUR-OES-TE SE PRESENTA EL MISMO COLOR EN DIFERENTE TIPO DE ROCA. ESTO PUEDE SER DEBIDO A QUE EN ESTA IMA--GEN, LOS AFLORAMIENTOS DE ESTE TIPO DE ROCA NO ES MUY EXTENSO EN RELACION A LA RESOLUCION DE LAS--IMAGENES MSS.

VI.3.- IMAGEN 11

VI.3.A.~ SISTEMA DE PROCESAMIENTO DE IMAGENES DE SATELITE UNA VEZ DESPLEGADO EL MENU PRINCIPAL DEL PROGRAMA S.P.I.P.R. CON LAS FLECHAS DIRECCIONALES U OPRI-MIEDO EL NUMERO ASIGNADO A CADA MODULO, SELECCIONAR EL DE CLASIFICACION.

1.- AYUDA GENERAL
2.- PRE-PROCESO
3.- DESPLIEGUE
4.- REALCE
5.- CLASIFICACION
6.- GEO-REFERIR
7.- SALIDA

UNA VEZ SELECCIONADO ESTE MODULO NOS MOSTRARA EL SIGUIENTE MENU, EN EL CUAL SELECCIONAREMOS EN --- PRIMER LUGAR CAMPOS DE ENTRENAMIENTO.

MODULO DE CLASIFICACION ELIJA UNA DE LAS OPCIONES SIGUIENTES:

1. - CLASIFICACION NO SUPERVISADA

- 2. CAMPOS DE ENTRENAMIENTO
- 3.- CLASIFICACION SUPERVISADA
- 4.- SALIDA

AL SER SELECCIONADA LA OPCION DE CAMPOS DE ENTRENAMIENTO SE NOS PRESENTA EL SIGUIENTE MENU:

MODULO DE CAMPOS DE ENTRENAMIENTO ELIJA UNA DE LAS OPCIONES SIGUIENTES:

- 1. CREAR UN NUEVO POLIGONO USANDO EL RATON
- 2. DIBUJAR UN POLIGONO EN UNA IMAGEN DESPLEGADA

3. - IMPRIMIR EL REPORTE DE UN POLIGONO

4. - SALIDA

EN ESTA PANTALLA SELECCIONAREMOS LA OPCION #1, "CREAR UN NUEVO POLIGONO USANDO EL RATON", EL CUAL-NOS PREGUNTARA EL NOMBRE, NUMERO DE BANDA Y TABLA DE ASIGNACION CORRESPONDIENTE A DICHA IMAGEN. --UNA VEZ DADOS ESTOS DATOS LA IMAGEN SERA DESPLEGADA EN PANTALLA EN 40 TONOS DE GRIS. LA LISTA DE COLORES QUE SE ANEXA, ES EL ORDEN EN QUE EL CLASIFICADOR ASIGNA A CADA CLASE SELECCIO-NADA EL COLOR CORRESPONDIENTE AL REALIZARSE DICHA CLASIFICACION.

NOMBRE DE LA IMAGEN_11____

NUMERO DE BANDA___4___ TABLA DE ASIGNACION__I___

- 1.- LA RIOLITA SAN MIGUELITO QUE SE PRESENTA EN UN COLOR NARANJA ABARCANDO GRAN PARTE DE LA FOTO-GRAFIA DEL PLANO.
- 2.- LA PRESA SAN JOSE QUE SE ENCUENTRA HACIA LA PARTE SUR-ESTE DE LA FOTOGRAFIA DEL PLANO.

SIERRA DE'SAN MIGUELITO PRESA^I SAN JOSE PLANO UTLIZADO PARA REFERENCIAR LA IMAGEN CLASIFICADA: CLASIA

1 AZUL>_fic	5 MAGNETA>
2 VERDE>_Q	6 CAFE>
3 MORADO>	7 BLANCO>
4 ROJO>	8 GRIS>

NOTA: LAS ABREVIATURAS IDENTIFICAN LAS UNIDADES GEOLOGICAS SEGUN LOS PLANOS Y CARTAS UTILIZADAS.

UNA VEZ DESPLEGADA LA IMAGEN LOS PASOS A SEGUIR SON:

- 1.- SELECCIONAR EL AREA DE ESTUDIO CON LAS FLECHAS DIRECCIONALES.
 2.- OPRIMIR LA LETRA "D" Y ESPERAR A QUE APAREZCA EL CURSOR DEL RATON.
 3.- MARCAR LOS PUNTOS DESEADOS CON EL BOTON IZQUIERDO DEL RATON (#1).
 4.- EN CASO DE EQUIVOCACION EN EL ULTIMO PUNTO MARCADO, SE OPRIME EL BOTON DERECHO DEL RATON (#3).
 5.- PARA CERRAR EL POLIGONO, LA ULTIMA LINEA SE GENERA CON EL BOTON DE ENMEDIO (#2) Y ENSEGUIDA SE -----OPRIMEN EL BOTON (#1) Y EL BOTON (#3) DEL RATON AL MISMO TIEMPO HASTA QUE APAREZCA UN PUNTO ROJO, -EL CUAL NOS MARCARA EL CIERRE DEL POLIGONO.
 6.- UNA VEZ QUE SE CERRO EL POLIGONO SE OPRIMEN LOS BOTONES 1 Y 3 DEL RATON PARA ENTRAR AL MENU PRINCI-PAL DE ESTA SECCION.

ESTANDO YA DENTRO DE ESTE MENU, LOS PASOS A SEGUIR SON: GUARDAR EL POLIGONO ACTUAL E; INICIAR UN NUEVO POLIGONO

ESTOS PASOS SE REPITEN SEGUN EL NUMERO DE CLASES SELECCIONADAS.

1. - RETORNAR A CAPTURAR/EDITAR

- 2.-GUARDAR EL POLIGONO ACTUAL
- RECUPERAR UN POLIGONO ANTERIOR з.-
- 4.-INICIAR UN NUEVO POLIGONO
- IMPRIMIR EL REPORTE DEL POLIGONO ACTUAL 5.-
- 6. SALIDA DEL MODULO

GUARDAR POLIGONO ACTUAL

NOMBRE DEL CAMPO:_ROCAID_

NOMBRE DE LA CLASE:_TibD____

TIPO DE CAMPO:_1___

INICIAR UN NUEVO POLIGONO

UNA VEZ DESPLEGADA LA IMAGEN LOS PASOS A SEGUIR SON:

GUARDAR POLIGONO ACTUAL

NOMBRE DEL CAMPO:_ROCA2D_

NOMBRE DE LA CLASE:_QD____

TIPO DE CAMPO:_2____

UNA VEZ DETERMINADOS LOS CAMPOS DE ENTRENAMIENTO, SELECCIONAREMOS EL MODULO DE CLASIFICACION SUBERVISADA.

MODULO DE CLASIFICACION

ELIJA UNA DE LAS OPCIONES SIGUIENTES:

- 1. CLASIFICACION NO SUPERVISADA
- 2. CAMPOS DE ENTRENAMIENTO
- 3. CLASIFICACION SUPERVISADA
- 4.- SALIDA

AL SER SELECCIONADA DICHA OPCION SE NOS PRESENTARA EL SIGUIENTE MENU:

MODULO DE CLASIFICACION DE IMAGENES CLASIFICADOR BAYESIANO DE MAXIMA VEROSIMILITUD

1. - CALCULAR ESTADISTICAS PARA LA CLASIFICACION

2. - ESTABLECER CORRIDA DE CLASIFICACION

3. - PRESENTAR REPORTES DE LA CLASIFICACION

4.- SALIDA

EN ESTA PANTALLA, EN PRIMER LUGAR SELECCIONAREMOS LA OPCION #1, "CALCULAR ESTADISTICAS PARA LA --- CLASIFICACION.

1.- NOMBRE DE LA IMAGEN_11____

SELECCIONE CON UNA "S" LAS BANDAS QUE DESEE CLASIFICAR:

NOMBRE DE LA BANDA	SELECCION
_11. B-1	S
_11. B-2	S
_11. 8-3	<u> </u>
_11. B-4	S

DENTRO DE ESTA MISMA OPCION, "CALCULAR ESTADISTICAS PARA LA CLASIFICACION" SE NOS PRESENTA OTRO --MENU, EN EL CUAL TENDREMOS OTRAS DOS OPCIONES LAS QUE SELECCIONAREMOS INDIVIDUALMENTE: CALCULAR ESTADISTICAS PARA LOS CAMPOS DE ENTRENAMIENTO Y; CALCULAR ESTADISTICAS PARA CLASES SELECCIONADAS.

CALCULO DE ESTADISTICAS

- 1.- CALCULAR ESTADISTICAS PARA CAMPOS DE ENTRENA--MIENTO
- 2.- CALCULAR ESTADISTICAS PARA CLASES SELECCIONA--DAS
- 3.- REGRESAR

CALCULAR ESTADISTICAS PARA LOS CAMPOS DE ENTRENAMIENTO

SELECCIONE CON UNA "S" LOS CAMPOS:

CAMPO		CAMPO	
_ROCAID	_S		
_ROCA2D	_S		

CALCULAR ESTADISTICAS PARA LAS CLASES SELECCIONADAS

SELECCIONE CON UNA "S" LAS CLASES:

CLASE	CLASE			CLASE	
_T:6D	_S				
_QD	_S				
_B	_S				

UNA VEZ TERMINADO EL CALCULO DE LAS ESTADISTICAS TANTO DE LOS CAMPOS DE ENTRENAMIENTO COMO LA DE -LAS CLASES SELECCIONADAS SALDREMOS DE ESTE MODULO Y EN SEGUIDA OPRIMIREMOS LA TECLA ESC PARA SALIR DEL MODULO DE BANDAS. UNA VEZ ESTANDO EN LA PANTALLA DEL CLASIFICADOR BAYESIANO DE MAXIMA VEROSI---MILITUD ESCOGEREMOS LA OPCION, ESTABLECER CORRIDA DE CLASIFICACION.

MODULO DE CLASIFICACION DE IMAGENES CLASIFICADOR BAYESIANO DE MAXIMA VEROSIMILITUD

1. - CALCULAR ESTADISTICAS PARA LA CLASIFICACION

- 2. ESTABLECER CORRIDA DE CLASIFICACION
- 3. PRESENTAR REPORTES DE LA CLASIFICACION

UNA VEZ REALIZADO ESTO SE NOS PRESENTARA LA SIGUIENTE PANTALLA:

ESTABLECER CORRIDA DE CLASIFICACION

IDENTIFICADOR DE LA CORRIDA:_CLASIID__ NOMBRE DE LA IMAGEN A CLASIFICAR:_II____ NOMBRE DE LA IMAGEN DESDE LA CUAL LAS ESTADISTICAS DEBERAN SER USADAS:_II____ DEFAULT: IMAGEN A SER CLASIFICADA.

SELECCIONE CON LINA "S" LAS BANDAS A CLASIFICAR:

NOMBRE DE LA SELECCION BANDA

- _11. B-1_____S___
- _11. B-2____S__
- _11. B-3_____5___
- _11. B-4_____S___

84

SELECCIONE CON UNA "S" LAS CLASES:

CLASE		CLASE	
_ТіБD	_S		
_QD	_S		
	• ·		

REPORTE DE CLASES SELECCIONADAS

OPCIONALMENTE TU PUEDES ASIGNAR UN PESO A LAS CLASES SELECCIONADAS INTRODUCIENDO VALORES A PRIORI-ENTRE 0-100 (EL DEFAULT ES EL MISMO PORCENTAJE), PARA EL CASO DEL UMBRAL SE RECOMIENDA 2 O 8.

CLASE	VAP	U	CLASE	VAP	U
_TibD	. 50.00	2			
_QD	50.00	2			
					-
<u></u>					

VAP.- VALOR A PRIORI U.- UMBRAL

DENTRO DE LA OPCION, "ESTABLECER CORRIDA DE CLASIFICACION", SE NOS PRESENTA OTRA PANTALLA CON DOS-OPCIONES LAS CUALES SON: CLASIFICACION DE CAMPOS DE ENTRENAMIENTO; Y CLASIFICACION DE LA IMAGEN EN ESTA PANTALLA PRIMERO SELECCIONAREMOS LA OPCION DE CLASIFICACION DE CAMPOS DE ENTRENAMIENTO, Y-UNA VEZ REALIZADA ESTA OPCION FINALMENTE SELECCIONAREMOS LA OPCION DE LA CLASIFICACION DE LA IMA--GEN.

1. - CLASIFICACION DE CAMPOS DE ENTRENAMIENTO 2. - CLASIFICACION DE LA IMAGEN 3. - REGRESAR

CLASIFICACION DE CAMPOS DE ENTRENAMIENTO

SELECCIONE CON UNA "S" LOS CAMPOS:

CAMPO	CAMPO
_ROCAIDS	
_ROCA2DS	
	: <u></u>

IDENTIFICADOR DE LA CORRIDA: __CLASIID__

IMAGEN CLASIFICADA:	_11	REPORTE DEL CAMPO:_ROCAID
CLASE:	_TibD	NUMERO DE PIXELES:_855
PIXELES NO CLASIFICADOS	5:_ 3	% NO CLASIFICADO: _0.35

CLASE	# DE PIXELES	%
_TibD	_782	_91.46
	/0	

IDENTIFICADOR DE LA CORRIDA: __CLASIID__

IMAGEN CLASIFICADA:	_11	REPORTE DEL CAMPO:_ROCA2D
CLASE:	_QD	NUMERO DE PIXELES:_488
PIXELES NO CLASIFICADOS	5: _17	% NO CLASIFICADO: _3.48

CLASE	# DE PIXELES	%
_Tib0	_109	_22.34
_QD	_362	_74.18

UNA YEZ REALIZADA LA OPCION DE "CLASIFICACION DE CAMPOS DE ENTRENAMIENTO", FINALMENTE SELECCIONARE-MOS LA OPCION DE "CLASIFICACION DE LA IMAGEN". AL TERMINAR DICHA CLASIFICACION SE NOS PRESENTARA EL SIGUIENTE REPORTE:

CLASIFICACION DE LA IMAGEN

REPORTE DE AREAS DE LA IMAGEN CLASIFICADA

IDENTIFICADOR DE LA CORRIDA:_CLASIID_ IMAGEN CLASIFICADA:_II_____

PIXELES EN LA IMAGEN:_262144___

CODIGO PARA PIXELES NO CLASIFICADOS:_0____ PIXELES NO CLASIFICADOS:_124254_

PARA OBTENER AREAS INTRODUZCA EL AREA SIMPLE DE UN PIXEL:_6400 m ._

CLASE	CODIGO	# PIXELES	AREA
_TibD	_1	_70503	_4.512192E+008
_QD	_2	_67387	_4.312768E+008

UNA VEZ CLASIFICADA TODA LA IMAGEN SE DEBERAN CREAR TANTO EL ENCABEZADO COMO LA TABLA DE ASIGNACI-ON CORRESPONDIENTE A LA IMAGEN. UNA VEZ REALIZADO ESTO, LA IMAGEN CLASIFICADA PODRA SER DESPLEGADA EN "MONOBANDA".

CREAR ENCABEZADO DE LA IMAGEN CLASIFICADA	CREAR TABLA DE ASIGNACION A LA IMAGEN CLASIFICADA
NOMBRE DE LA IMAGENCLASIID	NOMBRE DE LA IMAGENCLASIID_
TIPOS DE IMAGENC	NUMERO DE BANDAB
NUMERO DE BANDAB	TABLA DE ASIGNACION1
NUMERO DE PIXEL512	

NUMERO DE LINEAS.-_512____

VI.1.B.- DESPLIEGUE DE LA IMAGEN CLASIFICADA NOMBRE DE LA IMAGEN A CLASIFICAR: IMAGEN 11 (Ver pagina 81) NOMBRE DE LA IMAGEN CLASIFICADA: CLASI1D

UNA VEZ TERMINADA LA CLASIFICACION DE LA IMAGEN, EL SIGUIENTE PASO ES EL "DESPLIEGUE EN MONOBANDA".

LOS PASOS A SEGUIR SON:

ENTRAR EN EL MENU PRINCIPAL DEL PROGRAMA Y SELECCIONAR LA OPCION DE "DESPLIEGUE":

AYUDA GENERAL
 PRE-PROCESO
 DESPLIEGUE
 REALCE
 CLASIFICACION
 GEO-REFERIR
 SALIDA

UNA VEZ SELECCIONADA LA OPCION DE DESPLIEGUE, MOSTRARA EL SIGUIENTE MENU EN EL QUE SELECCIONAREMOS "DESPLIEGUE EN MONOBANDA".

> MODULO DE CLASIFICACION ELIJA UNA DE LAS OPCIONES SIGUIENTES:

> > 1.- DESPLIEGUE EN RGB
> > 2.- DESPLIEGUE EN GRIS-16
> > 3.- DESPLIEGUE EN GRIS-40
> > 4.- DESPLIEGUE EN MONOBANDA
> > 5.- SALIDA

UNA VEZ SELECCIONADA LA OPCION DESPLIEGUE EN MONOBANDA SE PRESENTARA EL SIGUIENTE MENU:

MODULO DE DESPLIEGUE DE IMAGENES DESPLIEGUE DE IMAGENES MONOBANDA

NOMBRE DE LA IMAGEN:_CLASTID__ TIPO DE IMAGEN C)LASIFICADA B)ANDA:___C___ TABLA DE COLOR:___i___

(TECLEE UNA "I" IN CASO DE QUE SEA, COLOR POR VALOR DE PIXEL. DE DIRO MODO DE EL NOMBRE DE LA TA-BLA). EL AREA DE ESTUDIO COMPRENDIDA EN LOS MOSAICOS DE LAS IMAGENES DE SATELITE YA CLASIFICADAS QUE CU-BREN EL AREA DE ESTUDIO, FUERON DIVIDIDAS EN 6 BLOQUES:

CLAS3C	CLAS2B	CLASIA
CLAS10	CLAS11D	CLAS1

MOSAICO COMPLETO

LA IMAGEN QUE A CONTINUACION SE PRESENTA CORRESPONDE AL BLOQUE ACHURADO, EN LA CUAL SE ESCOGIERON-2 ZONAS A CLASIFICAR, LAS CUALES SON:

1.- IGNIMBRITA CANTERA (Tic) 2.- ALUVION (Q)

UNA VEZ REALIZADA LA CLASIFICACION, LOS COLORES ASIGNADOS POR EL CLASIFICADOR BAYESIANO DE MAXIMA-VEROSIMILITUD NO FUERON RESPETADOS EN ESTA CLASIFICACION.

A CONTINUACION SE DARA LA DESCRIPCION DE LAS ZONAS CLASIFICADAS Y EL COLOR ASIGNADO A DICHAS ZONAS POR EL CLASIFICADOR.

1.- IGNIMBRITA CANTERA (Tic)

ESTE TIPO DE ROCA QUE CORRESPONDE A LA MESA DE LA MISERICORDIA FUE CLASIFICADO EN UN COLOR AZUL, -PERO SE PIERDE SU TONALIDAD DEBIDO POSIBLEMENTE AL TIPO DE EMULSION DEL ROYO FOTOGRAFICO O BIEN AL TIPO DE PROCESO UTILIZADO EN EL REVELADO. AFLORA PRINCIPALMENTE HACIA LA PARTE SUR-OESTE DE LA IMAGEN.

2.- ALUVION (Q)

ESTE TIPO DE MATERIAL FUE CLASIFICADO EN UN COLOR AMARILLO AFLORANDO PRINCIPALMENTE HACIA TODA LA-PARTE NORTE DE LA IMAGEN.

VI.3.C.1.- COMPARACION DE LA IMAGEN CLASIFICADA EN RELACION AL PLANO UTILIZADO PARA LA IDENTIFICA-CION DE LOS DIFERENTES TIPOS DE ROCA.

A CONTINUACION SE PRESENTAN LOS PUNTOS DE REFERENCIA DE LA CLASIFICACIÓN CON RESPECTO AL PLANO U--TILIZADO.

- A) IMAGEN CLASIFICADA
- 1.- LA IGNIMBRITA CANTERA (MESA LA MISERICORDIA) QUE SE PRESENTA EN UN COLOR AZUL EN LA PARTE SUR-OESTE DE LA IMAGEN.

NOMBRE DE LA IMAGEN CLASIFICADA: CLASIID

B) PLANO

1.- LA IGNIMBRITA CANTERA (MESA DE LA MISERICORDIA) QUE SE PRESENTA EN UN COLOR CAFE.

2.- EL ALUVION SE PRESENTA EN UN COLOR AMARILLO.

B)

MESA DE LA MISERICORDIA

PLANO UTILIZADO PARA REFERENCIAR LA IMAGEN CLASIFICADA: CLASIID

VI.4.- IMAGEN 4

VI.4.A.- SISTEMA DE PROCESAMIENTO DE IMAGENES DE SATELITE

UNA YEZ DESPLEGADO EL MENU PRINCIPAL DEL PROGRAMA S.P.I.P.R. CON LAS FLECHAS DIRECCIONALES U OPRI-MIEDO EL NUMERO ASIGNADO A CADA MODULO, SELECCIONAR EL DE CLASIFICACION.

AYUDA GENERAL
 PRE-PROCESO
 DESPLIEGUE
 REALCE
 CLASIFICACION
 GEO-REFERIR
 SALIDA

UNA VEZ SELECCIONADO ESTE MODULO NOS MOSTRARA EL SIGUIENTE MENU, EN EL CUAL SELECCIONAREMOS EN ----PRIMER LUGAR CAMPOS DE ENTRENAMIENTO.

> MODULO DE CLASIFICACION ELIJA UNA DE LAS OPCIONES SIGUIENTES:

> > 1. - CLASIFICACION NO SUPERVISADA

- 2. CAMPOS DE ENTRENAMIENTO
- 3. CLASIFICACION SUPERVISADA
- 4. SALIDA

AL SER SELECCIONADA LA OPCION DE CAMPOS DE ENTRENAMIENTO SE NOS PRESENTA EL SIGUIENTE MENU:

MODULO DE CAMPOS DE ENTRENAMIENTO ELIJA UNA DE LAS OPCIONES SIGUIENTES:

1. – CREAR UN NUEVO POLIGONO USANDO EL RATON

2. – DIBUJAR UN POLIGONO EN UNA IMAGEN DESPLEGADA

- 3. IMPRIMIR EL REPORTE DE UN POLIGONO
- 4. SALIDA

EN ESTA PANTALLA SELECCIONAREMOS LA OPCION #1, "CREAR UN NUEVO POLIGONO USANDO EL RATON", EL CUAL-NOS PREGUNTARA EL NOMBRE, NUMERO DE BANDA Y TABLA DE ASIGNACION CORRESPONDIENTE A DICHA IMAGEN. --UNA VEZ DADOS ESTOS DATOS LA IMAGEN SERA DESPLEGADA EN PANTALLA EN 40 TONOS DE GRIS. LA LISTA DE COLORES QUE SE ANEXA, ES EL ORDEN EN QUE EL CLASIFICADOR ASIGNA A CADA CLASE SELECCIO-NADA EL COLOR CORRESPONDIENTE AL REALIZARSE DICHA CLASIFICACION.

NOMBRE DE LA IMAGEN_4___

NUMERO DE BANDA___4____ TABLA DE ASIGNACION__1____

1 AZUL>_Tsm	5 MAGNETA>_Cg
2 VERDE>_Irp	6 CAFE>_Qt
3 MORADO>_Q	7 BLANCO>_[p
4 ROJO>_Qr	8 GRIS>_Ksc

NOTA: LAS ABREVIATURAS IDENTIFICAN LAS UNIDADES GEOLOGICAS SEGUN LOS PLANOS Y CARTAS UTILIZADAS.

UNA VEZ DESPLEGADA LA IMAGEN LOS PASOS A SEGUIR SON:

- 1.- SELECCIONAR EL AREA DE ESTUDIO CON LAS FLECHAS DIRECCIONALES.
 2.- OPRIMIR LA LETRA "D" Y ESPERAR A QUE APAREZCA EL CURSOR DEL RATON.
 3.- MARCAR LOS PUNTOS DESEADOS CON EL BOTON IZQUIERDO DEL RATON (#1).
 4.- EN CASO DE EQUIVOCACION EN EL ULTIMO PUNTO MARCADO, SE OPRIME EL BOTON DERECHO DEL RATON (#3).
 5.- PARA CERRAR EL POLIGONO, LA ULTIMA LINEA SE GENERA CON EL BOTON DE ENMEDIO (#2) Y ENSEGUIDA SE -----OPRIMEN EL BOTON (#1) Y EL BOTON (#3) DEL RATON AL MISMO TIEMPO HASTA QUE APAREZCA UN PUNTO ROJO, -EL CUAL NOS MARCARA EL CIERRE DEL POLIGONO.
 6.- UNA VEZ QUE SE CERRO EL POLIGONO SE OPRIMEN LOS BOTONES 1 Y 3 DEL RATON PARA ENTRAR AL MENU PRINCI-PAL DE ESTA SECCION.

ESTANDO YA DENTRO DE ESTE MENU, LOS PASOS A SEGUIR SON:

GUARDAR EL POLIGONO ACTUAL E; INICIAR UN NUEVO POLIGONO

ESTOS PASOS SE REPITEN SEGUN EL NUMERO DE CLASES SELECCIONADAS.

1. - RETORNAR A CAPTURAR/EDITAR

- GUARDAR EL POLIGONO ACTUAL 2.-
- з.-RECUPERAR UN POLIGONO ANTERIOR
- 4.-INICIAR UN NUEVO POLIGONO
- 5.-IMPRIMIR EL REPORTE DEL POLIGONO ACTUAL
- SALIDA DEL MODULO 6.-

GUARDAR POLIGONO ACTUAL

NOMBRE DEL CAMPO:_ROCA1B_

NOMBRE DE LA CLASE:__Tsm8____

TIPO DE CAMPO:_1_

INICIAR UN NUEVO POLIGONO

UNA VEZ DESPLEGADA LA IMAGEN LOS PASOS A SEGUIR SON:

GUARDAR POLIGONO ACTUAL

NOMBRE DEL CAMPO:_ROCA28_ NOMBRE DE LA CLASE:_TrpB____

TIPO DE CAMPO:_2____

INICIAR UN NUEVO POLIGONO

UNA VEZ DESPLEGADA LA IMAGEN LOS PASOS A SEGUIR SON:

- SELECCIONAR EL AREA DE ESTUDIO CON LAS FLECHAS DIRECCIONALES.
 OPRIMIR LA LETRA "D" Y ESPERAR A QUE APAREZCA EL CURSOR DEL RATON.
 MARCAR LOS PUNTOS DESEADOS CON EL BOTON IZQUIERDO DEL RATON (#1).
 EN CASO DE EQUIVOCACION EN EL ULTIMO PUNTO MARCADO, SE OPRIME EL BOTON DERECHO DEL RATON (#3).
 PARA CERRAR EL POLIGONO, LA ULTIMA LINEA SE GENERA CON EL BOTON DE ENMEDIO (#2) Y ENSEGUIDA SE OPRIMEN EL BOTON (#1) Y EL BOTON (#3) DEL RATON AL MISMO TIEMPO HASTA QUE APAREZCA UN PUNTO --- ROJO, EL CUAL NOS MARCARA EL CIERRE DEL POLIGONO.
 UNA VEZ QUE SE CERRO EL POLIGONO SE OPRIMEN LOS BOTONES 1 Y 3 DEL RATON PARA ENTRAR AL MENU --- PRINCIPAL DE ESTA SECCION.

GUARDAR POLIGONO ACTUAL

NOMBRE DEL CAMPO:_ROCA38_

NOMBRE DE LA CLASE:_QB____

TIPO DE CAMPO:_3___

INICIAR UN NUEVO POLIGONO

UNA VEZ DESPLEGADA LA IMAGEN LOS PASOS A SEGUIR SON:

- 1.- SELECCIONAR EL AREA DE ESTUDIO CON LAS FLECHAS DIRECCIONALES.
 2.- OPRIMIR LA LETRA "D" Y ESPERAR A QUE APAREZCA EL CURSOR DEL RATON.
 3.- MARCAR LOS PUNTOS DESEADOS CON EL BOTON IZQUIERDO DEL RATON (#1).
 4.- EN CASO DE EQUIVOCACION EN EL ULTIMO PUNTO MARCADO, SE OPRIME EL BOTON DERECHO DEL RATON (#3).
 5.- PARA CERRAR EL POLIGONO, LA ULTIMA LINEA SE GENERA CON EL BOTON DE ENMEDIO (#2) Y ENSEGUIDA SE OPRIMEN EL BOTON (#1) Y EL BOTON (#3) DEL RATON AL MISMO TIEMPO HASTA QUE APAREZCA UN PUNTO --- ROJO, EL CUAL NOS MARCARA EL CIERRE DEL POLIGONO.
 6.- UNA VEZ QUE SE CERRO EL POLIGONO SE OPRIMEN LOS BOTONES 1 Y 3 DEL RATON PARA ENTRAR AL MENU --- PRINCIPAL DE ESTA SECCION.

GUARDAR POLIGONO ACTUAL

NOMBRE DEL CAMPO:_ROCA4B_

NOMBRE DE LA CLASE:_QrB__

TIPO DE CAMPO:_4___

INICIAR UN NUEVO POLIGONO

UNA VEZ DESPLEGADA LA IMAGEN LOS PASOS A SEGUIR SON:

- SELECCIONAR EL AREA DE ESTUDIO CON LAS FLECHAS DIRECCIONALES.
 OPRIMIR LA LETRA "D" Y ESPERAR A QUE APAREZCA EL CURSOR DEL RATON.
 MARCAR LOS PUNTOS DESEADOS CON EL BOTON IZQUIERDO DEL RATON (#1).
 EN CASO DE EQUIVOCACION EN EL ULTIMO PUNTO MARCADO, SE OPRIME EL BOTON DERECHO DEL RATON (#3).
 PARA CERRAR EL POLIGONO, LA ULTIMA LINEA SE GENERA CON EL BOTON DE ENMEDIO (#2) Y ENSEGUIDA SE OPRIMEN EL BOTON (#1) Y EL BOTON (#3) DEL RATON AL MISMO TIEMPO HASTA QUE APAREZCA UN PUNTO ---- ROJO, EL CUAL NOS MARCARA EL CIERRE DEL POLIGONO.
 UNA YEZ QUE SE CERRO EL POLIGONO SE OPRIMEN LOS BOTONES 1 Y 3 DEL RATON PARA ENTRAR AL MENU ----- PRINCIPAL DE ESTA SECCION.

GUARDAR POLIGONO ACTUAL

NOMBRE DEL CAMPO: ROCA5B

NOMBRE DE LA CLASE:_CgB_

TIPO DE CAMPO: 5
INICIAR UN NUEVO POLIGONO

UNA VEZ DESPLEGADA LA IMAGEN LOS PASOS A SEGUIR SON:

- SELECCIONAR EL AREA DE ESTUDIO CON LAS FLECHAS DIRECCIONALES.
 OPRIMIR LA LETRA "D" Y ESPERAR A QUE APAREZCA EL CURSOR DEL RATON.
 MARCAR LOS PUNTOS DESEADOS CON EL BOTON IZQUIERDO DEL RATON (#1).
 EN CASO DE EQUIVOCACION EN EL ULTIMO PUNTO MARCADO, SE OPRIME EL BOTON DERECHO DEL RATON (#3).
 PARA CERRAR EL POLIGONO, LA ULTIMA LINEA SE GENERA CON EL BOTON DE ENMEDIO (#2) Y ENSEGUIDA SE OPRIMEN EL BOTON (#1) Y EL BOTON (#3) DEL RATON AL MISMO TIEMPO HASTA QUE APAREZCA UN PUNTO --- ROJO, EL CUAL NOS MARCARA EL CIERRE DEL POLIGONO.
 UNA VEZ QUE SE CERRO EL POLIGONO SE OPRIMEN LOS BOTONES 1 Y 3 DEL RATON PARA ENTRAR AL MENU --- PRINCIPAL DE ESTA SECCION.

GUARDAR POLIGONO ACTUAL

NOMBRE DEL CAMPO:_ROCA6B_

NOMBRE DE LA CLASE:_QtB____

TIPO DE CAMPO:_6__

INICIAR UN NUEVO POLIGONO

UNA VEZ DESPLEGADA LA IMAGEN LOS PASOS A SEGUIR SON:

- 1.- SELECCIONAR EL AREA DE ESTUDIO CON LAS FLECHAS DIRECCIONALES.
 2.- OPRIMIR LA LETRA "D" Y ESPERAR A QUE APAREZCA EL CURSOR DEL RATON.
 3.- MARCAR LOS PUNTOS DESEADOS CON EL BOTON IZQUIERDO DEL RATON (#1).
 4.- EN CASO DE EQUIVOCACION EN EL ULTIMO PUNTO MARCADO, SE OPRIME EL BOTON DERECHO DEL RATON (#3).
 5.- PARA CERRAR EL POLIGONO, LA ULTIMA LINEA SE GENERA CON EL BOTON DE ENMEDIO (#2) Y ENSEGUIDA SE OPRIMEN EL BOTON (#1) Y EL BOTON (#3) DEL RATON AL MISMO TIEMPO HASTA QUE APAREZCA UN PUNTO ---- ROJO, EL CUAL NOS MARCARA EL CIERRE DEL POLIGONO.
 6.- UNA YEZ QUE SE CERRO EL POLIGONO SE OPRIMEN LOS BOTONES 1 Y 3 DEL RATON PARA ENTRAR AL MENU ----- PRINCIPAL DE ESTA SECCION.

GUARDAR POLIGONO ACTUAL

NOMBRE DEL CAMPO:_ROCA7B_

NOMBRE DE LA CLASE: TIPB

TIPO DE CAMPO:_7___

INICIAR UN NUEVO POLIGONO

UNA VEZ DESPLEGADA LA IMAGEN LOS PASOS A SEGUIR SON:

- PRINCIPAL DE ESTA SECCION.

GUARDAR POLIGONO ACTUAL

NOMBRE DEL CAMPO:_ROCA8B__

NOMBRE DE LA CLASE:_KscB___

TIPO DE CAMPO:_8

UNA VEZ DETERMINADOS LOS CAMPOS DE ENTRENAMIENTO, SELECCIONAREMOS EL MODULO DE CLASIFICACION SU-

MODULO DE CLASIFICACION ELIJA UNA DE LAS OPCIONES SIGUIENTES:

CLASIFICACION NO SUPERVISADA
 CAMPOS DE ENTRENAMIENTO
 CLASIFICACION SUPERVISADA
 SALIDA

AL SER SELECCIONADA DICHA OPCION SE NOS PRESENTARA EL SIGUIENTE MENU:

MODULO DE CLASIFICACION DE IMAGENES CLASIFICADOR BAYESIANO DE MAXIMA VEROSIMILITUD

1.- CALCULAR ESTADISTICAS PARA LA CLASIFICACION

2.- ESTABLECER CORRIDA DE CLASIFICACION

3. - PRESENTAR REPORTES DE LA CLASIFICACION

4.- SALIDA

EN ESTA PANTALLA, EN PRIMER LUGAR SELECCIONAREMOS LA OPCION #1, "CALCULAR ESTADISTICAS PARA LA ---CLASIFICACION.

1.- NOMBRE DE LA IMAGEN_4____

SELECCIONE CON UNA "S" LAS BANDAS QUE DESEE CLASIFICAR:

NOMBRE DE LA BANDA	SELECCION
_4. B-1	S
_4. B-2	S
_4. B-3	S
_4. B-4	S

DENTRO DE ESTA MISMA OPCION, "CALCULAR ESTADISTICAS PARA LA CLASIFICACION" SE NOS PRESENTA OTRO --MENU, EN EL CUAL TENDREMOS OTRAS DOS OPCIONES LAS QUE SELECCIONAREMOS INDIVIDUALMENTE: CALCULAR ESTADISTICAS PARA LOS CAMPOS DE ENTRENAMIENTO Y; CALCULAR ESTADISTICAS PARA CLASES SELECCIONADAS.

CALCULO DE ESTADISTICAS

- 1.- CALCULAR ESTADISTICAS PARA CAMPOS DE ENTRENA--MIENTO
- 2.- CALCULAR ESTADISTICAS PARA CLASES SELECCIONA--DAS
- 3.- REGRESAR

CALCULAR ESTADISTICAS PARA LOS CAMPOS DE ENTRENAMIENTO

SELECCIONE CON UNA "S" LOS CAMPOS:

CAMPO		CAMPO	
_ROCA18	_S	_ROCA6B	_S
_ROCA2B	_S	_ROCA7B	_S
_ROCA3B	_S	_ROCA8B	_S
_ROCA4B	_S		
_ROCA5B	_S		

CALCULAR ESTADISTICAS PARA LAS CLASES SELECCIONADAS

SELECCIONE CON UNA "S" LAS CLASES:

CLASE		CLASE	
_TsmB	_S	_QtB	_S
_TrpB	_S	_TIpB	_S
_Q8	_S	_KscB	_S
_QrB	_S		
_CgB	_S		

UNA VEZ TERMINADO EL CALCULO DE LAS ESTADISTICAS TANTO DE LOS CAMPOS DE ENTRENAMIENTO COMO LA DE -LAS CLASES SELECCIONADAS SALDREMOS DE ESTE MODULO Y EN SEGUIDA OPRIMIREMOS LA TECLA ESC PARA SALIR DEL MODULO DE BANDAS. UNA VEZ ESTANDO EN LA PANTALLA DEL CLASIFICADOR BAYESIANO DE MAXIMA VEROSI--MILITUD ESCOGEREMOS LA OPCION, ESTABLECER CORRIDA DE CLASIFICACION.

> MODULO DE CLASIFICACION DE IMAGENES CLASIFICADOR BAYESIANO DE MAXIMA VEROSIMILITUD

- 1. CALCULAR ESTADISTICAS PARA LA CLASIFICACION
- 2.- ESTABLECER CORRIDA DE CLASIFICACION

3. - PRESENTAR REPORTES DE LA CLASIFICACION

UNA VEZ REALIZADO ESTO SE NOS PRESENTARA LA SIGUIENTE PANTALLA:

ESTABLECER CORRIDA DE CLASIFICACION

IDENTIFICADOR DE LA CORRIDA:_CLAS2B___ NOMBRE DE LA IMAGEN A CLASIFICAR:_4___ NOMBRE DE LA IMAGEN DESDE LA CUAL LAS ESTADISTICAS DEBERAN SER USADAS:_4____ DEFAULT: IMAGEN A SER CLASIFICADA.

SELECCIONE CON UNA "S" LAS BANDAS A CLASIFICAR:

NOMBRE DE LA BANDA	SELECCION	
_4. B-1	5	
_4. B-2	S	
_4. E-3	S	
_4. B-4	S	

97

SELECCIONE CON UNA "S" LAS CLASES:

CLASE		CLASE	
_Tsm8	_S	_QtB	_5
_Тгрв	_S	_ТТрВ	_S
_QB	_S	_KscB	_S
_QrB	_S		
_CgB	_S		

REPORTE DE CLASES SELECCIONADAS

OPCIONALMENTE TU PUEDES ASIGNAR UN PESO A LAS CLASES SELECCIONADAS INTRODUCIENDO VALORES A PRIORI-ENTRE 0-100 (EL DEFAULT ES EL MISMO PORCENTAJE), PARA EL CASO DEL UMBRAL SE RECOMIENDA 2 O 8.

CLASE	VAP	U	CLASE	VAP	U
_TsmB	12.50	2	_QtB	12.50	2
_TrpB	12.50	_2	_TIPB	12.50	2
_QB	12.50	_2_	_KscB	12.50	2
_QrB	12.50	2			
_CgB	12.50	_2_			

VAP.- VALOR A PRIORI U.- UMBRAL

DENTRO DE LA OPCION, "ESTABLECER CORRIDA DE CLASIFICACION", SE NOS PRESENTA OTRA PANTALLA CON DOS-OPCIONES LAS CUALES SON: CLASIFICACION DE CAMPOS DE ENTRENAMIENTO; Y CLASIFICACION DE LA IMAGEN EN ESTA PANTALLA PRIMERO SELECCIONAREMOS LA OPCION DE CLASIFICACION DE CAMPOS DE ENTRENAMIENTO, Y-UNA VEZ REALIZADA ESTA OPCION FINALMENTE SELECCIONAREMOS LA OPCION DE LA CLASIFICACION DE LA IMA--GEN.

1. - CLASIFICACION DE CAMPOS DE ENTRENAMIENTO 2. - CLASIFICACION DE LA IMAGEN 3. - REGRESAR

CLASIFICACION DE CAMPOS DE ENTRENAMIENTO

SELECCIONE CON UNA "S" LOS CAMPOS:

CAMPO		CAMPO	
_ROCA1B	_S	_ROCA6B	<u>_</u> S
_ROCA2B	_S	_ROCA7B	<u>S</u>
_ROCA3B	_S	_ROCA8B	_S
_ROCA4B	_S		
_ROCA5B	_S		

IDENTIFICADOR DE LA CORRIDA: __CLAS28___

TE DEL CAMPO:_ROCA1B
O DE PIXELES:_195
CLASIFICADO: _0.00

CLASE	# DE PIXELES	%
_TsmB	_151	_77.44
_TrpB	0	0.00
_QB	0	0.00
_QrB	0	0.00
CgB	30	_15.38
_QtB	0	0.00
_ТірВ	14	7.18
_KscB	0	0.00

IDENTIFICADOR DE LA CORRIDA: __CLAS2B___

IMAGEN CLASIFICADA:	_4	REPORTE DEL CAMPO:_ROCA2B
CLASE:	_TrpB	NUMERO DE PIXELES:_182
PIXELES NO CLASIFICADOS	_5	% NO CLASIFICADO: _2.75

CLASE # DE PIXELES %

_Tsm8	0	0.00
_TrpB	108	_59.34
_QB	50	_27.47
_QrB	9	4.95
_CgB	0	0.00
_QtB	6	3.30
_11p8	0	0.00
_Ksc	4	2.20

IDENTIFICADOR DE LA CORRIDA: __CLAS28___

IMAGEN CLASIFICADA:	_4	REPORTE DEL CAMPO:_ROCA3B
CLASE:	_QB	NUMERO DE PIXELES:_304
PIXELES NO CLASIFICADOS	:_1	% NO CLASIFICADO: _0.33

CLASE	# DE PIXELES	%
_TsmB	0	0.00
_TrpB	65	_21.38
_Q8	_186	_61.18
_QrB	22	7.24
_Cg8	0	0.00
_QtB	30	9.87
TIpB	0	0.00
_Ksc8	0	0.00

IDENTIFICADOR DE LA CORRIDA: __CLAS2B____

IMAGEN CLASIFICADA:	_4	REPORTE DEL CAMPO:_ROCA4B
CLASE:	_Qr	NUMERO DE PIXELES:_217
PIXELES NO CLASIFICADOS	:_1	% NO CLASIFICADO: _0.46

CLASE # DE PIXELES %

_TsmB	0	_0.00
_Trp8	1	0.46
_QB	7	
_Qr8	_158	_72.81
Cg8	19	8.76
_QtB	15	_6,91
_TIp8	5	2.30
_KscB	11	_5.07

IDENTIFICADOR DE LA CORRIDA: __CLAS28___

IMAGEN CLASIFICADA:	_4	REPORTE DEL CAMPO:_ROCA58
CLASE:	_CgB	NUMERO DE PIXELES:_151
PIXELES NO CLASIFICADOS	_0	% NO CLASIFICADO: _0.00

CLASE	# DE PIXELES	%
_TsmB	_29	_19.21
_TrpB	0	0.00
_QB	0	0.00
_QrB	_14	9.27
_CgB	_72	_47.68
QtB	8	<u></u> 5.3v <u></u>
_TIPB	_26	_17.22
_KscB	2	1.32

IDENTIFICADOR DE LA CORRIDA: __CLAS2B____

IMAGEN CLASIFICADA:	_4	REPORTE DEL CAMPO:_ROCA6B
CLASE:	_Qt8	NUMERO DE PIXELES:_410
PIXELES NO CLASIFICADOS	:_1	% NO CLASIFICADO: _0.24

CLASE # DE PIXELES %

_TsmB	8	i.95
_TrpB	3	0.73
_QB	22	5.37
_QrB	46	_11.22
_CgB	16	3.90
_QtB	284	_69.27
_TIp8	2	0.49
_Ksc8	28	6.83

101

IDENTIFICADOR DE LA CORRIDA: _CLAS2B___

IMAGEN CLASIFICADA:	_4	REPORTE DEL CAMPO:_ROCA7B
CLASE:	_TIpB	NUMERO DE PIXELES:_223
PIXELES NO CLASIFICADO	5:_0	% NO CLASIFICADO: _0.00

CLASE	# DE PIXELES	z
_TsmB	_51	
TrpB	0	
_QB	0	
_QrB	_16	
_CgB	_71	
_QtB	_12	
_TipB	_73	
_KscB	0	

IDENTIFICADOR DE LA CORRIDA: __CLAS2B___

IMAGEN CLASIFICADA:	_4	REPORTE DEL CAMPO:_ROCA88
CLASE:	_KscB	NUMERO DE PIXELES:_108
PIXELES NO CLASIFICADOS	:_2	% NO CLASIFICADO: _1.85

CLASE	# DE PIXELES	%
_TsmB		0.00
_TrpB	0	0.00
_QB	0	0.00
_QrB	8	7.41
_CgB	0	0.00
_QtB	_11	_10.19
_TIpB		0.00
_KscB	_87	_80.56

UNA YEZ REALIZADA LA OPCION DE "CLASIFICACION DE CAMPOS DE ENTRENAMIENTO", FINALMENTE SELECCIONARE-MOS LA OPCION DE "CLASIFICACION DE LA IMAGEN". AL TERMINAR DICHA CLASIFICACION SE NOS PRESENTARA EL SIGUIENTE REPORTE:

CLASIFICACION DE LA IMAGEN

REPORTE DE AREAS DE LA IMAGEN CLASIFICADA

IDENTIFICADOR DE LA CORRIDA:_CLAS28____ IMAGEN CLASIFICADA:_4____

PIXELES EN LA IMAGEN: _262144__

CODIGO PARA PIXELES NO CLASIFICADOS:_0____ PIXELES NO CLASIFICADOS:_16128__

PARA OBTENER AREAS INTRODUZCA EL AREA SIMPLE DE UN PIXEL:_6400 m .__

CLASE	CODIGO	# PIXELES	AREA
_TsmB	_1	_27177	1.7339328E+008
_Trp8	_2	20338	1.301632E +008
_QB	_3	48781	3.121984E +008
_QrB	_4	43854	2.806656E +008
_Cg8	_5	_32817	2.100288E +008
_QtB	_б	_36272	2.321408E +008
_TIpB	_7	_25988	1.6632232E+008
_KscB	_8	10789	6.904960E +007

UNA VEZ CLASIFICADA TODA LA IMAGEN SE DEBERAN CREAR TANTO EL ENCABEZADO COMO LA TABLA DE ASIGNA---CION CORRESPONDIENTE A LA IMAGEN. UNA VEZ REALIZADO ESTO, LA IMAGEN CLASIFICADA PODRA SER DESPLEGADA EN "MONOBANDA".

CREAR ENCABEZADO DE LA IMAGEN CLASIFICADA

NOMBRE DE LA IMAGEN.~_CLAS2B___

TIPOS DE IMAGEN.-_C____

NUMERO DE BANDA.-_B____

NUMERO DE PIXEL.-_512____

NUMERO DE LINEAS.-_512____

CREAR TABLA DE ASIGNACION A LA IMAGEN CLASIFICADA

2

NOMBRE DE LA IMAGEN.-_CLAS28____ NUMERO DE BANDA.-_B_____ TABLA DE ASIGNACION.-_!____ VI.1.B.- DESPLIEGUE DE LA IMAGEN CLASIFICADA

NOMBRE DE LA IMAGEN A CLASIFICAR: IMAGEN 4 (Ver pagina 92) NOMBRE DE LA IMAGEN CLASIFICADA: CLAS2B

UNA VEZ TERMINADA LA CLASIFICACION DE LA IMAGEN, EL SIGUIENTE PASO ES EL "DESPLIEGUE EN MONOBANDA". LOS PASOS A SEGUIR SON:

ENTRAR EN EL MENU PRINCIPAL DEL PROGRAMA Y SELECCIONAR LA OPCION DE "DESPLIEGUE":

AYUDA GENERAL
 PRE-PROCESO
 DESPLIEGUE
 REALCE
 CLASIFICACION
 GEO-REFERIR
 SALIDA

UNA VEZ SELECCIONADA LA OPCION DE DESPLIEGUE, MOSTRARA EL SIGUIENTE MENU EN EL QUE SELECCIONAREMOS "DESPLIEGUE EN MONOBANDA".

> MODULO DE CLASIFICACION ELIJA UNA DE LAS OPCIONES SIGUIENTES: 1. - DESPLIEGUE EN RGB 2. - DESPLIEGUE EN GRIS-16 3. - DESPLIEGUE EN GRIS-40 4. - DESPLIEGUE EN MONOBANDA 5. - SALIDA

UNA VEZ SELECCIONADA LA OPCION DESPLIEGUE EN MONOBANDA SE PRESENTARA EL SIGUIENTE MENU:

MODULO DE DESPLIEGUE DE IMAGENES DESPLIEGUE DE IMAGENES MONOBANDA

NOMBRE DE LA IMAGEN:_CLAS2B____ TIPO DE IMAGEN C)LASIFICADA B)ANDA:____C____ TABLA DE COLOR:____i____

(TECLEE UNA "'' EN CASO DE QUE SEA, COLOR POR VALOR DE PIXEL, DE OTRO MODO DE EL NOMBRE DE LA TA-BLA). EL AREA DE ESTUDIO COMPRENDIDA EN LOS MOSAICOS DE LAS IMAGENES DE SATELITE YA CLASIFICADAS QUE CU-BREN EL AREA DE ESTUDIO, FUERON DIVIDIDAS EN 6 BLOQUES:

CLAS3C	CLAS2B	CLASIA
CLAS10	CLAS11D	CLAS1

MOSAICO COMPLETO

LA IMAGEN QUE A CONTINUACION SE PRESENTA CORRESPONDE AL BLOQUE ACHURADO, EN LA CUAL SE ESCOGIERON-8 ZONAS A CLASIFICAR, LAS CUALES SON:

1.- RIOLITA SAN MIGUELITO (Tsm) 2.- RIOLITA PANALILLO (Trp) 3.- ALUVION (Q) 4.- SUELO RESIDUAL (Or) 5.- CONGLOMERADO (Cg) 6.- DEPOSITO DE TALUD (Qt) 7.- LATITA PORFIRITICA (TIP)

8. - FORMACION CARACOL (Ksc)

UNA VEZ REALIZADA LA CLASIFICACION, LOS COLORES ASIGNADOS POR EL CLASIFICADOR BAYESIANO DE MAXIMA-VEROSIMILITUD NO FUERON RESPETADOS EN ESTA CLASIFICACION.

A CONTINUACION SE DARA LA DESCRIPCION DE LAS ZONAS CLASIFICADAS Y EL COLOR ASIGNADO A DICHAS ZONAS POR EL CLASIFICADOR.

1.- RIOLITA SAN MIGUELITO (Tsm)

ESTE TIPO DE ROCA FUE CLASIFICADA EN UN COLOR AZUL, AFLORANDO PRINCIPALMENTE HACIA LA PARTE SUR---ESTE DE LA IMAGEN.

2.- RIOLITA PANALILLO (Trp)

ESTE TIPO DE ROCA NO FUE CLASIFICADO DEBIDO PRINCIPALMENTE A SUS AFLORAMIENTOS MUY PEQUEÑOS EN EL-AREA EN RELACION A LA RESOLUCION DE LAS IMAGENES MSS.

3.- ALUVION (Q)

ESTE MATERIAL FUE CLASIFICADO EN UN COLOR AZUL VERDOSO AFLORANDO PRINCIPALMENTE HACIA LA PARTE SUR OESTE DE LA IMAGEN.

4.- SUELO RESIDUAL (Qr)

ESTE TIPO DE MATERIAL NO FUE CLASIFICADO DEBIDO PRINCIPALMENTE A SUS AFLORAMIENTOS MUY PEQUEÑOS EN EL AREA EN RELACION A LA RESOLUCION DE LAS IMAGENES MSS.

5.- CONGLOMERADO (Cg)

ESTE TIPO DE ROCA NO FUE CLASIFICADO DEBIDO PRINCIPALMENTE A SUS AFLORAMIENTOS MUY PEQUEÑOS EN EL-AREA EN RELACION A LA RESOLUCION DE LAS IMAGENES MSS.

6.- DEPOSITO DE TALUD (Qt)

ESTE TIPO DE MATERIAL NO FUE CLASIFICADO DEBIDO PRINCIPALMENTE A SUS AFLORAMIENTOS MUY PEQUEÑOS EN EL AREA EN RELACION A LA RESOLUCION DE LAS IMAGENES MSS. 7.- LATITA PORFIRITICA ((T/p)

ESTE TIPO DE ROCA NO FUE CLASIFICADO DEBIDO PRINCIPALMENTE A SUS AFLORAMIENTOS MUY PEQUENOS EN EL-AREA EN RELACION A LA RESOLUCION DE LAS IMAGENES MSS.

8.- FORMACION CARACOL (Ksc)

ESTE TIPO DE ROCA NO FUE CLASIFICADO DEBIDO PRINCIPALMENTE A SUS AFLORAMIENTOS MUY PEQUEÑOS EN EL-AREA EN RELACION A LA RESOLUCION DE LAS IMAGENES MSS.

VI.4.C.1.- COMPARACION DE LA IMAGEN CLASIFICADA EN RELACION AL PLANO UTILIZADO PARA LA IDENTIFICA-CION DE LOS DIFERENTES TIPOS DE ROCA.

A CONTINUACION SE PRESENTAN LOS PUNTOS DE REFERENCIA DE LA CLASIFICACION CON RESPECTO AL PLANO U--TILIZADO.

- A) IMAGEN CLASIFICADA
- 1.- LA PRESA SANTA GENOVEVA QUE SE ENCUENTRA HACIA LA PARTE SUR-ESTE DE LA IMAGEN PRESENTANDOSE---EN UN COLOR CREMA.
- 2.~ EL ALUVION QUE SE PRESENTA EN UN COLOR AZUL VERDOSO PRINCIPALMENTE HACIA LA PARTE SUR-OESTE DE LA IMAGEN.

NOMBRE DE LA IMAGEN CLASIFICADA: CLASEB

VI.5.- IMAGEN 10

VI.5.A.- SISTEMA DE PROCESAMIENTO DE IMAGENES DE SATELITE UNA VEZ DESPLEGADO EL MENU PRINCIPAL DEL PROGRAMA S.P.I.P.R. CON LAS FLECHAS DIRECCIONALES U OPRI-MIEDO EL NUMERO ASIGNADO A CADA MODULO, SELECCIONAR EL DE CLASIFICACION.

AYUDA GENERAL
 PRE-PROCESO
 DESPLIEGUE
 REALCE
 CLASIFICACION
 GEO-REFERIR
 SALIDA

UNA VEZ SELECCIONADO ESTE MODULO NOS MOSTRARA EL SIGUIENTE MENU, EN EL CUAL SELECCIONAREMOS EN ---PRIMER LUGAR CAMPOS DE ENTRENAMIENTO.

> MODULO DE CLASIFICACION ELIJA UNA DE LAS OPCIONES SIGUIENTES:

> > 1. - CLASIFICACION NO SUPERVISADA

- 2. CAMPOS DE ENTRENAMIENTO
- 3. CLASIFICACION SUPERVISADA
- 4.- SALIDA

AL SER SELECCIONADA LA OPCION DE CAMPOS DE ENTRENAMIENTO SE NOS PRESENTA EL SIGUIENTE MENU:

MODULO DE CAMPOS DE ENTRENAMIENTO ELIJA UNA DE LAS OPCIONES SIGUIENTES:

- 1.- CREAR UN NUEVO POLIGONO USANDO EL RATON
- 2.- DIBUJAR UN POLIGONO EN UNA IMAGEN DESPLEGADA
- 3.- IMPRIMIR EL REPORTE DE UN POLIGONO
- 4.- SALIDA

EN ESTA PANTALLA SELECCIONAREMOS LA OPCION #1, "CREAR UN NUEVO POLIGONO USANDO EL RATON", EL CUAL-NOS PREGUNTARA EL NOMBRE, NUMERO DE BANDA Y TABLA DE ASIGNACION CORRESPONDIENTE A DICHA IMAGEN. --UNA VEZ DADOS ESTOS DATOS LA IMAGEN SERA DESPLEGADA EN PANTALLA EN 40 TONOS DE GRIS. LA LISTA DE COLORES QUE SE ANEXA, ES EL ORDEN EN QUE EL CLASIFICADOR ASIGNA A CADA CLASE SELECCIO-NADA EL COLOR CORRESPONDIENTE AL REALIZARSE DICHA CLASIFICACION.

NOMBRE DE LA IMAGEN_10___

NUMERO DE BANDA___4____ TABLA DE ASIGNACION__|____

1.- AZUL---->_Q____ 5.- MAGNETA---->_ 2.- VERDE----->____ 6.- CAFE---->___ 3.- MORADO---->____ 7.- BLANCO---->____ 4.- ROJO-----> 8.- GRIS----->

NOTA: LAS ABREVIATURAS IDENTIFICAN LAS UNIDADES GEOLOGICAS SEGUN LOS PLANOS Y CARTAS UTILIZADAS.

UNA VEZ DESPLEGADA LA IMAGEN LOS PASOS A SEGUIR SON:

- SELECCIONAR EL AREA DE ESTUDIO CON LAS FLECHAS DIRECCIONALES.
 OPRIMIR LA LETRA "D" Y ESPERAR A QUE APAREZCA EL CURSOR DEL RATON.
 MARCAR LOS PUNTOS DESEADOS CON EL BOTON IZQUIERDO DEL RATON (#1).
 EN CASO DE EQUIVOCACION EN EL ULTIMO PUNTO MARCADO, SE OPRIME EL BOTON DERECHO DEL RATON (#3).
 PARA CERRAR EL POLIGONO, LA ULTIMA LINEA SE GENERA CON EL BOTON DE ENMEDIO (#2) Y ENSEGUIDA SE ---OPRIMEN EL BOTON (#1) Y EL BOTON (#3) DEL RATON AL MISMO TIEMPO HASTA QUE APAREZCA UN PUNTO ROJO, EL CUAL NOS MARCARA EL CIERRE DEL POLIGONO.
 UNA YEZ QUE SE CERRO EL POLIGONO SE OPRIMEN LOS BOTONES 1 Y 3 DEL RATON PARA ENTRAR AL MENU PRINCIPAL DE ESTA SECCION.

ESTANDO YA DENTRO DE ESTE MENU, LOS PASOS A SEGUIR SON: GUARDAR EL POLIGONO ACTUAL E; INICIAR UN NUEVO POLIGONO

ESTOS PASOS SE REPITEN SEGUN EL NUMERO DE CLASES SELECCIONADAS.

1. - RETORNAR A CAPTURAR/EDITAR

- 2.-GUARDAR EL POLIGONO ACTUAL
- 3.~ RECUPERAR UN POLIGONO ANTERIOR
- INICIAR UN NUEVO POLIGONO 4. -
- IMPRIMIR EL REPORTE DEL POLIGONO ACTUAL 5. -
- SALIDA DEL MODULO 6. -

GUARDAR POLIGONO ACTUAL

NOMBRE DEL CAMPO:_ROCATE_

NOMBRE DE LA CLASE:_QE___

TIPO DE CAMPO:_1____

INICIAR UN NUEVO POLIGONO

UNA VEZ DESPLEGADA LA IMAGEN LOS PASOS A SEGUIR SON:

- 1.- SELECCIONAR EL AREA DE ESTUDIO CON LAS FLECHAS DIRECCIONALES.
 2.- OPRIMIR LA LETRA "D" Y ESPERAR A QUE APAREZCA EL CURSOR DEL RATON.
 3.- MARCAR LOS PUNTOS DESEADOS CON EL BOTON IZQUIERDO DEL RATON (#1).
 4.- EN CASO DE EQUIVOCACION EN EL ULTIMO PUNTO MARCADO, SE OPRIME EL BOTON DERECHO DEL RATON (#3).
 5.- PARA CERRAR EL POLIGONO, LA ULTIMA LINEA SE GENERA CON EL BOTON DE ENMEDIO (#2) Y ENSEGUIDA SE OPRIMEN EL BOTON (#1) Y EL BOTON (#3) DEL RATON AL MISMO TIEMPO HASTA QUE APAREZCA UN PUNTO --- ROJO EL CUAL NOS MARCARA EL CIERRE DEL POLIGONO.
 6.- UNA VEZ QUE SE CERRO EL POLIGONO SE OPRIMEN LOS BOTONES 1 Y 3 DEL RATON PARA ENTRAR AL MENU --- PRINCIPAL DE ESTA SECCION.

GUARDAR POLIGONO ACTUAL

NOMBRE DEL CAMPO:_____

NOMBRE DE LA CLASE:

TIPO DE CAMPO:____

LINA VEZ DETERMINADOS LOS CAMPOS DE ENTRENAMIENTO, SELECCIONAREMOS EL MODULO DE CLASIFICACION SU-SUPERVISADA.

> MODULO DE CLASIFICACION ELIJA UNA DE LAS OPCIONES SIGUIENTES:

> > 1. - CLASIFICACION NO SUPERVISADA

- 2. CAMPOS DE ENTRENAMIENTO
- 3. CLASIFICACION SUPERVISADA
- 4.- SALIDA

AL SER SELECCIONADA DICHA OPCION SE NOS PRESENTARA EL SIGUIENTE MENU:

MODULO DE CLASIFICACIÓN DE IMAGENES CLASIFICADOR BAYESIANO DE MAXIMA VEROSIMILITUD

1. - CALCULAR ESTADISTICAS PARA LA CLASIFICACION

2.- ESTABLECER CORRIDA DE CLASIFICACION

3.~ PRESENTAR REPORTES DE LA CLASIFICACION

4.- SALIDA

EN ESTA PANTALLA, EN PRIMER LUGAR SELECCIONAREMOS LA OPCION #1, "CALCULAR ESTADISTICAS PARA LA ----CLASIFICACION.

1.- NOMBRE DE LA IMAGEN_10____

SELECCIONE CON UNA "S" LAS BANDAS QUE DESEE CLASIFICAR:

NOMBRE DE LA BANDA	SELECCION
_10. B-1	S
_10. B-2	S
_10. B-3	<u>S</u>
_10. B-4	S

DENTRO DE ESTA MISMA OPCION, "CALCULAR ESTADISTICAS PARA LA CLASIFICACION" SE NOS PRESENTA OTRO --MENU, EN EL CUAL TENDREMOS OTRAS DOS OPCIONES LAS QUE SELECCIONAREMOS INDIVIDUALMENTE: CALCULAR ESTADISTICAS PARA LOS CAMPOS DE ENTRENAMIENTO Y; CALCULAR ESTADISTICAS PARA CLASES SELECCIONADAS.

CALCULO DE ESTADISTICAS

- 1.- CALCULAR ESTADISTICAS PARA CAMPOS DE ENTRENA--MIENTO
- 2.- CALCULAR ESTADISTICAS PARA CLASES SELECCIONA--DAS
- 3.- REGRESAR

CALCULAR ESTADISTICAS PARA LOS CAMPOS DE ENTRENAMIENTO

SELECCIONE CON UNA "S" LOS CAMPOS:

CAMPO	CAMPO		
_ROCATE	<u>_S_</u>		
	<u> </u>		
			

CALCULAR ESTADISTICAS PARA LAS CLASES SELECCIONADAS

SELECCIONE CON UNA "S" LAS CLASES:

CLASE		CLASE	
_QE	_S		

UNA VEZ TERMINADO EL CALCULO DE LAS ESTADISTICAS TANTO DE LOS CAMPOS DE ENTRENAMIENTO COMO LA DE -LAS CLASES SELECCIONADAS SALDREMOS DE ESTE MODULO Y EN SEGUIDA OPRIMIREMOS LA TECLA ESC PARA SALIR DEL MODULO DE BANDAS. UNA VEZ ESTANDO EN LA PANTALLA DEL CLASIFICADOR BAYESIANO DE MAXIMA VEROSI--MILITUD ESCOGEREMOS LA OPCION, ESTABLECER CORRIDA DE CLASIFICACION.

> MODULO DE CLASIFICACION DE IMAGENES CLASIFICADOR BAYESIANO DE MAXIMA VEROSIMILITUD

1. - CALCULAR ESTADISTICAS PARA LA CLASIFICACION

2. - ESTABLECER CORRIDA DE CLASIFICACION

3. - PRESENTAR REPORTES DE LA CLASIFICACION

UNA VEZ REALIZADO ESTO SE NOS PRESENTARA LA SIGUIENTE PANTALLA:

ESTABLECER CORRIDA DE CLASIFICACION

IDENTIFICADOR DE LA CORRIDA:_CLASI0____ NOMBRE DE LA IMAGEN A CLASIFICAR:_10____ NOMBRE DE LA IMAGEN DESDE LA CUAL LAS ESTADISTICAS DEBERAN SER USADAS:_10_____ DEFAULT: IMAGEN A SER CLASIFICADA.

SELECCIONE CON UNA "S" LAS BANDAS A CLASIFICAR:

 NOMBRE DE LA BANDA
 SELECCION

 _10. B-1______S___
 _____S___

 _10. B-2______S___
 ______S___

- _10. B-3_____S___
- _10. B-4_____S___

111

SELECCIONE CON UNA "S" LAS CLASES:

CLASE		CLASE		
_QE	S		<u> </u>	
	- <u></u>			
	·			

REPORTE DE CLASES SELECCIONADAS

OPCIONALMENTE TU PUEDES ASIGNAR UN PESO A LAS CLASES SELECCIONADAS INTRODUCIENDO VALORES A PRIORI-ENTRE 0-100 (EL DEFAULT ES EL MISMO PORCENTAJE), PARA EL CASO DEL UMBRAL SE RECOMIENDA 2 0 8.

CLASE	VAP	U	CLASE	VAP	U
_QE	100.00	_2_			
				<u></u>	
		<u> </u>			

DENTRO DE LA OPCION, "ESTABLECER CORRIDA DE CLASIFICACION", SE NOS PRESENTA OTRA PANTALLA CON DOS-OPCIONES LAS CUALES SON: CLASIFICACION DE CAMPOS DE ENTRENAMIENTO; Y CLASIFICACION DE LA IMAGEN EN ESTA PANTALLA PRIMERO SELECCIONAREMOS LA OPCION DE CLASIFICACION DE CAMPOS DE ENTRENAMIENTO, Y-UNA VEZ REALIZADA ESTA OPCION FINALMENTE SELECCIONAREMOS LA OPCION DE LA CLASIFICACION DE LA IMA--GEN.

1. - CLASIFICACION DE CAMPOS DE ENTRENAMIENTO

2. - CLASIFICACION DE LA IMAGEN

3. - REGRESAR

CLASIFICACION DE CAMPOS DE ENTRENAMIENTO

SELECCIONE CON UNA "S" LOS CAMPOS:

CAMPO		CAMPO	
_ROCATE	_S		
		<u> </u>	

IDENTIFICADOR DE LA CORRIDA: __CLASIO____

IMAGEN CLASIFICADA:	_10	REPORTE DEL CAMPO:_ROCAIE
CLASE:	QE	NUMERO DE PIXELES:_2515
PIXELES NO CLASIFICADOS	:_75	% NO CLASIFICADO: _2.98

CLASE	# DE PIXELES	%
QE	_2440	_97.02

i

i

ļ

IDENTIFICADOR DE LA CORRIDA:

IMAGEN CLASIFICADA:	REPORTE DEL CAMPO:
CLASE:	NUMERO DE PIXELES:
PIXELES NO CLASIFICADOS:	% NO CLASIFICADO:

CLASE	# DE PIXELES	x

UNA VEZ REALIZADA LA OPCION DE "CLASIFICACION DE CAMPOS DE ENTRENAMIENTO", FINALMENTE SELECCIONARE-MOS LA OPCION DE "CLASIFICACION DE LA IMAGEN". AL TERMINAR DICHA CLASIFICACION SE NOS PRESENTARA EL SIGUIENTE REPORTE:

CLASIFICACION DE LA IMAGEN

REPORTE DE AREAS DE LA IMAGEN CLASIFICADA

IDENTIFICADOR DE LA CORRIDA:_CLASI0____ IMAGEN CLASIFICADA:_10_____

PIXELES EN LA IMAGEN:_262144__

CODIGO PARA PIXELES NO CLASIFICADOS:_0____ PIXELES NO CLASIFICADOS:_68393___

PARA OBTENER AREAS INTRODUZCA EL AREA SIMPLE DE UN PIXEL:_6400 m ._

CLASE	CODIGO	# PIXELES	AREA
_QE	_1	_193751	1.240006E+009

UNA VEZ CLASIFICADA TODA LA IMAGEN SE DEBERAN CREAR TANTO EL ENCABEZADO COMO LA TABLA DE ASIGNA---CION CORRESPONDIENTE A LA IMAGEN. UNA VEZ REALIZADO ESTO, LA IMAGEN CLASIFICADA PODRA SER DESPLEGADA EN "MONOBANDA".

CREAR ENCABEZADO DE LA IMAGEN CLASIFICADA

NOMBRE DE LA IMAGEN.-_CLASI0____

TIPOS DE IMAGEN.-_C____

NUMERO DE BANDA.-_B____

NUMERO DE PIXEL.-_512____

NUMERO DE LINEAS.-_512____

CREAR TABLA DE ASIGNACION A LA IMAGEN CLASIFICADA

2

NOMBRE DE LA IMAGEN.~_CLASI0____ NUMERO DE BANDA.-_B_____ TABLA DE ASIGNACION.-___I____ VI.I.B.- DESPLIEGUE DE LA IMAGEN CLASIFICADA

NOMBRE DE LA IMAGEN A CLASIFICAR: IMAGEN 10 (Ver pagina 108) NOMBRE DE LA IMAGEN CLASIFICADA: CLASI0

UNA VEZ TERMINADA LA CLASIFICACION DE LA IMAGEN, EL SIGUIENTE PASO ES EL "DESPLIEGUE EN MONOBANDA". LOS PASOS A SEGUIR SON:

ENTRAR EN EL MENU PRINCIPAL DEL PROGRAMA Y SELECCIONAR LA OPCION DE "DESPLIEGUE":

AYUDA GENERAL
 PRE-PROCESO
 DESPLIEGUE
 REALCE
 CLASIFICACION
 GEO-REFERIR
 SALIDA

UNA VEZ SELECCIONADA LA OPCION DE DESPLIEGUE, MOSTRARA EL SIGUIENTE MENU EN EL QUE SELECCIONAREMOS "DESPLIEGUE EN MONOBANDA".

> MODULO DE CLASIFICACION ELIJA UNA DE LAS OPCIONES SIGUIENTES:

> > 1.- DESPLIEGUE EN RGB
> > 2.- DESPLIEGUE EN GRIS-16
> > 3.- DESPLIEGUE EN GRIS-40
> > 4.- DESPLIEGUE EN MONOBANDA
> > 5.- SALIDA

UNA VEZ SELECCIONADA LA OPCION DESPLIEGUE EN MONOBANDA SE PRESENTARA EL SIGUIENTE MENU:

MODULO DE DESPLIEGUE DE IMAGENES DESPLIEGUE DE IMAGENES MONOBANDA

NOMBRE DE LA IMAGEN:_CLASI0____ TIPO DE IMAGEN C)LASIFICADA B)ANDA:____C____ TABLA DE COLOR:____i____

(TECLEE UNA "'I" EN CASO DE QUE SEA, COLOR POR VALOR DE PIXEL. DE OTRO MODO DE EL NOMBRE DE LA TA-BLA). EL AREA DE ESTUDIO COMPRENDIDA EN LOS MOSAICOS DE LAS IMAGENES DE SATELITE YA CLASIFICADAS QUE CU-BREN EL AREA DE ESTUDIO, FUERON DIVIDIDAS EN 6 BLOQUES:

CLAS3C	CLAS2B	CLAS1A
CLAS10	CLASTID	CLAS1

MOSAICO COMPLETO

LA IMAGEN QUE A CONTINUACION SE PRESENTA CORRESPONDE AL BLOQUE ACHURADO, EN LA CUAL SE ESCOGIO UNA ZONA A CLASIFICAR, LA CUAL ES:

1.- ALUVION (Q)

A CONTINUACION SE DARA LA DESCRIPCION DE LA ZONA CLASIFICADA Y EL COLOR ASIGNADO A DICHA ZONA POR-EL CLASIFICADOR.

1.- ALUVION (Q)

ESTE TIPO DE MATERIAL FUE CLASIFICADO EN UN COLOR AZUL EL CUAL PREDOMINA EN TODA LA IMAGEN. LAS -- PARTES OBSCURAS SON MATERIALES NO CLASIFICADOS.

VI.5.C.1.- COMPARACION DE LA IMAGEN CLASIFICADA EN RELACION AL PLANO UTILIZADO PARA LA IDENTIFICA-CION DE LOS DIFERENTES TIPOS DE ROCA.

A CONTINUACION SE PRESENTAN LOS PUNTOS DE REFERENCIA DE LA CLASIFICACION CON RESPECTO AL PLANO U--TILIZADO.

A) IMAGEN CLASIFICADA

1.- EL ALUYION QUE SE PRESENTA EN UN COLOR AZUL EN TODA LA IMAGEN.

NOMBRE DE LA IMAGEN CLASIFICADA: CLASIC

VI.6.- IMAGEN 3

VI.6.A.- SISTEMA DE PROCESAMIENTO DE IMAGENES DE SATELITE

UNA VEZ DESPLEGADO EL MENU PRINCIPAL DEL PROGRAMA S.P.I.P.R. CON LAS FLECHAS DIRECCIONALES U OPRI-MIEDO EL NUMERO ASIGNADO A CADA MODULO, SELECCIONAR EL DE CLASIFICACION.

AYUDA GENERAL
 PRE-PROCESO
 DESPLIEGUE
 REALCE
 CLASIFICACION
 GEO-REFERIR
 SALIDA

UNA VEZ SELECCIONADO ESTE MODULO NOS MOSTRARA EL SIGUIENTE MENU, EN EL CUAL SELECCIONAREMOS EN ---PRIMER LUGAR CAMPOS DE ENTRENAMIENTO.

> MODULO DE CLASIFICACION ELIJA UNA DE LAS OPCIONES SIGUIENTES:

- 1. CLASIFICACION NO SUPERVISADA
- 2. CAMPOS DE ENTRENAMIENTO
- 3. CLASIFICACION SUPERVISADA
- 4.- SALIDA

AL SER SELECCIONADA LA OPCION DE CAMPOS DE ENTRENAMIENTO SE NOS PRESENTA EL SIGUIENTE MENU:

MODULO DE CAMPOS DE ENTRENAMIENTO ELIJA UNA DE LAS OPCIONES SIGUIENTES:

1.- CREAR UN NUEVO POLIGONO USANDO EL RATON

2. – DIBUJAR UN POLIGONO EN UNA IMAGEN DESPLEGADA

3. - IMPRIMIR EL REPORTE DE UN POLIGONO

4.- SALIDA

EN ESTA PANTALLA SELECCIONAREMOS LA OPCION #1, "CREAR UN NUEVO POLIGONO USANDO EL RATON", EL CUAL-NOS PREGUNTARA EL NOMBRE, NUMERO DE BANDA Y TABLA DE ASIGNACION CORRESPONDIENTE A DICHA IMAGEN. --UNA VEZ DADOS ESTOS DATOS LA IMAGEN SERA DESPLEGADA EN PANTALLA EN 40 TONOS DE GRIS. LA LISTA DE COLORES QUE SE ANEXA, ES EL ORDEN EN QUE EL CLASIFICADOR ASIGNA A CADA CLASE SELECCIO-NADA EL COLOR CORRESPONDIENTE AL REALIZARSE DICHA CLASIFICACION.

NOMBRE DE LA IMAGEN___3____

NUMERO DE BANDA___4___ TABLA DE ASIGNACION__I____

AZUL>_Q	5 MAGNETA>
VERDE>	6 CAFE>
MORADO>	7 BLANCO>
ROJO>	8 GRIS>

NOTA: LAS ABREVIATURAS IDENTIFICAN LAS UNIDADES GEOLOGICAS SEGUN LOS PLANOS Y CARTAS UTILIZADAS.

UNA VEZ DESPLEGADA LA IMAGEN LOS PASOS A SEGUIR SON:

- 1.- SELECCIONAR EL AREA DE ESTUDIO CON LAS FLECHAS DIRECCIONALES.
 2.- OPRIMIR LA LETRA "D" Y ESPERAR A QUE APAREZCA EL CURSOR DEL RATON.
 3.- MARCAR LOS PUNTOS DESEADOS CON EL BOTON IZQUIERDO DEL RATON (#1).
 4.- EN CASO DE EQUIVOCACION EN EL ULTIMO PUNTO MARCADO, SE OPRIME EL BOTON DERECHO DEL RATON (#3).
 5.- PARA CERRAR EL POLIGONO, LA ULTIMA LINEA SE GENERA CON EL BOTON DE ENMEDIO (#2) Y ENSEGUIDA SE -----OPRIMEN EL BOTON (#1) Y EL BOTON (#3) DEL RATON AL MISMO TIEMPO HASTA QUE APAREZCA UN PUNTO ROJO, -EL CUAL NOS MARCARA EL CIERRE DEL POLIGONO.
 6.- UNA YEZ QUE SE CERRO EL POLIGONO SE OPRIMEN LOS BOTONES 1 Y 3 DEL RATON PARA ENTRAR AL MENU PRINCI-PAL DE ESTA SECCION.

ESTANDO YA DENTRO DE ESTE MENU. LOS PASOS A SEGUIR SON:

GUARDAR EL POLIGONO ACTUAL E: INICIAR UN NUEVO POLIGONO

ESTOS PASOS SE REPITEN SEGUN EL NUMERO DE CLASES SELECCIONADAS.

- 1. RETORNAR A CAPTURAR/EDITAR
- 2. GUARDAR EL POLIGONO ACTUAL
- 3. RECUPERAR UN POLIGONO ANTERIOR
- INICIAR UN NUEVO POLIGONO 4.-
- IMPRIMIR EL REPORTE DEL POLIGONO ACTUAL 5.~
- 6. SALIDA DEL MODULO

GUARDAR POLIGONO ACTUAL

NOMBRE DEL CAMPO:_ROC3Q__

NOMBRE DE LA CLASE:_Q3A__

TIPO DE CAMPO:_!____

INICIAR UN NUEVO POLIGONO

UNA VEZ DESPLEGADA LA IMAGEN LOS PASOS A SEGUIR SON:

GUARDAR POLIGONO ACTUAL

NOMBRE DEL CAMPO:_____

NOMBRE DE LA CLASE:___

TIPO DE CAMPO:____

> MODULO DE CLASIFICACION ELIJA UNA DE LAS OPCIONES SIGUIENTES:

> > 1. - CLASIFICACION NO SUPERVISADA

- 2. CAMPOS DE ENTRENAMIENTO
- 3. CLASIFICACION SUPERVISADA
- 4. SALIDA

AL SER SELECCIONADA DICHA OPCION SE NOS PRESENTARA EL SIGUIENTE MENU:

MODULO DE CLASIFICACION DE IMAGENES CLASIFICADOR BAYESIANO DE MAXIMA VEROSIMILITUD

1.- CALCULAR ESTADISTICAS PARA LA CLASIFICACION

2.- ESTABLECER CORRIDA DE CLASIFICACION

3. - PRESENTAR REPORTES DE LA CLASIFICACION

4. - SALIDA

EN ESTA PANTALLA, EN PRIMER LUGAR SELECCIONAREMOS LA OPCION #1, "CALCULAR ESTADISTICAS PARA LA ----CLASIFICACION.

1.- NOMBRE DE LA IMAGEN_3____

SELECCIONE CON UNA "S" LAS BANDAS QUE DESEE CLASIFICAR:

 NOMBRE DE LA BANDA
 SELECCION

 3. B-1_____S____S____
 _____S_____

- _3_. B-2_____S____
- _3_. B-3_____S___
- _3_. B-4_____S____

DENTRO DE ESTA MISMA OPCION, "CALCULAR ESTADISTICAS PARA LA CLASIFICACION" SE NOS PRESENTA OTRO --MENU, EN EL CUAL TENDREMOS OTRAS DOS OPCIONES LAS QUE SELECCIONAREMOS INDIVIDUALMENTE: CALCULAR ESTADISTICAS PARA LOS CAMPOS DE ENTRENAMIENTO Y; CALCULAR ESTADISTICAS PARA CLASES SELECCIONADAS.

CALCULO DE ESTADISTICAS

- 1.- CALCULAR ESTADISTICAS PARA CAMPOS DE ENTRENA--MIENTO
- 2.- CALCULAR ESTADISTICAS PARA CLASES SELECCIONA--DAS
- 3.- REGRESAR

CALCULAR ESTADISTICAS PARA LOS CAMPOS DE ENTRENAMIENTO

SELECCIONE CON UNA "S" LOS CAMPOS:

CAMPO	CAMPO		
_ROC 3Q	S	_	
-			

CALCULAR ESTADISTICAS PARA LAS CLASES SELECCIONADAS SELECCIONE CON UNA "S" LAS CLASES:

CLASE		CLASE	
_Q3A	_S		
		<u> </u>	

UNA VEZ TERMINADO EL CALCULO DE LAS ESTADISTICAS TANTO DE LOS CAMPOS DE ENTRENAMIENTO COMO LA DE --LAS CLASES SELECCIONADAS SALDREMOS DE ESTE MODULO Y EN SEGUIDA OPRIMIREMOS LA TECLA ESC PARA SALIR DEL MODULO DE BANDAS. UNA VEZ ESTANDO EN LA PANTALLA DEL CLASIFICADOR BAYESIANO DE MAXIMA VEROSI---MILITUD ESCOGEREMOS LA OPCION, ESTABLECER CORRIDA DE CLASIFICACION.

MODULO DE CLASIFICACION DE IMAGENES CLASIFICADOR BAYESIANO DE MAXIMA VEROSIMILITUD

1. - CALCULAR ESTADISTICAS PARA LA CLASIFICACION

- 2. ESTABLECER CORRIDA DE CLASIFICACION
- 3. PRESENTAR REPORTES DE LA CLASIFICACION

UNA VEZ REALIZADO ESTO SE NOS PRESENTARA LA SIGUIENTE PANTALLA:

ESTABLECER CORRIDA DE CLASIFICACION

IDENTIFICADOR DE LA CORRIDA: _CLAS3C____ NOMBRE DE LA IMAGEN A CLASIFICAR:_3_ NOMBRE DE LA IMAGEN DESDE LA CUAL LAS ESTADISTICAS DEBERAN SER USADAS:_3_ DEFAULT: IMAGEN A SER CLASIFICADA.

SELECCIONE CON UNA "S" LAS BANDAS A CLASIFICAR:

NOMBRE DE LA SELECCION BANDA

- _3_. B-1____ ____S___
- _3_. B-2___ S.
- _3_. B-3____ ___S___

3, 8-4___

122

SELECCIONE CON UNA "S" LAS CLASES:

CLASE	CLASE		
_Q3A	_S		

REPORTE DE CLASES SELECCIONADAS

OPCIONALMENTE TU PUEDES ASIGNAR UN PESO A LAS CLASES SELECCIONADAS INTRODUCIENDO VALORES A PRIORI-ENTRE 0-100 (EL DEFAULT ES EL MISMO PORCENTAJE), PARA EL CASO DEL UMBRAL SE RECOMIENDA 2 O 8.

CLASE	VAP	U	CLASE	VAP	U
_Q3A	100.00	2			

DENTRO DE LA OPCION, "ESTABLECER CORRIDA DE CLASIFICACION", SE NOS PRESENTA OTRA PANTALLA CON DOS-OPCIONES LAS CUALES SON: CLASIFICACION DE CAMPOS DE ENTRENAMIENTO; Y CLASIFICACION DE LA IMAGEN EN ESTA PANTALLA PRIMERO SELECCIONAREMOS LA OPCION DE CLASIFICACION DE CAMPOS DE ENTRENAMIENTO, Y-UNA VEZ REALIZADA ESTA OPCION FINALMENTE SELECCIONAREMOS LA OPCION DE LA CLASIFICACION DE LA IMA--GEN.

1. - CLASIFICACION DE CAMPOS DE ENTRENAMIENTO

2. - CLASIFICACION DE LA IMAGEN

3. - REGRESAR

CLASIFICACION DE CAMPOS DE ENTRENAMIENTO

SELECCIONE CON UNA "S" LOS CAMPOS:

CAMPO	CAMPO		
_ROC.3Q	_S		
-			

IDENTIFICADOR DE LA CORRIDA: ______

IMAGEN CLASIFICADA:	_3	REPORTE DEL CAMPO:_ROC3Q
CLASE:	_Q3A	NUMERO DE PIXELES:_2420
PIXELES NO CLASIFICADOS	:_52	% NO CLASIFICADO: _2.15

CLASE	# DE PIXELES	%
_Q3A	_2368	_97.85

- - - - - -

IDENTIFICADOR DE LA CORRIDA:

IMAGEN CLASIFICADA:	REPORTE DEL CAMPO:
CLASE:	NUMERO DE PIXELES:
PIXELES NO CLASIFICADOS:	% NO CLASIFICADO:

CLASE	# DE PIXELES	%
		<u> </u>

UNA VEZ REALIZADA LA OPCION DE "CLASIFICACION DE CAMPOS DE ENTRENAMIENTO", FINALMENTE SELECCIONARE--MOS LA OPCION DE "CLASIFICACION DE LA IMAGEN". AL TERMINAR DICHA CLASIFICACION SE NOS PRESENTARA EL SIGUIENTE REPORTE:

CLASIFICACION DE LA IMAGEN

NUMERO DE LINEAS.-__512__

REPORTE DE AREAS DE LA IMAGEN CLASIFICADA

IDENTIFICADOR DE LA CORRIDA:_CLAS3C___ IMAGEN CLASIFICADA:_3____

PIXELES EN LA IMAGEN:_262144___

CODIGO PARA PIXELES NO CLASIFICADOS:_0____ PIXELES NO CLASIFICADOS:_51876___

PARA OBTENER AREAS INTRODUZCA EL AREA SIMPLE DE UN PIXEL: 6400 m .__

CLASE	CODIGO	# PIXELES	AREA
_Q3A	_1	210268	_1.345715E+009

UNA VEZ CLASIFICADA TODA LA IMAGEN SE DEBERAN CREAR TANTO EL ENCABEZADO COMO LA TABLA DE ASIGNA---CION CORRESPONDIENTE A LA IMAGEN. UNA VEZ REALIZADO ESTO, LA IMAGEN CLASIFICADA PODRA SER DESPLEGADA EN "MONOBANDA".

 CREAR ENCABEZADO DE LA IMAGEN CLASIFICADA
 CREAR TABLA DE ASIGNACION A LA IMAGEN CLASIFICADA

 NOMBRE DE LA IMAGEN.-_CLAS3C____
 NOMBRE DE LA IMAGEN.-_CLAS3C____

 TIPOS DE IMAGEN.-_C____
 NUMERO DE BANDA.-_B_____

 NUMERO DE BANDA.-_B_____
 TABLA DE ASIGNACION.-_1____

 NUMERO DE PIXEL.-_512_____
 NUMERO DE PIXEL.-_512_____

VI.1.B.- DESPLIEGUE DE LA IMAGEN CLASIFICADA

NOMBRE DE LA IMAGEN A CLASIFICAR: IMAGEN 3 (Ver pagina 119) NOMBRE DE LA IMAGEN CLASIFICADA: CLASIC

UNA VEZ TERMINADA LA CLASIFICACION DE LA IMAGEN, EL SIGUIENTE PASO ES EL "DESPLIEGUE EN MONOBANDA". LOS PASOS A SEGUIR SON:

ENTRAR EN EL MENU PRINCIPAL DEL PROGRAMA Y SELECCIONAR LA OPCION DE "DESPLIEGUE":

AYUDA GENERAL
 PRE-PROCESO
 DESPLIEGUE
 REALCE
 CLASIFICACION
 GEO-REFERIR
 SALIDA

UNA VEZ SELECCIONADA LA OPCION DE DESPLIEGUE, MOSTRARA EL SIGUIENTE MENU EN EL QUE SELECCIONAREMOS "DESPLIEGUE EN MONOBANDA".

> MODULO DE CLASIFICACION ELIJA UNA DE LAS OPCIONES SIGUIENTES:

> > 1.- DESPLIEGUE EN RGB
> > 2.- DESPLIEGUE EN GRIS-16
> > 3.- DESPLIEGUE EN GRIS-40
> > 4.- DESPLIEGUE EN MONOBANDA
> > 5.- SALIDA

UNA VEZ SELECCIONADA LA OPCION DESPLIEGUE EN MONOBANDA SE PRESENTARA EL SIGUIENTE MENU:

MODULO DE DESPLIEGUE DE IMAGENES DESPLIEGUE DE IMAGENES MONDRANDA

NOMBRE DE LA IMAGEN: ____AS3C____ TIPO DE IMAGEN C)LASIFICADA B)ANDA:____C____ TABLA DE COLOR:____i

(TECLEE UNA "I" EN CASO DE QUE SEA, COLOR POR VALOR DE PIXEL. DE OTRO MODO DE EL MOMBRE DE LA TA-8LA).

VI.6.C.- COMENTARIOS DE LA IMAGEN CLASIFICADA

EL AREA DE ESTUDIO COMPRENDIDA EN LOS MOSAICOS DE LAS IMAGENES DE SATELITE YA CLASIFICADAS QUE CU-BREN EL AREA DE ESTUDIO, FUERON DIVIDIDAS EN 6 BLOQUES:

CLAS3C	CLAS2B	(LAS1A
CLAS10	CLAS11D	(LAS1

MOSAICO COMPLETO

LA IMAGEN QUE A CONTINUACION SE PRESENTA CORRESPONDE AL BLOQUE ACHURADO, EN LA CUAL SE ESCOGIO ----UNA ZONA A CLASIFICAR, LA CUAL ES:

1.- ALUVION (Q)

A CONTINUACION SE DARA LA DESCRIPCION DE LA ZONA CLASIFICADA Y EL COLOR ASIGNADO A DICHA ZONA POR-EL CLASIFICADOR.

1.- ALUVION (Q)

ESTE TIPO DE MATERIAL FUE CLASIFICADO EN UN COLOR AZUL EL CUAL PREDOMINA EN TODA LA IMAGEN. LAS---PARTES OBSCURAS SON MATERIALES NO CLASIFICADOS.

VI.6.C.1.- COMPARACION DE LA IMAGEN CLASIFICADA EN RELACION AL PLANO UTILIZADO PARA LA IDENTIFICA-CION DE LOS DIFERENTES TIPOS DE ROCA.

A CONTINUACION SE PRESENTAN LOS PUNTOS DE REFERENCIA DE LA CLASIFICACION CON RESPECTO AL PLANO U-+TILIZADO.

A) IMAGEN CLASIFICADA

1.- EL ALUYION QUE SE PRESENTA EN UN COLOR AZUL EN TODA LA IMAGEN.

NOMBRE DE LA IMAGEN CLASIFICADA: CLASIC

B) PLANO

1.- EL ALUVION QUE SE PRESENTA EN UN COLOR AMARILLO

PLANO UTILIZADO PARA REFERENCIAR LA IMAGEN CLASIFICADA: CLASIC

VI.7.- IMAGEN PLANO

VI.7.A.- SISTEMA DE PROCESAMIENTO DE IMAGENES DE SATELITE UNA VEZ DESPLEGADO EL MENU PRINCIPAL DEL PROGRAMA S.P.I.P.R. CON LAS FLECHAS DIRECCIONALES U OPRI-MIEDO EL NUMERO ASIGNADO A CADA MODULO, SELECCIONAR EL DE CLASIFICACION.

AYUDA GENERAL
 PRE-PROCESO
 DESPLIEGUE
 REALCE
 CLASIFICACION
 GEO-REFERIR
 SALIDA

UNA VEZ SELECCIONADO ESTE MODULO NOS MOSTRARA EL SIGUIENTE MENU, EN EL CUAL SELECCIONAREMOS EN --- PRIMER LUGAR CAMPOS DE ENTRENAMIENTO.

MODULO DE CLASIFICACION ELIJA UNA DE LAS OPCIONES SIGUIENTES:

1. - CLASIFICACION NO SUPERVISADA

- 2. CAMPOS DE ENTRENAMIENTO
- 3. CLASIFICACION SUPERVISADA
- 4.– SALIDA

AL SER SELECCIONADA LA OPCION DE CAMPOS DE ENTRENAMIENTO SE NOS PRESENTA EL SIGUIENTE MENU:

MODULO DE CAMPOS DE ENTRENAMIENTO ELIJA UNA DE LAS OPCIONES SIGUIENTES:

1. - CREAR UN NUEVO POLIGONO USANDO EL RATON
2. - DIBUJAR UN POLIGONO EN UNA IMAGEN DESPLEGADA
3. - IMPRIMIR EL REPORTE DE UN POLIGONO
4. - SALIDA

EN ESTA PANTALLA SELECCIONAREMOS LA OPCION #1, "CREAR UN NUEVO POLIGONO USANDO EL RATON", EL CUAL-NOS PREGUNTARA EL NOMBRE, NUMERO DE BANDA Y TABLA DE ASIGNACION CORRESPONDIENTE A DICHA IMAGEN. --UNA VEZ DADOS ESTOS DATOS LA IMAGEN SERA DESPLEGADA EN PANTALLA EN 40 TONOS DE GRIS. LA LISTA DE COLORES QUE SE ANEXA, ES EL ORDEN EN QUE EL CLASIFICADOR ASIGNA A CADA CLASE SELECCIO-NADA EL COLOR CORRESPONDIENTE AL REALIZARSE DICHA CLASIFICACION.

NOMBRE DE LA IMAGEN_PLANO_

NUMERO DE BANDA___4____ TABLA DE ASIGNACION___1____

1 AZUL>_TsmP_	5 MAGNETA>
2 VERDE>_TibP_	6 CAFE>
3 MORADO>_QD	7 BLANCO>
4 ROJO>_TicD_	8 GRIS>

NOTA: LAS ABREVIATURAS IDENTIFICAN LAS UNIDADES GEOLOGICAS SEGUN LOS PLANOS Y CARTAS UTILIZADAS.

UNA VEZ DESPLEGADA LA IMAGEN LOS PASOS A SEGUIR SON:

- 1.- SELECCIONAR EL AREA DE ESTUDIO CON LAS FLECHAS DIRECCIONALES.
 2.- OPRIMIR LA LETRA "D" Y ESPERAR A QUE APAREZCA EL CURSOR DEL RATON.
 3.- MARCAR LOS PUNTOS DESEADOS CON EL BOTON IZQUIERDO DEL RATON (#1).
 4.- EN CASO DE EQUIVOCACION EN EL ULTIMO PUNTO MARCADO, SE OPRIME EL BOTON DERECHO DEL RATON (#3).
 5.- PARA CERRAR EL POLIGONO, LA ULTIMA LINEA SE GENERA CON EL BOTON DE ENMEDIO (#2) Y ENSEGUIDA SE ----OPRIMEN EL BOTON (#1) Y EL BOTON (#3) DEL RATON AL MISMO TIEMPO HASTA QUE APAREZCA UN PUNTO ROJO, EL CUAL NOS MARCARA EL CIERRE DEL POLIGONO.
 6.- UNA VEZ QUE SE CERRO EL POLIGONO SE OPRIMEN LOS BOTONES 1 Y 3 DEL RATON PARA ENTRAR AL MENU PRINCIPAL DE ESTA SECCION.

ESTANDO YA DENTRO DE ESTE MENU, LOS PASOS A SEGUIR SON:

GUARDAR EL POLIGONO ACTUAL E: INICIAR UN NUEVO POLIGONO

ESTOS PASOS SE REPITEN SEGUN EL NUMERO DE CLASES SELECCIONADAS.

1. - RETORNAR A CAPTURAR/EDITAR

- GUARDAR EL POLIGONO ACTUAL 2.-
- RECUPERAR UN POLIGONO ANTERIOR 3. --
- 4 -INICIAR UN NUEVO POLIGONO
- 5.-IMPRIMIR EL REPORTE DEL POLIGONO ACTUAL
- 6. SALIDA DEL MODULO

GUARDAR POLIGONO ACTUAL

NOMBRE DEL CAMPO:_RIOLA__

NOMBRE DE LA CLASE:_Tsmp____

TIPO DE CAMPO:_1____

INICIAR UN NUEVO POLIGONO

UNA VEZ DESPLEGADA LA IMAGEN LOS PASOS A SEGUIR SON:

GUARDAR POLIGONO ACTUAL

NOMBRE DEL CAMPO:_IGNIMB_ NOMBRE DE LA CLASE:_TibP___

TIPO DE CAMPO:_2____

INICIAR UN NUEVO POLIGONO

UNA VEZ DESPLEGADA LA IMAGEN LOS PASOS A SEGUIR SON:

- PRINCIPAL DE ESTA SECCION.

GUARDAR POLIGONO ACTUAL

NOMBRE DEL CAMPO:_SUEL

NOMBRE DE LA CLASE:_QD_

TIPO DE CAMPO:_3____

INICIAR UN NUEVO POLIGONO

UNA VEZ DESPLEGADA LA IMAGEN LOS PASOS A SEGUIR SON:

- PRINCIPAL DE ESTA SECCION.

GUARDAR POLIGONO ACTUAL

NOMBRE DEL CAMPO:_IGNIMBR

NOMBRE DE LA CLASE:_TicD____

TIPO DE CAMPO:_4___

INICIAR UN NUEVO POLIGONO

UNA YEZ DESPLEGADA LA IMAGEN LOS PASOS A SEGUIR SON:

GUARDAR POLIGONO ACTUAL

NOMBRE DEL CAMPO:____

NOMBRE DE LA CLASE:

TIPO DE CAMPO:____
UNA YEZ DETERMINADOS LOS CAMPOS DE ENTRENAMIENTO, SELECCIONAREMOS EL MODULO DE CLASIFICACION SU----SUPERVISADA.

> MODULO DE CLASIFICACION ELIJA UNA DE LAS OPCIONES SIGUIENTES:

- 1. CLASIFICACION NO SUPERVISADA
- 2. CAMPOS DE ENTRENAMIENTO
- 3. CLASIFICACION SUPERVISADA
- 4.- SALIDA

AL SER SELECCIONADA DICHA OPCION SE NOS PRESENTARA EL SIGUIENTE MENU:

MODULO DE CLASIFICACION DE IMAGENES CLASIFICADOR BAYESIANO DE MAXIMA VEROSIMILITUD

1. - CALCULAR ESTADISTICAS PARA LA CLASIFICACION

2. - ESTABLECER CORRIDA DE CLASIFICACION

3. - PRESENTAR REPORTES DE LA CLASIFICACION

4. - SALIDA

EN ESTA PANTALLA, EN PRIMER LUGAR SELECCIONAREMOS LA OPCION #1, "CALCULAR ESTADISTICAS PARA LA ----CLASIFICACION.

1.- NOMBRE DE LA IMAGEN_PLANO___

SELECCIONE CON UNA "S" LAS BANDAS QUE DESEE CLASIFICAR:

NOMBRE [DE LA BANDA	SELECCION
_PLANO.	B-1	<u> </u>
_PLANO.	B- 2	
_PLANO.	B-3	S
_PLANO.	B-4	S

DENTRO DE ESTA MISMA OPCION, "CALCULAR ESTADISTICAS PARA LA CLASIFICACION" SE NOS PRESENTA OTRO --MENU, EN EL CUAL TENDREMOS OTRAS DOS OPCIONES LAS QUE SELECCIONAREMOS INDIVIDUALMENTE: CALCULAR ESTADISTICAS PARA LOS CAMPOS DE ENTRENAMIENTO Y; CALCULAR ESTADISTICAS PARA CLASES SELECCIONADAS.

CALCULO DE ESTADISTICAS

- 1.- CALCULAR ESTADISTICAS PARA CAMPOS DE ENTRENA--MIENTO
- 2.- CALCULAR ESTADISTICAS PARA CLASES SELECCIONA--DAS
- 3.- REGRESAR

CALCULAR ESTADISTICAS PARA LOS CAMPOS DE ENTRENAMIENTO

SELECCIONE CON UNA "S" LOS CAMPOS:

CAMPO	CAMPO		
_RIOLA	S	-	
_IGNIMB	_S		
_SUEL	_S		
_IGNIMBR	_S		

CALCULAR ESTADISTICAS PARA LAS CLASES SELECCIONADAS

SELECCIONE CON UNA "S" LAS CLASES:

CLASE		CLASE	
_lsmP	_S		
_ТібР	_S		
_QD	_S		
_TicD	_S		

UNA VEZ TERMINADO EL CALCULO DE LAS ESTADISTICAS TANTO DE LOS CAMPOS DE ENTRENAMIENTO COMO LA DE -LAS CLASES SELECCIONADAS SALDREMOS DE ESTE MODULO Y EN SEGUIDA OPRIMIREMOS LA TECLA ESC PARA SALIR DEL MODULO DE BANDAS. UNA VEZ ESTANDO EN LA PANTALLA DEL CLASIFICADOR BAYESIANO DE MAXIMA VEROSI---MILITUD ESCOGEREMOS LA OPCION, ESTABLECER CORRIDA DE CLASIFICACION.

MODULO DE CLASIFICACION DE IMAGENES

CLASIFICADOR BAYESIANO DE MAXIMA VEROSIMILITUD

- 1. CALCULAR ESTADISTICAS PARA LA CLASIFICACION
- 2. ESTABLECER CORRIDA DE CLASIFICACION
- 3. PRESENTAR REPORTES DE LA CLASIFICACION

UNA VEZ REALIZADO ESTO SE NOS PRESENTARA LA SIGUIENTE PANTALLA:

ESTABLECER CORRIDA DE CLASIFICACION

IDENTIFICADOR DE LA CORRIDA:_CLASPLA___ NOMBRE DE LA IMAGEN A CLASIFICAR:_PLANO___ NOMBRE DE LA IMAGEN DESDE LA CUAL LAS ESTADISTICAS DEBERAN SER USADAS:_PLANO____ DEFAULT: IMAGEN A SER CLASIFICADA.

SELECCIONE CON UNA "S" LAS BANDAS A CLASIFICAR:

 NOMBRE DE LA BANDA
 SELECCION

 PLANO. B-1
 _S__

 PLANO. B-2
 _S__

 PLANO. B-3
 _S__

 PLANO. B-4
 _S__

SELECCIONE CON UNA "S" LAS CLASES:

CLASE		CLASE	
_QD			
_TsmP	S		
_ТібР	5		
_TicD	S		

REPORTE DE CLASES SELECCIONADAS

OPCIONALMENTE TU PUEDES ASIGNAR UN PESO A LAS CLASES SELECCIONADAS INTRODUCIENDO VALORES A PRIORI-ENTRE 0-100 (EL DEFAULT ES EL MISMO PORCENTAJE), PARA EL CASO DEL UMBRAL SE RECOMIENDA 2 0 8.

CLASE	VAP	U	CLASE	VAP	U
_QD	25.00	2			
_TsmP	25.00	2			_
_ТіЬР	25.00	2			
_TicD	25.00	2			
	-				

VAP.- VALOR A PRIORI U.- UMBRAL

DENTRO DE LA OPCION, "ESTABLECER CORRIDA DE CLASIFICACION", SE NOS PRESENTA OTRA PANTALLA CON DOS-OPCIONES LAS CUALES SON: CLASIFICACION DE CAMPOS DE ENTRENAMIENTO; Y CLASIFICACION DE LA IMAGEN EN ESTA PANTALLA PRIMERO SELECCIONAREMOS LA OPCION DE CLASIFICACION DE CAMPOS DE ENTRENAMIENTO, Y-UNA VEZ REALIZADA ESTA OPCION FINALMENTE SELECCIONAREMOS LA OPCION DE LA CLASIFICACION DE LA IMA--GEN.

1.- CLASIFICACION DE CAMPOS DE ENTRENAMIENTO
2.- CLASIFICACION DE LA IMAGEN
3.- REGRESAR

CLASIFICACION DE CAMPOS DE ENTRENAMIENTO

CAMPO

SELECCIONE CON UNA "S" LOS CAMPOS:

CAMPO

_RIOLA	_S		
_IGNIM8	_S	_	
_SUEL	_S		
IGNIMBR	<u></u> S		

REPORTE SUMARIO DE CAMPO

IDENTIFICADOR DE LA CORRIDA: __CLASPLA___

IMAGEN CLASIFICADA:	_PLANO	REPORTE DEL CAMPO:_RIOLA
CLASE:	_TsmP	NUMERO DE PIXELES:_1095
PIXELES NO CLASIFICADOS	:_12	% NO CLASIFICADO: _1.10

CLASE	# DE PIXELES	%
_QD	\	1.00
_TsmP	_1048	_95.71
_TibP	14	1.28
_TicD	1Ø	0.91

1____

IDENTIFICADOR DE LA CORRIDA: ____CLASPLA___

IMAGEN CLASIFICADA:	_PLANO	REPORTE DEL CAMPO:_IGNIMB
CLASE:	_TibP	NUMERO DE PIXELES:_765
PIXELES NO CLASIFICADOS	:_7	% NO CLASIFICADO: _0.92

* CLASE # DE PIXELES ___58_____ _QD____ __7.58____ _TsmP____ ____0____ __0.00____ _TibP____ _625____ _81.70____ ___/5_____ __9.80____ _fic0____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ ____ _____

REPORTE SUMARIO DE CAMPO

IDENTIFICADOR DE LA CORRIDA: ______

IMAGEN CLASIFICADA:	_PLANO	REPORTE DEL CAMPO:_SUEL
CLASE:	_QD	NUMERO DE PIXELES:_775
PIXELES NO CLASIFICADOS	:_11	% NO CLASIFICADO: _1.42

CLASE	# DE PIXELES	x
_QD	_696	_89.81
_TsmP	0	0.00
_ТіъР	32	4.13
_TicD	36	4.65

IDENTIFICADOR DE LA CORRIDA: _CLASPLA_

IMAGEN CLASIFICADA:	_PLANO	REPORTE DEL CAMPO:_IGNIMBR
CLASE:	_TicD	NUMERO DE PIXELES:_291
PIXELES NO CLASIFICADO	S:_4	% NO CLASIFICADO: _1,37

CLASE # DE PIXELES % _QD_____17____5.84____ _TsmP____ ____7_____ ___2.41____ _TibP____ ___14_____ _4.81_ _249____ _TicD____ _85.57____ ____ ____ _____ ____ _____ ____ _____ _____ ____ ____

UNA VEZ REALIZADA LA OPCION DE "CLASIFICACION DE CAMPOS DE ENTRENAMIENTO", FINALMENTE SELECCIONARE-MOS LA OPCION DE "CLASIFICACION DE LA IMAGEN". AL TERMINAR DICHA CLASIFICACION SE NOS PRESENTARA EL SIGUIENTE REPORTE:

CLASIFICACION DE LA IMAGEN

REPORTE DE AREAS DE LA IMAGEN CLASIFICADA

IDENTIFICADOR DE LA CORRIDA:_CLASPLA_ IMAGEN CLASIFICADA:_PLANO____

PIXELES EN LA IMAGEN:_262144___

CODIGO PARA PIXELES NO CLASIFICADOS:_0____ PIXELES NO CLASIFICADOS:_53603___

PARA OBTENER AREAS INTRODUZCA EL AREA SIMPLE DE UN PIXEL:_6400 m ._

CLASE	CODIGO	# PIXELES	AREA
_QD	_1	_72324	4.628736E+008
_TsmP	_2	_50085	3.205440E+008
_ТіБР	_3	54374	3.479936E+008
_TicĐ	_4	_31758	2.032512E+008

UNA VEZ CLASIFICADA TODA LA IMAGEN SE DEBERAN CREAR TANTO EL ENCABEZADO COMO LA TABLA DE ASIGNA---CION CORRESPONDIENTE A LA IMAGEN. UNA VEZ REALIZADO ESTO, LA IMAGEN CLASIFICADA PODRA SER DESPLEGADA EN "MONOBANDA".

 CREAR ENCABEZADO DE LA IMAGEN CLASIFICADA
 CREAR TABLA DE ASIGNACION A LA IMAGEN CLASIFICADA

 NOMBRE DE LA IMAGEN.-_CLASPLA__
 NOMBRE DE LA IMAGEN.-_CLASPLA__

 TIPOS DE IMAGEN.-_C_____
 NUMERO DE BANDA.-_B_____

 NUMERO DE BANDA.-_B_____
 TABLA DE ASIGNACION.-_I____

 NUMERO DE PIXEL.-_512_____
 NUMERO DE PIXEL.-_512_____

NUMERO DE LINEAS.-512___

VI.1.B.- DESPLIEGUE DE LA IMAGEN CLASIFICADA

NOMBRE DE LA IMAGEN A CLASIFICAR: PLAND (Ver pagina 130) NOMBRE DE LA IMAGEN CLASIFICADA: CLASPLA

UNA VEZ TERMINADA LA CLASIFICACION DE LA IMAGEN, EL SIGUIENTE PASO ES EL "DESPLIEGUE EN MONOBANDA". LOS PASOS A SEGUIR SON:

ENTRAR EN EL MENU PRINCIPAL DEL PROGRAMA Y SELECCIONAR LA OPCION DE "DESPLIEGUE":

AYUDA GENERAL
 PRE-PROCESO
 DESPLIEGUE
 REALCE
 CLASIFICACION
 GEO-REFERIR
 SALIDA

UNA VEZ SELECCIONADA LA OPCION DE DESPLIEGUE, MOSTRARA EL SIGUIENTE MENU EN EL QUE SELECCIONAREMOS "DESPLIEGUE EN MONOBANDA".

> MODULO DE CLASIFICACION ELIJA UNA DE LAS OPCIONES SIGUIENTES:

> > 1.- DESPLIEGUE EN RGB
> > 2.- DESPLIEGUE EN GRIS-16
> > 3.- DESPLIEGUE EN GRIS-40
> > 4.- DESPLIEGUE EN MONOBANDA
> > 5.- SALIDA

UNA VEZ SELECCIONADA LA OPCION DESPLIEGUE EN MONOBANDA SE PRESENTARA EL SIGUIENTE MENU:

MODULO DE DESPLIEGUE DE IMAGENES DESPLIEGUE DE IMAGENES MONOBANDA

> NOMBRE DE LA IMAGEN: _CLASPLA__ TIPO DE IMAGEN C)LASIFICADA B)ANDA: ____C____ TABLA DE COLOR: _____i

(TECLEE UNA "'' EN CASO DE QUE SEA, COLOR POR VALOR DE PIXEL, DE OTRO MODO DE EL NOMBRE DE LA TA-BLA). A CONTINUACION SE PRESENTA LA CLASIFICACION EN LA CUAL SE ABARCO EL AREA CORRESPONDIENTE A 4 BLO-QUES DE LOS YA MENCIONADOS, ESTO CON EL FIN DE SELECCIONAR UNA MAYOR AREA Y PODER APRECIAR EN ----CONJUNTO LAS DIFERENTES UNIDADES DE ROCAS CLASIFICADAS ANTERIORMENTE.

MOSAICO COMPLETO

LA IMAGEN QUE A CONTINUACION SE PRESENTA CORRESPONDE AL BLOQUE ACHURADO, EN LA CUAL SE ESCOGIERON-4 ZONAS A CLASIFICAR, LAS CUALES SON:

1.- RIOLITA SAN MIGUELITO (Tsm) 2.- IGNIMBRITA BOLAS (Tib) 3.- ALUYION (Q)

4.~ IGNIMBRITA CANTERA (Tic)

UNA VEZ REALIZADA LA CLASIFICACION, LOS COLORES ASIGNADOS POR EL CLASIFICADOR BAYESIANO DE MAXIMA-VEROSIMILITUD NO FUERON RESPETADOS EN ESTA CLASIFICACION.

A CONTINUACION SE DARA LA DESCRIPCION DE LAS ZONAS CLASIFICADAS Y EL COLOR ASIGNADO A DICHAS ZONAS POR EL CLASIFICADOR.

1.- RIOLITA SAN MIGUELITO (Tsm)

ESTE TIPO DE ROCA FUE CLASIFICADA EN UN COLOR AMARILLO OCRE, LA CUAL SE DISTINGUE MUY BIEN DE LAS-OTRAS UNIDADES DE ROCAS, AFLORANDO PRINCIPALMENTE HACIA LA PARTE NOR-ESTE DE LA IMAGEN.

2.- IGNIMBRITA BOLAS (Tib)

ESTE TIPO DE ROCAS FUE CLASIFICADA EN UN COLOR AZUL CELESTE QUE SE ENCUENTRA AFLORANDO PRINCIPAL---MENTE HACIA LA PARTE ESTE DE LA IMAGEN,

3.- ALUVION (Q)

ESTE MATERIAL FUE CLASIFICADO EN UN COLOR AZUL AFLORANDO EN GRAN PARTE DE LA IMAGEN, SE LOGRA DIS-TINGUIR MUY BIEN DE LOS DIFERENTES TIPOS DE ROCA QUE SE ENCUENTRAN AFLORANDO EN EL AREA.

4.- IGNIMBRITA CANTERA (Tic)

A ESTE TIPO DE ROCA CORRESPONDIENTE A LA MESA DE LA MISERICORDIA SE CLASIFICO EN UN COLOR ROJO, ES TA UNIDAD SE ENCUENTRA AFLORANDO PRINCIPALMENTE HACIA LA PARTE SUR-OESTE DE LA IMAGEN. A CONTINUACION SE PRESENTA LA IMAGEN CLASIFICADA:

NOMBRE DE LA IMAGEN CLASIFICADA: CLASPLA

VI.8.- IMAGEN ZONA1

VI.8.A.- SISTEMA DE PROCESAMIENTO DE IMAGENES DE SATELITE UNA VEZ DESPLEGADO EL MENU PRINCIPAL DEL PROGRAMA S.P.I.P.R. CON LAS FLECHAS DIRECCIONALES U OPRI-MIEDO EL NUMERO ASIGNADO A CADA MODULO, SELECCIONAR EL DE CLASIFICACION.

AYUDA GENERAL
 PRE-PROCESO
 DESPLIEGUE
 REALCE
 CLASIFICACION
 GEO-REFERIR
 SALIDA

UNA VEZ SELECCIONADO ESTE MODULO NOS MOSTRARA EL SIGUIENTE MENU, EN EL CUAL SELECCIONAREMOS EN --- PRIMER LUGAR CAMPOS DE ENTRENAMIENTO.

MODULO DE CLASIFICACION ELIJA UNA DE LAS OPCIONES SIGUIENTES:

- 1. CLASIFICACION NO SUPERVISADA
- 2. CAMPOS DE ENTRENAMIENTO
- 3. CLASIFICACION SUPERVISADA
- 4. SALIDA

AL SER SELECCIONADA LA OPCION DE CAMPOS DE ENTRENAMIENTO SE NOS PRESENTA EL SIGUIENTE MENU:

MODULO DE CAMPOS DE ENTRENAMIENTO ELIJA UNA DE LAS OPCIONES SIGUIENTES:

- 1. CREAR UN NUEVO POLIGONO USANDO EL RATON
- 2.- DIBUJAR UN POLIGONO EN UNA IMAGEN DESPLEGADA
- 3. IMPRIMIR EL REPORTE DE UN POLIGONO
- 4.- SALIDA

EN ESTA PANTALLA SELECCIONAREMOS LA OPCION #1, "CREAR UN NUEVO POLIGONO USANDO EL RATON", EL CUAL-NOS PREGUNTARA EL NOMBRE, NUMERO DE BANDA Y TABLA DE ASIGNACION CORRESPONDIENTE A DICHA IMAGEN. --UNA VEZ DADOS ESTOS DATOS LA IMAGEN SERA DESPLEGADA EN PANTALLA EN 40 TONOS DE GRIS. LA LISTA DE COLORES QUE SE ANEXA, ES EL ORDEN EN QUE EL CLASIFICADOR ASIGNA A CADA CLASE SELECCIO-NADA EL COLOR CORRESPONDIENTE AL REALIZARSE DICHA CLASIFICACION.

NOMBRE DE LA IMAGEN_ZONAI

NUMERO DE BANDA___4____ TABLA DE ASIGNACION__|____

1 AZUL>_Q	5 MAGNETA>
2 VERDE>_Tic	6 CAFE>
3 MORADO>_1sm	7 BLANCO>
4 ROJO>	8 GRIS>

NOTA: LAS ABREVIATURAS IDENTIFICAN LAS UNIDADES GEOLOGICAS SEGUN LOS PLANOS Y CARTAS UTILIZADAS.

UNA VEZ DESPLEGADA LA IMAGEN LOS PASOS A SEGUIR SON:

- SELECCIONAR EL AREA DE ESTUDIO CON LAS FLECHAS DIRECCIONALES.
 OPRIMIR LA LETRA "D" Y ESPERAR A QUE APAREZCA EL CURSOR DEL RATON.
 MARCAR LOS PUNTOS DESEADOS CON EL BOTON IZQUIERDO DEL RATON (#1).
 EN CASO DE EQUIVOCACION EN EL ULTIMO PUNTO MARCADO, SE OPRIME EL BOTON DERECHO DEL RATON (#3).
 PARA CERRAR EL POLIGONO, LA ULTIMA LINEA SE GENERA CON EL BOTON DE ENMEDIO (#2) Y ENSEGUIDA SE ----OPRIMEN EL BOTON (#1) Y EL BOTON (#3) DEL RATON AL MISMO TIEMPO HASTA QUE APAREZCA UN PUNTO ROJO, -EL CUAL NOS MARCARA EL CIERRE DEL POLIGONO.
 UNA VEZ QUE SE CERRO EL POLIGONO SE OPRIMEN LOS BOTONES 1 Y 3 DEL RATON PARA ENTRAR AL MENU PRINCI-PAL DE ESTA SECCIÓN
- PAL DE ESTA SECCION.

ESTANDO YA DENTRO DE ESTE MENU, LOS PASOS A SEGUIR SON: GUARDAR EL POLIGONO ACTUAL E; INICIAR UN NUEVO POLIGONO

ESTOS PASOS SE REPITEN SEGUN EL NUMERO DE CLASES SELECCIONADAS.

1. - RETORNAR A CAPTURAR/EDITAR

- 2. GUARDAR EL POLIGONO ACTUAL
- 3. RECUPERAR UN POLIGONO ANTERIOR
- 4. INICIAR UN NUEVO POLIGONO
- 5. IMPRIMIR EL REPORTE DEL POLIGONO ACTUAL
- 6. SALIDA DEL MODULO

GUARDAR POLIGONO ACTUAL

NOMBRE DEL CAMPO:_SUEZOI_

NOMBRE DE LA CLASE: QZO1

TIPO DE CAMPO:_1____

INICIAR UN NUEVO POLIGONO

UNA VEZ DESPLEGADA LA IMAGEN LOS PASOS A SEGUIR SON:

GUARDAR POLIGONO ACTUAL

NOMBRE DEL CAMPO:_IGNIMZOI NOMBRE DE LA CLASE:_TicZO1_

TIPO DE CAMPO:_2____

INICIAR UN NUEVO POLIGONO

UNA VEZ DESPLEGADA LA IMAGEN LOS PASOS A SEGUIR SON:

GUARDAR POLIGONO ACTUAL

NOMBRE DEL CAMPO:_RIOLAZO1

NOMBRE DE LA CLASE:_TsmZO1_

TIPO DE CAMPO:_3___

INICIAR UN NUEVO POLIGONO

UNA VEZ DESPLEGADA LA IMAGEN LOS PASOS A SEGUIR SON:

GUARDAR POLIGONO ACTUAL

NOMBRE DEL CAMPO:___

NOMBRE DE LA CLASE:____

TIPO DE CAMPO:____

INICIAR UN NUEVO POLIGONO

UNA VEZ DESPLEGADA LA IMAGEN LOS PASOS A SEGUIR SON:

- PRINCIPAL DE ESTA SECCION.

GUARDAR POLIGONO ACTUAL

NOMBRE DEL CAMPO:____

NOMBRE DE LA CLASE:

TIPO DE CAMPO:____

> MODULO DE CLASIFICACION ELIJA UNA DE LAS OPCIONES SIGUIENTES:

> > 1. - CLASIFICACION NO SUPERVISADA
> > 2. - CAMPOS DE ENTRENAMIENTO
> > 3. - CLASIFICACION SUPERVISADA
> > 4. - SALIDA

AL SER SELECCIONADA DICHA OPCION SE NOS PRESENTARA EL SIGUIENTE MENU:

MODULO DE CLASIFICACION DE IMAGENES CLASIFICADOR BAYESIANO DE MAXIMA VEROSIMILITUD

1. - CALCULAR ESTADISTICAS PARA LA CLASIFICACION

2. - ESTABLECER CORRIDA DE CLASIFICACION

3. - PRESENTAR REPORTES DE LA CLASIFICACION

4.- SALIDA

EN ESTA PANTALLA, EN PRIMER LUGAR SELECCIONAREMOS LA OPCION #1, "CALCULAR ESTADISTICAS PARA LA --- CLASIFICACION.

1.- NOMBRE DE LA IMAGEN_ZONA1___

SELECCIONE CON UNA "S" LAS BANDAS QUE DESEE CLASIFICAR:

 NOMBRE DE LA BANDA
 SELECCION

 _ZONA1. B-1_______S____
 ______S____

 _ZONA1. B-2______S_____
 ______S_____

 _ZONA1. B-3______S_____
 ______S_____

 _ZONA1. B-4______S_____
 ______S_____

DENTRO DE ESTA MISMA OPCION, "CALCULAR ESTADISTICAS PARA LA CLASIFICACION" SE NOS PRESENTA OTRO --MENU, EN EL CUAL TENDREMOS OTRAS DOS OPCIONES LAS QUE SELECCIONAREMOS INDIVIDUALMENTE: CALCULAR ESTADISTICAS PARA LOS CAMPOS DE ENTRENAMIENTO Y; CALCULAR ESTADISTICAS PARA CLASES SELECCIONADAS.

CALCULO DE ESTADISTICAS

- 1.- CALCULAR ESTADISTICAS PARA CAMPOS DE ENTRENA--MIENTO
- 2.- CALCULAR ESTADISTICAS PARA CLASES SELECCIONA--DAS
- 3.- REGRESAR

CALCULAR ESTADISTICAS PARA LOS CAMPOS DE ENTRENAMIENTO

SELECCIONE CON UNA "S" LOS CAMPOS:

CAMPO		CAMPO	
_SUE ZO1	_S	_	
IGNIMZOI	_S		
RIOLAZO1	_S		

CALCULAR ESTADISTICAS PARA LAS CLASES SELECCIONADAS

SELECCIONE CON UNA "S" LAS CLASES:

CLASE	CLASE		
_QZO1	_S		
_TicZO1	_S		
_TsmZO1	_S		

UNA VEZ TERMINADO EL CALCULO DE LAS ESTADISTICAS TANTO DE LOS CAMPOS DE ENTRENAMIENTO COMO LA DE -LAS CLASES SELECCIONADAS SALDREMOS DE ESTE MODULO Y EN SEGUIDA OPRIMIREMOS LA TECLA ESC PARA SALIR DEL MODULO DE BANDAS. UNA VEZ ESTANDO EN LA PANTALLA DEL CLASIFICADOR BAYESIANO DE MAXIMA VEROSI--MILITUD ESCOGEREMOS LA OPCION, ESTABLECER CORRIDA DE CLASIFICACION.

MODULO DE CLASIFICACION DE IMAGENES CLASIFICADOR BAYESIANO DE MAXIMA VEROSIMILITUD

1. - CALCULAR ESTADISTICAS PARA LA CLASIFICACION

2. - ESTABLECER CORRIDA DE CLASIFICACION

3. - PRESENTAR REPORTES DE LA CLASIFICACION

UNA VEZ REALIZADO ESTO SE NOS PRESENTARA LA SIGUIENTE PANTALLA:

ESTABLECER CORRIDA DE CLASIFICACION

IDENTIFICADOR DE LA CORRIDA:_CLASZO1__ NOMBRE DE LA IMAGEN A CLASIFICAR:_ZONA1__ NOMBRE DE LA IMAGEN DESDE LA CUAL LAS ESTADISTICAS DEBERAN SER USADAS:_ZONA1___ DEFAULT: IMAGEN A SER CLASIFICADA.

SELECCIONE CON UNA "S" LAS BANDAS A CLASIFICAR:

 NOMBRE DE LA
 SELECCION

 ZONA1. B-1
 _S__

 ZONA1. B-2
 _S__

 ZONA1. B-3
 _S__

 ZONA1. B-3
 _S__

 ZONA1. B-4
 _S__

SELECCIONE CON UNA "S" LAS CLASES:

CLASE	CLASE		
_QZO1	_5		
_TicZO1	_S		
_TsmZO1	_S		

REPORTE DE CLASES SELECCIONADAS

OPCIONALMENTE TU PUEDES ASIGNAR UN PESO A LAS CLASES SELECCIONADAS INTRODUCIENDO VALORES A PRIORI ENTRE 0-100 (EL DEFAULT ES EL MISMO PORCENTAJE), PARA EL CASO DEL UMBRAL SE RECOMIENDA 2 0 8.

CLASE	VAP	υ	CLASE	VAP	U
_QZO1	33.33	2			
_TicZO1	33.33	2			
_TsmZO1	33.33	2			
	-				

DENTRO DE LA OPCION, "ESTABLECER CORRIDA DE CLASIFICACION", SE NOS PRESENTA OTRA PANTALLA CON DOS-OPCIONES LAS CUALES SON: CLASIFICACION DE CAMPOS DE ENTRENAMIENTO; Y CLASIFICACION DE LA IMAGEN EN ESTA PANTALLA PRIMERO SELECCIONAREMOS LA OPCION DE CLASIFICACION DE CAMPOS DE ENTRENAMIENTO, Y-UNA VEZ REALIZADA ESTA OPCION FINALMENTE SELECCIONAREMOS LA OPCION DE LA CLASIFICACION DE LA IMA--

GEN.

1. - CLASIFICACION DE CAMPOS DE ENTRENAMIENTO 2. - CLASIFICACION DE LA IMAGEN 3. - REGRESAR

CLASIFICACION DE CAMPOS DE ENTRENAMIENTO

CAMPO

SELECCIONE CON UNA "S" LOS CAMPOS:

CAMPO

_SUEZO1____S___ -_IGNIMZO1__S___ _RIOLAZO1_ _S__ ----____ ____ ____

REPORTE SUMARIO DE CAMPO

IDENTIFICADOR DE LA CORRIDA: _____CLASZO1____

IMAGEN CLASIFICADA:	_ZONA1	REPORTE DEL CAMPO:_SUEZOI
CLASE:	_QZO1	NUMERO DE PIXELES:_846
PIXELES NO CLASIFICADOS	:_23	% NO CLASIFICADO: _2.72

CLASE	# DE PIXELES	%
_QZO1	_741	_87.59
_Tic1	54	6.38
_Ism1	28	3.31

IDENTIFICADOR DE LA CORRIDA: _____CLASZO1____

IMAGEN CLASIFICADA:	_ZONA1	REPORTE DEL CAMPO:_IGNIMZO1_
CLASE:	_TicZO1_	NUMERO DE PIXELES:_704
PIXELES NO CLASIFICADOS	:_3	% NO CLASIFICADO: _0.43

CLASE	# DE PIXELES	%
_QZO1	59	8.38
_TicZOI	_586	_83.24
_TsmZO1	56	7.95

REPORTE SUMARIO DE CAMPO

IDENTIFICADOR DE LA CORRIDA: _______

IMAGEN CLASIFICADA:	_ZONA1	REPORTE DEL CAMPO:_RIOLAZOI_
CLASE:	_TsmZO1_	NUMERO DE PIXELES:_395
PIXELES NO CLASIFICADO	S:_0	% NO CLASIFICADO: _0.00

CLASE	# DE PIXELES	z
_QZO1	18	4.56
_TicZO1	23	5.82
_TsmZO1	_354	_89.62
	 	

IDENTIFICADOR DE LA CORRIDA:

IMAGEN CLASIFICADA:		REPORTE DEL CAMPO:
CLASE:		NUMERO DE PIXELES:
PIXELES NO CLASIFICADOS	!	% NO CLASIFICADO:

CLASE	# DE PIXELES	x
	····	

UNA VEZ REALIZADA LA OPCION DE "CLASIFICACION DE CAMPOS DE ENTRENAMIENTO", FINALMENTE SELECCIONARE-MOS LA OPCION DE "CLASIFICACION DE LA IMAGEN". AL TERMINAR DICHA CLASIFICACION SE NOS PRESENTARA EL SIGUIENTE REPORTE:

CLASIFICACION DE LA IMAGEN

REPORTE DE AREAS DE LA IMAGEN CLASIFICADA

IDENTIFICADOR DE LA CORRIDA:_CLASZO1_ IMAGEN CLASIFICADA:_ZONA1____

PIXELES EN LA IMAGEN: 262144___

CODIGO PARA PIXELES NO CLASIFICADOS:_0____ PIXELES NO CLASIFICADOS:_38368__

PARA OBTENER AREAS INTRODUZCA EL AREA SIMPLE DE UN PIXEL:_6400 m ._

CLASE	CODIGO	# PIXELES	AREA
_QZO1	1	_110520	_7.073280E+008
_Tic1	2	40345	_2.582080E+008
_Tsml	3	72911	_4.666304E+008

UNA VEZ CLASIFICADA TODA LA IMAGEN SE DEBERAN CREAR TANTO EL ENCABEZADO COMO LA TABLA DE ASIGNA---CION CORRESPONDIENTE A LA IMAGEN. UNA VEZ REALIZADO ESTO, LA IMAGEN CLASIFICADA PODRA SER DESPLEGADA EN "MONOBANDA".

CREAR ENCABEZADO DE LA IMAGEN CLASIFICADA

- NOMBRE DE LA IMAGEN.-_CLASZO1___
- TIPOS DE IMAGEN.-_C____
- NUMERO DE BANDA.-_B____
- NUMERO DE PIXEL.~_512____

NUMERO DE LINEAS.-_512____

CREAR TABLA DE ASIGNACION A LA IMAGEN CLASIFICADA

NOMBRE DE LA IMAGEN.-_CLASZOI_ NUMERO DE BANDA.-_B_____ TABLA DE ASIGNACION.-_I____ VI.1.B.- DESPLIEGUE DE LA IMAGEN CLASIFICADA

NOMBRE DE LA IMAGEN A CLASIFICAR: ZONA1 (Ver pagina 142) NOMBRE DE LA IMAGEN CLASIFICADA: CLASZO1

UNA YEZ TERMINADA LA CLASIFICACION DE LA IMAGEN, EL SIGUIENTE PASO ES EL "DESPLIEGUE EN MONOBANDA". LOS PASOS A SEGUIR SON:

ENTRAR EN EL MENU PRINCIPAL DEL PROGRAMA Y SELECCIONAR LA OPCION DE "DESPLIEGUE":

AYUDA GENERAL
 PRE-PROCESO
 DESPLIEGUE
 REALCE
 CLASIFICACION
 GEO-REFERIR
 SALIDA

UNA VEZ SELECCIONADA LA OPCION DE DESPLIEGUE, MOSTRARA EL SIGUIENTE MENU EN EL QUE SELECCIONAREMOS "DESPLIEGUE EN MONOBANDA".

> MODULO DE CLASIFICACION ELIJA UNA DE LAS OPCIONES SIGUIENTES: 1. – DESPLIEGUE EN RGB 2. – DESPLIEGUE EN GRIS-16 3. – DESPLIEGUE EN GRIS-40 4. – DESPLIEGUE EN MONOBANDA 5. – SALIDA

UNA VEZ SELECCIONADA LA OPCION DESPLIEGUE EN MONOBANDA SE PRESENTARA EL SIGUIENTE MENU:

MODULO DE DESPLIEGUE DE IMAGENES DESPLIEGUE DE IMAGENES MONOBANDA

NOMBRE DE LA IMAGEN:_CLASZO1__ TIPO DE IMAGEN C)LASIFICADA B)ANDA:___C___ TABLA DE COLOR:____i___

(TECLEE UNA "'I" EN CASO DE QUE SEA, COLOR POR VALOR DE PIXEL, DE OTRO MODO DE EL NOMBRE DE LA TA-BLA). A CONTINUACION SE PRESENTA LA CLASIFICACION EN LA CUAL SE ABARCO EL AREA CORRESPONDIENTE A 4 BLO---QUES DE LOS YA MENCIONADOS, ESTO CON EL FIN DE SELECCIONAR UNA MAYOR AREA Y PODER APRECIAR EN ----CONJUNTO LAS DIFERENTES UNIDADES DE ROCAS CLASIFICADAS ANTERIORMENTE.

MOSAICO COMPLETO

LA IMAGEN QUE A CONTINUACION SE PRESENTA CORRESPONDE AL BLOQUE ACHURADO, EN LA CUAL SE ESCOGIERON 3 ZONAS A CLASIFICAR, LAS CUALES SON:

1.- ALUYION (Q) 2.- IGNIMBRITA CANTERA (Tic) 3.- RIOLITA SAN MIGUELITO (Tsm)

UNA VEZ REALIZADA LA CLASIFICACION, LOS COLORES ASIGNADOS POR EL CLASIFICADOR BAYESIANO DE MAXIMA-VEROSIMILITUD NO FUERON RESPETADOS EN ESTA CLASIFICACION.

A CONTINUACION SE DARA LA DESCRIPCION DE LAS ZONAS CLASIFICADAS Y EL COLOR ASIGNADO A DICHAS ZONAS POR EL CLASIFICADOR.

1.- ALUVION (Q)

ESTE TIPO DE MATERIAL FUE CLASIFICADO EN UN COLOR AZUL, AFLORANDO EN GRAN PARTE DE LA IMAGEN. SE -LOGRA DISTINGUIR MUY BIEN DE LAS UNIDADES DE ROCA QUE AFLORAN EN ESTA AREA.

2.- IGNIMBRITA CANTERA (Tic)

ESTE TIPO DE ROCAS FUE CLASIFICADA EN UN COLOR AMARILLO OCRE, AFLORANDO PRINCIPALMENTE HACIA LA -- PARTE SUR-OESTE DE LA IMAGEN.

3.- RIOLITA SAN MIGUELITO (Tsm)

EN ESTA CLASIFICACION, ESTA ROCA FUE CONFUNDIDA CON LA IGNIMBRITA CANTERA, ASIGNANDOLE EL MISMO -- COLOR AMARILLO OCRE. ESTE TIPO DE ROCA AFLORA PRINCIPALMENTE HACIA LA PARTE NOR-DESTE DE LA IMAGEN.

NOMBRE DE LA IMAGEN CLASIFICADA: CLASZO1 ,

VII. - CONCLUSIONES Y RECOMENDACIONES

VII.1.- CONCLUSIONES DEL MARCO GEOLOGICO

 * El área estudiada se encuentra dentro de la Provincia Geográfica de la Mesa Central y geomorfológicamente se encuentra en una etapa juvenil.

* La zona se encuentra dentro de una gran provincia geológica de rocas volcánicas en su mayoría félsicas, del Oligoceno-Mioceno que van desde el eje Neovolcánico en el sur, hasta los Estados U-nidos de America en el norte, con dirección general NW.

* Estructuralmente al Sur-Este del área se presenta fracturamiento con rumbo N40 a 50 W y echados de 15 a 20[°] al Nor-Este; se presentan dos zonas de "fuentes" principales en el área una en Cerro - Grande y la otra en la esquina Sur-Este de la zona.

Existen también fallamientos longitudinales y normales de las unidades con fallas que echan hacia el Sur-Oeste.

Hundiendo el valle de S.L.P. se localiza una falla de rumbo N45[°]W y echada al Nor-Este que se encuentra cubierta por conglomerados y aluvión.

Los principales plegamientos se localizan en la parte Nor-Este del área como producto de la O-rogenia Laramide.

* Hacia el Sur-Oeste y Nor-Oeste del área de estudio se localizaran diferentes zonas de alteración hidrotermal consideradas como zonas anomalas de intéres minero, sin embargo dado su reducido -tamaño en la imagen de satélite no fué posible clasificarlas.

VII.2.- CONCLUSIONES DEL ANALISIS DIGITAL DE IMAGENES

* La imagen utilizada corresponde a la MSS con resolución de 79 x 79 m² con transmisión de 15 megabites por segundo.

Estas imagenes a diferencia de las fotografías aéreas solo pueden ser estudiadas en dos dimen-siones y casi no representan desplazamiento por relieve en áreas no montañosas.

* Las bandas 1 y 2 verde y roja respectivamente permiten detectar áreas urbanas, caminos, carre-teras, etc. Las bandas 3 y 4 (infrarrojo cercano) son mejores para delinear cuerpos de agua, tie-rras humedas con agua estancada y suelos organicos húmedos con poca vegetación dan también tonos obscuros. Las bandas 2 y 4 son muy valiosas en estudios geológicos.

* La adquisición de imagenes a través de sensores remotos depende de la detección y grabados de la energía electromagnética reflejada o emitida desde la superficie de rasgos (naturales o creados por el hombre) dentro del campo de "vista" del sensor. Los patrones formados sobre la imagen son una función sobre la interpretación entre la materia y la energía dentro del aspecto electromagnético.

* Los satélites captan la radiación solar difundida por la atmósfera en la dirección del sensor y la radiación solar que alcanza la superficie de la tierra es reflejada hacia el sensor del satélite, y en consecuencia a la cantidad de radiación reflejada por la superficie, y la radiación sobre ese plano es conocida como reflectancia. El análisis digital de imagenes por computadora tiene como objetivo mejorar el despliegue de -datos de la imagen para su análisis.

* La técnica de procesamiento digital se emplean con las imagenes porque:

1.- Los datos originales están en forma digital.

2.- Los errores relativos al sistema pueden ser corregidos.

3.- Se pueden hacer correcciones por iluminación solar o por efectos atmosféricos.

4.- Los elementos "picture" individuales pueden ser analizados y desplegados.

5.- Se pueden utilizar procesos de funciones matemáticas para su análisis.

6.- Se pueden emplear técnicas de análisis estadísticos.

7.- Grandes cantidades de datos pueden ser procesados y analizados en cortos períodos de tiem-po.

* Las mayoría de los procesos de análisis digital de imagenes involucra 3 procedimientos:

1.- Procesamiento de datos

2.- Realce de imagenes

3.- Clasificación de imagenes

* Si existe una fuerte relación entre los depósitos económicos por explorar y los patrones de cobertura (entre metales base y zonas de alteración) entonces, un plan de exploración puede ser de-sarrollado en base a clasificación de imagenes.

* El tipo de exploración debe basarse en una interpretación geológica desarrollada a partir tanto de patrones espaciales como de patrones multiespectrales.

* Dado que las cintas (CCT) del Landsat contienen 7,581,600 pixeles, no es practico desplegar todos los valores de brillantés graficamente en un histograma.

* El objetivo de todos los sistemas de sensores remotos orientados hacia la tierra, es registrarel mayor rango posible de todo tipo de material de la superficie.

VII.3.- CONCLUSIONES DEL PROGRAMA S.P.I.P.R. PARA LA CLASIFICACION DE ROCAS Y ZONAS DE ALTERACION

* El sistema de procesamiento de imagenes de percepción remota (S.P.I.P.R.), es un sistema dise-ñado para proporcionar una amplia gama de funciones en el proceso digital de imagenes, en un ambiente interactivo, amigable y eficaz para lograr resultados muy variados, como el despliegue, fil-trado, generación de estadísticas, etc.

* El proceso digital de imagenes se puede definir como el manejo de la información visual en computadoras digitales,

Una imagen digital esta formada por celdas cuadrangulares, cada una de las cuales tienen un cierto tono de gris.

Estos elementos de la imagen se llaman PIXELES (Picture Elements).

* Para manejar las imagenes a color se capturan 3 cuadros por imagen, uno para el rojo, otro para el verde y el último para el azul.

La imagen se obtiene por medio de transductores que son sensores que miden la energía reflejada -por el objeto. * Algunas superficies despliegan reflectancias contrastantes a diferentes longitudes de onda. Lavegetación tiene un alto DN en la banda 4 y un bajo DN en la banda 1.

* Cualquier clasificación busca clasificar los límites entre áreas superficiales de diferentes -tipos y determinar la extensión de las áreas de cada clase tan acertadamente como sea posible. Unmedio de hacer esto es por segmentación de imagenes, en el cuál consiste en crear área de varios pixeles que muestren similaridades espectrales.

* Dado que los rasgos geológicos son muy variables y que pueden estar enmascarados por suelos y vegetación, la interpretación visual es comunmente ambigua, aunque lo haga una persona experimen-tada. El problema aumenta por el número de teorías que un geólogo puede utilizar para apreciar elcontexto con los rasgos de la imagen, ademas del individual.

* La clasificación de imagenes es la tarea de asignar a cada objeto a una de varias clases que--se conocen de una manera tal que se agrupen todos los objetos para que nuestros fines sean practicamente iguales.

* La clasificación supervisada significa asignar elementos de una imagen (pixeles) dentro de un conjunto de clases con características comunes. El proceso consiste en asignar una etiqueta (eti-queta de clase) a cada pixel de la imagen.

Cuando el usuario tiene algún conocimiento del contenido de la imagen, puede definir el tipo y numero de clases dentro de las cuales la imagen va a ser clasificada.

El clasificador Bayesiano es un buen ejemplo de este enfoque. Bayesiano de Máxima Verosimilitud, basado en el teorema de Bayes asigna a cada pixel una de las clases definidas por el usuario y --calcula la verosimilitud para un eficiente similitud.

La escencia de la metodología de la clasificación bayesiana es un proceso de 2 pasos:

1.- Las clases de interés son caracterizadas a través del análisis de los datos que representan esas clases (campos de entrenamiento).

2.- Los datos son clasificados por reglas númericas (en el caso de S.P.I.P.R., la regla de decisión bayesiana) las cuales utilizan las características de los campos.

El número y tipo de clases a generar depende de la meta de estudio, tamaño del pixel y escala de salida; el usuario solo elige aquellas que el necesita. Si el pixel pertenece en algún momento a una clase que no haya sido definida por el usuario, este tendra baja verosimilitud asociada a el,y por lo tanto debera ser considerado para los umbrales del resultado final de la corrida de cla-sificación.

Aspectos importantes a considerar:

1.- Definir campos de entrenamiento homogeneos.

2.- Definir una población lo suficientemente grande para que las estadísticas sean representati--vas.

3.- Para cada clase, el usuario debe probar y escoger el mejor umbral para eliminar los pixeles -que tengan baja frecuencia.

Cuando se seleccionan las clases que se van a utilizar se observan dos restricciones:

1.- Al menos una clase debe ser usada para la clasificación,

2.- El número maximo de clases es de 15.

* Los campos de entrenamiento permiten la identificación de las zonas dentro de una imagen.
 Los menús de esta parte del sistema permiten:

- Crear polígonos

- Editar polígonos en imagenes

- Almacenamiento

- Reportes de polígonos en impresora y/o en pantalla

En todos los casos, un campo es un polígono con las siguientes características:

- Es un polígono cerrado

- Es un polígono simple, es decir, no se pueden cruzar las líneas del propio polígono

- Debe de contener un mínimo de 3 vertices

- Todos los vertices son unicos

VII.4.- CONCLUSIONES DE LA UTILIZACION DEL PROGRAMA S.P.I.P.R. PARA EL PROCESAMIENTO DE IMAGENES -DE SATELITE

* Para poder llevar a cabo este trabajo lo primero que se realizo, fué la ubicación del área de estudio dentro de la imagen MSS del Landsat debido a que esta imagen tiene un área de 3596 pixeles por 2983 líneas, por lo que hubo necesidad de efectuar cortes de 512 pixeles por 512 líneas de tal manera que:

1.- Se obtuviera un detalle adecuado de la zona en cada imagen

2.- Que pudiera ser desplegada la imagen completa en el monitor

* En general en este trabajo determinamos que la habilidad del Clasificador Bayesiano de Máxima -Verosimilitud no respondio al 100%, debido a que la selección de campos de entrenamiento debe ha-cerse en áreas en donde los afloramientos sean extensos, (en relacion a la resolución de las ima-genes MSS del Landsat que es de 79 x 79 m²) para poder reálizar con un mejor resultado dicha cla-sificación.

* Los colores asignados por el Clasificador Bayesiano de Máxima Verosimilitud no fuerón respeta-dos en un orden determinado, sino que fuerón asignados al azar.

 * Esta clasificación estuvo limitada por la presencia de nubosidad en la parte Nor-Este del áreade estudio, presentandose principalmente como manchas negras.

* No existé una salida a impresión, lo que límita grandemente el trabajo, pues el apoyo de foto-grafías no son muy confiables debido principalmente a que se pierden tonalidades o colores por eltipo de emulsión del royo o bien el revelado del mismo.

VII.5.- RECOMENDACIONES

* Finalmente aún con todas estas restricciones que presenta este modulo de Clasificación, sigue siendo una herramienta imprescindible para la investigación geológica, ésta debera ser mejorada si tenemos acceso a imagenes de satélite más versatiles y de un mayor grado de resolución, creemos -entonces se podran conocer las posibilidades reales del programa en relación a la habilidad de --clasificar diferentes tipos de roca y zonas de alteración. TRISTAN G. MARGARITO Y LABARTHE H. GUILLERMO,-

- CARTOGRAFIA GEOLOGICA "TEPETATE," S.L.P., INSTITUTO DE GEOLOGIA Y METALURGIA. U.A.S.L.P. FOLLETO TECNICO No. 66, 1979.
- CARTOGRAFIA GEOLOGICA "AHUALULCO", S.L.P., INSTITUTO DE GEOLOGIA Y METALURGIA. U.A.S.L.P. FOLLETO TECNICO No. 70, 1981.
- PLANO GEOLOGICO DE LA HOJA AHUALULCO. INSTITUTO DE GEOLOGIA Y METALURGIA. ESC. 1:50,000
- PLANO GEOLOGICO DE LA HOJA TEPETATE. INSTITUTO DE GEOLOGIA Y METALURGIA. ESC. 1:50,000

AGUILLON ROBLES ALFREDO.-

 CARTOGRAFIA GEOLOGICA DE LAS HOJAS ESPIRITU SANTO, PINOS, EL OBRAJE, OJUELOS, ESTADOS DE-SAN LUIS POTOSI, JALISCO, GUANAJUATO Y ZACATECAS., INSTITUTO DE GEOLOGIA Y METALURGIA. --U.A.S.L.P.

FOLLETO TECNICO No. 93, 1983.

- PLANO GEOLOGICO DE LA HOJA PINOS. INSTITUTO DE GEOLOGIA Y METALURGIA. ESC. 1:50,000
- PLANO GEOLOGICO DE LA HOJA OBRAJE. INSTITUTO DE GEOLOGIA Y METALURGIA. ESC. 1:50,000

MILAN NAVARRO JOEL.-

TRADUCCION PARCIAL DE "REMOTE SENSING AND IMAGE INTERPRETATION"; LILLES THOMAS M. AND ----KIEFER RALPH W.; Y "IMAGE INTERPRETATION IN GEOLOGY"; S.A. DRUDRY; (1991).