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Preface 

Coupled Map Latti ces (CML) are infinite dimensional dynamica l sy tem with di s

crete spati al and temporal variables, which are used a models of spati all y extended non 

equilibrium medi a (see for instance [7], [8] ). They can be considered as di screte versions 

of partial differential equations . 

Although there are some results related to ergodi c properti es of CM L with space- time 

chaos (see [9] , [6] ), there is no general theory of the topologica l properties ofsuch CML. 

Some results about the topological behavior of I-dimensional homogeneou CM L can be 

found in [1] , [2] and [5]. 

The goal of our work is to prove some kind of structural stability of Weakly Cou

pled Map Lattices for the d-dimensional non homogeneous case. In order to do that, we 

show that there is a conjugacy (in the product topologies) between the uncoupled system 

and the slightl y perturbed one, constructing symboli c representations of weak ly CML V1a 

topologica l Markov chains. 

The pre ent work is divided as follows: 

In Chapter I we introduce a general class ofextended dynamica l systems, the so ca ll ed 

Latti ce Oynamical Systems (LOS), showing parti cul ar examples of them. Then we give a 

defi nition of LOS including symbolic systems. 

In Chapter 2 we study the conjugacy ofthe loca l maps with topologica l Markov chains. 

Then we define the uncoupled system, showing the ex istence of the symboli c representa

ti on for thi s system (which is, in fact, the direct product of the loca l symbo li c systems). 

Finally, we introduce near neighbors interacti on type CM L (being the di crete vers ion of 

the reacti on- diffusion equati on the most popular of them). 

3 
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[n Chapter 3 we study near neighbors interact ion type CML as perturbation of the 

uncoupled subsystems, prov ing the persistence of their dynamics whenever the coupling 

is weak enough and the local maps invo lved sati sfy some condi tion of hyperbo li city. 

Such type of results have been known fo r the case of identi ca l individual map (see fOI" 

instance [2]). The novelty of thi s work is, mai nly, in consideration of non- h mogeneou 

situati on. Moreover, in thi s work we consider d- dimensional LOS, d ~ 1. 

4 
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Chapter 1 

Lattice Dynamical Systems 

1.1 Introduction 

The basic goal of the theory of di screte time dynamica l systems i to under tand the long 

term behav ior of an iterative process. When the process is modeled by the iterati on of 

a fun cti on, we want to describe the asymptoti c behav ior ofthe points x, f (x), p(.r), ... , 

r(x) as n becomes large. So, the que ti on is, in the long run, where do points go and 

what do they do when they get there? The an wer is know; the points tend to invari ant 

sets consisting of non- wandering orbi ts . Thus the problem of de cri pti on of inva ri ant 

non- wandering sets, appear to be very important. 

Here we consider such problem for a particular class of Oynami ca l Systems, the so 

ca ll ed Lattice Oynamica l Systems (LOS). They are infinite dimensional dynamica l sy -

tems belonging to a class of models of spati all y extended medi a in which the re lati ons 

between temporal evolution and spati al translati on play an important role. The invari

ant with respect to spati al translati ons LOS are imilar to autonomous Parti al Oi ffe renti al 

Equations (POE), non- homogeneous LOS are simi lar to POE with coe ffi cients depending 

on space variables. 

The most common class of LOS is the so ca lled Coup led Map Lattice (CML). A 

natural source of CML are discrete versions of parti al differenti al equat ion of evo luti on 

5 
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1.2. BASIC NOTIONS 6 

type, which ari se while modeling PO E's by computer. 

Sometimes the use of latti ce may be regarded as an approx imate approach to descrip-

tion of a continuous medium, then the equati ons should have a reasonable continuou 

limit with decrease of the spati al step. In other cases, the lattice model may be appropriate 

essence of the problem. For example, in solid state physics a natural di creti za ti on appea rs 

due to pre ence of crystal latti ce. 

In the pre ent work we study sorne properties of LOS. As the main result we show the 

structural stability of non- coupled hyperboli c maps. The bas ic idea behind thi ca lcul a-

tions is to take advantage of symbolic dynamics once we have showed the xistence of a 

symboli c representati on for CML with a weak coupling. 

1.2 Basic notions 

Lattice Oynamical Systems occur in a wide variety of applications where lhe patial truc-

ture has a discrete character. We begin with a defi nition of LDS. 

Definition 1 Let ¡ be a (s ubset ol a) metric space and let pC, .) be the corresponding 

distance. Consider the direct producl ¡ 7..
d 

endowed with the uniform or wilh Ih e producl 

topology. Assume the existence ola subsel M e ¡ 7..
d 

and the exislence ola map F ji--om 

M ¡nlo ilse/f. The pair (M , F ) is called a d- dimensionallattice dynamical system . 

An orbit olF in M is a sequen ce {U(t )}tEN where u( t ) = {us(t)}SEZd belongs lO M 

and u( t + 1) = F(u(t)) lor all t E N ~ {a , 1, 2, ... } . 

From now on, we suppose that the set M is compact and the map F is contin uous in 

the product topology. 

Sorne examples of LOS are the fo llowing 

I NST ITUTO D E I VEST IGACIÓN EN COMU 

U I V ERS I DAD A UTÓNOMA D E 

ÓPTI CA 

P TO í 
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1.2. BASte NOTlONS 7 

l . Cellular Automatal(CA) for which ¡ is a fi nite alphabet endowed with the di screte 

topology and the evolution map F is a continuous map which commutes wi th spati al 

translations 

2. ear neighbors interacti on type CML with diffusive coupling, for which M e J'I- , 

¡ is a compact interval and the evolution map F is given by 

for u = {usLa E ¡ 'l. . Here I > O is the coupling parameter; the loca l map 

1s : IR --+ IR and the coupling maps Fs : 1R2" + 1 --+ IR are C 1- smooth . In thi s model 

the dynamics consists of two independent components: the loca l (individual) dy-

namics and the coupling dynamics. The fo nner one i the application of the one 

dimensional local map 1s to every site U s and the \atter one couples the dynamics 

by means of a weighted map Fs over a ne ighborhood of U s where the coeffic ient I 

determine the size of coupling interacti on. 

I CA were the first LDS that attracted considerab le inte rest. CM L where int roduced by Kancko, K. 
[1983, 1984] as a mode l fo r the study of spati temporal comp lexity uch a turbu lencc, popula li on dynam
ics, etc. We cou ld lh ink of CML as a generalization oC CA . 

I NSTITUTO D E I NVEST IGAC IÓ EN OMUN I AC IÓN ÓPT ICA 

UN I VERS IDAD A UTÓ OMA D E SA L U I S POTos í 
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Chapter 2 

Coupled Map Lattices 

2.1 Local maps 

In thi s work we consider non- homogeneous d- dimen ional CML. 

Let {IS}sEZ,d be a fa mily ofclosed subinterva ls of the interva l 1 = [a , b]. Let u suppose 

that, fo r each s E Zd, 1s : Is -t IR is a C I- smooth map sati sfying the fo ll owing chaotic 

hypothesis: 

(Hl) there ex ist a finite coll ecti on ofpairwise disjoint clo ed ubintervals {1~ } ~: 1 of 

Is e 1 such that if 1 :::; 'i :::; Ps : 

a. 1s is di fferenti able on 1~ with 1 < a ~ inf { min 11~ (X)I } < 
sEZ,d xE I ~ 

b. there ex ists 1 :::; j :::; Ps such that 11 e Int1s(I~) . 

From now on we suppose that, for each s E Zd , Ps < P < 

As an example of a map similar to the loca l maps used, con ider the fa mil y of quadratic 

maps F¡Jx) = /J,x( l - x) with /¿ > 2 + J5. Make e = 1 \ A, where J = [0, 1] and 

A = {x E l: 11(x)1 > l}. 

A direct ca lcul ati on shows that if /./, > 4 then the loca l extreme of J i , bigger th an 1, 

moreover if /./, > 2 + J5 we have that If'(x)1 > Ion e = JI U J2 with 

8 
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2.1. LOCAL MAPS 9 

Figure 2. 1: The quadrati c non- linearity f (x) = p,x( l - x) . 

1 = [o ~ - J p,2 - 4P, ] 
1 , 2 2p, 

1 - [ ~ J p,2 - 4/~ ] 
2 - 2 + 2p, , 1 

Note the ex istence of a closed and f - invari ant subset AJ of C e 1 on which f is 

topologica lly conjugate to the full shi ft in 2 symbols. (see [4]). 

In the general case, if the local map f s sati sfi es H 1, there ex ists a closed and f s-
P • 

invariant subset AJ• of Cs = U 1~ e Is , on which (A J., f s) is topologica ll y conj ugate to a 
i = l 

topologica l Markov chain (OAs ' a) . Here a is the shift map on the set of admi sibl e (with 

respect to the transition matri x As) sequences in OA. e {l ,'" ,Ps }N, endowed with the 

metric 

with k = min{t E N : w t i= wt
} . 

I NST IT UTO DE I VEST IGAC IÓN EN COMU N ICAC i ÓN ÓPT ICA 

U IVE RSIDA D A UTÓ OMA DE SA L U I S POTO í 
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2.2. UNCOUPLED SYSTEMS 10 

In other words, there ex ists a homeomorph i m 7r : OAs - A ¡. ' (r pect to the prev io u 

and the Eucl idean metric ) such that 

7rs o (J = Js o 7rs · 

2.2 Uncoupled systems 

An important concept is that of structural stabi lit y; sorne types of system have dynamic 

which are equi va lent (topologica ll y conjugated) to that of any of its perturbati on . Our 

goa l is to proof the structural stability of the d- dimen ional lattices of unc upl d hyper-

boli c maps ( ee Chapter 3) 

Given a family {fs L EZd ofmaps sati sfying H 1, let us make Aa ~ 0 A¡. and ~ 0 O /l •. 

S Zd 

It i imple to ee that the uncoupled map Fa : Aa - Aa given by 

is topologica ll y conjugate to the time- translati on operator (Jr : - denned by 

(2. I ) 

lndeed, the map ITa : ¿: - Aa denned by (ITaw) s = 7rs W s i a homeomorphi 111 (when 

we consider the systems endowed with the product topology) uch that 

In the nex t secti on we present Coupled Map Latti ces (M , F ) that are still conj ugated lo 

the symbolic y tem ( , (Jr) provided thal F i a small perturbati on of Fa. 
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2.3. WEAKLY COUPLED SYSTEMS 11 

2.3 Weakly coupled systems 

Here we consider perturbati ons of the uncoupled system 2.1. Ex plicitl y, d fi ne the map 

F : ® 1s -4 IR
Zd 

such that for each s = (S I, .. . , Sd) E Zd , 
SEZd 

(2.2 ) 

where 

is the (2r + l )d-tuple ofneighbors of U s (ordered in the dicti onary order). 

From now on, we suppose that 

• the local maps 1s : 1s -4 IR are C I- smooth maps sati sfying the hypothesis H I (see 

Section 2. 1), 

• the coupling maps Fs IR(2r+ l )d -4 IR are C1 - smooth with bounded first pal1i al 

deriva ti ves . Ex plicitly, 

where the max imum is taken for al! the poss ible choices of ( X I , ' " ,X(21' L)d ) In 

• O < O ~ inf {min{a~ - m~ , M~ - ~ }} , where the minimum is taken over al! th e 
SEZd 

pairs 1 :::; i, j :::; Ps , s E Zd, such that 

I N T IT UTO D E I VES TI GACIÓN EN CO M UN I AC iÓN ÓPT ICA 

U I VE RSIDA D A UTÓ OM A D E SA N L U IS POTos í 
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Chapter 3 

Structural stability of the uncoupled 
system Fo 

3.1 Maio theorem 

The following result gives us a symboli c description in ¿:; = ® DAs of all orbi t of the 

system 2.2 in the set e = ® es (see Secti on 2.1 and 2.3) . 
sEZd 

Theorem 1 There exists "YF > o such thatJor any coupling parameler o :s "Y < "YF, Ihere 

is an F-invariant closed set AF e e and a bijeclive map rr : --+ AF so Iha l 

when F is restricled lO AF-

Th e map rr : ¿:; --+ AF is a homeomorphism in Ihe product lopologies . 

Proo! To make the proof more simple, we provide and e with the fo llowing di -

tances compatible with product topologies. For s = (S 1, ... ,Sd) E Zd we use the non11 

II s II = max{ls1I,· ·· , ISdl }· 

Fix a number q > 1, the di stance on ¿:; is given by 

Dq(w ,w) = ¿ q-lI sll d(ws , ws ) 

sEZd 

12 
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3.1. MAl N THEOREM 13 

and the di stance on e is given by 

[[u - ü[[q = ¿ q-ll s lI tus - üs[. 
s EZd 

We prove now a generalization ofthe property H I.b for F , provided the coupling is weak 

enough . 

Lernrna 1 There exisls 11 > O such thal, ifw = { Ws } s EZcl and w' = {W~}sEZrl are infinile 

¡abe/s in 0 {1 , . .. , ps }forwhichr::~ e Int(Js(I;:")) foraLl s E -gd, thenfor O ~ 1 ~ I I 

s EZd 

in (2.2) we have 

where ¡W = 0 r;:" and ¡W
l 

= 0 ¡':~. 

Proo! Let w, w' infinite labels like in the statement ofthe lemma. By hypothes is 

Make M :::::: sup { max [F s (X l , '" ,X(2r+ 1)d) [ } , where the max imum is taken for all the 
SEZd 

possible choices of (X l , ... ,X(2r+ l )d) E ¡ (2r+l)d . For each s E -gd let ~s' Üs E ¡;:" sllch 

<5 
that fs (~s ) = m~us and f s(üs) = M;:s . Take 11 = 2M' Then, for each s E -gd we have, 

and 

The continuity of fs and Fs implies that ¡W~ e projs(F (IW)) , where projs : IRZd IR 

is the projection over the coord inate s = (S I, ... , Sct). Since this is trlle for all s E -gd , 

o 

U NI VE RSIDAD A UTÓNO M A D E S AN L U I POTosí 
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3.1. MAIN THEOREM 14 

Lemma 2 There exists 12 such that, if the coupling parameler O S 1 < 12, filen Ior each 

sequence w = {w(k) } kE N oIinjinite labels {ws(k) }sEZd in ® {l , ... ,Ps }, fh e set 
SEZcl 

n F - k(Iw(k ) ) 

kEN 

contains exactly one element, whenever w = {W: } SEZd, kEN E ¿. (h ere ¡ lU(k) = ® IslUs(l.,;)) . 
s Zd 

Proo! For O S 1 < 11 given, fix w E L:. Since ¡ w(k+ l ) e F(Iw(k)) , we have tha! 

k 

J w(O)',w(k) ~ n F -t (Iw(t )) i= 0. 
t=O 

These sets are closed and form a nested sequence; furthermore, the J 's sets of the same 

generation are pairwise di sjoint. 

Make 

diam(llU(o) .. w(k) ) ~ sup {diam(projs (Jw (O) ,.w(k)) )}' 
SEZd 

We show that 

lim diam (Jw(o)",w(k) ) = O. 
k~oo 

(3.2) 

lf u, fj E ¡ w(1) , then u, '1) E F(Iw(O)) ; that is, u = F u and fj = F v for sorne 

¡ w(O) U' h I I . e . bl E ¡ sw. (ü) and u, V E . smg t e mean va ue t leorem we can wnte, lor sUlta e Ys 

(z~ , . . . , z~2T+ l )d) E (1:8(0))" , 

or 

I ( ) ( ) _ ( - - ) ( 1 (2r' I)cl) ( ) 1s Ys U s - Vs - u - V s - 1 D Fs Zs ' ... , Zs . u - V S· 

I NST ITUTO DE I NVESTI GAC IÓN EN COMU ICAC IÓN ÓPT ICA 

UN IV ERS IDAD AUTÓNOMA D E SA L U IS POTosí 
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3. 1. MAIN THEOREM 15 

From the definition of a and /3 it foll ow that 

or 

II u - vii ~ [a - ,/3(2r + l )dr l II u - vii . 

Therefore 

SimilarJ y for u v E ¡ w(2) Jet u v E ¡ w( l ) and u v E ¡ w(O) such that F u = ü F v = v " ,) " 

F u = u and F v = v. Then, 

II u - vii ~ [a - ,/3(2r + 1)dr2 II u - vii 

and conseqllentJ y 

diam ( J W( O)W(I )w(2)) 

Jndllctive ly we obtain 

diam (Iw(O) n F - 1(Iw( I)) n F - 2(Iw(2)) ) 

< [a - ,/3(2r + 1)dr2 diam (IW(2 ) ) 

diam J w(O)w( l ) .. w (k ) ~ [a - ,/3(2r + l )dr k diam (Iw(k)). 

lf , < 2 ~ min {' I' /3 (;r - \ )d }, the limit (3.2) hoJds. O 

We continlle with the proofofTheorem 1. Gi ven W = { W: }SEZci, kEN in , make 

I1 (W) = n F -k (Iw(k)). 

kEN 

ÓPTI CA 
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3.1. MArN THEOREM 16 

Thi s defin es the map I1 : l: ---t I1 (l:) ~ AF. Ev identl y, the set AF i closed. Moreover, 

since the } 's sets of the same generati on are closed and di sjoint, AF is totall y di sconnected 

and I1 is one- to- one. 

is a singleton, we have 

Therefore, 

F ((IW(Q)) n F - 1(Iw( 1)) n . . . n F - k(Iw(k)) n ... ) 

F (Iw(O)) n (IW( I)) n .. . n F - k+1(Iw(k)) n ... 

n F - k+1 (Iw(k)) , 
kE Z+ 

F (n F -k (IW(k)) ) 
kEN 

F (I1 (w)) . 

Finall y we show that I1 is a homeomorphi sm in the product topologies. Becau e of 

compactness of l: in the product topology, and since I1 is one-to-one, we onl y have to 

prove that I1 is continuous. 

In what fo ll ows we use the ce iling function r'l (i.e. IX 1 E Z, x ~ IX 1 < .'1: 1). 

Let M ~ min { 2, ex + 1} and D = sup ( max diam(I~) ) . 
2 SEZd l :<;t:<; ps 

INST ITUTO D E I V EST IGACIÓN EN COMU N ICA Ió ÓPT I A 

U I V ERSIDA D A UTÓ OMA DE SA N L U IS POTos í 
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3.1. MAIN THEOREM 17 

IIog D - !Og i l ' 1 Lernrna3 Forany O< i< m in {l , D / M }, make n= I logM . !Jw= {ws1 s 1.",1 1'1 ' 

W = {W~ } s EZd, tEN are configurations in ¿; satisfying 

w~ = w~ ; 11 s 11 ~ nr , O ~ t < n 

then 

1 (fIw)o - (fIw)ol < i . 

Corollary 1 For j ~ O given, ifw = { W~}sEZd, tEN and w = {W~ } sEZd , l EN are conjigura-

tions in ¿; satisfy ing tha! 

w; = w;; 11 s 11 ~ nr + .7, O ~ t < n 

then 

1 (fIw)s - (fIw)s 1< i , 11 s 11 ~ j . 

We prove the contrapos itive ofLemma 3, that is, if 1 (fIw)o - (fIw)o I ~ i then w~ # w~ 

for sorne s E 7J.,d, t E N sati sfying 11 s 11 ~ nr and O ~ t < n. 

Proo! Let u ~ fIw and u ~ fIw in AF and suppose that 

lfthe points Uo and Uo already lie in different subinterva ls of 1, the con11 gurati ons UJo and 

Wo must differ in their 11rst symbol , that is 

If it is not so, making uso (O) = Uo and uso (O) = Uo we will construct a sequence 

n d " - IIog D - log i l {(Si , ti)L=1 E 7J., x N, wlth n - M' such that 
log 

I NS T IT UTO D E I NVES T IGAC i ÓN EN CO M UN IC AC iÓN Ó PT IC A 

U I VE RSI DA D A UTÓNO M A D E SA N L U IS POTos í 
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3.1. MAIN THEOREM 18 

Given i , O ::; i ::; n - 1 consider the quantity 

So, 

if 6i ::; 2 1 U Si (ti) - USi (ti) 1, we let the system evolve, writing for sui table Y¡ E /s, and 

( 
1 (21'+1)<1) tO.. 

Zi" " ,Zi E '6' 1s,+j , 

IIJ II:::::r 

I us, (ti. + 1) - USi (ti + 1) I 

f~ . (Yi) (USi(ti) - Us,(ti)) +, L DFs,(z~" ... , Z~~r+ l )d) (US .+j (t,) - US , j(t¡)) 
11 j 11:::::,' 

> I f~,(Yi) IIUs, (ti) - US.,(ti)I-, L I DFsi(Z~i" '" Z~~I'+ I )cI)II Us , j(ti) - f¿s,+J( ti)1 
11 j II:::::r 

> [a - 2,{3(2r + l )d] l'tLs , (ti) - Us. (t i)l. 

Let 'T ~ min {'1' 4{3(~;+11 )d } . If 0 <, < ,T, the condition over , yield to 

a+ l 
IUSi+ l(ti+ 1) -us,+I(ti+ 1)1 ~ -2-lus;(ti) -us, (t·¡)1 

prov ided that Si+ I = S.¡ and ti+ 1 = ti + l. 

Thus, Ius .. (tn) - Us..(tn)1 ~ Mnluo - uol ~ Nri > D, i.e. the po ints us" (t,.) and 

US n (tn ) lie in different subinterva ls of 1 and therefore, w~:: i- w~:: . It fo llow from the 

definiti on of Si and ti that 1 Si - So 1::; nr for any 1 ::; i ::; n and that 1 tn - to 1::; TI. O 

STI TU TO D E I NVEST IGA C i ÓN EN COMU ICAC IÓ A 

U N I VE RSI DA D A UTÓNO M A DE SAN L U IS POTos í 
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Lemma 4 For any j and n in Z+ Ihere exisls 6 > O such that Dq(w , w) 6 implies 

Proa! The condi tion D(w,w) < 6 implies that for all s E Zd, q- lI s l1 d(ws ,ws) < 6. 

The latter implies the ex istence of an integer Só such that if 11 s 11 ~ Só then there ex ists 

t s ~ 1 such that 

The integer t s is a non-increas ing function of 11 s il. Moreover, both Só and t go to innn ity 

when 6 goes to O. Therefore, the window {(s, t) E Zd 1 : 11 s 11 ~ nT j , O ~ t n} 

is contained in the window {(s, t) E Zd+ l : 11 s 11 ~ Só, O ~ t ~ t s } if 6 is suffi ciently 

smal l. o 

We are ready to prove the continuity of the map TI in the product topology: 

We have that 1~ e Is e 1 = [a, b]. For é > O given, there ex ists j* E Z (which goes 

to infinity as é goes to O) such that 

(b _ a) (~ (2i + 1)' ; (2i - 1)') < ~. 

Choose E such that 

A ( ]" - 1 (2i + l )d - (2i - l )d ) é 
é 1 + L . < 2' 

i= l qt 

By Corollary 1 there ex ists n such that fo r any configurations w = {W~ } sEZd,k N and 

w = { W~ }SEZd,kEN in ¿; satisfying w; = w; fo r 11 s 11 ~ nT + j* and O ~ t < n, we have 

ST ITUTO D E I NVESTIGAC IÓN EN COM UN ICAC IÓ ÓPTI CA 
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Figure 3. \ : The continui ty ofthe map I1. 

By Lemma 4 there ex ists 8 > O such thatDq(w , w) < 8 implies 

• 

o 

I N .. 
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Chapter 4 

Possible generalizations 

We believe that the technique developed in the work (mainly lemmas 3, 4) will all ow us 

to obtain sorne results in the following directions: 

• Instead of considerati on of repell ers in I- dimensional ex panding loca l map , one 

can try to consider individual p-dimensional systems p > 1, with hyperbolic in 

variant sets. For the beginning it is natural to consider individual maps with smale 

horseshoes. 

• One can generali ze results of [1] and [3] to study directional entropy and density of 

directional entropy for weakl y coupled LDS in d- dimensional case, d > 1. For that, 

Theorem l provided in thi s work is the necessary first step. In thi s genera li zation , 

the case of local maps with regular loca l dynamics i of the main interes t. 

• The dynamics of networks of in teractive active elements attracts an attention many 

spec iali sts nowadays. The results of the work can be deAnite ly generali zed lO the 

case where finitely many individual maps are in teracting with each other by a rul e 

defined through a graph of interactions. Moreover, some specific problems for net

works of coupled elements can be ri gorously formu lated and so lved. 

2 1 
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