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Introduccion




Introduction

1. Methylmercury

Metals are strongly bound to many facets of modern human existence and, while
some are biologically essential (copper, zinc, manganese, etc), others are
extremely poisonous (as mercury, lead and cadmium). Mercury is a heavy metal
that is widely distributed in the earth’s crust. Both natural and anthropogenic
sources contribute to the global cycling of this element (IPCS, 1989, ATSDR,
1994). In aquatic environments, inorganic mercury is converted to methylmercury
(MeHg) by methanogenic bacteria present in sediments of fresh and oceanic
water. MeHg is then bioaccumulated and bioconcentrated as it passes up the
aquatic food chain. All fishes contain some MeHg gnd vertebrates at the top of the

food chain contain the largest quantities.

This compound produces profound alterations on the developing central nervous
system (CNS), and in adults it can lead to severe and permanent damage to the
CNS (Clarkson, 1997). Although the latest reports about groups of people whose
diet is based on fish and are exposed to MeHg do not confirm previous
assessments of CNS damage (Myers et al., 2003), epidemic poisonings have
occurred in Japan and Irak, resulting from the consumption of MeHg-contaminated
fish and alkilmercury-treated seed grain, respectively. Neurological disorders in
adults most frequently included constriction of the visual field with reduced visual
acuity, paresthesia of the extremities and perioral region, impaired two-point
discrimination in the extremities, impaired vibration and joint point sense, deafness

to high tones, and ataxia. Neuropathology in these cases revealed characteristic




lesions of the cerebellum and cerebral cortex. The cerebellum was severely
atrophied, with granule-cell degeneration, proliferation of astrocytes, and thinning
of the myelin. Atrophy in the cerebral cortex was most pronounced in the calcarine
cortex (primary visual cortex) and in the precentral gyrus (primary somatosensory
cortex). Neurological impairments in infants and children include severe
psychomotor retardation, progressive microencephaly, and persistence of primitive
reflexes, hyper-reflexia, hypersalivation, and incontinence. Additional motor signs
include spasticity, hyperkinesia, ataxia, generalized tonic convolutions, and

myoclonic jerking. Visual disturbances range from constriction of the visual field to

blindness (O’Kusky, 1992),

The mechanisms of MeHg toxicity have been extensively investigated in
experimental models, both in vivo and in vitro. These studies indicate that MeHg
act on diverse targets and that neuronal death is caused by more than one
mechanism. There is evidence that several cellular functions are impaired by
MeHg, including intracellular Ca*? (Minnema et al., 1989) and glutathione (GSH)
homeostasis, as well as maintenance of the mitochondrial membrane potential

(Sarafian, 1996; Shenker et al., 1999).

Several studies have suggested oxidative stress as one of the major mechanisms
involved in MeHg-induced neurotoxicity (Sarafian, 1996). MeHg depletes
intracellular GHS, through inhibition of cysteine uptake in astrocytes (Ou et al,
1999; Shanker et al., 2001). Several antioxidants such as selenite, vitamin A and

C, catalase (Sanfeliu et al., 2001), estra-1, 3, 5 (10),8-tetraene-3,17a-diol (J-811),




17B-estradiol (Daré et al., 2000), troxol (6-hidroxy-2, 5, 7, 8-tetramethylchroman-2-
carboxylic acid), and n-propyl galate (PG), a free radical scavenger and superoxide
dismutase (SOD) (Shanker and Aschner, 2003), display a neuroprotective effect

against MeHg neurotoxicity.

On the other hand, MeHg perturbs a number of cellular processes that most
certainly include astrocytic failure to maintain the composition of extracellular fluid.
The adequate function of astrocytes is very important, since their functions include
neurotrophic factor secretion, control of extracellular pH and ionic balance as well
as uptake and metabolism of neurotransmitters, including the excitatory amino acid
glutamate. The preferential damage induced by- MeHg to astrocytes offers a
potential explanation for its neurotoxicity. MeHg is concentrated in these cells and
rapidly induces astrocytic swelling. A number of resents studies involvement
astrocytic swelling (Aschner et al., 1998), phospholipase A2, glutathione and
glutamate in MeHg-induced neurotoxicity (Aschner, 2000; Shanker et al., 2002).

These findings contribute for the understanding of the neurotoxicity by MeHg.

2. Glutamate and excitotoxicity.

The amino acid L-glutamate is considered the major mediator of excitatory signals
in the mammalian CNS and is probably involved in most aspects of normal brain
. function, including cognition, memory and learning. Also, it plays major roles in the
developing CNS, including synapse induction and elimination, cell migration,

differentiation and death. Most neurons and even glial cells have glutamate




receptors in their plasma membranes (Kho, 1991). Further, glutamate is a
transmitter substance also in peripheral organs and tissues as well as in endocrine
cells. The brain contains huge amounts of glutamate (about 5-15 mmol per kg wet
weight, depending on the region), but only a tiny fraction of this glutamate is
normally present extracellularly (outside or between the cells). The concentrations
in the extracelluar fluid and in the cerebrospinal fluid (CSF) are normally around 3-

4 uM and 10 uM, respectively (Hamberger et al., 1983; Lehmann et al., 1983).

Glutamate is continuously released from cells and immediately removed from the
extracellular fluid. It exerts its signaling role by action on glutamate receptors,
which are located on the surface of the cells expressing them. Therefore, the
glutamate concentration in the surrounding extracellular fiuid determines the extent
of receptor stimulation. It is of critical importance that the extracellular glutamate
concentration is kept low, since excessive activation of glutamate receptors is
harmful, and glutamate is thereby toxic in high concentrations. In addition, for
economy reasons it is necessary to conserve the glutamate released. Intracellular
glutamate is considered non-toxic, but it should be keep in mind that intracellular

glutamate may not be completely inert (Danbolt, 2001).

Three different families of glutamate receptor protein have been identified. One
family of glutamate receptors is activated by the glutamate analogue N-methyl-D-
aspartate (NMDA) and these receptors (NR1, NR2A, NR2B, NR2C and NR2D) are

collectively referred to as NMDA-receptors. Another family of receptors is activated




by a-amino-3hydroxy-5-methyi-4-isoxazole propionic acid (AMPA) and by kainate
(Hollmann and Heinemann, 1994). The NMDA and AMPA/kainate are ion channels
(conducting only Na* or both Na* and Ca’) and are collectively referred to as
ionotropic glutamate receptors. The third family of glutamate receptor consist of G-
protein coupled receptors, the so-called metabotropic receptors (mGIuR1-8) which
are subdivided into groups I, Il and Ill. Group | receptors are coupled to
phospholipase C and thereby to inositol triphosphate and diacylglycerol production,
whereas group Il and lll are negatively coupled to adenylate cyclase.

Activation of ionotropic glutamate receptors has been shown to increase energy
consumption and lead to influx of Na* and Ca'?, which have to be pumped out
again in a process requiring energy. It therefore also makes sense that neurons

became more vulnerable to glutamate after energy deprivation (Sanchez-Carbente

and Massieu, 1999)

Excitatory amino acid receptor-mediated neurotoxicity (excitotoxicity) has been
proposed to contribute to neuronal loss in a wide variety of neurodegenerative
conditions. Considerable evidence implicates NMDA receptor in the processes of
excitotoxicity (Danbolt, 2001). This process can cause secondary damage by
overexciting nerve celis. Excessive glutamate can damage nerve cells in several
ways. One damage pathway starts when an over activation of the glutamate
receptor NMDA, opens calcium-permeable channels capable of allowing massive
Ca*? influx and also can trigger the release of Ca* from intracellular stores (Chao,

1995). A number of potential factors leading to cell death might be activated by




severe Ca'’ elevations. For example, Ca'?-activated proteolytic enzymes, like
calpains, can degrade essential proteins. Moreover, Ca*%calmoduline kinase II
(CaM-Kll) is activated, and a number of enzymes are phosphorylated, which
increases their activity. Furthermore, Ca*?-dependent endonucleases can degrade
DNA. In addition, mitochondria have an important role in the regulation of
intracellular calcium concentration. An increased entry of Ca™ into the
mitochondria is believed to enhance the mitochondrial electron transport, by

increasing the production of reactive oxygen species (ROS) (Dunchen, 2000; Ward

et al., 2000).

All these mechanisms, together with enhanced oxidative stress, can induce cell
death through necrosis as well as apoptosis, a type of programmed death.
Apoptosis is a physiological process during development (Clark, 1990; Ferrer et al.,
1992); it can also be induced in adult brain through traumatic injury (Rink et al.,
1995), other brain insults (Nicotera et al., 1996; Ferrer et al., 1995), or as a

possible mechanism to eliminate cells from inflammatory brain lesions.

Astrocytic glutamate uptake is a potential mediator of mercury neurotoxicity
(Aschner et al., 1995, 2000). MeHg inhibits glutamate uptake in cultured astrocytes
at low micromolar concentrations (Brookes and Kristt, 1989; Kim and Choi, 1995),
and increases D-aspartate release (Aschner and Lo Pachin, 1993). In parallel, it is
well established in vitro, that the chronic low-level inhibition of glutamate uptake
resuits in neuronal death (Rothstein et al., 1993). More recently, it was found that

MeHg in synaptic vesicles, decreased [3H] glutamate uptake involving the

—___



H+ATPase activity. Until now, the toxic effects of MeHg on CNS were attributed

mainly to an impairment of glia glutamate transporters (Porciuncula et al., 2003)

3. MeHg and apoptosis

The cell degeneration in the CNS in MeHg intoxication could be induced by various
pathways leading to apoptosis. Cerebellar granule cells are a sensitive target for
MeHg neurotoxicity, when are treated with lower doses that MeHg showed
morphological changes characteristic of apoptosis (Kunimoto, 1994; Nagashima et
al., 1996). Also, MeHg inhibits the migration of cerebellar granule cells in model
system for neural development. The impaired migration was a possible cause of

the apoptotic death of external granule cells (Kunimoto and Suzuki, 1997)

More recently, it was found that MeHg caused . a significant increases in the
number of apoptotic cells, but exclusively in immature cultures of fetal rat
telencephalon (Monnet-Tschudi, 1998). It has been demonstrated in vitro, that

exposure to mercury in the micromolar range leads to apoptotic neuronal death

(Castoldi, 2000).

The mechanisms through which MeHg produce apoptosis have been explored in
lymphoid cells. Shenker and collaborators (2000) found a significant increase in the
presence of cytochrome-c in the cytosol of these cells after exposure to MeHg, and
the translocation of cytocrome c¢ to the cytosol has been show to trigger the
downstream apoptotic cascade (Coyle and Puttfarcken, 1993). Specifically,

cytosolic cytochrome ¢ is known to activate cysteine-aspartate-specific proteases




(caspases) that are constitutively present in most cells, residing in the cytosol as
inactive proenzimes. Activation of this family of proteases is responsible for much
of the cellular destruction and morphogenic alterations associated with apoptosis.

Nishioku et al. (2000) provided the first evidence that MeHg, at relatively low
concentrations, induces apoptosis in primary cultured rat microglia, predominately
by the caspase-mediated and partially by the endosomal/lysosomal system-

mediated mechanisms (Daré et al., 2001).

4. Hypothesis and objectives

The above mentioned antecedents point out to an unbalance of glutamatergic
neurotransmission as a possible cause of MeHg toxicity. Our hypothesis is that
very low doses of MeHg produce increases in the glutamate extracellular
concentration in vivo, which in turn induce neuronal and astrocytic damage. This
study will focus on to the evaluation of functional parameters of the CNS in the
range of concentrations that do not provoke over toxicity, but that represent the
main concern about human health effects of low-level MeHg exposure. We want to
analyze in vivo glutamate extracellular levels and its possible participation in brain
damage assessed though morphological, behavioral and apoptotic markers.

We can undertake this study using the rat as animal model because numerous
studies have allowed to establish comparisons among human and animals,
concerning qualitative and quantitative features of neuropathological and
neurobehavioral effects of MeHg exposure (Burbacher et al., 1998). These

comparisons reveal similarities in neuropathological effects of MeHg on humans

and animals at different exposure levels.




The objectives of this work are:

1.

To analyze the effects of the MeHg in micromolar range on glutamate
extracellular levels in the rat cortex in vivo.

To determine whether the MeHg concentrations that induce changes at
glutamate levels lead to alterations Iin the astrocyte, using the
inmunohystochemical staining of the glial fibrilar acidic protein (GFAP).

To evaluate the behavioral performance of rats in the water maze, after
stereotaxic application of MeHg in the hippocampus.

To determine whether the MeHg concentrations that induce changes of
glutamate extracellular levels also induce apoptosis.

To determine the involvement of NMDA receptors in the apoptotic process
induced by in vivo exposure to MeHg, using known concentrations to produce

significant increases of extracellular glutamate.
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1. Introduction

The target site of mercury is the central nervous sys-
tem (CNS), where dufferent mercury compounds (organic
and morgame) alter parameters related W svnapte func-
tion producing diverse bhehavioral and ncuropathological
cltects [6.9.22]. The molecular mechanisms whereby
mercury causes CNS damage have remaimed clusive. how-
cver, @ number ol recent reports convey important in-
formation towards the understanding ot methylmercury
(MceHy) neurotoxicity.

In vitro. st has heen demonstrated that Mel iy can affect
newronal and astrocvoe function in many  dilferent ways,
Fhe major mechanisms mvolved in McHe neurotoxicity
currently explored are the generation ol oxidative stress
26,320, disruption of intracellular calcium homceostasis
[TT12.06.34] and mterference with membrane transport,
espectallv inhibttion of glutamate uptake by astrocvies
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mduced neuronal damage that has been gammge support
through difTerent expernmental approaches [2] 10 s well
established i vitro, that the chirone Tow-level inhithition of
elutamate uptiake results e nevronal death (24300 pos
sibly through cellular processes subsequent o nereises ol
mtracellular caleium and reactive axveen species (ROS)
production elicited by the prolonged action ol glutunate at
postsynaphic receptors [ 23300 In this respect. the pa
ticipation of MeHg on cach of the steps leading 1o
excitotoxie neural damage has been demonstrated. Moo
increases the release of calewm from intracellular orean
clies [ 1112, 16] and blocks calcinm mTus through mliiple

1

calewm channel subtvpes [ 3] which modifies mtracellu

lar calcium concentrations amd neurotransmitier releas
[20]. In addivon, MeHye has high atfimy for thiols, which
results e the depletion of intracellular elutathione leadmy 1o
accumulation of ROS 26271 Osadative stress by asell
inhtbits the astrocvtic slutmmate uptake niechanisms
throush a direct action on the ransporter protems [ 37 38]
and it has been recently shown that the slibiton ol
excitatory amuno actd transport twdaced by Melle w cyl-

tured astroevtes can be reversed by lowernnge the Tevels ol




ROS by micans of catalase |1} Neonronal death. necrotie or
apoptotic, observed with micromolur cancentrations applicd
to granular cerebellar cells [7] or alter subechrone oral
administration of MeHg |23, could result tron a combin-
tion of these alteranons

[t 15 an important piece ol information © know whether
NMeHy s able to nerease glutamate concentrations e the
bram m yivo. Anamportant difference between in vivo and
m vitro condinons m this case s the simultaneomis presence
and relative mtegrity of both cellular elements capable ol
regulatimg extracellulir glitamate levels, namely neurons
and astroevies [ 10151 Altheugh the mevitable development
ol gliosis at the microdialysis site represents a disturbance ol
the svstem. the validity of the microdialysts technique o
observe i vivo glutamate Nuctitions 1 response o con
dittons such as hvpoxia and ischemia s supported by
numerons studies [4R3]0 Therefore, we used this tech-
nique moorder 1o measure the acute effects of MeHg on

utamate levels mothe cortex of awake rats

v

. Muaterials and methods

Female Wistar rats, bred in house and weighing 230 260
wowere used in these experiments according to the ~Guide
lnes for the Use ol Apimals m Neuroscience Rescarch™ by
the Society of Neuroscience, The anmmals were anesthetized
with xvluzine  ketamime and placed i a stereotaxic appar-
atus, the skull was exposed and a hole was drilled for
placentient ol a guide cannula on the Trontal cortes (stereo-
O mme L 255 mim, at 45 from
the vertical). The cannula was fixed to the skull with anchor

taxic coordinates: AR

screws and acrylic cement. After the surgery. rals were
mdividually honsed durmg a 48-h recovery period

For the microdialysis experiments. @ concentiie probe (2
mim membrane length, Boanalyucal System, West Lalay-
ette, USAL recovery 23 2 0.2%0) was inserted into the gnde
cannula. The dialysis probe was perfused at a flow rate of 2
phmin withy o solution contanung 147 mM Nach 46 mM
KOl and P2 mM CaCla pH 740 Sample collection was
performed every 30 mm and started 1 v atter the beginnimg
ol the pertusion. After three baseline samples, 10 or 100 1M
MeHe prepared in perfusion solution that contained exactly
the same concentration of NaCl, KO and CaCls than the
previous one were infused during the next thiree samiples (90
mim). The inttal solutton was restored tor the lfast three

samples. The change of solutions is performed by means of

aoswirch that allows the continuons {low ol the perfusion
solution through of the probe

For antino acid quantification, the samples were preder-
ivatized with O-phiatadehyde (3 mg OPA 625 1) meth-
anol, 5.6 ml 0.4 M borate butter, 25 41l 2-mercaptocthanol.
pH 9.5) and separated by means of HPLC psing o CIR
reverse-phase column (Allteeh Associates. Deerfield. 11
with fluorometric detection (Perkin-Elmer, San Jose. CAL
USAL The mobile phase was i 30 mM sodiim acetate

I B Jwaves ot al Newmotigifog

hutter contunmg 13% weirahivdiolurn pll 59 and e
clunon was performed by means of o hinear methanol
gradent. An external stapdard was used oo construct o
calibration curve for ghutamate and the samples were dduted
so it readines el within the Tieal range. The concentra
ton of alutamate obtamed front cach simple wis expressed
i nneromolar unis

For the statspenl analvsis, we performed aomied mulin
variite analysis usme the followmg fived Tactors: tme (1
9, pertod (hisall exposire amd postexposure for cach dose)
and o random factor of anoad o8 151 Usig RO seliwigre
(Irom The R Development Core Team, version 40102002
we performed o hinear nused model Tined by REML.

[ The contrast function

acceording to Piiherro and Bates [28
contrsdit [36] was apphied 1o disungwmshe berween the
different factors averages

A the end of the mcrodialvss siomphing, the s were
saeriticed. the bra removed and Hixed wm phosphaste-bul
fered tormaling For the lustolovical venlicattion ol the
placement ol the prabes, 40 M ek Trozen slices were
stamed witle cresyl violer and exanmmed  nmcroscopieally
The erterty o melude the dma eollected  trom o given
animil e the subsequent anmalysis were the absence ol
hemorrhage and the correct placement ol the probe witlin
the frontal cortex o the v

[he reagents were |-!llL'|i.|'\<>Ll Irouty Svevne (S0 Loy
MO, Caledon Lab, (Georgetown, Ontarnod and MelTe o

Alfa Aesar (Ward Hhill, MA)

3. Results

Fre. | shows cresvl violet stined coronal sections
lhl'nil'__'h the cortex ol a rat :.’il(‘;.ﬂll\'!l with a ncrodidysts
probe. Because of the anvled magectory, the prabe crossed
through the frontal cortex. The extent of the ghoss alom

the path ol the probe as mdicated by the darkly stuned

cellular elements around the onlice varned wmone annnals
However, in most cases: the devree ol local taumn was s
shown i Fres TAD while the site of apsertion of the proby
coted m by 1B

the experments meluded mo s study. the probe wae

could present a damage as severe as pres

confirmed w have been placed witlun the frontal cortex

The exposire (o MeHe provoked siemilicant mereases ol
extracelulur elutamate at hoth conventitions tested. The
pattern was dilterent foy cach anpmal, but m ol cases
elutamate levels were lueher dunmg Melle exposure. The
mixed effects statistical analvsis showed a sigmificant ellect
of the Melle exposure | F3.108) T 2 [ ol

Fre, 2 shows the temporal course of elutmate refease m
etght s exposed 1o 1O N AMelly durme Samples 4 6
Post-hoe contrasts show sz hcant dilference hetween e
basal and the Melle exposire conditions (/' 004y The
postexposure (Samples 70910 were not stendcantly ditferen
from the exposure fevels ¢ 130 The mean basal gluta

mate concentfation for this espernment was 24X 003




B fuavez vl

Fre b Phatomucrographis of 40 mecoronal sections from the bram of o rat

implanted wlva meeroadiby speprobes stumed with cress b vkt The sites of

the lesion are murked wath astersks. (A1 Trgectory of the probeat AP 008
ey redubive te Birewrnn (3 She of insertion of the probe (AP 12 mmi

243+ 7.06 durmg exposure and T6.1T =321 (M alter the
CAposLe

10 UM
40

30 4 T
20 J

extracellular glutamate (uM)

10 |
MeHg 1
g
||  Co— | EEm— T = B v T -T 1
1 2 3 4 5 6 7 é 9
sample

i 2 The mean e = S 0 glutemate coneentration obtamed from 30 nmm
samples of dialvsare meoagin ammals Fach poind sepeacies the mean
S AT Joosis o cight samples Samples |3 were hasal values, Samples
4t represent the expostre petod oo 10N Mel b e pertusion Hod
Al Ssnples 700 the postesposure period . The vilues ploned were not
worreted 101 recinery

Neprseavii ey and Teratolow 20 2000 T8~ 7T il

100 uM
800

600

4.00

extracéllulal glutamalte ((IM)
r.'
1—*—!
\

2:00 4
| MeHg
Do 4—— : : i = .
1 2 3 4 5 6 7 ] ]
sample

Fre 3 Tume course ol extiwdHular glutamate hetore (Samples TVl
(Samples 4G amd atter Csamples T A Ml T exposare Shinoieh

e mierodsilvsis probe o sesen sitals Fach pomt represerns e

mean S M frome secto et samples The collected fracnons 30 pnn
cichl were analvzed by HPLC warly fooromerag detection lor glubiiiale

comtent. The valpes plotted ware tot ormected Tor recovers

The pattern of response ol seven ammiials o 100 M
MeHg is presented in Free 30 The merement ol extracel-
lular glutamate under MeHy exposure was significantly
higher than i the basal condition. but not ax high as thal
observed under 1O pM Mellg, Post-hoe contrasts shawed s
signilicant difference berween the basal and the Melp
exposure conditons (7 001 but not hetween the expo-
sure and the postexposure condition /% 7H. which means
that, afier the exposure. glutamate levels remam elevaed i
least during the B0 min lollowing exposure either at 10 or
100 pM MeHe: Basal glutamate Tevels i this experiment
were not duterent oy those ol the vats exposed to T
MeHg. namely 209+ 057 pM, During Melly exposure, if
reached A08 =097 oM and continue al 481« LT M
after exposure

4. Discussion

The present study demanstrates that the acute expaosire
of the cerebral cortex ol Treely moving anmmals o Meblg
results e significam mereases ol the extrmcellular concen-
tration of glutamite. The relevance of this m v ivo assess-
ment ol glutamate levels s that ot shows the resultant of
several altected Tunctions, previously explored m vitrag on

ane tightly reaulated varables mamely alutannte exireel
Tular levels.

In vitro, exposure to 1O N Mele doarmg 10 mm Tas
been shown to produce 30% miohion of glutanae uphithe
in rat astroevees |1 7] that was not aceompamied by eyvtatox-
wwity. Av longer exposire periods (13 days), however.
luman astrocvtes mculture hegin o show signs of evtolox
wity and mortaliy 1321 By comrst, nearans are el e
vinerable w the toxie elfects of Meblg, In s o, contmons




expostre to 10 pM MeHg durig several hours results in
Lo,

mouse [7.26.32]. We wanted, therefore. to know whether

newronal death mocell cultures from human, rat and

the levels of extracellular glutamate at this MeHg concen-

tration were mcereased m vivo. when astrocytes are expected
to he relatively intact but with a decreased rate of glutamate
uptike. On the other hand. the gher concentration tested
(100 (M) has been reported to completely suppress action
potentials e rat hippecampal shees [39]0 1t s also m the
rance of concentrations that suppress sodium and potassium
currents in neuroblastoma cells [29] and there are no reports
of m vitro glutamate uptake whibition at this Mekg con-

centration. Adult rats orallv exposed during 20 days to
MeHe exhibit hind leg paralvsis and have an approximale
brain Hg concentration of 100 pM 23] From these ante-
cedents, we expected a decreased neural acuvity and areater
eviotonienty when the rat cortex is exposed o 100 (M
McHg. therefore, we wanted to compare the in vivo levels
of extracellular glutamate under a low- and a high-cxposure
to MceHy.

It should be noticed that MeHg is not delivered
totally 1o the cortical ntissuc. but circulated through the
microdialysis probe. which would result in a local intusion
of about 2.5 and 25 pM. respectively. Given that MeHg s
assumed to remam and diffuse i the tssue. the highest
concentrations that could be butltup in this expernment were
1O and 100 N

We have found that acute exposure to MeHg imcreases
glutamate extracellular concentrations 2. 4-fold at 100 M

and “.8-fold at [0 pM. Bram imjury and genceration of

oxidative stress s assoctated with 2.8-fold increases of

extracellular glutamate [13], and the local slutamate con-
centrations that we observed can be associated with produc-
ton ol hvdroxyl radical [8]. We think that these increased
concentrations i the synaptic space may contribute to
progressive dysfuncuons of the neuron and astrocvie. We
cvelsat 10 M MceHg as
a result of several evens: energy deticits i astroeyies and
neurons leading to reduced uptake mediated by ROS. an
mntracellular caleium concentration elevation due to over-

mterpret the increase i glutamale

stimulation of glutamate receptors that also could produce
ROS, as well as an inercased glutamate release due to
metmbrane depolarizavon and deficient calcium butfering.

By contrast, at 100 pM. there 1s a substantial inhibition of

sodinn potassium and calcium channels by MeHge. which

could result e lower release rates than 1 the previouos
situation. although ROS and the subsequent uptake mhibi-
ton are stll present due o effects on the muochondna and

disturbances of calcium homeostasis

glutamate under these experimental conditions remains
stenificantly clevated during 90 min after the exposure
Mcllye due to prolonged or perhaps irreversible changes in
extracellular elutamate regulation.

Ihe relevance of this study to human exposure could be
marginal. given that neurotoxicity of MeHe s consequent (o
chronte meestion of contaminated food, not o an acute,

direet brain exposure to this compound. However. the range

[35]. Extracellular

ol concentrations tested i this study are not far away fram
those that can be tound i the brain o exposed humans )

has been proposed [6.18] that the bram Hye concentraton
can be estimated from blood or haar He levels and, aecord
ing to these estimates. concentrations rangmge from 25 1o [0

M are associated with delayed psvehomator development
in chitdren and meexposed adults with miimal siens ol
McHg posoning [ T4]0 while children with severe disabil
iies (Mimamata disease) had estimated bram concentration

during development rangmyg front 35 1o 70 v and can he

estimated as high as 12 M several vears alier binh |21
Stice excitotoxicity s a multactonal process, the rela-
tionship between accumulanon ol cxtiacelinlar ¢lutanate
and neuronal cell death s not necessanly dieet (19 In
vivo, it has been recently demonstrated  that substantial

clevations of extracellular glutamate result i neuronal
damage only when accompaniced by an energy-deficit con
firming the hink between mitochondrial dystfuncion and
glutamalte excitotoxicity [ 331 We helieve that the capaciiy
of MeHg to mpair mitochondrtal metabolism and this
a kev

vivo ihibition of glutamate uptake plavs role on s

neurotoxic propertics.
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INTRODUCTION

Several recent reports in the literature support a role of the neurotransmitter
glutamate in methylmercury (MeHg)-induced neurotoxicity. When MeHg
concentrations in the micromolar range are directly applied to the cortex of freely
moving rats, several-fold increases in extracellar glutamate are observed in
microdialysates [1]. According to in vifro studies, the increase of extracellular
glutamate reflects a blockage of its reuptake by the astrocyte [2]. As a result, the
prolonged action of glutamate at postsynaptic receptors can lead to apoptotic or
necrotic cell death [3,4], specially when exposure takes place during development.
Miyamoto and collaborators [5] demonstrated recently that during the early
postnatal development the sensitivity of the NMDA receptor is enhanced leading
to an increased production of cytotoxic free radicals. This enhanced sensitivity is
attributed to the augmented expression of the NR2C subunit of the NMDA receptor

at this stage, which is insensitive to Mg®* blockade [6].

Although excitotoxicity is expected after MeHg exposure, it is not know whether
this event provoke a permanent damage to the central nervous system (CNS) or it
Is repaired through the plastic mechanisms available even in the aduit brain. It is
well documented that in cases of human exposure to MeHg, although pregnant
mothers did not show CNS impairment, their children were born with severe brain
damage [7,8]. It is therefore necessary to link the observed neurochemical

changes in rats to cellular of subcellular elements in the CNS in order to




characterize MeHg-induced damage. Also, given the reserve capacity of the brain
to counteract from subtle to extensive damage, the functional assessment of the
whole animal contributes to determine the impact of a restrained chemical lesion
to the complex output of the CNS.

For this purpose, we undertook a series of immunohistochemical and behavioral
experiments in animals exposed in vivo to a single dose of MeHg through
stereotaxic injection in the cortex and hippocampus, using concentrations known
to produce significant increases of extracellular glutamate [1]. Since MeHg is a
prototype neurotoxicant [9] that increases the immunohistochemical staining of the
glial fibrillar acidic protein (GFAP), we used this technique and the water maze
test, which detects functional alterations of the hippocampal formation after

exposure to a wide range of toxicants [10-11].

METHODS

Female Wistar rats (200-250g) were anesthetized with xylazine-ketamine and
placed in a stereotaxic apparatus. Two MeHg doses and 2 periods of time after
infusion were tested, therefore, 6 groups of 4 rats each were prepared for
immunohistochemistry, and 6 groups of 5 animals each for the behavioral tests.
Through a hole drilled in the skull 3.2 ul of a sglution containing either saline, 1.2
or 12 nmol MeHg were slowly injected in the frontal cortex (stereotaxic coordinates
AP: 0.1, ML 0.25, DV -0.2) or the hippocampus (AP -0.38, ML 0.23, DV 0.3),

according to Paxinos and Watson [12].




For GFAP determinations the animals were deeply anesthetized at 7 or 14 days
after MeHg infusion and perfused through the hearth with saline and
paraformaldehyde and the brain extracted. Frozen coronal sections (40 uM) were
obtained and immunostained for GFAP . The images were digitalized and the
optical density compared between MeHg and saline infused animals. The non-
lesioned hemisphere was used as internal control for the quantification of
immunostaining in each slice.

The behavioral testing in the watermaze of the animals that were injected in the
hippocampus took place during 7 consecutive days, starting 3 days and 9 days
after MeHg infusion, in order to evaluate the animals during the first and the
second week post-lesion, respectively. The watermaze was a 2 m diameter pool
constructed according Morris and collaborators [10]. The pool was filled with water
made opaque by adding a small amount of milk. The escape platform was a 10 cm
diameter plexiglass surface hidden 2 cm beneath the surface of the water and
fixed in one of the quadrants of the pool. Four trials were given to each rat per
day and 3 parameters were considered in order to evaluate performance in this
task: escape latency, number of failures to reach the platform/number of trials and
number of times crossing the tank/minute, as previously reported [13].

The statistical significance of the results was determined through ANOVA for the
parametrical data, and through Kruskal-Wallis followed by Mann-Whitney for the

non-parametrical data (failure rate and number of times crossing the tank/minute ).




RESULTS

Examples of GFAP-immunostained slices for each treatment are shown in figure
1. One week after MeHg or saline infusion a more intense glial reaction was
observed in the MeHg-treated animais (Fig 1B and 1C) than in controls (Fig 1A).
The quantitative analysis of optical density revealed 6 % and 16% increase of
GFAP staining in the 1.2 nmol and in the 12 nrnol-group, respectively (p = 0.06),
while the same analysis performed in the animals studied 2 weeks after MeHg
administration did not show any significant effect (Fig 1 D,E and F).

The mean latencies to find the hidden platform in the watermaze test are shown in
the figure 2 . Both groups exposed to MeHg presented similar escape latencies to
those of the control group. When tested during the first week after the lesion,
controls decreased the escape latency from 237+ 64 s on the firstday to 59 £ 81 s
on the seventh day, the 1.2 nmol-group from 135 £ 112 to 45 + 43 and the 12
nmol-group from 209 + 69 to 68 £ 68. For all 3 groups, latencies were shorter in
the animals tested the second week after the surgery as shown in fig 2 B, but no
significant differences among them were found. The number of times crossing the
tank/ min as well as the number of failures to reach the platform were not

significantly different among treated and controi groups (data not shown).

DISCUSSION

Methylmercury, as a potent neurotoxicant, has been shown to affect several of the
parameters of neurotransmission on which it has been tested. MeHg interferes

with such diverse processes as neurotransmitter release and uptake,
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mitochondrial function, membrane transport, enzymatic activity and protein
synthesis, to mention only a few. Therefore, in order to asses the relevance that
excitotoxicity may have as a mechanism of MeHg-induced neurotoxicity, it is
necessary to support the neurochemical findings with behavioral and
morphological studies. In this context, knowing that the increase of GFAP in
response to neurotoxicants is transient, with the time course of the decline varying
from toxicant to toxicant [14], we wanted to know whether the doses of MeHg that
induce important increases of extracellular glutamate elicit also an important
astrocytic response. As expected, 2 weeks after the lesion GFAP immunoreactivity
is identical between control and exposed animals, but one week after the lesion,
only a tendency to a dose-dependent increase on cortical GFAP is observed (fig
1). This indicates that either important increases of extracellular glutamate in the
adult rat does not initiate a robust glial reaction, or that this reaction occurs
earlier than one week after the lesion, since gliosis is regarded as a relatively late
step in the cascade of events that follows neuronal damage.

It is also plausible that local increases of extracellular glutamate do not produce
an important neuronal damage that can not be repaired through the reserve
mechanisms of the brain. Our results from the watermaze point in this direction,
since we did not observe any difference between the performance of control and
exposed animals. This does not imply that the approach is inherently insensitive,
but may reflect the reserve capacity of this brain region to absorb the toxic insult

without an alteration in behavior [15].




In summary, the adult rat does not develop significant astrocytic reactions nor
place learning deficits after the single exposure to amounts of MeHg that may
result in glutamate-induced excitotoxicity. These results suggest that the role of
glutamate in MeHg induced-neurotoxicity is limited to sensitive periods during

CNS development.

ACKNOWLEDGEMENTS
This research was supported by the grant 28431-M from CONACYT, México and

CO1-FAI-11-7.90. B. Juarez was supported by a fellowship from CONACYT

(158390).

REFERENCES

1. Juarez BIl, Martinez ML, Montante M, Dufour L, Garcia E, Jiménez-Capdevilie
ME: Neurotoxicol. Teratol. 24:767 (2002)

2. Brookes N, Kristt DA: J. Neurochem. 53: 228 (1989)

3. Aschner M, Yao CP, Allen JW, Tan KH: Neurochem. Int. 37:199 (1999)

4. Castoldi A, Barni S, Turin I, Gandini C, Manzo L: J.Neurosci.Res. 59:775
(2000)

5. Miyamoto K, Nakanishi H, Moriguchi S, Fukuyama N, Eto K, Wakamiya J,
Murao K, Arimura K, Osame M: Brain Res.901:252 (2001).

6. Mitani A, Watanabe M, Kataoka K: J. Neurosci. 18:7941 (1998)

7. Burbacher T, Rodier PM, Weiss B: Neurotoxicol. Teratol. 12: 191 (1998)

8. Choi BH: Prog. Neurobiol. 32:447 (1989)




9. O’Callaghan JP: Neurotoxicoloy, Tilson HA & Mitchell CL, (eds), Raven Press,
New York, p. 83 (1992)

10. Morris RGM, Garrud P, Rawlins JNP, O'Keefe J: Nature 297: 681 (1982)

11. McNamara RK, Skelton RW: Brain Res. Rev. 18: 33 (1993)

12. Paxinos G, Watson WC: The rat brain in stereotaxic coordinates, 4th Ed.
Academic Press, San Diego CA (1998)

13. Castillo CG, Montante M, Dufour L, Martinez ML, Jiménez-Capdeville ME:
Neurotoxicol. Teratol. 24:797 (2002)

14. O’'Callaghan JP, Miller DB, Reinhard JF: Brain Res 491:297 (1990)

15. Zigmond MJ, Abercrombie DE, Berger TW, Grace AA, Striker EM:Trends

Neurosci. 13:290 (1990)




FIGURE LEGENDS

Figure 1. Coronal sections (40 um) immunostained for GFAP showing the cortex
of rats infused with saline (A), 1.2 nmol MeHg (B) and 12 nmol MeHg (C) one
week before sacrifice and immunohistochemical staining. The same sequence is
followed in the bottom panel for animals sacrificed 2 weeks after the infusion of

either saline or MeHg.

Figure 2. . Mean escape latency scored by the experimental groups over the 7
days (28 trials) of water maze testing. Each animal was given 4 trials per day, thus
each point represents the mean escape latency that was averaged to yield mean
performances per group. Saline -¢-; 1.2 nmol Mel—ig [ 12 nmol ?.Trials started 3

days (A) and 9 days (B) after MeHg or saline stereotaxic infusion.
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46" Annual Meeting of the Western Pharmacology Society

T-37)

PHARMACOKINETICS OF STAVUDINE BY ORAL ADMINISTRATION TO HEALTHY MEXICAN
VOLUNTEERS. Y. Escobar, C.R. Venturelli, E. Escobar-Islas and C. Hoyo-Vadillo, Department of
Pharmacology, CINVESTAV-IPN, Av. IPN 2508, Mexico city, Mexico. (carlos@mail.cinvestav.mx)

We evaluated the pharmacokinetic of the antiviral drug stavudine. It was given in a single
dose of 40mg to healthy volunteers, 9 male and 15 femzales between 30 and 40 years old. After the
oral administration, blood samples were taken at time 0, 15, 30, 45 and 60 min for the following 2, 4
and 6 h after the drug administration. Stavudine was quantified by an specific HPLC method. We
found that the Cmax is almost the double of the one reported in the literature (1424.3 ng/ml vs
876.3 ng/ml), the t1/2 is just a bit longer (1.3 h vs. 0.9-1.2 h) and the AUC 0-infinity falls in the
reported range (1663.9 h*ng/ml in our study vs the reported range from 1246 to 1945 h*ng/ml).

T-38)

EFFECTS OF LOCAL INFUSION OF METHYLMERCURY ON THE RAT BRAIN: GFAP
IMMUNOHISTOCHEMISTRY AND WATER MAZE LEARNING. B. I. Juarez', L. M. Martinez', C. G.
Castillo?, M. Giordano?, C. Garcia' y M. E. Jiménez-Capdeville'. 'Departamento de Bioquimica,
Facultad de Medicina, Universidad de San Luis Potosi, México; ? Laboratorio de Plasticidad
Cerebral, Centro de Neurobiologia, Universidad Nacional Autonoma de México, México.

The acute exposure of the rat cortex to methylmercury (MeHg) induces large increases of
extracellular glutamate concentrations. According to current hypothesis on MeHg neurotoxicity,
brain damage occurs through excitotoxic events, especially during development, when the NMDA
receptors are more susceptible to overactivation by glutamate, while in adults those augmentations
may be counteracted by regulatory mechanisms. Using immunohistochemistry, we quantified GFAP
presence 1 and 2 weeks after the stereotaxic injection in the rat frontal cortex of 1.2 and 12 nmol of
MeHg or saline, concentrations which are known to increase extracellular glutamate. Image analysis
of the stained slices showed a dose-dependent increase in immunoreactivity 1 week after the lesion,
but those increases were not longer present at 2 weeks. In order to explore whether MeHg exposure
produces functional alterations, the same amounts of MeHg were injected in the hippocampus, and
a specific task for damage in this region, the water maze (6 days), was performed 1 and 2 weeks
after the lesion, starting on days 3 and 9 after the surgery, respectively. Latency to reach the
platform, number of times crossing the water tank and number of failures were used to evaluate
performance. None of the exposed groups showed differences compared to the control group
(saline infusion). These results indicate that in adult animals, the increases of extracellular
glutamate produce reversible changes of glial reactivity markers in the cortex. If these transitory

changes take place also in the hippocampus, they do not result in learning deficits of the water
maze task.
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Abstract

Methylmercury (MeHg) inhibits glutamate uptake by astrocytes, and this could
contribute to neuronal loss through excitotoxicity. We explored the extent at which
this phenomenon is involved in MeHg —induced apoptosis in the rat cortex. MeHg
amounts that increase extracellular glutamate (1.5, 7.5 and 15 nmol) were
stereotaxically administered to adult rats before apoptosis determination by means
of TUNEL assay. All doses produced significant apoptosis increases. The previous
administration of MK-801, a non competitive NMDA receptor antagonist, reduced
apoptosis significantly, which dgmonstrates that excitotoxicity contributes

importantly to MeHg neurotoxicity.




Methylmercury (MeHg) is an environmental poliutant that alters the normal
structure and function of the central nervous system (CNS), particularly when
exposure takes place during development [6]. The underlying mechanisms of
MeHg neurotoxicity have been extensively investigated using in vitro and in vivo
models, and now we know that it perturbs a variety of cellular functions, such as
intracellular Ca*? homeostasis [15, 13, 25], glutathione balance [21], mitochondrial
membrane potential [11], control of reactive oxygen species (ROS) generation [/,
29], and glutamate uptake [1, 12] among others. As a consequence of these
alterations, in vitro studies have demonstrated, that neurons and glial cells
exposed to MeHg undergo cell damage and either apoptotic or necrotic death,
depending on the intensity of exposure and the developmental stage of the

nervous system [4, 18].

N-methyl-D-aspartate (NMDA) receptors play a crucial role in MeHg neurotoxicity,
since their overactivation after MeHg-induced glutamate uptake inhibition can
trigger the excitotoxic cascade [5]. The developing CNS is more susceptible to the
toxic effects of both N-methyl-D- aspartate and MeHg , due to the reduction of
voltage-dependent Mg?* blockage at this stage. This damage can be partially
prevented by the administration of MK-801, a ron-competitive NMDA-antagonist
[16, 17]. Although the NMDA receptor-mediated increase of intracellular Ca”
concentration elicits a series of cellular changes that can lead to apoptosis, MeHg
can activate by itself different downstream points of the apoptotic cascade, as

mentioned above. Therefore, the extent at which an excitotoxic phenomenon is




involved in MeHg-induced apoptotic cell death has not been fully elucidated. In this
respect, in vitro studies employing astrocytes [2, 24, 7, 8], glioma cells [3],
microglia [20, 18], and cerebellar granule cells [10, 19, 4] have contributed to
characterize the apoptotic pathway induced by MeHg in isolated neural cell types
in vitro, however, the in vivo outcome of a sustained glutamate reuptake inhibition
by MeHg has not been addressed. Thus, the purpose of this work was to
determine the protection provided by the non-competitive NMDA antagonist MK-
801 against the induction of apoptosis by in vivo exposure to MeHg through
stereotaxic injection in the rat cortex, using concentrations that significantly

increase the extracellular glutamate [12].

Experiments were performed in adult female Wistar rats (200-250 g) bred in house.
Animals (5-9 per group) were anesthetized (ketamine 100 mg/kg, and xylazyne 8
mg/kg) and received stereotaxic injections of sterile saline or MeHg solutions (1.5,
7.5 and 15.0 nmol in 3.8 uL ) into the frontal cortex (AP =+ 0.02 cm; LM =+0.25 cm:;
DV =-0.4 cm from bregma), according to Paxinos and Watson [22]. Two time-
points after injections were selected to asses apoptosis, 24 and 48 h, according to
a preliminary series of experiments to trace the time course of the phenomenon.
Parallel experiments with animals treated with MK-801 malate (CALBIOCHEM,
Darmstadt), (10 mg/kg, i.p.), were performed to analyze the participation of NMDA
receptors.

Under deep pentobarbital anesthesia, rats were perfused through the hearth with

saline (50 mL) and phosphate buffered saline (PBS, 50 mL). After decapitation, the




brain was extracted and a 3 mm diameter section around the injection site, from
the cortex surface to the corpus callosum, was dissected over ice. Immediately, the
tissue was mechanically disaggregated in PBS, and 1 x 10° cells were isolated for
apoptosis assessment (viability was always higher than 99%, evaluated by tripan-
blue dye exclusion). Detection of apoptosis was performed by TUNEL using the
APO-DIRECT™ staining kit (Phoenix Flow Systems, San Diego, CA), according to
the manufacturer’s instructions. Brain cells were analyzed in a FACSCalibur flow
cytometer (Becton Dickinson, San Diego, CA) and the results were expressed as
the percent of apoptotic cells. Raw data were log transformed and analyzed by a
factorial ANOVA, including MeHg (four levels or doses) and antagonist (two levels,
presence or absence) as factors. Pos hoc Fisher test was employed to establish
multiple comparisons among groups. A value cf p < 0.05 was considered
statistically significant. All analyses were performed with the software STATISTICA
version 6.0.

We first determined the dose dependency of apoptosis rate at both times studied.
All MeHg doses tested produced a highly significant increase of apoptosis, at 24 h
and 48 h (p < 0.001 in both cases). At 24 h a clear dose response effect was
observed, increasing from 0.8% of apoptotic cells in the control group to 5.7, 14.9
and 23.7 % at the three doses employed, respeactively (Fig. 1). The induction of
apoptosis was even higher at 48 h but only for the group exposed to 1.5 nmol
MeHg, the groups exposed to the two higher doses of MeHg showed an important
decrease of apoptotic cells (Fig 2).

Administration of MK-801 resulted in a significant reduction of apoptosis at 24 h (p

< 0.001) and 48h (p < 0.05), at all doses employed. At 24 hours, the MK- 801




decreased the MeHg-induced apoptosis between 62 and 78% (Fig 1), while at 48
hours the decrement ranged from 30 to 67 %. Despite the considerable protection
provided by this antagonist, the levels of apoptosis were still significantly higher
than control values when 7.5 and 15 nmol MeHg were employed for 24 h, as well
as those of the group exposed 48 hours to 1.5 nmol.

These results demonstrate that direct MeHg application in the rat cortex triggers an
apoptotic process, which takes place in a dose-dependent way within 24 hours
after exposure. Together with our previous fincings [12], the dose dependency of
apoptosis upon MeHg exposure supports the hypothesis that cell death is
associated with an increase of extracellular glutamate through the inhibition of
glutamate reuptake [1]. The finding that 48 hours after exposure the apoptosis
percentage falls in the high-dose exposed groups could be related to the multiple
sites of action of MeHg downstream the apoptotic cascade [28], which can be
simultaneously involved when higher amounts of MeHg are available. The
apoptotic process elicited by high MeHg doses, massive within the first 24 hours
and decreasing the second day, could be due to the disappearance of Tunel-
positive apoptotic cells, a phenomenon that is consequence of their fragmentation,
and subsequent forming apoptotic biebs that are phagocytosed by neighboring
cells.

The dependency upon NMDA receptor activation for the apoptotic process found in
this study indicates that the effect of MeHg is strongly associated with
excitotoxicity. However, the inhibitory effect of MK-801 decreased to non-significant

levels in rats exposed to 7.5 nmol, and less than 50% of inhibition was observed in




the group exposed to 15 nmol. This suggests a more important participation of
other apoptotic mechanisms than NMDA receptor activation under these
circumstances. The present experimental method does not allow to identify the cell
types that were dying through excitotoxicity, since NMDA receptors are present in
both neurons and glia [23]. However, in vitro studies refer that both astrocytes,
microglia and neurons die upon MeHg exposure [18], and that a neuron subset,
the cerebellar granule cells, is not protected by MK-801 [4]. In addition, these in
vivo experiments require the administration of anesthetics, which in the case of
ketamine represents also a blockade of NMDA receptors, that could lead to an

underestimation of the actual apoptotic rate induced by MeHg.

In conclusion, the present study demonstrates the importance of glutamate toxicity
under low-level MeHg exposure. Given its slow elimination rate from brain tissue,
environmental exposure to this compound can result in a low but sustained
iInduction of apoptosis, mainly through the cascade that starts with overactivation of
NMDA receptors. Other neurotransmitters as dopamine can also participate in this
phenomenon, since its extracellular concentration increases under MeHg exposure
and this phenomena is prevented by NMDA receptor blockade [9]. The
concomitant increase of neuromodulators such as dopamine brings the membrane
potential closer to NMDA receptor activation. Although it is described that
neurotoxicity elicited by an excess of extracellular glutamate acting at NMDA

receptors is simultaneously counteracted by the activation of metabotropic




receptors [14], excitotoxicity still accounts for an important fraction of CNS

apoptosis elicited by MeHg exposure.
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FIGURE LEGENDS

Fig 1. Effect of MeHg exposure on percentage of apoptotic cells in the rat cortex.
Twenty-four hours after stereotaxic injection of either MeHg or saline (sham group)
apoptosis was determined by means of the TUNEL assay, as described in the text.
Black bars represent the mean + SEM of 5 to 9 animals. The effect of NMDA
receptor blockade through previous i.p. administration of MK-801 is presented in
the white bars (n = 4-9). * p < 0.001 comparec to the sham group, ® p< 0.001
compared to the sham + MK-801 group, © p < 0.001 compared with the same dose

applied in the presence of MK-801, factorial ANOVA followed by Fisher test.

Fig 2. Effect of 3 doses of MeHg on the apoptosis rate in the cerebral cortex of
rats (black bars) and in presence of MK-801 (white bars) 48 hours after exposure.
Bars represent the mean + SEM of 5 to 9 independent experiments. * p < 0.001
compared to the sham group, ® p< 0.01 compared to the sham + MK-801 group, ¢ p
< 0.01 compared with the same dose applied in the presence of MK-801, factonal

ANOVA followed by Fisher test.
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