
 



 

UNIVERSIDAD AUTÓNOMA DE SAN LUIS POTOSÍ 

FACULTAD DE CIENCIAS 

 

 

SIMULTANEOUS FIRST-PRICE AUCTIONS FOR 
COMPLEMENTARY GOODS AND SOME APPLICATIONS. 

TESIS 

 

PARA OBTENER EL GRADO DE: 

 

DOCTORA EN CIENCIAS APLICADAS 
 

 

PRESENTA: 

KARLA FLORES ZARUR 
 

 

DIRECTOR DE TESIS: 

WILLIAM JOSÉ OLVERA LÓPEZ  
 

 

 

SAN LUIS POTOSÍ, S.L.P.  ABRIL 2023  



i

Karla FZ
0

Karla FZ
ss



 



Declaración de autoŕıa y originalidad
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Resumen

En esta tesis mostramos diferentes Equilibrios Bayesianos Simétricos para
un contexto de m subastas simultáneas cerradas del primer precio y n postores
por bienes complementarios. El Caṕıtulo 3 consideramos que las valoraciones
individuales de los m diferentes bienes son de conocimiento común e idénticas
entre los individuos y, de llegarse a obtener el conjunto completo de bienes por
un mismo comprador, un valor privado e independientes es obtenido por éste in-
dividuo. En el Caṕıtulo 4, analizamos un problema de m subastas simultaneas
cerradas del primer precio por bienes complementarios idénticos. Adicional-
mente ofrecemos un análisis del rendimiento esperado del vendedor para cada
caso. Finalmente, en el Caṕıtulo 5 desarrollamos dos aplicaciones de juegos
Bayesianos aplicado al contexto de Cadenas de Suministro.

Abstract

This thesis shows different Symmetrical Bayesian Nash Equilibrium in a
context of m simultaneous first-price sealed-bid auctions and n bidders for com-
plementary goods. In Chapter 3, we consider that the individual valuations of
the m different goods are common knowledge and identical among bidders and if
the whole set of goods is gained by the same buyer, a private independent extra
profit is obtained by this buyer. In Chapter 4, we develop a problem where we
have m simultaneous first-price sealed-bid auction, for identical complementary
items. On addition, we provide an analysis of the seller expected revenue for
each case. Finally, in Chapter 5 we develop two applications of Bayesian games
in supply chains.
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Chapter 1

Introduction

People constantly interact in societies, economies, politics, and almost every
situation involves more than one person. The importance of understanding how
people behave and how they should be advised in strategic situations lets us
anticipate the possible ways in which a situation can result. Game Theory
offers a full spectrum of tools to analyze almost all kinds of interactive situations,
cooperative and non-cooperative, where a person’s behavior affects all other
people involved and the final outcome depends on the joint actions.

The seminal work which starts with this theoretical mathematical analysis
in 1944 is John Von Neumann and Oskar Morgenstern, “Game Theory and Eco-
nomic Behavior”. Later, in 1953, John Nash proposed a more general way to
model a game considering a different strategy space and proposed the most im-
portant solution for games, known as the Nash Equilibrium. Decades from these
works, Game Theory has very important implications on design, analysis, and
execution of all kinds of mechanisms oriented to many different proposals like
pricing, public politics applications, cost and gain determination, bargaining,
voting, fair division, matching, and so many others.

Particularly, situations where people compete for some objective, as in a
contest for a job or buying a unique piece of art, are contexts that concern non-
cooperative Game Theory. In this Thesis, we will focus on these interactions
where we try to understand how agents, called players, behave, and how they
should be advised in strategic situations, called games. We do this by providing
a formal framework and a unified language that makes it possible to describe
and analyze specific contexts and discuss ideas about the agents’ behaviour.

In non-cooperative Game Theory, we can find different ways to construct
models with strategic settings depending on the availability of the information
for the players. The latter refers to the knowledge that every agent has concern-
ing with the actions that they and others can take, the previous actions that
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Introduction

others or themselves took in the past, probabilistic situations, and in general,
every information piece that affects the performance of the game. Contexts,
where agents do not have all the information relevant to the decision problem
are usually called incomplete information games. An example of these kinds of
situations is where players do not have relevant information concerning other
players’ preferences about a disputed asset like in the case of the auctions which
is the main subject of this thesis jointly with the study of some supply chain
applications in similar incomplete information contexts.

Bayesian Games are the proper tool for analyzing any incomplete infor-
mation game. These games were proposed first in 1967 by John Harsanyi,
a Hungarian-American economist that received the Nobel Memorial Prize in
Economic Sciences in 1994. The study of auctions is focused on the strategic
behavior of bidders and sellers, that is, how to bid according to the information
that bidders have and how much income to expect for the seller’s case according
to the implemented mechanism. The analysis of bidder’s strategic behaviour,
and seller’s revenue in auctions, dates from 1961 and is attributed to William
Vickrey for his work named “Counterspeculation, auctions, and competitive
sealed tenders”, although other authors studied auctions before from different
perspectives. Also, studying the allocation mechanism, that is to say, the rules
under which an object is assigned to an agent, is an important approach in
auction analysis. There are so-many different mechanism to allocate an item
through an auction, but in this Thesis, we will focus our attention on the well-
known first-price sealed-bid mechanisms due to the theoretical importance and
the simplicity in which this mechanism is applied in a real context.

As we introduced before, auctions as Bayesian games consider that bidders
do not have accurate information about how the auctioned objects are valued
by their opponents. Classically, this lack of information is modeled by indepen-
dent and identically distributed random variables associated with the individual
valuation of the auctioned object. This assumption represents a kind of symme-
try regarding the inaccurate information among bidders and the fact that each
bidder’s valuation cannot be influenced by how the object is valuated by other
agents. This kind of model has been successfully studied by Vickery (1962) as
well as Milgrom and Weber (1982) and more recently by Young, H. Peyton, and
Shmuel Zamir (2015); all of these studies consider symmetry in bidding strate-
gies which depend on the value of the item. Lorentziadis, P. L. (2016) includes
asymmetry in strategic bidding analysis and includes other approaches like the
mechanism design.

As we can see, auctions are a very well-studied subject when the analy-
sis focuses on one single auction for one single object. When we reformulate
the situation as a problem of simultaneous auctions for complementary goods,
where the first-price sealed-bid mechanism is preserved, results in the literature
regarding strategic behavior become scarce, notwithstanding the multiple ap-
plications within electronic commerce and other areas. Krishna and Rosenthal
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(1996) reach some results regarding to the strategic behavior in a framework of
second-price simultaneous auctions with synergy. Besides, Rosenthal and Wang
(1996) show necessary and sufficient conditions for a strategy to be a symmet-
ric equilibrium in a particular case of first-price simultaneous auctions. Later,
Szentes and Rosenthal (2003) show an equilibrium with interesting geometrical
interpretation for a case of three identical items, two bidders, and complete
information for a case of complementary goods. Subsequently, Szentes (2007)
states a model of two simultaneous auctions, two objects, and two bidders with
complete information for the case of complements and substitute goods.

We will board two cases of first-price sealed-bid simultaneous auctions for
complementary goods. The theoretical complexity focuses on the fact that the
general probabilistic expressions do not allow us to offer standard solutions
because there is no direct way to obtain useful expressions for mathematical
manipulation. This problem arises because of the complementary nature of
the goods, which makes us consider that the bidding functions depend on two
variables: the individual valuation of the item and the extra profit one can
obtain when having the whole set of items. Thus, comparing bidding functions
of two or more variables is almost impossible without making assumptions. For
example, consider a situation where two bidders participate in two simultaneous
auctions. In the former, a seller is auctioning a very rare sticker album, and
in the latter a package of stickers for that album. Each bidder has a personal
valuation of the sticker album, the package of stickers, and the whole set of items.
It is clear that, in this case, the valuation of the set of items exceeds the sum of
the valuations for the individual auctioned items. Thus, with this example, we
can conceive that bidders may be tempted to bid above their separate stand-
alone valuations of the individual items hoping to win the set as a reasonable
way to act, although they would taking a risk of overbidding on items in case of
failing to win the whole set. This Thesis proposes solutions for two particular
cases of simultaneous auctions for complementary goods and also includes two
applications of Bayesian games in a supply chain context.

Also, we analyze the relationships and different ways of interacting and co-
ordinating between the agents involved in any of the phases of production or
supply, which is known as the supply chain. A supplier-retailer supply chain,
which is a two-link, single-channel supply chain, represents the relation between
a manufacturer who produces some kind of merchandise to sell to a retailer who
purchases it for the purpose of re-selling to a final consumer. In general, the
links represent the different phases in the chain and the channels represent the
different options to carry out the same phase of the process. For example, the
manufacturer-retailer relationship where there is a single supplier and two re-
tailers would be described as a single-link, two-channel supply chain. This type
of model has been successfully studied by Yang and Zhou (2006) considering a
context where retailers form a duopoly. Likewise, F. Chen (2003), Chiang et al
(2005), among others, have provided interesting studies regarding the analysis
of different supply chain models.
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Our interest in this subject lies in the importance of the analysis of supply
chains to improve the operation of commercial activity and in the increasing
interest for corporations to invite people and companies to join as business
partners. In the first application, we board the importance of the information
exchange in a bargaining problem between a supplier and a retailer using signal-
ing games. In the second application, we analyze a bargaining situation between
a supplier and two retailers in a context where it is not possible for the supplier
to satisfy his commercial partners’ demand.

Thus, this Thesis is divided into four chapters of which a summary is pre-
sented below:

• First, we will start with a Preliminaries chapter where we present some
classical notation for defining a game, strategies, the solution concept of
Nash equilibrium, a Bayesian game, and the Bayesian Nash equilibrium
accompanied by some examples for clarifying the definitions.

• In Chapter 3 we develop our first simultaneous auction for complemen-
tary goods model. We propose a model where bidders rationalize their
bids according to two criteria: their own valuation of each item and an
extra profit. We assume that a bid is given by a bidding function that
depends on those criteria, say b(x, y); the problem arises when we try to
follow the classical methodology and compare bids for calculating the cor-
responding probabilities. For instance, if we consider the previous sticker
album example, and we have that a bidder values the sticker album in zero
but the whole set of items in 100, and another bidder values the sticker
album in 10 and the whole set of items in 90, how do we should compare
the bids given by b(0, 100) with b(10, 90)? Even assuming that bidders ra-
tionalize the bids in a symmetrical way, according to their own subjective
valuations, it is difficult to offer a general way to compare the bids.

In this chapter, we develop a case where the individual valuations of m
different objects are identical among the bidders and this information is
common knowledge. Assuming complementarity among the goods, there
is a chance of earning a private independent extra profit only in case when
the whole set of goods is gained. A particular example is when someone
who wants a buildable collectible toy participates in several simultaneous
auctions to get each piece but with the particularity that the individual
pieces are valued at a standard market price, and the complete set val-
uation is a private and independent value that exceeds the sum of the
valuation of the individual pieces. Nowadays, the above situation often
occurs due to the fact that users of electronic commerce platforms acting
as sellers face a decision problem about how to choose the selling mecha-
nism of their merchandise. They can choose to auction all the items, try
to sell them at a posted price, or put a subset of them up for sale and
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auction the rest, etc. Hilda Etzion et al (2006) have a result about the
optimal choice for the seller when a similar situation occurs.

For solving the problem related before, in this paper we propose a bidding
function b(x, y) = g(x) + h(y) as the sum of two increasing and non-
negative functions such that g(0) = h(0) = 0, where g represents the part
of the total bid concerning only to the individual valuation of an item and
h represents how much more an agent is willing to bid based on the extra
profit. This particular bidding form implies that the change on b, when a
criterion changes, only depends on that criterion. The previous assump-
tion allow us to offer a Symmetric Bayesian Nash Equilibrium (SBNE),
given by:

bij = b(aj , ci) = g∗(aj) + h∗(ci)

where:

g∗(aj) = aj ;

h∗(ci) =
(n− 1)

∫ ci
0
xF (x)n−2f(x)dx

mF (ci)n−1
.

The way in which we provide the proof is constructive, and it ensures
that our candidate is, in fact, an SBNE. Additionally, we have that under
our equilibrium, a bidder with the highest valuation over the whole set of
items will gain the complete set, ensuring that no bidder has a negative
profit even if they bid above his own individual valuation. Also, Section
3.2 shows that under this equilibrium, the seller’s expected profit when he
performs simultaneous auctions and a single first-price sealed-bid auction
for the whole set of items is the same. Finally, Section 3.3 shows some
remaining open questions and the main challenges on this topic.

Previous results have been summited and subsequently accepted for their
publication in the Journal of Dynamics and Games.

• In Chapter 4 we develop a problem where we have m simultaneous first-
price sealed-bid auction, for identical complementary items. An example
of this problem can be observed in the electronics industry when some
companies try to carry out products under special conditions that can be
sold as brand-new products. These special products have been passed for
different processes like repair or reassembly, or they were simply removed
from de original packaging and returned. Subsequently, companies usually
allocate such products by auctioning lots of identical goods through special
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e-commerce pages where retailers look for good-price merchandise. We see
that in this case, potential buyers are interested in a complete lot because
they are not consumers and they want the items for re-selling. We assume
that each potential buyer has an individual and independent valuation for
an item and, for his part, the seller has a lot of items that have to decide
how to sell. Thus, we study two different ways to sell a lot of identical
items: first, through m simultaneous first-price sealed-bid auctions where
if one bidder wins the whole lot the seller gives him a bonus. Second,
selling a whole lot of items (bonus included) by one first-price sealed-bid
auction.

From the simultaneous auction case, we study if higher income for sellers
can be obtained through the different ways to offer a bonus. We propose
that the bonus is given as a function of the individual valuation of the
object according to a function H(·), which could be interpreted as free
delivery, extra pieces, an amount of money, etc. Thus, we see that in
this case, the valuation of the complete set of items is greater than the
sum of the individual valuations of the objects for all the bidders. Under
this context, we propose that bidders rationalize their bids according to
the valuation of a single object and the extra utility given by the bonus.
The previous framework will allow us to take this situation as a Bayesian
game considering the individual valuation as a private and independent
value and, find the equilibria associated with the strategic behavior of
the bidders when they rationalize their bid symmetrically according to a
bivariate function b(ai, H(ai)). For this case, we obtain the equilibrium
bidding function that follows:

bi = b(ai, H(ai)) = α∗(ai)

where:

α∗(ai) =
(n− 1)

∫ ai

0
xF (x)n−2f(x)dx

F (ai)n−1

+
(n− 1)

∫ ai

0
H(x)F (x)n−2f(x)dx

mF (ai)n−1
.

For more details see Section 4.1. Additionally, in Subsection 4.1.1 we
checked if the expected return of the seller is affected by different proposals
for the function H(·) and we compare our simultaneous auction case with
the situation where the seller decides to auction a complete lot of objects
together with the bonus through a single closed auction of the first price.
Surprisingly we conclude that the seller’s expected return in both cases is
the same.
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The results of this chapter have been summited and subsequently accepted
for their publication by the EconoQuantum journal.

• Finally, in Chapter 5 we develop two applications of Bayesian games in
supply chains.

First, in Section 5.1 we model a supply chain that considers only one
supplier and one retailer that interact and interchange market demand
information. In this proposal, we are focused on information exchange
considering that the agents’ utility functions take into account variables
like production quantity, ordering policy, purchase quantity commitment,
the cost of item breakage, and stock-out costs. The interaction between
the supplier and the retailer can be broadly classified into three groups
based on the following assumptions with respect to the market demand:
the interaction is governed by constant demand, the seller and the buyer
independently study how demand varies, and the interaction between the
seller and the buyer favors the quality of the information regarding the
demand. In this application, we will study the latter case, specifically
we will analyze the case that assumes that the retailer has better market
information since he is closer to the market.

Thus, we analyze this situation from the Signaling Game perspective,
proposing that the agents’ utility functions are similar to that proposed in
I. Slimani and S. Achchab’s (2014) supply chain model because they con-
sider the variables that we mentioned before in a simple and general way.
For simplicity, we use the basic structure of a signaling game and con-
sider that market demand is a discrete random variable with two possible
realizations: low and high demand. We develop two models under dif-
ferent assumptions regarding the bargaining policies between agents and
find out that rational behaviour does not necessarily implies cooperation
between agents unless we consider policies that promote this cooperation,
this means that an equilibrium behaviour can imply that agents lie or
do not follow a signal. For more details of a model that implies non-
cooperative actions as part of a rational behaviour refer to Section 5.1,
and for more details about a model where rational behaviour is always
side by side with cooperation, see Section 5.1.1.

This results have been summited and subsequently accepted for their pub-
lication in the Cuadernos de Economı́a journal.

Secondly, in Section 5.2 we develop a model that involves one supplier and
two retailers competing for the seller’s production lot. This is a situation
where is known that the complete supplier’s production lot is not enough
to satisfy individual demands from the two commercial partners. We focus
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on proposing auctions as an allocation mechanism that ensures for a seller
to satisfy completely one agent’s requirement, partially satisfy the other
agent’s requirement, and guarantees a better-expected outcome compared
with selling the whole lot to a given price, say p̂, making an arbitrary
allocation. We propose that a bid is composed by two information pieces:
the true requirement and the unitary bid that a bidder is allowed to pay
in case his unitary bid where the highest one. Thus, our mechanism only
takes into account the unitary bid as a rule to allocate the items according
to their magnitude. Additionally, we consider that buyers face a stock-
out cost that affects symmetrically both players. This symmetry could be
the case of considering similar commercial partners that are constituted
in a similar way and face the same consequences when they can not sat-
isfy their own clients’ demands. We model the previous situation as a
Bayesian game where it is supposed that the other agent’s requirement
and the valuation for one single item are independent random variables.
Additionally, we assume that players bid symmetrically according to an
increasing function b(·) that depends on one item individual valuation.
Thus, we fix the problem from player one perspective and assume that
player 2 bids according to his own item’s personal valuation. Under these
assumptions, we were able to find for this case an equilibrium bid given
by:

b∗(v1) =

(
q1 + 1

2q1

)(
v1 + α−

∫ v1
0
F (x)dx

F (v1)

)
+

(
q1 − 1

2q1

)
p̂.

For more details of this construction sees Section 5.2. We have to mention
that this work has not been sent to a scientific journal yet, so the work
could be modified according to the comments of some referees. For a
discussion of this case see Subsection 5.2.1.
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Chapter 2

Preliminaries

People used to describe a game as a situation where the participants lose or
win something according to some rules as sports or leisure games. Nevertheless,
this description is limited to analyzing interactive behavior and the consequences
for the agents involved. Instead of that notion for describing a game, we will
focus on defining a game as a precise and logically consistent structure describing
a strategic setting associated with a situation. We will identify a set of players,
a complete description of the actions they can do, a description of players’
information about other players’ moves in every possible part of the game, how
the players’ actions lead to outcomes, and a description of players’ preferences
over the possible outcomes. In this chapter, we will provide a formal definition
of a game and the way we will use it to analyze decision-making problems.

One possible way to define a game is in its extensive form, which is useful
to analyze situations with many stages, as in the game of chess. The extensive
form is also useful to model situations with stochastic moves like the roll of dice
as well as to model contexts with imperfect information. The latter means that
some agents have to make a decision without knowing the precise combinations
of movements in previous stages.

The concept of a strategy of an agent will be taken as a complete description
of what a player does every time he has to make a decision in the game, even
if one or more of those moments are exclusive from each other. We will denote
the player i’s strategy set by Si and a particular player i’s strategy (contingency
plan) by si. Thus, we define a strategy profile set1 denoted by S = S1×S2×
...× Sn containing all possible ways to perform a game.

1The set can be finite or infinite depending on the model. The generalization from the
finite strategy profile set definition to the infinite profile set, is direct, although some classical
results could depend on this feature.
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There is an alternative way to define a game, its normal form. The normal
form of a game consists on modeling how a decision-maker chooses a plan of
action given that all others choose simultaneously and independently. Under
this interpretation, each player is unaware of other players’ choices when he
chooses an action. The model consists of a finite set of players N , a set of
actions Ai for each player i ∈ N , and a utility function u to model the players’
preference relation over the possible outcomes.

Definition 2.1. A normal form game G consists of

• a finite set N = {1, 2, ..., n}, the set of players or the set of agents,

• an action profile set A = A1 × A2 × ... × An, where for each player
i ∈ N , Ai is a nonempty set of actions available to player i. We say that
a ∈ A is an action profile,

• a utility function u = (u1, ..., un) where, ∀i ∈ N , ui : A→ R.

Thus, we denote a game G by a tuple 〈N, {Ai}i∈N , {ui}i∈N 〉.

Remark. To refer only to player i’s utility we will write ui(·).

Remark. In a normal form game, a player i’s strategy si is equivalent to a
player i’s action ai.

Remark 2, foregrounds that a normal form game actions abridge a com-
plete contingency plan described in a strategy. Thus, an action summarises a
total description of how the players execute their actions along several stages.
Sometimes we refer to a member of Ai as a pure strategy.

Remark. If the set Ai of actions of every player i is finite then the game is
finite.

A finite normal form game with two players can be conveniently modeled as
follows:

Figure 2.1: Game G: A normal form game.

Figure 2.1 represents a game where

A1 = {T,B},
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A2 = {L,R},

A = {(T, L), (T,R), (B,L), (B,R)},

u((T, L)) = (3, 3),

u((T,R)) = (4, 2),

u((B,L)) = (2, 4),

u((B,R)) = (2, 2).

Notice that each action profile a ∈ A describes a different way to play the
game and the function u describes the utility for every player. Thus, using the
notation of Remark 2 the utility for player 1 when the action profile is (T, L) is
given by u1((T, L)) = 3.

A central solution concept in Game Theory is Nash equilibrium. This
concept proposes a solution that implies agents’ rationality. Intuitively, if play-
ers are aware of their alternatives, they will choose their actions after some
optimization process. In this sense, we say that, as a minimal rationality re-
quirement, players always have to know their best responses for a given other
players’ action profile.

To define this concept properly, we must first propose a notation that allows
us to talk about all of the other players’ actions given a single player i. So, we
say −i to refer to those players. Thus, a−i is an action profile for every player
except player i, in general we have that a−i ≡ (a1, a2, ..., ai−1, ai+1, ..., an). To
refer to an action profile a distinguishing between player i’s action and the other
players’ action, we write a = (ai, a−i). Thus, we have the next definitions:

Definition 2.2. a∗i ∈ Ai is a best response to a−i if and only if, for all
ai ∈ Ai we have ui((a

∗
i , a−i)) ≥ ui((ai, a−i)).

Definition 2.3. An action profile a ∈ A is a pure Nash equilibrium
(PNE), if and only if, for all i ∈ N , ai is the best response to a−i.

Definition 2.3 expresses that some strategy profiles or action profiles have
desirable features that characterize players’ rational behaviour. Specifically, this
idea focuses on the Definition 2.2 which describes that, for all players, given the
other players’ actions profile, a rational player would choose the alternative that
maximizes his utility. In other words, a PNE is a strategy profile such that
given the other players’ actions, if any player i ∈ N changes his action, he
does not get a better outcome. We can observe an example from the game G
in Figure 2.1 when we focus on the strategy profile (T, L): we can see that if
Player 1 changes from action T to action B then he worsens his payment and
we have a similar consequence for Player 2 if he changes from L to R. As well,
if we observe the other strategies profiles {(T,R), (B,L), (B,R)}, we have that
both player 1 and player 2 can always get a better outcome if they change their
actions.
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Example 2.1. Each of the two people chooses either Head or Tail. If the
choices differ, Player 1 pays Player 2 a dollar; if they are the same, Player 2
pays Player 1 a dollar. A game that models this situation is shown in the next
figure:

Figure 2.2: Game G′: Matching Pennies.

Figure’s 2.2 game G′ shows a situation where the action profile is

A = {(Head,Head), (Head, Tail), (Tail,Head), (Tail, Tail)}.

We can observe that if we pick a strategy from A, no matter which one has
been chosen, there is always a way for players to get a better response, so we
do not have a PNE for this game. Until this point, we realize that our solution
concept from Definition 2.3 has very serious limitations since such strategy does
not always exist.

In order to solve the inconvenience of the previous framework we must pro-
vide a more general definition of a strategy profile.

Definition 2.4. Given a game G, a mixed strategy σi, is a probability
distribution over the strategy profile Si.

Notation.

• A player i’s mixed strategy will be denoted by σi.

• The i’s mixed strategies set will be denoted by Σi.

• The mixed strategies profile set Σ1 × Σ2 × ...× Σn will be denoted by
Σ.

• A mixed strategy profile will be denoted by σ ∈ Σ.

• For any finite set Si and σi ∈ Σi we denote by σi(si) the probability that
σi assigns to si ∈ Si.

• We call the support of σi the set of elements si ∈ Si for which σi(si) > 0.

Remark. A profile {σi}i∈N of mixed strategies induces a probability distribution
over the set S.
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Thus, a mixed strategy proposes that in a game the participants’ choices are
not deterministic but are regulated by probabilistic rules. This means that the
decision of a player can be governed by random behaviour. In simpler words,
we have that a player i ∈ N will make a decision according to a probability
distribution over the strategy set Σi. Often, those kinds of decision-making
situations happen in the real world, for example when someone has to decide the
color to dress for dinner, or when some government randomly audits taxpayers.
Now, we can generalize our first solution concept as follows:

Definition 2.5. A mixed strategy equilibrium (MSE), σ∗, is a mixed
strategy profile such that ui(σ

∗) ≥ ui(σ∗−i, σi) for all σi ∈ Σi and for all i ∈ N .

It would be useful to sort out under which conditions a game has or does
not have a Nash equilibrium. We have the next equilibrium existence theorem:

Theorem 1. (Nash, 1950): Every n-personal finite game has at least one
MSE.

Consider our Matching Pennies example from Figure 2.2. We have that for
all i ∈ {1, 2} the next strategy:

σi =

(
1

2
,

1

2

)
,

is a MSE.

The purpose of this thesis requires us to introduce the concept of a Bayesian
Game. This concept will allow us to analyze situations where agents have
incomplete information. These situations refer to an environment where players
do not have all the information relevant to the problem, as it can be when
players are not certain about other players’ characteristics. For example, when
someone is encouraged to get involved in a street fight, this person does not
know for sure if his opponent has better or worse abilities than him to fight.
Another example can be a soccer coach choosing a strategy for a match without
knowing if the opponent will be passive or aggressive on the soccer field.

There are different ways to define a Bayesian Game, depending on the pur-
pose. Harsanyi (1967) defined it as a tool to model situations where players’
notions of beliefs and knowledge appear as compensation for the lack of infor-
mation. In this model players’ uncertainty about each other is represented by
a set Ω of possible states of nature. Each state is a description of all players’
relevant characteristics like strategies profiles and the outcome set. Besides the
states of nature, we use a set Ti of possible types to give a more detailed de-
scription of the information that player’ have. The next definition will be useful
to model the different scenarios and an accurate description of the information
that a player could have:

Definition 2.6. A player i’s type ti ∈ Ti, is a player i’s belief profile with
respect to Ω and the other players’ beliefs profiles that characterize it.
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The types enclose very descriptive information for some given belief. For
example, a player i’s type ti describes in a broad sense not only the private
information about himself but also his own belief about others’ private infor-
mation. Furthermore, player i’s type ti also encloses a belief about the way
that others think about player i private information. Thus, we can think about
T = T1×T2×...×Tn as the types profile set. Establishing differences between
elements in T and elements in Ω is important. First, a type profile encodes a
bigger amount of information than a state of nature profile, which could be
the case that more than one type corresponds to the same state of nature, but
this distinction is not always relevant. For example, the classical approach of
auctions analysis only considers that the relevant information to encode in a
type is the bidders’ private subjective valuation of objects and the belief about
others’ private valuation. So, from this point, we will set Ω = T .

With the purpose of being able to describe a contingency plan for each
possible player’s type, the next definition will allow us to get a more robust
players’ strategies description than those we have proposed so far.

Definition 2.7. A decision function si(ti), with si : Ti → Si, indicates
player i’s strategy si ∈ Si when his type is ti ∈ Ti.

Thus, we can state the next formal definition of a Harsanyi Bayesian Game:

Definition 2.8. A Harsanyi Bayesian Game GB consist of

• a finite set N = {1, 2, ..., n}, the set of players or the set of agents,

• a strategy profile set S = S1 × S2 × ...× Sn,

• a types profile set T = T1 × T2 × ...× Tn,

• for each player i ∈ N a profit function π(si, s−i; ti, t−i) that denotes i’s
utility given that his type is ti, that he chooses si ∈ Si and that the other
players follow strategies s−i(t−i) = {sj(tj)}j 6=i,

• and for each vector (t1, t2, ..., tn) ∈ T , a distribution function F (·) over
the types profile.

Thus, we denote a game GB by a tuple 〈N, {Si}i∈N , T, {π(·)}i∈N , F (·)〉.

The probability distribution F (·) indicates the probabilities attached to each
combination of types occurring. Thus, we can transform a game of incomplete
information into one of imperfect information. Further, for all i ∈ N we denote
by Fi(t−i|ti) the probability distribution of types t−i of the players j 6= i given
that i knows his type is ti. That is, player i updates his prior information about
the distribution of the other types using Bayes rule upon learning that his type
is ti.

Thus, we have the next definition:
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Definition 2.9. A Bayesian Nash equilibrium is a list of decision func-
tions (s∗1(·), ..., s∗n(·)) such that ∀i ∈ N , ∀ti ∈ Ti and ∀si ∈ Si:∫

t−i∈T−i

πi(s
∗
i , s
∗
−i; ti, t−i)dFi(t−i|ti) ≥

∫
t−i∈T−i

πi(si, s
∗
−i; ti, t−i)dFi(t−i|ti).

Definition 2.9 applies the Nash equilibrium notion to a situation where play-
ers consider a bayesian utility function instead of a utility function. Consider
the next example taken from Watson, J. (2002):

Example 2.2. Consider a simple Cournot duopoly game with incomplete
information. Suppose that the inverse market demand is given by p = 10 −
Q, where Q is the total quantity produced in the industry. Firm 1 selects a
quantity q1, which it produces at zero cost. Firm 2’s cost of production is private
information (selected by nature). With probability 1

2 , firm 2 produces at zero
cost. With probability 1

2 , firm 2 produces at a marginal cost of 4. Call the former
type of firm 2 “L” and the latter type “H” (for low and high cost, respectively).
Firm 2 knows its type, whereas firm 1 knows only the probability that L and H
occur. So we have that F1(L|L) = 1

2 and F1(H|L) = 1
2 considering only one

type for firm 1 called ”L”. Let qH2 and qL2 denote the quantities selected by the
two types of firm 2. Then when firm 2’s type is L, its payoff is given by

πL
2 (qL2 , q1, L, L) = (10− q1 − qL2 )qL2 .

When firm 2’s type is H, its payoff is

πH
2 (qH2 , q1;H,L) = (10− q1 − qH2 )qH2 − 4qH2 .

As a function of the strategy profile (q1; qL2 , q
H
2 ), firm 1’s payoff is

π1(q1, q
L
2 ;L,L)F1(L|L) + π1(q1, q

H
2 ;L,H)F1(H|L)

=
1

2
(10− q1 − qL2 )q1 +

1

2
(10− q1 − qH2 )q1

=

(
10− q1 −

qL2
2
− qH2

2

)
Note that firm 1’s payoff is an expected payoff obtained by averaging the

payoffs of facing the low and high types of firm 1, according to the probability of
these types.

To find the Bayesian Nash equilibrium of this market game, consider the
types of player 2 as separate players. Then find the best response functions
for the three player types and determine the strategy profile that solves them
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simultaneously. The best-response functions are calculated by evaluating the
following derivative conditions:

∂π1

∂q1
= 0,

∂πL
2

∂qL2
= 0

and,
∂πH

2

∂qH2
= 0.

This yields:

q∗1 = 5− qL2
4 −

qH2
4 for player 1,

qL2
∗

= 5− q1
2 for player 2 type L, and

qH2
∗

= 3− q1
2 for player 2 type H.

Solving the associated system of equations, the Bayesian Nash equilibrium is
found to be the profile q∗1 = 4, qL2

∗
= 3, qH2

∗
= 1. In words, firm 1 produces 4,

whereas firm 2 produces 3 if their cost is low and high respectively.

As we have seen we can use Bayesian games to model many different kinds of
incomplete information situations. In this thesis, we are particularly interested
in modeling Auctions as Bayesian Games for exploring rational behavior from
bidders.

In the following chapters, we will keep the notation defined above to define
an auction as a Bayesian game. For example, for defining a first-price auction
for one object we have a set of bidders N = {1, 2, ..., n}, Ti = [0, v] the set
of possible types of player i ∈ N , and vi the type received by player i that
represent his or her private valuation of the object. We will denote F (·) :
[0, v]n → [0, 1] as the joint distribution of types and the associated density is
denoted by f(·) : [0, v]n → R+. The set of possible bids or strategies for player
i ∈ N , is Si = R+. As we have seen, under this modeling, any bidder who has
incomplete information about other buyers’ values is treated as if he is uncertain
about their types.

Thus, in the next chapter, we will present a problem of simultaneous auctions
for complementary different goods. In chapter four, we will work on a similar
problem but assuming identical goods. In chapter five we offer some applications
in the field of supply chains using signal games and auctions.
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Chapter 3

Simultaneous Auctions For
Complementary Goods and
Quasi-linear Bids

This chapter shows a Symmetrical Bayesian Nash Equilibrium in a context of
m simultaneous first-price sealed-bid auctions and n bidders for complementary
goods. We consider that the individual valuations of the m goods are common
knowledge and identical among bidders and if the whole set of goods is gained,
a private independent extra profit is obtained by the winner. For relaxing
and solving the so-many mathematical complications involved in the general
case we followed a classical methodology and proposed a particular bidding
function that implies linear separability. Under these assumptions, we obtain a
Symmetric Bayesian Nash Equilibrium whose functional form implies the classic
quasi-linear property for bivariate functions. In addition, we compare the seller
expected revenue between auctioning the complete set in one single first-price
sealed-bid auction versus auctioning each item in m simultaneous first-price
sealed-bid auctions.
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3.1 The model.

Let N = {1, 2, ..., n} be a set of bidders and M = {1, 2, ...,m} a set of items.
Each bidder, i ∈ N , has an individual valuation for each item j ∈ M , and it
will be denoted by aij . In this section, we study the situation where bidders
know their individual values for each item and that opponents have the same
valuations as well. This means that for every k, l ∈ N and for all j ∈ M we
have akj = alj = aj . On the other hand, each player i ∈ N has an individual
independent value denoted by ci that represents the extra profit that he gains
by obtaining all goods. Thus, bidder i’s valuation for the complete set of items
is vi ≡ a1 + a2 + ...+ am + ci.

Under this framework, we model a situation where bidders face m simul-
taneous first price sealded-bid auctions as a Bayesian Game where, for some
c̄ ∈ R, the extra profit is chosen independently by cumulative distribution func-
tion F (·) with density f(·) > 0 in an interval [0, c̄] and it is a private value for
each bidder.

We assume that all players follow a bidding strategy b(·). Thus, the game
will be analyzed from the point of view of one of the bidders, says bidder 1.
Knowing the individual valuations, his extra profit value, and the distribution
of the extra profit valuations of bidders 2, ..., n, bidder 1 has to figure out what
should be his best response. The bid of player i ∈ N for item j ∈ M will be
denoted by bji . Thus, {bj1}j∈M represents the set of bids from the bidder 1.

Notice that each bidder can obtain 2m possible subsets of items as the result
of the auctions, and therefore, excluding the case where all auctions are lost,
there are 2m− 1 terms weighted by their probabilities, relevant to the expected
utility of bidder 1. Thus, the general expression for bidder 1’s expected utility
is given by:

π({bj1}j∈M ) =∑
J⊂M

∑
j∈J

(aj − bj1)P

({
max

i∈N\{1}
{bji} < bj1

}
j∈J

,

{
max

i∈N\{1}
{bji} > bj1

}
j∈M\J

)
+

∑
j∈M

(aj − bj1) + c1

P

({
max

i∈N\{1}
{bji} < bj1

}
j∈M

)
. (3.1)

If the term (aj − bj1) is factorized from Equation 3.1, then we can note
that the probabilistic term associated to this factor is given by the marginal
probability of the random variable max

i∈N\{1}
{bji}. For example, if we consider a
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situation where m = 3, and we factorize term (a1−b11) from the expected utility
of bidder 1 we have simplified expression as follows:

(a1 − b11)P

(
max

i∈N\{1}
{b1i } < b11

)
=

(a1 − b11)[P

(
max

i∈N\{1}
{b1i } < b11, max

i∈N\{1}
{b2i } < b21, max

i∈N\{1}
{b3i } < b31

)
+ P

(
max

i∈N\{1}
{b1i } < b11, max

i∈N\{1}
{b2i } > b21, max

i∈N\{1}
{b3i } < b31

)
+ P

(
max

i∈N\{1}
{b1i } < b11, max

i∈N\{1}
{b2i } < b21, max

i∈N\{1}
{b3i } > b31

)
+ P

(
max

i∈N\{1}
{b1i } < b11, max

i∈N\{1}
{b2i } > b21, max

i∈N\{1}
{b3i } > b31

)
]

(3.2)

Thus, rewriting the general expression given by 3.1 we have:

π({bj1}j∈M ) =
∑
j∈M

[
(aj − bj1)P

(
max

i∈N\{1}
{bji} < bj1

)]

+ c1P

({
max

i∈N\{1}
{bji} < bj1

}
j∈M

)
. (3.3)

Now, we propose that every bidder rationalizes his bid for each item accord-
ing to a bivariate function that considers only two criteria. Additionally, we
assume that the other agents, aside from player 1, bid according to the indi-
vidual value of the good and the extra profit value. This means that bidders
i ∈ N \ {1} bid bji = b(aj , ci) with b(·) an increasing function in both variables.
Given those conditions, bidder 1 has to find his best response for this situation,
which is equivalent to choosing {xj}j∈M and y such that maximizes his expected
utility:

π({xj}j∈M , y) =
∑
j∈M

[
(aj − b(xj , y))P

(
max

i∈N\{1}
{b(aj , ci)} < b(xj , y)

)]

+ c1P

({
max

i∈N\{1}
{b(aj , ci)} < b(xj , y)

}
j∈M

)
. (3.4)

For this particular case of auctions, it is a desirable property for a bidding
function that the change to it, when a criterion changes, only depends on that
criterion. A general way to stage that property is by proposing a function b(·)
as a decomposition in the sum of two increasing and non-negative functions
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denoted by g and h such that g(0) = h(0) = 0, where g represents the part of
the total bid concerning only to the individual valuation and h represents how
much more is willing to bid based on the extra profit ci. Thus, assuming that
b(x, y) = g(x) + h(y) we have:

π({xj}j∈M , y) =∑
j∈M

[
(aj − g(xj)− h(y))P

(
max

i∈N\{1}
{g(aj) + h(ci)} < g(xj) + h(y)

)]

+ c1P

({
max

i∈N\{1}
{g(aj) + h(ci)} < g(xj) + h(y)

}
j∈M

)
.

(3.5)

With the previous construction, we can state our first result.

Theorem 2. For m simultaneous first-price sealed-bid auctions and n bid-
ders with common knowledge on individual valuations, private independent extra
profit and bidding strategy given by b(x, y) = g(x) + h(y),

bij = b(aj , ci) = g∗(aj) + h∗(ci)

where:

g∗(aj) = aj ;

h∗(ci) =
(n− 1)

∫ ci
0
xF (x)n−2f(x)dx

mF (ci)n−1
,

is a Symmetric Bayesian Nash Equilibrium.

Proof. This proof is considered under the bidder 1 perspective. Rewriting Equa-

tion 3.5 and using that max
i∈N\{1}

{g(aj) + h(ci)} = g(aj) + h

(
max

i∈N\{1}
{ci}

)
, be-

cause h is an increasing function, we can clear the term g(aj) in each case,
and then, applying h−1 on both sides of both inequalities, we obtain the next
expression:

π({xj}j∈M , y) =∑
j∈M

[
(aj − g(xj))P

(
max

i∈N\{1}
{ci} < h−1(g(xj)− g(aj) + h(y))

)]

+ (c1 −mh(y))P

({
max

i∈N\{1}
{ci} < h−1(g(xj)− g(aj) + h(y))

}
j∈M

)
.

(3.6)

We can rewrite Equation 3.6 as a piecewise function relating {aj}j∈M with
{xj}j∈M on each piece. Particularly, we will work with the piece where xj = aj
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for all j ∈ M since that expression is reasonable in our search of a symmetric
equilibrium. Thus, at that piece, the expected utility function is simplified as:

π({xj}j∈M , y) =∑
j∈M

[xj − g(xj)] + (c1 −mh(y))

P

(
max

i∈N\{1}
{ci} < y

)
. (3.7)

On the other hand, we have that P

(
max

i∈N\{1}
{ci}

)
= FC(y) where FC is

the cumulative distribution function of the maximum of extra profits. Because
extra profit is a private and independent value we have that FC(x) = F (x)n−1,
and then, the expected utility function is given by:

π({xj}j∈M , y) =

∑
j∈M

[xj − g(xj)] + (c1 −mh(y))

F (y)n−1. (3.8)

We will denote f ′x ≡
∂f
∂x . Taking partial derivatives with respect to {xj}j∈M

and y from Equation 3.8 we have:

π′xj
=
[
1− g′xj

(xj)
]
F (y)n−1; (3.9)

π′y =(n− 1)F (y)n−2f(y)

∑
j∈M

[xj − g(xj)] + (c1 −mh(y))


−mh′y(y)F (y)n−1.

(3.10)

We can take the first order conditions from 3.9 and 3.10 and, because of the
symmetric equilibrium definition, we take xj = aj for each item j ∈ M and
y = c1. Now we are going to find the functional form of g and h such that the
expected utility function π is maximized on those values. Thus, we obtain:[

1− g′aj
(aj)

]
F (c1)n−1 = 0 (3.11)

(n− 1)F (c1)n−2f(c1)

∑
j∈M

[aj − g(aj)] + c1 −mh(c1)


= mh′c1(c1)F (c1)n−1.

(3.12)

From Equation 3.11 we conclude that g′j(aj) = 1, and because of the initial
condition g(0) = 0, we have g(aj) = aj . Substituting this in Equation 3.12 we
obtain the next expression:
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(n− 1)F (c1)n−2f(c1)(c1 −mh(c1)) = mh′c1(c1)F (c1)n−1. (3.13)

Notice that [h(c1)F (c1)n−1]′c1 = [h′c1(c1)F (c1)n−1+h(c1)(n−1)F (c1)n−2f(c1)]
and grouping some terms we have the next condition:

m[h(c1)F (c1)n−1]′c1 = (n− 1)c1F (c1)n−2f(c1). (3.14)

Finally, using the fundamental theorem of calculus and isolating terms, we
have:

h∗(c1) =
(n− 1)

∫ c1
0
yF (y)n−2f(y)dy

mF (c1)n−1
. (3.15)

Now let us check that (a1 + h∗(c1), a2 + h∗(c1), ..., am + h∗(c1)) is indeed
an equilibrium. For doing that, we assume that each bidder i ∈ N \ {1} bids
according to bji = aj + h∗(ci) for all j ∈ M and we will prove that bidding, in
the same way, is the best response for bidder 1. Rewriting Equation 3.3 with
this assumption we obtain:

π({bj1}j∈M ) =
∑
j∈M

[(
aj − bj1

)
P

(
max

i∈N\{1}
{aj + h∗(ci)} < bj1

)]

+ c1P

({
max

i∈N\{1}
{aj + h∗(ci)} < bj1

}
j∈M

)

=
∑
j∈M

[(
aj − bj1

)
P

(
h∗
(

max
i∈N\{1}

{ci}
)
< bj1 − aj

)]

+ c1P

({
h∗
(

max
i∈N\{1}

{ci}
)
< bj1 − aj

}
j∈M

)
.

(3.16)

Notice that if for all j ∈M , bj1 ≤ aj , the expected utility would be zero and,
if that situation occurs for a subset of items, then the expected utility will be
negative. So, for all j ∈ M , bj1 must be greater than aj to achieve a positive

expected utility. Let bj1 = aj + tj be an expression for the bid. Rewriting 3.16
we have:

π({tj}j∈M ) =
∑
j∈M

[
(−tj)P

(
h∗
(

max
i∈N\{1}

{ci}
)
< tj

)]

+ c1P

({
h∗
(

max
i∈N\{1}

{ci}
)
< tj

}
j∈M

)
. (3.17)

Notice that when tj = t, for all j ∈ M , bidder 1 only can get two possible
outcomes which are to lose or to win the complete set of items, and also it
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represents the best response because bidder 1 always can choose t such that
mt ≤ c1 for ensuring that his expected utility will not be negative. In addition,
if we consider any other set {tj}j∈M and that bidder 1 obtains a subset of goods,
his expected utility would be negative; complimentarily, if all the goods are lost,
his expected utility is equal to zero. Finally, if he wins all the goods, it is still the
best response to take tk = tl, ∀t, l to ensure not to overbid. Thus, considering
tj = t, ∀j, and

P

(
h

(
max

i∈N\{1}
{ci}

)
< t

)
= FC(h−1(t)) = F (h∗(t)−1)n−1

we have:

π(t) = [c1 −mt]F (h∗(t)−1)n−1. (3.18)

Using that tk = tl, ∀t, l and considering symmetric equilibrium definition,
which implies that all bidders rationalize their bids in the same way, we must
have that t = h(x) and we need to prove that x = c1 maximizes the expected
utility. Rewriting Equation 3.18 with these assumptions we have:

π(x) = [c1 −mh(x)]F (x)n−1. (3.19)

Differentiating Equation 3.19 with respect to x, we obtain:

π′x(x) = (n− 1)F (x)n−2f(x)[c1 −mh(x)]−mh′x(x)F (x)n−1. (3.20)

We have from Equation 3.13 the next equivalence:

h′x(x) =
(n− 1)F (x)n−2f(x)[x−mh(x)]

mF (x)n−1
. (3.21)

Substituing Equation 3.21 into Equation 3.20, we obtain:

π′(x) =(n− 1)F (x)n−2f(x)[c1 −mh(x)]

− mF (x)n−1(n− 1)F (x)n−2f(x)[x−mh(x)]

mF (x)n−1

= (n− 1)F (x)n−2f(x)[c1 − x].

(3.22)

Then, if we consider that x < c1 we have π′(x) > 0. Analogous reasoning
can be made to show that if x > c1 then π′(x) < 0 makes clear that x = c1
maximizes the expected utility.

Thereby, our equilibrium is given by (a1 +h∗(c1), a2 +h∗(c1), ..., am+h∗(c1))
with h∗ the well-known equilibrium bid for a first-price sealed-bid auction for a
single good valued at c1 split by m. Because h∗ is an increasing function, the
previous equilibrium ensures that the bidder with the highest valuation over the
whole set of goods, wins all auctions, excluding the possibility that any bidder
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could obtain negative net profit by winning a subset of goods. In addition, our
bidding function b satisfies the quasi-linear property in the equilibrium. That
conclusion was unexpected since we only assume that b(·) is a linearly separable
function.

Notice that if we integrate by parts we simplify h∗(·) as follows:

h∗(c1) =
(n− 1)

∫ c1
0
yF (y)n−2f(y)dy

mF (c1)n−1
=
c1
m
−
∫ c1

0
F (y)n−1dy

mF (c1)n−1
(3.23)

To better understand the implication of our result we show the next example.

Example 3.1. Consider a situation where bidders do not have any infor-
mation about the valuation of the other bidders regarding to the extra profit, but
they know that it can be any value in the interval [0, 1]. Let us denote by C a
random variable associated with the extra profit. So, we can assume that C has
uniform distribution U(0, 1) and for this particular example, we have that:

h∗(c1) =
c1
m
−
∫ c1

0
yn−1dy

mcn−1
1

=
(n− 1)

n

c1
m
. (3.24)

So, for every i ∈ N and j ∈M , bji = aj + (n−1)
n

c1
m .

Expression 3.24 represents the extra amount that bidders are allowed to bid
in each auction and implies that, in the equilibrium, the bids increase according
to the number of bidders as well as decrease with the number of auctions and
the player who has the highest extra profit valuation always gains the whole set
of items.

To conclude this section we present a discussion case regarding more than
one private independent value involved in the model, particularly the case of
two auctions and two bidders where, both the individual valuations and the
extra profit, are private and independent values. As we will show this case does
not have a solution under our approach yet. For example, consider a situation
where the individual valuations and the extra profit of each bidder are given
according to the next table:

bidder 1 bidder 2
a1

1 = 0 a1
2 = 0

a2
1 = 30 a2

2 = 12
c1 = 12 c2 = 26

If we try to find a SBNE, assuming that bidders bid according to their
valuation and a bidding function b(aji , ci) = g(aji ) + h(ci), we need to compare
the bids to determine the allocation of the items:

Item 1 Item 2
Bidder’s 1 bid h(12) g(30) + h(12)
Bidder’s 2 bid h(26) g(12) + h(26)
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Now, if we assume that g and h are increasing functions, as we do in our
model, the allocation of item 1 is clear because h(26) > h(12) but the allocation
of item 2 becomes a new problem because if item 2 is allocated to bidder 1, both
bidders will have a negative utility as a result of the auctions. We will discuss
this situation in more detail at the conclusions section.

3.2 Seller’s Expected Revenue

In this Section, we analyze the seller’s expected utility in our case of simul-
taneous auctions, and later we will compare it with the case where the complete
set of goods is auctioned in a single first-price sealed-bid auction.

Theorem 3. Let R1 be the seller’s expected profit in the multiple auctions
for complementary goods case and R̂1 the seller’s expected profit in a single
first-price sealed-bid auction for the complete set of goods. Then, R1 = R̂1.

Proof. Let us denote a ≡
∑
j∈M

aj . We assume that bidders will bid according

to the equilibrium shown in the previous section, that is, bji
∗

= b∗(aj , ci) =
g∗(aj) + h∗(ci) = aj + h∗(ci). Thus, the seller’s expected revenue for the case
of m simultaneous auctions is given by:

R1 = E
(
a1 + h∗

(
max

i∈N\{1}
{ci}

)
+ . . .+ am + h∗

(
max

i∈N\{1}
{ci}

))
= E

(
a+mh∗

(
max

i∈N\{1}
{ci}

))
= a+m

∫ c̄

0

nh∗(c)Fn−1(c)f(c)dc.

(3.25)

Consider the case where the seller decides to auction the complete set of
goods by a single first-price sealed-bid auction. Also, assume that bidders will
bid in equilibrium according to the valuation of the whole set of items, in the
same way as they would for a single item with a valuation given by vi = a+ ci.

To determine the equilibrium bid for this case, we need to consider that
∀i ∈ N , vi is a private and independent value in [a, a + ci]. Analyzing the
game from the point of view of bidder 1, modeling it as a Bayesian game, and
assuming that {vi}i∈N are independent realizations from an identical random
variable V with cumulative distribution FV (·) and density fV (·) > 0 in the
interval [a, a+ c̄], we can write the next expression:

π(b1) = (v1 − b1)P

(
max

i∈N\{1}
{bi} < b1

)
. (3.26)
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Assuming that all players follow a bidding strategy b̂(·) and bidders i ∈
N \ {1} bid according to their value we have that bi = b̂(vi) and we obtain the
next equivalence.

π(b̂(x)) = (v1 − b̂(x))P

(
max

i∈N\{1}

{
b̂(vi)

}
< b̂(x)

)
= (v1 − b̂(x))P

(
b̂

(
max

i∈N\{1}
{vi}

)
< b̂(x)

)
= (v1 − b̂(x))P

(
max

i∈N\{1}
{vi} < x)

)
.

(3.27)

If we define V̂ ≡ max
i∈N\{1}

{vi} as the random variable associated with the

maximum value and denote by FV̂ (·) as the cumulative distribution function

of V̂ . Then we have that P

(
max

i∈N\{1}
{vi} < x

)
= FV̂ (x) and because ∀i ∈ N

value vi is private and independent, we have that FV̂ (x) = FV (x)n−1. Thus,
the expected utility function is given by the following expression:

π(b̂(x)) = (v1 − b̂(x))FV (x)n−1. (3.28)

From 3.28 and following the classical approach for single items first-price
sealed-bid auctions we obtain the next bidding equilibrium:

b̂∗(v1) =
(n− 1)

∫ v1
a
xFV (x)n−2fV (x)dx

FV (v1)n−1
. (3.29)

Denoting by C the random variable in [0, c̄] with distribution F (·) and den-
sity f(·) we can write V = a + C and then we have FV (x) = P (V < x) =
P (a+C < x) = P (C < x−a) = F (x−a). Thus, we have the next equivalence:

b̂∗(v1) =
(n− 1)

∫ v1
a
xF (x− a)n−2f(x− a)dx

F (v1 − a)n−1
. (3.30)

If we take x− a = y we obtain:

b̂∗(v1) =
(n− 1)

∫ v1−a
0

(y + a)F (y)n−2f(y)dy

F (v1 − a)n−1
. (3.31)

Moreover, since for all i ∈ N we have vi = a+ci we have the next espression:

b̂∗(a+ c1) =
(n− 1)

∫ c1
0

(y + a)F (y)n−2f(y)dy

F (c1)n−1

=
(n− 1)

∫ c1
0
yF (y)n−2f(y)dy

F (c1)n−1
+ a = b̂∗∗(c1) + a

(3.32)
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where b∗∗ is the well-known equilibrium bid for a first-price sealed-bid auc-
tion. Thus, we have that the seller’s expected revenue, in this case, is given
by:

R̂1 = E
(
a+ max

i∈N\{1}

{
b̂∗∗ (ci)

})
= a+ E

(
b̂∗∗
(

max
i∈N\{1}

{ci}
))

= a+ n

∫ c̄

0

b̂∗∗(c)Fn−1(c)f(c)dc.

(3.33)

Finally, if we notice that mh∗(c) = b̂∗∗(c) the result follows immediately.

Although the construction of our model is different, the previous result is
not surprising because the SBNE expression validates prior studies, and the
methodology to obtain it is the classical one.

On the other hand, if we analyze Example 3.1 from the seller’s expected

revenue perspective, taking into account that b̂∗∗(c) = (n−1)
n c, we have that:

R1 = a+ (n− 1)

∫ 1

0

cndc = a+
n− 1

n+ 1
. (3.34)

Thus, it is easy to verify that the seller’s expected revenue does not depend
on the number of auctions but it is an increasing function of the number of play-
ers. The fact splitting the auctions individually does not influence the seller’s
expected revenue was, at first, unintuitive as well as the result of Theorem 2

With respect to the cases discussed in the previous section involving more
than one private independent value, the seller’s revenue perspective could be
a clue for solving that generalization if the search for the solution focuses on
offering an allocation that maximizes the seller’s expected revenue.

3.3 Conclusions

The previous approach offers a solution from the perspective of strategic be-
havior for the simultaneous auctions problem where complementary goods play
an important role. Although the assumptions for obtaining such a solution are
quite desirable, the problem still has some interesting open questions.

One case was shown in Example 3.1, which is a direct generalization of the
problem we solve when we consider more than one private independent value.
Under our model, it is not clear how to compare bids. If we propose a way how
to do it, we could provide a solution for the allocation problem.
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It is clear that we have to make new assumptions over the bidding function in
order to solve the case from the strategic behavior perspective, even to propose
a completely different bidding function that guarantees efficient assignations
implying that no bidder obtains negative profit to ensure that bidders will be
interested in being part of the game. On the other hand, we have the seller’s
point of view, where is interesting to propose an allocation that maximizes the
seller’s expected revenue.

Another possible generalization occurs when there is a case where for each
subset of goods there is a private independent extra profit cJi , J ⊂ M . For
this situation, the main problem lies in the relation amongst several random
variables in the utility functions and we have to handle the fact that it is not
trivial that the same assumptions work as well as in the previous model. We
can consider another open problem with similar difficulties where the extra
profit value is common knowledge but the individual valuations are independent
private values.

For solving any generalized case, we know that different assumptions need
to be implemented and we have to focus on what kind of allocation will be
induced by that assumptions. The results of this chapter have been published
in Dynamics and Games Journal.
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Chapter 4

Simultaneous auctions of
identical items by first-price
close mechanism with a
bonus for buyers.

In Chapter 3 we propose a solution for a situation where m different items
were sealed by simultaneous auctions mechanisms. We considered that each
item’s individual valuation was common knowledge and the only private and
independent value involved was the extra profit value. Nevertheless, Section 3.3
discusses many interesting and unsolved situations for more than one private
value. The main purpose of this chapter is to offer a solution for a case where
items’ individual valuation and extra profit (bonus for buyers) are private inde-
pendent information. Thus, this chapter focuses on studying from the seller’s
perspective, how to auction a finite set of m identical items when the buyer
who obtains the whole set of goods (if any) gets a bonus, such that the seller
maximizes his expected revenue taking into account the strategic behavior of
the bidders.
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4.1 The model.

In order to be consistent with the notation proposed in Chapter 3, and consider-
ing that players face a situation of m simultaneous auctions for identical items,
we say that ai is one item individual valuation for player i ∈ N . On the other
hand, we have that ci is player i’s extra profit value. Let us define an increasing
function H : [0, ā] → R+ which is common knowledge for bidders. This func-
tion represents the rule that determines the value of the extra profit, namely,
ci ≡ H(ai). To come clean with this, consider that, ∀i ∈ N , Hc(ai) = c, this
means that if some player wins the whole set of items he wins an extra amount
c. Now, consider Hk(ai) = kai, with k ∈ N, which means that if a player
wins the whole set, the extra profit consists of k extra items. In any case, we
interpret H(·) as a bonus that the seller offers to encourage bidders to go for
the whole set, in common words, that could be the case in which a seller offers
free shipping or some kind of reward if a bidder wins all simultaneous auctions.
Thus, we have that vi = mai + H(ai) for this case. Since we did not change
Section’s 3.1 mechanism allocation rules, following the same methodology to
find a SBNE and supposing in addition that bidders bid the same amount for
items with the same valuations, we propose that for every i ∈ N and j ∈M we
have bji = bi. Thus, we can write Equation 3.3 as follows:

π(b1) =
∑
j∈M

[
(a1 − b1)P

(
max

i∈N\{1}
{bi} < b1

)]

+H(a1)P

({
max

i∈N\{1}
{bi} < b1

}
j∈M

)
. (4.1)

Notice that since index j does not have a direct influence in either the terms
of Equation 4.1 and then, we can write the next equation:

π(b1) = [m(a1 − b1) +H(a1)]P

(
max

i∈N\{1}
{bi} < b1

)
. (4.2)

Keeping the assumption that bidders bid according to an increasing bivari-
ate function b(·) and according to the same criteria as in the previous chapter,
namely bi = b(ai, H(ai)) we define α(ai) ≡ b(ai, H(ai)) as a non negative in-
creasing function that satisfy α(0) = 0. Thus, we have the next expression:

π(x) = [m(a1 − α(x)) +H(a1)]P

(
max

i∈N\{1}
{α(ai)} < α(x)

)
. (4.3)

Given Equation 4.3 we can offer a SBNE determining the best response for
bidder 1 given that the other bidders bid according to α(ai). Thus, our first
result is given by the following Theorem:

Theorem 4. For the case of m first-price seald-bid simultaneous auctions
and n bidders, where the auctioned goods are considered to be identical, the
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individual valuation is a private and independent value, the extra profit is defined
by H(·) and the bid strategy is given by α(·),

bi = b(ai, H(ai)) = α∗(ai)

where:

α∗(ai) =
(n− 1)

∫ ai

0
xF (x)n−2f(x)dx

F (ai)n−1
+

(n− 1)
∫ ai

0
H(x)F (x)n−2f(x)dx

mF (ai)n−1

=
(n− 1)

∫ ai

0
(x+ H(x)

m )F (x)n−2f(x)dx

F (ai)n−1
;

is a SBNE.

Proof. Notice that, since α(·) is an increasing function we have

P

(
max

i∈N\{1}
{α(ai)} < α(x)

)
= P

(
α

(
max

i∈N\{1}
{ai}

)
< α(x)

)
.

Then, taking α−1 in both sides of the inequality, we obtain:

π(x) = [m(a1 − α(x)) +H(a1)]P

(
max

i∈N\{1}
{ai} < x

)
. (4.4)

Let us denote by A ≡ max
i∈N\{1}

{ai} the random variable associated to the

maximum of valuations with distribution FA(·). Considering independence be-
tween individual valuations we can write that

P

(
max

i∈N\{1}
{ai} < x

)
= FA(x) = F (x)n−1,

where F (·) is the distribution of the individual values. Then, we have:

π(x) = [m(a1 − α(x)) +H(a1)]F (x)n−1. (4.5)

Taking derivative of π with respect to x, we obtain the next expression:

π′(x) = (n− 1)F (x)n−2f(x)[m(a1 − α(x)) +H(a1)]−mα′(x)F (x)n−1. (4.6)

Taking the first order conditions and making x = a1 for the symmetrical
equilibrium definition we have:

(n− 1)F (a1)n−2f(a1)[m(a1 − α(a1)) +H(a1)] = mα′(a1)F (a1)n−1. (4.7)

Rearranging some terms we obtain the following equation:
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m[α(a1)F (a1)n−1]′ = [ma1 +H(a1)](n− 1)F (a1)n−2f(a1). (4.8)

Then, by applying the Fundamental Theorem of Calculus we have:

mα(a1)F (a1)n−1 = (n− 1)

∫ a1

0

[(mx+H(x)]F (x)n−2f(x)dx. (4.9)

Clearing and separating the integrals on the right, we obtain the following
expression:

α∗(a1) =
(n− 1)

∫ a1

0
xF (x)n−2f(x)dx

F (a1)n−1

+
(n− 1)

∫ a1

0
H(x)F (x)n−2f(x)dx

mF (a1)n−1
. (4.10)

Equation 4.10 gives the functional form of the bid given by α∗(·). In order
to prove that the expression is indeed a SBNE, we must prove that since
the bidders i ∈ N \ {1} bid according to α∗(ai), bidder’s 1 expected utility
is maximized when x = a1. To achieve this purpose we will analyze the sign
change in π′(·) when x 6= c1.

Let be x < c1. From Equation 4.7 we have that

α′(a1) =
(n− 1)F (a1)n−2f(a1)[m(a1 − α(a1)) +H(a1)]

mF (a1)n−1
.

Using this fact and evaluating π at x we get:

π′(x) =(n− 1)F (x)n−2f(x)[m(a1 − α(x)) +H(a1)]

− mF (x)n−1(n− 1)F (x)n−2f(x)[m(x− α(x)) +H(x)]

mF (x)n−1
.

(4.11)

Simplifying Equation 4.11 we obtain:

π′(x) = (n− 1)F (x)n−2f(x)[m(a1 − x)] > 0 (4.12)

With similar reasoning, we can prove that if x > c1, then π′(x) < 0.

It is easy to note that

α∗(ai) =
(n− 1)

∫ ai

0
xF (x)n−2f(x)dx

F (ai)n−1
+

(n− 1)
∫ ai

0
H(x)F (x)n−2f(x)dx

mF (ai)n−1

is an increasing function on ai. Thus, we conclude α∗(·) is a SBNE that ensures
that whoever values the set of goods the most will win all auctions, excluding
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the possibility that some bidders could obtain negative utility by obtaining only
a subset of items.

On the other hand, we observe that the equilibrium bid α∗(·) is composed by
two terms, where the term on the left corresponds to the well-known expression
of the equilibrium bid of the first-price sealed-bid auction for an item valued
in ai. Further, the term on the right is interpreted as the additional amount
that bidders are willing to bid in each auction given that sellers offer H(·). For
example, if we consider a case where the seller offers Hc(x), we have that α∗(·)
has the next value:

(n− 1)
∫ ai

0
Hc(x)F (x)n−2f(x)dx

mF (ai)n−1
=
c
∫ ai

0
(n− 1)F (x)n−2f(x)dx

mF (ai)n−1
=

c

m
. (4.13)

The foregoing shows that the additional amount that bidders bid for each
good is equivalent to distributing the value of the bonus in m equal parts. Now,
if we consider Hk(x) instead of Hc(x), we have:

(n− 1)
∫ ai

0
Hk(x)F (x)n−2f(x)dx

mF (ai)n−1
=

k

m

(n− 1)
∫ ai

0
xF (x)n−2f(x)dx

F (ai)n−1
. (4.14)

This shows that the additional amount that the bidders’ bid in this case is
equivalent to distributing in k

m equal parts the well-known first-price sealed bid
equilibrium for an item valued in ai.

In the next section, we will carry out the analysis corresponding to the seller’s
expected revenue, where we consider the possible changes in his utility consid-
ering different values of H(·). Likewise, we will analyze the expected utility of
the seller when he implements a single auction under the closed mechanism of
the first price and the only opportunity, to auction the complete set of goods
together with the extra utility.

4.1.1 Seller’s Expected Revenue.

In this section, we will analyze the seller’s expected revenue for our case of
simultaneous auctions. Our analysis focuses on studying different proposals
regarding the function H(·), which describes the way in which the bonus for
bidders is defined.

It is assumed that the seller has a number of goods denoted by r ∈ N. The
seller has to figure out how many items to auction and how many to give as a
bonus in order to obtain a better expected revenue. For example, consider Hk(·)
then r = m + k, and if we consider Hc(·) we have that r = m and the seller
will offer a fixed amount as a bonus. To synthesize these two particularly useful
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functional forms we define Hk,c(x) ≡ kx + c and analyze the seller’s expected
revenue under these conditions.

Denoting by R1 the seller’s expected revenue for the case of simultaneous
auctions and assuming that bidders follow the bidding strategy α∗(·) we obtain
the next expression:

R1 = E
(
mα∗

(
max
i∈N
{ai}

))
= mE

(
α∗
(

max
i∈N
{ai}

))
. (4.15)

Since good individual valuation is given by an independent private value,
we have that FA(x) = F (x)n and therefore fA(x) = nF (x)n−1f(x). Thus, the
seller’s expected profit is given by:

R1 = m

∫ ā

0

α∗(x)nF (x)n−1f(x)dx. (4.16)

Considering Hk,c(·) and that the seller owns r identical and indivisible goods
and a fixed amount c > 0 to give as an incentive, we can analyze the way that
the seller distributes r. Rewriting 4.16 under these assumptions we obtain the
following expression:

R1 = m

∫ ā

0

[
(n− 1)

∫ x

0
(y + ky

m + c
m )F (y)n−2f(y)dy

F (x)n−1

]
nF (x)n−1f(x)dx.

(4.17)
Rearranging some terms we obtain the following equivalence:

R1 =m

∫ ā

0

[
(n− 1)

∫ x

0
(1 + k

m )yF (y)n−2f(y)dy

F (x)n−1

]
nF (x)n−1f(x)dx.

+m

∫ ā

0

[
(n− 1)

∫ x

0
c
mF (y)n−2f(y)dy

F (x)n−1

]
nF (x)n−1f(x)dx.

(4.18)

Let us note that:

(n− 1)
∫ x

0
c
mF (y)n−2f(y)dy

F (x)n−1
=

c
m

∫ x

0
(n− 1)F (y)n−2f(y)dy

F (x)n−1
=

c

m
. (4.19)

Similarly, we see that:

m

∫ ā

0

c

m
nF (x)n−1f(x)dx = cF (ā) = c (4.20)

Let us denote by b̂∗(x) ≡ (n−1)
∫ x
0

yF (y)n−2f(y)dy

F (x)n−1 the well-known first-price

sealed-bid auction equilibrium for a good valued at x. Substituting Equation
4.20 into Equation 4.18 and factorising the term (1 + k

m ) we get:
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R1 = (m+ k)

∫ ā

0

b̂∗(x)nF (x)n−1f(x)dx+ c

= r

∫ ā

0

b̂∗(x)nF (x)n−1f(x)dx+ c.

(4.21)

The previous expression shows that no matter how the seller distributes
the r goods, his expected revenue is always given by the same amount. Also,
we observe that when part of the incentive offered by the seller is given by a
constant c > 0, it happens that the seller always recovers exactly the said value,
so it does not have a decisive influence on his expected income either.

We will now determine the seller’s expected revenue when he decides to auc-
tion the complete set of items along with the bonus through a single, first-price
sealed-bid auction. Suppose that bidders i ∈ N bid in equilibrium according to
the valuation of the complete set of goods, in the same way as if a single item
whose valuation for bidder i was given by vi = mai +H(ai) were auctioned.

We will model the above situation as a Bayesian Game considering the case
where the extra utility is given by Hk,c(·). Let Â be the random variable in the

interval [0, ā] with distribution function F (·) and density f(·) and let V ≡ rÂ+c
be the random variable in the interval [c, rā+c] with distribution function FV (·)
and density fV (·). Thus, we have that vi = rai + c is a private and independent
value that represents the valuation of the bidder i for the complete set of goods.
Then, the general expression of expected utility for the bidder 1 is given by:

π(b1) = (v1 − b1)P

(
max

i∈N\{1}
{bi} < b1

)
, (4.22)

where bi represents player i’s bid. Following the classical methodology con-
sidering that the players bid according to an increasing and non-negative func-
tion b̂(·) such that b̂(0) = 0 we have:

π(b̂(y)) = (v1 − b̂(y))P

(
max

i∈N\{1}

{
b̂(vi)

}
< b̂(y)

)
= (v1 − b̂(y))P

(
b̂

(
max

i∈N\{1}
{vi}

)
< b̂(y)

)
= (v1 − b̂(y))P

(
max

i∈N\{1}
{vi} < y

)
.

(4.23)

Note that P

(
max

i∈N\{1}
{vi} < y

)
= FV (y)n−1 and thus we obtain the follow-

ing expression for the expected utility:

π(y) = (v1 − b̂(y))FV (y)n−1. (4.24)
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We obtain the equilibrium bid from Equation 4.24 as follows:

b̂(v1) =
(n− 1)

∫ v1
c
yFV (y)n−2fV (y)dy

FV (v1)n−1
. (4.25)

Using that FV (y) = P (V < y) = P (rÂ + c < y) = P (Â < y−c
r ) = F (y−c

r )
and substituting this in Equation 4.25 we get the following equivalence:

b̂(v1) =
(n− 1)

∫ v1
c
yF (y−c

r )n−2f(y−c
r )dy

F ( v1−c
r )n−1

. (4.26)

Now, making x = y−c
r we obtain:

b̂(v1) =
(n− 1)

∫ v1−c
r

0
(rx+ c)F (x)n−2f(x)dx

F ( v1−c
r )n−1

. (4.27)

Furthermore, if we substitute that v1 = ra1 + c, we have:

b̂(ra1 + c) =
(n− 1)

∫ a1

0
(rx+ c)F (x)n−2f(x)dx

F (a1)n−1
. (4.28)

And rearranging 4.28 we obtain:

b̂(ra1 + c) =
r(n− 1)

∫ a1

0
xF (x)n−2f(x)dx

F (a1)n−1

+
c
∫ a1

0
(n− 1)F (x)n−2f(x)dx

F (a1)n−1
. (4.29)

Finally solving the integral on the right and substituting b̂∗(x) properly, we
obtain:

b̂(ra1 + c) = rb̂∗(a1) + c. (4.30)

Thus, Equation 4.30 shows that the seller does not care to implement any
of the two mechanisms since he always obtains the same expected revenue.

4.2 Conclusions.

For concluding this chapter, we want to mention that, from a theoretical
perspective, bidders act according to two situations where they choose their
strategies in two different spaces: one for a simultaneous auctions context; and
two for a single auction context. Considering the previous observation it was
not very intuitive that we will obtain a result that implies that the way to bid
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in both cases was so similar even less considering that the bonus was given by
Hk,c(·).

A direct generalization of this model is to consider more than one private
and independent value, for example, consider two simultaneous auctions for m
different goods where each bidder has a personal valuation for each of them and
likewise consider the bonus as a private independent value. Another important
generalization could consider that there was more than one value related to the
extra profit, for example, if m auctions are considered, there could be an extra
profit value associated with each of the 2m subsets of goods. Latter and former
cases remain open questions even if they preserve the first-price mechanism or
another, even whether the goods are identical or different.

On the other hand, we like to point out that if we try to compare both
situations from an empirical perspective, there are several reasons to suppose
that bidders should not act in such similar ways in both situations. One of
the reasons is that in the case of m simultaneous auctions, it is possible that
some bidder could obtain negative utility if he bids above the valuation of the
object and he only obtained a subset of goods. Another reason could be due to
the fact that in the case of m simultaneous auctions, the way of acting of the
other bidders could be somewhat less predictable since it would be necessary
to analyze the way in which they could rationalize m possibly different bids for
each auction. This type of analysis is really interesting to approach from the
perspective of the experimental economics area in order to explain for what kind
of applications SBNE will be a proper tool to predict agents’ behaviour. The
results of this chapter have been published in EconoQuantum journal.

In the next chapter, we explore the information exchange for a supply chain
context modeling it by a signaling game. Later we explore the application of
auctions as a negotiating mechanism among agents involved in the supply chain.
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Chapter 5

Applications of signal
games and auctions to
supply chains.

This chapter explores a different approach to supply chain modeling through the
game theory perspective. In Section 5.1, we explain a two-echelon one single
channel supply chain under common assumptions through a signaling game
with the classical structure. We prove that, in our first approach, there are
many different ways to obtain an equilibrium but most of these strategies do
not necessarily imply cooperative behavior between agents. Later, we propose
some modifications to the original assumptions which let us obtain a unique
equilibrium that ensures cooperative behavior among agents.

In Section 5.2 we analyze a situation where only one supplier and several
buyers are involved in a negotiation process when the supplier is not capable of
meeting the sum of the buyers’ individual demands. We propose for this case
to assign the production lot through an auction mechanism where buyers state
the number of goods they want and the unit price they are willing to pay for
each item in the case they win. We consider that bidders have only one chance
to make a sealed bid. Later, the supplier orders the bids from highest to lowest
giving preference to the highest bid to meet that demand, then to the second
highest bid, and so on until he finishes allocating the full amount of goods. For
their part, buyers pay the number of goods that were assigned to them at a unit
price given by their bid. This mechanism has a canonic case which implies that
all bidders bid zero as the unit price. For that case, the model considers that
if some bidder bids under the market price p̂ then he has to pay that price for
each unit.
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5.1 Signaling game for modeling a supply chain.

A signaling game defines a situation where one or more informed agents,
commonly called senders, take observable decisions before one or more unin-
formed agents, commonly called receivers. A signaling game is performed as
follows:

• Nature determines informed agents’ types.

• Informed agents decide their actions depending on their types.

• Uninformed agents observe informed agents’ actions and choose their own
actions.

As we said before, the fundamental characteristic of a signaling game lies in
the fact that agents are asymmetrically informed. Thus, the uninformed agents
have to wait for the informed ones to act. This means that the uninformed
agents wait for a signal before choosing an action.

Particularly, we develop a situation with only one supplier and a retailer
that negotiates the quantity of a particular item to be produced and commer-
cialized, respectively. Our model identifies nature as the market demand and
supposes that, since the retailer is closer to the market and therefore has better
information about it, he is the informed agent, that is to say, the sender, and
thus the supplier will be the receiver. Also, to keep it simple, we assume that
the transmitter will observe the real market demand and will be able to send
one of two possible signals: low demand or high demand.

Now, we will explain the variables involved in our decision-making supply
chain problem. Later, we will analyze the situation as a signaling game to find
out the characteristics of the information exchange about the market demand.
For simplicity, we will consider that the costs associated with the different vari-
ables are unit costs.

We will denote by cR the commercialization unit cost for the retailer and by
cS the unit cost of production for the supplier. In this model, we assume that
the retailer’s commitment regarding the merchandise to be sold is always for
the full quantity that the supplier decides to manufacture, whether the supplier
follows the signal or not. For example, if the supplier receives a signal that
the demand will be low and still decides to produce a large batch, the retailer
commits to market the entire batch. Thus, the total commercialization cost for
the retailer will be given according to the number of manufactured goods.

We will denote by soR and soS the unit costs that the retailer and supplier
assume respectively due to stock-outs, that is, the loss for having produced or

45



commercialized fewer units than the market requires. In this model, we assume
that this cost always affects both agents.

In the same way, let h be the unit cost due to the unsold units, that is, the
opposite case of stock-outs since a fixed amount per unit is paid due to the cost
generated by removing the surplus items from the market. The return policies
for this case imply that since the supplier is in charge of transport logistics and
who decides how to distribute his merchandise, in this model it is assumed that
this cost will always be absorbed by his side.

On the other hand, pr represents the unitary market price at which the
retailer sells the merchandise and r is the unitary price that the retailer pays
to the supplier for each unit of product. Here, it is assumed that the purchase
commitment policies imply that the retailer only commits to pay for the units
that he has managed to retail. For simplicity, we assume that the supplier has to
decide between producing q+ or q− a big or a small lot of product respectively,
and the retailer only can send q+ or q− as the market status signals namely big
or small demand respectively. The random variable associated with the market
demand will then have a Bernoulli distribution with parameter p+ ∈ [0, 1] and
it will be denoted by N ∼ B(p+). Furthermore our approach, it is known that
the retailer knows the true market demand and that the supplier only knows
the probabilistic distribution. The quantity produced will be denoted by Q.

Formally, the signaling game strategies will be the following:

• The retailer will decide which signal to send to the supplier depending on
the observed demand, that is, SR = {(q+, q−), (q−, q+), (q−, q−), (q+, q+)}.

• The supplier will decide how much to produce in each information set,
that is, SS = {(q+, q−), (q−, q+), (q−, q−), (q+, q+)}.

The expected utility of the agents will be given by:

πR = E[(pr − r − cR) min{Q,N} − soR(N −Q)+]. (5.1)

πS = E[rmin{Q,N} − cSQ− soS(N −Q)+ − hS(Q−N)+], (5.2)

where πR and πS represent the expected return of the retailer and the supplier
respectively, considering (x)+ ≡ max{0, x}.

Our signaling game performance consists of three stages. First: Nature
reveals market demand to the retailer. Second: the retailer sends a signal, low
or high, to the supplier. Third: the supplier will determine the production level
based on the signal he received. Let α denote the supplier’s belief of having
received the signal q− when the true market demand is q+, and β the belief
associated with receiving the signal q+ when this is the true market demand.
Thus, we can represent the situation through the next signaling game:
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Figure 5.1: Signaling game G1.

With the previous construction, we can state our first Theorem:

Theorem 5. For the G1 signaling game, the strategies:

ss1
G1 = ((q+, q−), (q−, q+))

ss2
G1 = ((q−, q+), (q+, q−))

are separating equilibria. Moreover, if the next inequality holds

(p+)[(r − cs)q+] + (1− p+)[rq− − csq+ − h(q+ − q−)]

> (p+)[(r − cs)q− − soS(q+ − q−)] + (1− p+)[(r − cS)q−] (5.3)

we have that for all a ∈ [0, 1],

sp1
G1 = ((q−, q−), (q+, (aq+, (1− a)q−)))

sp3
G1 = ((q+, q+), (q+, (aq+, (1− a)q−)))

are pooling equilibria. Finally, if 5.3 does not hold then,

sp2
G1 = ((q−, q−), (q−, q−))

sp2
G1 = ((q+, q+), (q−, q−))

are pooling equilibria.

Proof. This proof will be divided into two parts according to the signal type.

Separating signals: In this part, we will analyze two strategies that imply
that, when the sender (retailer) sends the signal, the receiver (supplier) must
decide his best response considering that certainty he does not know in which
information set he is. That is, at the moment that he receives the signal, he
must determine the best response for each information set.
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The strategy sR = (q+, q−) is interpreted as the retailer always yielding up
the true market signal to the supplier, ie, he cooperates with him. The orange
lines in the following graph represent the circumstance under which we analyze
the agents’ decisions.

Figure 5.2: G1 under true separating signals.

For this case we have that α = 0 and β = 1, which implies that S will choose
q− on the information set of α because (r − cS)q− > rq− − cSq+ − h(q+ − q−)
always happens; and S will choose q+ on the information set of β whenever
(r− cS)q+ > (r− cS)q− − soS(q+ − q−), which always holds, too. Likewise, we
observe that if R changes its strategy in the node associated with p+ he does
not get improvement. A similar happens in the node associated with (1− p+).
Therefore the strategy ss1

G1 = ((q+, q−), (q−, q+)) is a separating equilibrium of
G1.

The analysis of the strategy sR = (q−, q+) is analogous but with the opposite
interpretation. This strategy implies that the retailer always sends the wrong
signal to the supplier, that is, he always lies to him. The extensive form of the
game for this case is given below:

Figure 5.3: G1 under false separating signals.
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For this case, we have that α = 1 and β = 0. Thus, S must decide q+

in the information set of α because (r − cS)q+ > (r − cS)q− − soS(q+ − q−)
is always true; and he will decide q− in the information set of β whenever
(r − cS)q+ > (r − cS)q− − soS(q+ − q−) which always holds, too. Likewise, we
observe that for each decision node in R, the utility does not improve if the
strategy is changed, therefore the strategy ss2

G1 = ((q−, q+), (q+, q−)) is also a
separating equilibrium no matter it implies to lie and not to follow the signal.

Pooling signals: In this part, we analyze two strategies that imply that the
sender always sends the same signal, therefore the receiver must build a belief
based on the demand probability distribution. When the receiver observes pool-
ing signals, he knows the information set associated with the signal and based
on this information, must determine his best response. It is important to note
that for this case, supplier actions at the information set which is not associated
with the received signal are not relevant to the final outcome, so we can propose
a strategy that implies convenient actions to construct an equilibrium.

The strategy sR = (q−, q−) represents the case where the sender lies some-
times. The extensive form game corresponding to this case is as follows:

Figure 5.4: G1 under low pooling signals.

We note that for this case α = p+ and that S will choose q+ in that infor-
mation set whenever the following inequality holds:

(p+)[(r − cS)q+] + (1− p+)[rq− − cSq+ − h(q+ − q−)] >

(p+)[(r − cS)q− − soS(q+ − q−)] + (1− p+)[(r − cS)q−]. (5.4)

From Expression 5.4 we can conclude that it will depend entirely on the value
of the variables whether q+ is a better response for the information set of α. Also
when Expression 5.3 is true we have that sp1

G1 = ((q−, q−), (q+, (aq+, (1−a)q−)))
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for all a ∈ [0, 1], is a pooling equilibrium. On the other hand, if the previous
inequality does not hold, we have that sp2

G1 = ((q−, q−), (q−, q−)) is a pooling
equilibrium. In summary, it turns out that, under this scheme, to lie is an
equilibrium strategy sometimes, even if the signal is followed or not depending
on the values of the variables.

Another case occurs when R sends the pooling signal sR = (q+, q+), that is,
when he always tells the supplier that the market demand is high. We have the
graphical representation of this situation as follows:

Figure 5.5: G1 under high pooling signals.

For this case we observe that β = p+ and that S will choose q+ in α’s
information set, allways that next inequality holds:

(p+)[(r − cS)q+] + (1− p+)[rq− − cSq+ − h(q+ − q−)] >

(p+)[(r − cS)q− − soS(q+ − q−)] + (1− p+)[(r − cS)p−]. (5.5)

From Expression 5.5 we can deduce the same conclusions that came from Ex-
pression 5.4. Thus, we conclude that sa1

G1 = ((q+, q+), ((aq+, (1−a)q−), q+)) is a
pooling equilibrium if 5.5 holds. If 5.5 does not hold, then sa3

G1 = ((q+, q+), (q−, q−))
is pooling equilibrium.

To conclude this section, we highlight that under this scheme the game shows
several rational ways to behave in this situation. Previous rules were proposed
based on the work of Slimani, et. al. (2014) and common policies in the relation-
ship between big corporations and their commercial partners. Shown rational
ways of acting do not necessarily imply sending correct signals and or following
them. That result is not entirely desired since it implies that rational behaviour
does not necessarily go hand in hand with cooperation between agents. These
conclusions motivate us to propose in the following section a policy modification
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under which we can assure rational behavior and cooperative behavior side by
side.

5.1.1 A modified signaling game to model a supply chain.

In this section, we will propose different rules to govern the purchase, return
policy, commercialization quantity commitment policies, and stock-outs costs.
Our proposal is clearly adapted to the simplified situation that we have worked
on throughout this chapter, which was mainly thought to propose a way that
ensures that rational behaviour is only possible through cooperative behaviour.

The first modification will be made to the commercialization unit cost. In
Section 5.1 we establish that the retailer has to receive the entire production
lot from the supplier to commercialize it no matter the signal he send. In this
new proposal, we have two possible ways to carry out those costs depending on
the sending signal. First: if the retailer sends the signal q− and this is true,
but the supplier decides to produce q+, that is to say, that it does not follow
the signal, then, the marketing cost for the retailer will be cRq− which implies
that the retailer does not have to market large lots when he knows that there
will be leftover pieces and he communicated this information to the supplier.
Second: if the retailer sends the false signal q+ and the supplier decides to follow
it, then the retailer’s marketing cost will remain cRq− but will fully absorb the
unit leftover cost h as a consequence of lying.

Regarding the stock-out cost, we propose that when the retailer sends the
true signal q+, but the supplier decides to produce q−, then the supplier has
to handle stock-out costs due to not having followed the signal. On the other
hand, if the retailer sends the false signal q− and the supplier follows this signal,
then the stock-out cost will be carried by the retailer as a consequence of lying.

Finally, for the cases in which the retailer lies and the provider does not
follow the signal, the retailer will be penalized with a loss of trust cost denoted
by e > 0. This case can be explained as a situation where an agent requests
information that he already knows with the only purpose of finding out if the
other agent is cooperating or not. Thus, the signaling game associated with our
proposal is given by the following extensive form game:
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Figure 5.6: Signaling game G2

Next, we will state our second Theorem.

Theorem 6. For the signaling game G2 the strategy

ss1
G2 = ((q+, q−), (q−, q+))

it is the only separating equilibrium in the game. Furthermore, if

e > (pr − r − cR)(q+ − q−)

there are no pooling equilibrium.

Proof. This proof will be divided in two parts according to the signal types and
will show all the cases in an exhaustive way.

Separating signals: As in Section 5.1, we will analyze through the corre-
sponding scheme what implications it has for the agents that the retailer always
tells the truth, that is, sends the signal sR = (q+, q−):

Figure 5.7: G2 under true separating signals.

We note that for this case α = 0 and β = 1, then S will choose q− in α’s
information set, because (r − cS)q− > rq− − cSq+ − h(q+ − q−) always holds
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regardless the value of the variables. And S will choose q+ in β’s information set
whenever (r− cS)q+ > (r− cS)q−− soS(q+− q−) holds, which always happens.
Therefore ss1

G2 = ((q+, q−), (q−, q+)), is a separating equilibrium.

On the other hand, when the retailer decides to send the signal sR = (q−, q+)
we get the following game structure:

Figure 5.8: G2 under false separating signals.

We can see that α = 1 and β = 0 which implies that q+ is the best answer for
S in α ’s information set given that (r−cS)q+ > (r−cS)q− is always true. And,
S will choose q− in β’s information set whenever (r−cS)q− > rq−−cSq+ which
is also always true. On the other hand, we observe that it is convenient for R
to change its strategy in the node associated to (1 − p+). He would improve
his utility, if changes his action as highlighted in Figure 5.8 with the solid green
line. Additionally, if e > (pr − r − cR)(q+ − q−), we have that if R changes the
strategy associated with the p+’s node he would choose his best answer. Thus,
we conclude that there is no equilibrium associated with the lying separating
signal.

Pooling signals: In this part, we will analyze the cases where the retailer
decides to send the same signal without considering the true market demand.
Thus, for the signal sR = (q−, q−) we have the Figure 5.9 game structure. We
see that α = p+ and so, S will choose q+ in α’s information set, always that we
have:

(p+)[(r − cS)q+] + (1− p+)[rq− − cSq+ − h(q+ − q−)] > (r − cS)q−. (5.6)

From Expression 5.6 we can see that, depending on the value of the variables,
there will be situations where S’s best response is given by q+ at α’s information
set and this case is indicated by the purple lines. Also, we can note that if
e > (q+ − q−)(pr − r − cR) then R would not be choosing his best response in
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Figure 5.9: G2 under low pooling signals.

p+’s node. Then, considering the case where q− is the best response for S in α’s
information set then R would not be choosing rationally at the node associated
with p+ as is indicated by the green line. Thus, we show that there are no
equilibria associated with the signal sR = (q−, q−).

Finally, we have the case associated to the pooling signal sR = (q+, q+) and
we have the following game structure:

Figure 5.10: G2 under high pooling signals.

For this case we have that β = p+ and S will choose q+ in β’s information
set as long as the next expression holds:

(p+)[(r − cS)q+] + (1− p+)[rq− − cSq+] >

(p+)[(r − cS)q− − soS(q+ − q−)] + (1− p+)[(r − cS)q−]. (5.7)
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From Expression 5.7 we can see that, depending on the value of the variables,
there will be occasions where a q+ is the best response for S in β’s information
set. However, whatever S’s best response is in β’s information set and for any
strategy in α’s information set, as illustrated by the red lines, we will have
that R’s best response always imply to choose q− at the node associated with
(1 − p+), as indicated by the green line. Thus, we show that it is not possible
to construct an equilibrium from the signal sR = (q+, q+).

Finally, we can conclude that with proposed policies, there is only one ra-
tional way to act that guarantees cooperation between the agents.

5.1.2 Conclusions.

The main contribution of this section is focused on proposing signal games
as a tool to analyze information exchange through different supply chain mod-
els that are proposed by the literature and inquire about the mainspring that
causes non-cooperative behaviour. The most interesting models for studying
with signaling games are those where it is possible to model some interesting
variable (like market demand) as a random variable. This idea aims to the ob-
jective of driving the agents with better information to share it with the other
agents which have no so well information quality.

When the policies of production, return, repurchase, etc. are focused on the
main objective of reducing general costs, a kind of interaction between agents
is encouraged to favor the performance of that optimization process. But in
most cases, this process is made without taking into account the important
role of the information flow and its quality to achieve these purposes. This is
why we are interested in analyzing different generalizations of our own model
and comparing it with the most common models that are proposed in terms of
supply chains analysis.

Now, we will discuss some direct and unsolved generalizations of our model
that will imply a reconsideration of the agents’ strategy spaces. For example,
consider that the strategy space of S is given by SS = [q−, q+]. In addition, R’s
strategies space could consider more complex signals, such as a continuous in-
terval, which would represent a higher difficult challenge for theoretical analysis
due to the difficulty that involves establishing a classification of the signals and
their interpretation.

Another possible way to see our proposal is to consider that the retailer
only obtains partial information regarding the market demand, that is, the
information that he can obtain is only about the distribution of demand. This
fact implies in terms of our original problem, that the true demanded quantity
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will reveal until the final stage of the game when the agents have already chosen
their actions.

Modifications proposed in the last paragraph consider more realistic infor-
mation structures than real-world supply chain problems shown in this chapter.
In addition, they highlight the importance of taking into account real incentives
in negotiation protocols to achieve cooperation among agents.

Finally, we remark on the importance of having a global vision to test co-
operation behavior in models that originally were made with different proposes
like optimization costs or other similar aims. The simplicity of our model lets
us identify variables that influence rational and cooperative behaviour and fo-
cus on the importance of the information exchange quality with a particularly
simple but useful tool.

5.2 An application of auctions as negotiation mech-
anism in a supply chain.

In this section, we will propose a situation that involves one supplier and two
retailers bargaining for many identical items. It is supposed that the supplier
cannot supply the entire demand, so he always carries one client, at least, with
partially or completely unsatisfied requirements.

To clarify this problem, let us propose the next notation:

• Q ∈ N: the total production.

• qi ∈ {Q + 1 − q−i, ..., Q}: is the quantity that agent i requires from the
supplier.

• mi: is agent i’s allocation.

• vi: is agent i’s private and independent valuation for one item.

• i+: is the bidder with the highest bid.

• i−: is the bidder with the lowest bid.

Thus, in terms of our notation, the supplier always faces the problem that
q1 + q2 > Q. For this case, we notice that one form of commercializing a
complete lot of items, is selling each item to a given market price, say p̂, and
making an arbitrary distribution of the Q items between both agents. This
procedure results in a situation where the supplier always obtains an income
equal to Q · p̂ and always faces the problem of having at least one unsatisfied
commercial partner.
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We consider an alternative mechanism that assigns the items through a
sealed-bid first-price auction mechanism. This proposal consists on asking the
retailers to send a bid containing two information pieces: first, the true require-
ment, and second, the unitary price that the bidder is able to pay according
to his complete or partial requirement. Let us represent a bid by a two-entry
vector, that is, Bi = (qi, bi) where the first entry represents the true requirement
and the second entry represents the unitary bid that bidders are willing to pay
for one item. If, at least, one of the bids is bigger than p̂ then, the items will be
assigned according to the magnitude of the unitary bids, that is, the supplier
will satisfy bidder i+’s requirement and will assign the rest, Q− qi+ , to bidder
i−. Thus, bidder i+ will pay (bi+qi+) and bidder i− will pay p̂(Q− qi+). If both
bids are smaller than p̂ the assignation rule will be the same but each bidder
pays p̂ as a unitary price. For example, suppose that we have a problem where
Q = 10, q1 = 7, q2 = 5, and bidders send the following bids: B1 = (7, 1) and
B2 = (5, 2). For this case, we have m1 = 5, m2 = 5 and the seller’s revenue
is (5 · p̂) + (5 · 2). Notice that in this first approach, we are considering that
bidders must reveal their true requirements. This supposition is for maintaining
simple our mechanism and keeping it similar to the normal way of bargaining
where retailers always ask for the number of items that they require. Thus, the
strategic behaviour and the assignation rule only concern the magnitude of the
unitary bid.

Additionally, our model considers a stock-out unitary cost that affects the
retailer according to the shortage of items when this is the case, which means
that the assignation process gives the retailer fewer items that require. This
cost is proposed to model a possible loss that a retailer can face because of
the negative implications caused by the lack of items for satisfying demand, for
example, the loss of clients, a sale goal not achieved, an overall decline in sales
and revenue, etc. Denoting the stock-out unitary cost by α we have that in the
previous example Agent 1 would have a total stock-out cost given by 2α.

We suppose that Q is common knowledge but the opponent’s requirement
is unknown. For modeling, this lack of information we propose to analyze the
problem from Bidder 1 perspective and define Q2|Q1 = q1 as a discrete random
variable associated to Bidder 2’s requirement. The lower limit of the support of
our random variable support is given by Q + 1 − q1 since in case of losing the
auction, Bidder 1’s biggest possible assignation would be equal to q1 − 1 and
the lowest would be zero, thus the upper limit would be given by Q. To keep
the analysis simple, we propose that Q2|Q1 = q1 ∼ U{Q+ 1− q1, Q}. Thus, for
all q2 ∈ {Q+ 1− q1, ..., Q}, P (Q2|Q1 = q1 = q2) = 1

q1
.

Modeling the previous situation as a symmetric Bayesian game, vi is agent
i’s private independent value associated with the valuation for one item in the
compact set [p̂, v̄] where F and f are the distribution and density functions
respectively. Notice that this model considers that retailers’ valuation for one
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item is always greater than p̂. This assumption is made to establish that retailers
are willing to pay more than the price p̂ since they are interested on avoiding
stockout costs. Then, if we define K|Q1 = q1 ≡ (Q −m2) we can notice that
K|Q1 = q1 ∼ U{0, q1 − 1} and that for all k ∈ {0, ..., q1 − 1} we have that
P (K|Q1 = q1 = k) = 1

q1
. Notice that the assignation rule only concerns bi

magnitude having thus that agent 1’s expected utility is given by:

π(b1) = [q1(v1 − b1)]P (b2 < b1)

+
1

q1

(
q1−1∑
k=0

[k(v1 − p̂)− α(q1 − k)]

)
P (b2 > b1). (5.8)

Considering that agents’ bids is defined by bi = b(vi) an increasing function
that represents agent 1’s unitary bid, that agent 2 bids according to his own
valuation v2 and that agent one has to figure out his best response, we have the
next expression:

π(x) = [q1(v1 − b(x))]P (b(v2) < b(x))

+
1

q1

(
q1−1∑
k=0

[k(v1 − p̂)− α(q1 − k)]

)
P (b(v2) > b(x)). (5.9)

The previous construction let us state the next theorem:

Theorem 7. For the case of only one supplier and two retailers, the first-
price sealed-bid auction where q1 + q2 > Q, the auctioning items are considered
identical, the individual valuation is a private independent value between [p̂, v̄],
p̂ is the item market price and the bid strategy is given by Bi = (qi, b(·)),

b∗(vi) =


(

qi+1
2qi

)(
vi + α−

∫ vi
p̂ F (x)dx

F (vi)

)
+
(

qi−1
2qi

)
p̂, if vi > p̂ ,

p̂+ α
(

qi+1
2qi

)
, if vi = p̂.

(5.10)

is a SBNE.

Proof. Given that b(·) is an increasing function, we can take b−1(·) in both sides
of the probabilistic terms and considering that P (v2 < x) = F (x) we obtain:

π(x) = [q1(v1 − b(x))]F (x)

+
1

q1

(
q1−1∑
k=0

[k(v1 − p̂)− α(q1 − k)]

)
(1− F (x)). (5.11)
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Isolating (v1 − p̂) from the sum, simplifying and grouping some terms we
obtain:

π(x) = [q1(v1 − b(x))]F (x)

+

(
(v1 − p̂)

(
q1 − 1

2

)
− α

(
q1 + 1

2

))
(1− F (x)). (5.12)

Deriving Equation 5.12 we obtain the next expression:

π′(x) = [q1(v1 − b(x))]f(x)

− b′(x)q1F (x)−
[(

q1 − 1

2

)
(v1 − p̂)−

(
q1 + 1

2

)
α

]
f(x). (5.13)

Taking first-order conditions and making x = v1 by symmetric equilibrium
definition, we obtain the next equivalence:

[q1(v1 − b(v1))]f(v1) =

b′(v1)q1F (v1) +

[(
q1 − 1

2

)
(v1 − p̂)−

(
q1 + 1

2

)
α

]
f(v1). (5.14)

Gruping b(v1) and b′(v1) in the left side of 5.14 and grouping v1 and p̂ in
the right side we obtain:

b′(v1)q1F (v1) + b(v1)q1f(v1) =

q1v1f(v1)−
[(

q1 − 1

2

)
(v1 − p̂)−

(
q1 + 1

2

)
α

]
f(v1). (5.15)

Simplifying some terms we have:

q1[b(v1)F (v1)]′v1 =

[(
q1 + 1

2

)
(v1 + α) +

(
q1 − 1

2

)
p̂

]
f(v1). (5.16)

Applying the Fundamental Theorem of Calculus and isolating q1 from the
left-hand side we have the next implication:

b(v1)F (v1) =

(
q1 + 1

2q1

)∫ v1

p̂

xf(x)dx

+

[(
q1 + 1

2q1

)
α+

(
q1 − 1

2q1

)
p̂

]
F (v1). (5.17)

59



Thus, we can show our candidate for an equilibrium bid strategy:

b∗(v1) =

(
q1 + 1

2q1F (v1)

)∫ v1

p̂

xf(x)dx+

(
q1 + 1

2q1

)
α+

(
q1 − 1

2q1

)
p̂

=

(
q1 + 1

2q1

)(∫ vi
p̂
xf(x)dx

F (vi)
+ α

)
+

(
q1 − 1

2q1

)
p̂.

(5.18)

Now, we are going to show that b∗(·) is indeed an equilibrium. Isolating
b′(v1)q1F (v1) from Equation 5.14 and evaluating in x 6= v1 we obtain the next
condition:

b′(x)q1F (x) = [q1(x− b(x))]f(x)

−
[(

q1 − 1

2

)
(x− p̂)−

(
q1 + 1

2

)
α

]
f(x). (5.19)

Substituing Equation 5.19 into Equation 5.13 and simplifing some terms we
obtain the next condition:

π′(x) =

[(
q1 + 1

2

)
(v1 − x)

]
f(x). (5.20)

Let be x < v1. From Equation 5.20 we observe that π′(x) > 0 and with
similar reasoning, we can conclude that if x > v1 then π′(x) < 0 probing that
b∗(·) is indeed an equilibrium bid. Finally, considering that,

∫ v1
p̂
xf(x)dx =

v1F (v1)−
∫ v1

0
F (x)dx, we can express our equilibrium bid as follows:

b∗(v1) =

(
q1 + 1

2q1

)(
v1 + α−

∫ v1

0
F (x)dx

F (v1)

)
+

(
q1 − 1

2q1

)
p̂. (5.21)

Now we are going to propose how to bid when v1 = p̂ since b∗(·) is not
defined for this case. Notice that

∫ v1
p̂
xf(x)dx >

∫ v1
p̂
p̂f(x)dx = p̂F (v1) so, the

infimum for b∗(·) would be given by:

p̂+ α

(
q1 + 1

2q1

)
(5.22)

So, for being consistent with our equilibrium bid we propose that when the
valuation of the item was the lowest possible then, we take the maximum lower
bound as a bid for this case. We are sure that this proposal is an equilibrium

because from 5.12 we have that π(x) = (v1− p̂)
(
q1−1

2

)
−α

(
q1−1
2q1

)
so, since π(·)
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does not depend on b(·), there is no strategic behaviour that can improve the
expected utility when v1 = p̂.

Notice that the larger the stock-out cost, the greater is the equilibrium bid,
even when the valuation of the object is equal to p̂ the bid is always greater than
this value. This last conclusion exhibits the individual valuation was proposed
as a disaggregate variable with two components, first the private independent
value vi and, second, the stock-out cost α which is assumed as a symmetric
value for the agents. Thus when α = 0 we have the next expression as the
equilibrium bid:

b∗(vi) =


(

q1+1
2q1

)(
vi −

∫ vi
p̂ F (x)dx

F (vi)

)
+
(

q1−1
2q1

)
p̂, si vi > p̂ ,

p̂, si vi = p̂.

(5.23)

Since
(

q1+1
2q1

)
+
(

q1−1
2q1

)
= 1, we can see that our equilibrium bid is a kind

of a convex combination between vi and p̂ and the term
(

q1+1
2q1

)( ∫ vi
p̂ F (x)dx

F (vi)

)
is

the amount of shading.

On the other hand, we have that since the maximum lowest bound is given
by 5.22 we can assure that the seller’s expected revenue is always greater under
this mechanism than selling the items at a given market price p̂ and allocating
they in an arbitrary way.

5.2.1 Conclusions and future work

There are many possible generalizations of the proposed problem. The first
possible modification could be concerned with assuming α as a symmetric cost
and in that case, we can propose a unitary bidding function that depends on two
criteria: the individual valuation and the personal stock-out cost. The technical
limitations for this case lie in how to compare bidding functions that depend of
two variables and then calculate the probabilities.

Another possibility concerns considering the first component of the bid into
the allocation mechanism, what is considered the retailer’s requirement as part
of the strategy, it is to say, that a bidder asked the number of items according
to a function of the real requirement and try to determine how many items an
agent has to ask in order to maximize his expected utility given that others ask
according to some criteria. The technical limitations for this case are the same
that in the last paragraph.
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Also, it is interesting to consider possible generalizations of our mechanism
to a context for more than two bidders. One possible way to do the assignation
process is only considering the unitary bid as in our previous case and ordering
the unitary bids from the highest to the lower. Then, the supplier will assign the
items satisfying the retailer with the highest unitary bid first, then the retailer
with the second highest unitary bid, and so on until the supplier run out of the
items. For example, consider the case where Q = 12, q1 = 4, q2 = 5, q3 = 6,
then if b1 = 3, b2 = 2, b3 = 1 we have that m1 = 4,m2 = 5 and m3 = 3. Notice
that bidder 3’s assignment was given by Q− q1− q2. The theoretical difficulties
of this case concern the hardness of the calculation of how many items a player
receives when his unitary bid is the second highest or the third highest, etc.
There is no deterministic form to knowing that information at most we could
calculate the expected value of the number of items when a player does not have
de highest unitary bid.

Finally, we like to conclude this section by mentioning the importance of
our proposal for solving assignation problems by prioritizing the seller’s revenue,
especially in cases where a supplier can not satisfy the complete market demand.
It is important to remark that, the actual tendency of many kinds of social
partners, to face bargaining problems in automatic business applications from
their cell phones or many-other platforms on the internet, offers the possibility
to make easy the bargaining problem under our proposal. This fact keeps us
interested in analyzing rational behaviour in this kind of situation.
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